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4. APPLICATION TO MATH STUDENTS APPROACH

Math problem: Find the volume of the
intersection.

YN
N

N

The theory of script
sentences pattern may be
successfully applied to any
math student, considering the
fact that these patterns are
subconscious. There will be
given 5 examples, one of each
script patterns, and proposals
of how to overcome personal
member drawbacks or
interruptions due to their
characteristic script behavior.
Suppose a student is given a

math problem by the teacher to be solved and he/she is not able to fulfill it
easily. Within the following examples the students’ sentence reactions are
considered and there are several permissions proposals to each example of
reaction to unfulfilled task, in accordance to the script pattern and tending to

script disruption.
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Example 1. Script process: NEVER
Student: 1...hmmm,...well, 1 am not sure if you will agree with me,...
or...perhaps you will think I am overreacting... um...I don’t know...
Considering the characteristics and sentences patterns given in Table 6, there
are several permissions and script disruptions that may be proposed:
(1) Stroke (lavishly) each step toward OKness, no matter how small.
(2) Confront the TRY HARD Working style by inviting the student into
perception of here-and-now.
(3) Stroke student spontaneity and ability to enjoy him/herself and the world
around.
Example 2. Script process: ALWAYS
Student: [ am not quite sure I understand this very complex math problem,
if it is important at all.
Considering the characteristics and sentences patterns given in Table 6, there
are several permissions and script disruptions that may be proposed:
(1) No hedging or disowning
- It’s OK to make decisions (“What do you want?”)
- It’s OK to make commitments (“What will you do?”)
- It’s OK to state feelings, thoughts, opinions (“What do you feel/think?”)
(2) Encourage and stroke student’s risk-taking — it is OK to make mistakes,
it is OK to change your mind.
Example 3. Script process: AFTER
Student: [ really love solving these kinds of math exercises, but I think I will
never be good at it.
Considering the characteristics and sentences patterns (see Table 6), there
are several permissions and script disruptions that may be proposed:
(1) Give permission and make contract with the student not to use work to
invite bad feelings later.
(2) Stroke the student after positive statements (before negative statement
follows).
(3) End work on positive note - watch for escalations later.
Example 4. Script process: UNTIL
Student: [ read it well and, due to the complexity and language used, I don’t
understand this math problem.
Considering the characteristics and sentences patterns given in Table 6, there
are several permissions and script disruptions that may be proposed:
(1) Do the work now (don’t let the student ramble first, work later).
(2) Keep the work short.
(3) It’s OK to work on it before it’s all figured to details.
Example S. Script process: ALMOST
Student:
Type 1 — [ find this math problem very interesting, however, I think its aim
should have been explained better.
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Type Il — This math problem as a given assignment/homework... I mean... 1
was not expecting it to be like this ... anyway, we have to do this...

Type W1 — This math problem... can you tell me how long until the lunch
break?

A person driven by the script process ALMOST may use one of the three
types of sentences patterns given in Table 6, and for each of them, the following
proposed permissions and script disruptions hold:

(1) Finish the work (if not finished, ask the student to summarize progress
and state future dircction).

(2) Finish each sentence (no “but’s”).

Summarized permissions that lead to script disruption are given in Table 7.

Table 7. Summarized permissions according to script patterns

SCRIPT PATTERNS PERMISSIONS AND SCRIPT DISRUPTION
(1) Stroke (lavishly) each step toward OK-ness, no
matter how small.
(2) Confront TRY HARD by inviting into
perception of here-and-now.
(3) Stroke spontaneity and ability to enjoy
him/herself and the world around.
(1) No hedging or disowning

-OK to make decisions (“What do you want?”)

NEVER
(TH, rarely others)

ALWAYS -OK to make commitments (“What will you do?”)
(BS, HU, sometimes -OK to state feelings, thoughts, opinions (“What
others) do you feel/think?”)

(2) Encourage and stroke risk-taking - OK to make
mistakes, change mind.

(1) Give permission and get contract not to use work
to invite bad feelings later

AFTER (2) Stroke after positive statements (before negative
(PO, HU) statement follows)
(3) End work on positive note-watch for escalations
later
UNTIL (1) Do the work now (don’t let him/her ramble first,
(BP, combined with HU | work later).
or BS) (2) Keep work short.

(3) OK to work before it’s all figured to details.
(1) Finish the work (if not finished, ask him/her to
summarize progress and state future direction).
(2) Finish each sentence (no “but’s”).

ALMOST
(TH, PO)
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5. CONCLUSIONS

Working styles (Drivers) as a concept is an extremely useful tool in
improving and strengthening the communication both between the math teacher
and each student individually and among the students themselves. Knowing
one’s own Working styles may:

= C(Clarify the subject of the math problem, as well as its purpose,

= (Clarify the very essence of student’s work interruption,

= Strongly motivate engaged students to improve their work,

= Use the maximum potential of each student,

= Stimulate teamwork,

= Improve communication with other students.

The claboration enriched with corresponding examples cnables appropriate on
time teacher’s reaction and greatly improves both effectiveness and efficiency
individually as well as in teamwork.
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ONE THEOREM FOR ONE TYPE VEKUA EQUATION

UDC:517.968.7:517.55
Slagjana Brsakoska

Abstract. In the paper one theorem for one type Vekua equation is proven.

1. INTRODUCTION

The equation
Y AW + BIV + F (1)
where A= A(z),B=B(z) and F=F(z) are given complex functions from a
complex variable ze D < C is the well known Vekua equation [1] according to the
unknown function W =W (z)=u+iv. The derivative on the left side of this

equation has been introduced by G.V. Kolosov in 1909 [2]. During his work on a
problem from the theory of elasticity, he introduced the expressions

e+ i -2o1=24F 2
and
-2+ 2)=4F @)

known as operator derivatives of a complex function W =W (z) =u(x,v)+ iv(x,y)
from a complex variable z=x+iy and Zz =x—iy corresponding. The operating

rules for this derivatives are completely given in the monograph of I'. H.ITomoxwnt
[3] (pagel18-31). In the mentioned monograph are defined so cold operator integrals

N N
jf(z)dz and _[f(z)dz‘ from z=x+iy and Z=x—iy corresponding (page 32-

41). As for the complex integration in the same monograph is emphasized that it is
assumed that all operator integrals can be solved in the area D.
In the Vekua equation (1) the unknown function W =W (z) is under the

sign of a complex conjugation which is equivalent to the fact that B = B(z) is not

identically equaled to zero in D. That is why for (1) the quadratures that we have for
the equations where the unknown function W =W(z) is not under the sign of a
complex conjugation, stop existing.

This equation is important not only for the fact that it came from a practical
problem, but also because depending on the coefficients A, B and F the equation (1)
defines different classes of generalized analytic functions. For F = F(z)=0 in D

2010 Mathematics Subject Classification. 34M45, 35Q74.
Key words and phrases. areolar derivative, areolar equation, analytic function, Vekua
equation, generalized homogeneous differential equation.
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the equation (1) defines so cold generalized analytic functions from fourth class; for
A=0 and F=0 in D, the equation (1) defines so cold generalized analytic
functions from third class or the (r+is)-analytic functions [3], [4]. Those are the
cases when B # 0. But if we put B=0, we get the following special cases. In the
case 4=0, B=0 and F =0 in the working area D C the equation (1) defines
the analytic functions in the sense of the classic theory of the analytic functions. In
the case B=0 in D is the so cold areolar linear differential equation [3] (page 39-
40) and it can be solved with quadratures.

2. MAIN RESULT

Let's consider the Vekua equation (1), where A=1 and B=1, i.c.
LE—w+w+F (5)
where F =F(z) is a given analytic function from a complex variable ze D C. If

we make a conjugation in (5), we get

% =W +W+F (6)
Now, lets add and subtract (5) and (6). We get

{}_V {}V 2(W+W)+F+F (7)

 _ % —F-F (8)
If we have in mind the definition for (3), for . we have

dg [ 6\7 ( 61{ )]

W OV | Ou
v 2[ —l(ng@)]-
So, for the left sides of (7) and (8) we get
aw . dw _ou_ o
EVE Ty ©)
aw _aw _(ov, ou
f__z"(a;Jra;) (10)

If we substitute (9) in (7) and (10) in (8) we get a system of equation

Ju _ dv _ w o
E—@—Z(W+W)+F+F
i Qv 4 du T
1(6). ay) F-F

(1n
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The unknown function is W =W (z)=u-+iv, so W+W =2u . If F = fi +if;, then
F+F=2fi and F—I?:Zifz . So, for the system (11) we have

ox

vy ou_n¢
6x+0_v 2f2

u_ov_ >
3y 4Ll+2f1 » (12)

If we find the derivative by x in the first equation and the derivative by y in the
second equation in (12), we get

Pu_ v _gou 2N

ox2  Oxdy Ox Ox

P )

o g2 o
Now, we find the sum of the two equations in the last system and we get a partial

differential equation from second order for u =u/(x,y)

Puy Pu_gqiuy W 2
6x2+ay2_4ax+20x+26y. (13)

If we apply the Furrier method, i.e. we suppose that the unknown function

u=u(x,y) can be written in the following form

uzP(x)-G(y)

2
we get that o =P'G, Tu =P'G
ox ox?
ou _ o’u

and

o

If we substitute this in (13), we get that
P'G+PG"—4P'G = 2(% + ﬁ)

PG, —=PG".
oy

o
or (P"—4P)G +PG" = 2(%+%) (14)

If F =0, then (14) will have the following form
(P" —-4P')G =-PG"
and if we divide the variables
ﬂ = —i = 22 = const.
P G
we get ordinary linear differential equations from second order with constant
coefficients:
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P"—4P —1?P=0 G"+12G=0
P _4r—2%=0 P +42=0
r =244+ 22 ryy =il

/s .
G(y)=CcosAy+Dsindy

P(x)=4 S2HAN)x | p (2427 )x

So, for u= u(x,y) we have
u(x,) =[Ae(2+\’4”2)" +Be(2‘V4”2)xj(ccos/1y+Dsin,1) . (15)

If we put this and F =0 in the second equation in (12), for the function v= v(x, y)

we have

&.FQ_M:O
ox Oy

2 ’ 2
% = _% = —(Ae(2+ AT 4 pe2-V4+A )x)(—C/lsin Ay +DAcos )

v=(CAsin Ly —DAcos )| [Ae(“"“”12 % 4 po2V4+2’ )"de +o(y)

v=(CAsin Ay — DAcos A)| —— e f@H4+20)x
244+ 42

+ B e(z-\/4+/12 )x:l+¢(y)

2-\4+22

(16)

where @ =¢(y) is an arbitrary function as an integral constant.

We have proven the following

Theorem. The equation (5), where F=F(z)=f +ify is a given
analytic  function from a complex variable zeDcC has a solution
W =W(z)=u+iv, whose real part u=u(x,y) satisfies the partial differential
equation from second order (13). Moreover, if u=P(x)-G(y), then the functions
P= P(x) and G = G(y) satisfy the equation (14). If F =0in (5), then the real and
the imaginary part of the solution W =W (z)=u+iv of (5) are given with (15) and
(16).
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EXTENSION OF TWO SIDED BRANCH 2-SUBSPACE AND SOME
EXTENSIONS OF HAHN - BANACH TYPE FOR SKEW-SYMMETRIC 2-
LINEAR FUNCTIONALS DEFINED ON IT

UDC: 517.982.22:515.173
Slagjana Brsakoska', Aleksa Malcheski?

Abstract. In this paper 2-subspaces from 2-space X~ , which are from two sided branch
2-subspace type, will be taken in consideration. Then all its possible extensions adding one

element (u,v) and their complete description will be considered. Also, all extensions of 2-

skew-symmetric linear form defined on 2-subspace M ' Hahn-Banach type will be
considered, in the cases when one vector belongs in 2-vector from M , and the other does
not belong (u belongs and v does not belong and vice versa), as well as cases when the two
coordinates (u,v) do not belongin M .

1. INTRODUCTION

Extensions of mappings is something that is often looked at in various
mathematical disciplines. One classical example of extension of a given mapping is
of course the Hanh-Banach theorem for linear functional. One version of it
comprises the contents of the following theorem.

Theorem 1. Let M be a vector subspace of the vector space X . The functional
p: X >R satisfies the conditions

a) p(x+y)< p(x)+p(y)

b) p(x)=tp(x),
forevery x,yeX and t>0.

The functional f:M — R is linear and f(x)< p(x). There exists a linear
functional A: X - R suchthat A/M = f and —p(—x) < A(x) < p(x) .

From the title of this paper and the indicated Hahn-Banach theorem it is clear
that we need at least the definitions of 2-seminorm and skew-symmetric 2-form. But
in order to have the whole picture, we will define 2-norm as well.

Definition 0. Let X be a vector space over the field ® . The mapping
||e,®|: X* > R,, for which the following conditions are fulfilled

(i) || x,y|I=0 ifand only if {x,y} is a linear dependent set
(i) ||x.y |5 y.x|| forany x,yeX
(iii) |ax,y |H ||| x,y || forany a e® and any x,ye X
() |x+xLyl€lxy | +]1x%yl, forany x,ye X,

we call 2-norm, and (X°,||e,¢|)) we call 2-normed space.

Definition 1. Let X be a vector space over the field ® . The mapping
p:X> >R, for which the following conditions are fulfilled

(1) p(x,»)=0 if {x,y} is alinear dependent set
(ii) p(x,y)=p(y.x) forany x,ye X

AMS Mathematics Subject Classification (2000): 46A70
Key words and phrases: n-semi norm, 2-subspace, n-linear functional
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(iii) p(ax,y)=|a| p(x,y) forany a e® and any x,ye X

(iv) p(x+x,y)< p(x,y)+ p(x',y), forany x,ye X,
we call 2-seminorm, and (X°,p) we call 2-seminormed space.

It is worth mentioning that for any 2-norm, it is fulfilled the equation

Ilx,y 9l x,y+ax| , forany x,y€ X and any scalar e ® .

Due to the definition of an n-norm and the definition of ann-semi norm it
turned out that, on the set X*, where X is a vector space over the field ® (@ is
the field of real numbers or the field of complex numbers), it is convenient to
consider additional operations, two of which are partial and one of which is a
complete operation, with the aim of making the notation and considerations easier.

One of the corollaries of the last inequality, is a part of every definition of 2-
norm, as well as of 2-seminorm, the definition of skew-symmetric 2-form, is given
with the following definition of operations in X .

Definition 1°.Let X be a vector space over the field ® . The set X* together with
the operations

(x,2)+(»2) =(x+y,2)

(z0)+ (@) =(z,x+y)

A(x, p) = A(x, )"
where x,y,z€ X and 4e M,(®) is called a 2-vector space or 2-space.

Comment. The third operation in the previous definition is a complete
operation, and on the right-hand side of the equality is a multiplication of a matrix
with a vector.

Definition 2. Let X be a vector space over the field ®. The functional
A:X* - ® for which the following conditions hold

(@) A(x+y,2) = A(x,2)+ A(y,z) , for arbitrary x,y,ze X

(b) A(x,y) =—A(y.x) , for arbitrary x,ye X

(¢) Alax,y)=alA(x,y), for arbitrary x,y€ X and ae®,
is called 2-skew-symmetric linear form.

It is not hard to prove that the previous definition (Definition 2) is equivalent
with the following definition.

Definition 3. Let X be a vector space over the field ® . The functional
A: X* = ® for which the following conditions hold

(@) A(x+y,z) = A(x,z)+ A(y,z), for arbitrary x,y,z€ X

(b) A(A(x,y)) = (det A)A(x,y) , for arbitrary x,y € X and 4 e M, (D).
is called skew-symmetric 2-linear form or simply 2-linear functional.

Completely analogous to the definition of a 2-linear functional, which is
essentially a definition of a skew-symmetric 2-form, the definitions of a 2-seminorm
and a 2-norm are interchangeable.

Definition 4. Let X be a vector space over the field ® . The mapping
p:X* — R for which the following conditions hold

(@) p(x+,2) < p(x,2)+ p(y.z), for every x,y,z€ X
(b) p(A(x,y)) =|det 4| p(x,y) ,for everyx,y € X and Ae M,(®).
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is called a 2-semi norm and (x?, p) is called a 2-semi normed space.

Definition 5. The mapping ||-|: X* >R, n>2 for which the following
conditions hold:

(@) || x,,x, |=0 if and only if x,x, are linear dependent vectors;

(b) || A(x,,x,) ||H det A||| x,,x, ||, for all x,x, e X and all 4eM,(D);

(@ llx 25, (IS, x5 1+ 11 %50 for every XXy, x% € X,
we call 2-norm of the vector space X, and the ordered pair (X,|--|) we call 2-
normed space.

In this section, some of the special types of subsets of Xx* will be considered.

Definition 6. The subset s, S < X* which is closed with respect to the operations
of the 2 -space X” is called 2-subspace of X*.

Of course in these considerations the following two thecorems are important.

Theorem. The intersection of an arbitrary family of 2-subspaces of the 2-vector
space X’ is a 2-subspace.

According to the last theorem, each subset 4 < X* determines a 2-subspace S,
the smallest 2-subspace of the 2-vector space X* which contains the set 4 . We will
call the 2-subspace S, the 2-subspace generated by the set A, and the set 4 -the
generating set.

In this matter we will consider a special type of generating sets, i.e. a generating
set of the form M uU{(u,v)}, where M is a special type of a 2-subspace, and
(u,v) e X° is arbitrarily given where {u,v} is a linearly independent set.

The basic question which we will consider here is whether it is possible to
extend a 2-skew-symmetric linear form defined on some types, i.e. classes 2-
subspaces to a bigger subspace, in the sense of extension of 2-linear functionals, i.e.
of the type of Hanh-Banach. At this moment it will be done only in special cases.
The main aim if all such considerations is whether we can prove the following
theorem or some of its variants.

Theorem 2. Let S be a 2-subspace of the 2-space X*, A:S—>R be 2-skew-
symmetric linear form, and p:X* — R be a mapping for which

(@) p(x+y,2)< p(x.2)+p(y,2), forall x,y,ze X
(b) p(tx,y)=1tp(x,y), forall x,ye X and t>0.

There exists 2-skew-symmetric linear form N':X* —R, such that A S = A

Each 2-semi norm satisfies the conditions a) and b) from the previous theorem.

In addition, in many parts we will meet a special type of subsets from X*. One
of them is given by the following definition.

Definition 6'. The subset 7, 7 < X* is called n-invariant if 47 <7 for every
AeM,(®), detd=1.

The general structure of 2-subspaces is, of course, not simple. The simplest

forms of 2-subspaces are the kernel subspaces, knot subspaces, branch subspaces
and cyclic subspaces. Those are discussed and described in [6].
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Solving the problem presented in the last theorem is of course not simple. An
affirmation of that is of course the complex structure of the 2-subspaces of the 2-
space X°. Due to this, we will discuss partial cases of this problem.

In this paper we will look at extension of 2-skew-symmetric form defined on a
two sided branch-2-subspace.

From here on, we will assume that the subset
{oor Xy X ) . X5 X, X5 Xyseeen X, 5. 18 @ linearly independent subset of the

s Ay —(n=2)2""
vector space X , not excluding the case when it is finite.

Definition 7. Let X be a vector space over the field @ . The 2-subspace §
generated by the subset
Leees (X Xy D eeees (X5 X115 (Xy5 )5 (36, 260D, (065 X)) (X5 X5 )5 (X655 X, )sees (X, 5 X, )5 e} where
{oees X s s X g s X5 X, X5 Xy 500 X, ..} 1S linearly independent set is called a two- branch
2-subspace.

A detailed description of branch 2-subspaces is given in [7]. That is the content
of the theorem that follows.

Theorem 3. If M is a branch 2-subspace generated by the set
Lo (X X ) Dseeen (X5 X)), (X5 20), (36, 2D, (05 X5)5 (X5 X5), (X35 X, )5 e (X, 45X, )5 e}

where {...,x

o

s} IS a linearly independent set, then
M= U U L(a,,x  +a,_ %, x)} L(a,, X, +a,%_,,%,) .
i€l a;y,a;,€®
In the following part we will consider extension of a two-sided branch 2-
subspace M with the addition of one element (u,v) as well as extension of a 2-

X s X 5 X s X5 Xy peees X,

skew-symmetric form A: M — R to a skew-symmetric form on A': M'— R where
M'= (Mu {(u,v)}) .

The leading result in the description of the special 2-subspaces such as cyclic,
branch 2-subspaces, kernel 2-subspaces and knot 2-subspaces is the following
lemma:

Lemma. The subspace generated by the elements (x,_,,x,),(x,,x.,),(x,.,,%,.,)i.e.
ATC AV DN CAE Y N C 9] B where XX, X,
L(bypX,10 + b, %) < L(b, +0,%, %, )V L(a, X, +a, %, %)% L(a

The idea for such lemma comes from the fact that it looks like as we have put
together two branch 2-subspases which are
L(bi—Z'xi+2 +bixi’xi+l)><[‘(bi+2xi+2 +b1xi’xi+l) (1)
and L(ai+l i+l + ai*lxifl ’xi) N (2)

Here, they have as their 2-subspace a set defined with

M = {(A(x,,x,,) | Ae M,(®)} .

Adding of elements of (1) and (2) of course is possible, but the result is always an
element that either belongs in one of these 2-subspaces i.e. either is in (1) or is in
(2). If it belongs in both subspaces, then it is an element of the 2-subspace
M= {(A(xz»x[ﬂ)r /AeM,(D)}.

x,.,} is a linearly independent set is

+2Xi42 Xy T A X5 X;)

xi+l

+a,_x,_,x)xL(a,,x,

i+l
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2. EXTENSION OF A TWO-SIDED BRANCH 2-SUBSPACE

Let A be a skew-symmetric linear form defined on a two-sided branch 2 -
subspace M which is generated by the elements of the set
{...,(x_",x_(,,_n),.,,,,(x_z,x_l),(x_l,x‘ ), (x 9x1)>(x1’x2)7(xz’xfl,))(x37x4)7"">(xl1—l>'xn)7""}
Where {...,X_, . Xy, X, X, X, %, X, ,...} 18 @ linearly independent set. Let (u,v)e X* be
such that {u,v} is a linearly independent set. We denote the 2 -subspace of X*
generated by M U{(u,v)} by M '. Several cases are possible.

Case L. u,v & L(coy X, yeees X gy X o Xy X5 Xy ey X, o) s WRETE L(cosy Xy X, X 1 X, X, Xy X ,.0) 18 the

IR R SEEN

subspace of X generated by {...,x_, ..., X5, X, X, X;, X, 5e0r X, 5o} -
The 2 -subspace generated by {(u,v)} is L(u,v)xL(u,v). Let us notice that
x,,...) © A, .Accordingly, M'=M O L(u,v)xL(u,v),

where M is determined in theorem 3.

L, V) NL(iy X, X, gy enes X,

0°

Xj-2 X X Xj1 Xj+2
O O
u v
According to our conditions for this part, we have that
U=QX + O X T O X T T O, X, taz

2
V= ﬁjxj +,B/ 1% +ﬂ/+zx/»z +~--+ﬁ/+,>x,<p +Bw

where x,yeL(...,x Xy X5 Xy X5 Xy sy X, 500 )30, joky p €7 are given arbitrary. In

that case, the vector (u,v) cannot add with the elements of the set M at any case.
Indeed, we can write the elements « and v in the form u=x+az,v=y+pw, i.e.
(u,v) =(x+az,y+ fw). For any element (x',y') e M addition is not possible, because
u#x"v#y'. From the other hand, for any nonsingular matrix 4= B” Z'z} , We
21 22

have the following situations (all possible cases will be considered).

Situation 1.4, #0, a,, =0.

In this sub case we have the following three possibilities:

a) a, #0, a, =0, which is not possible, because in this situation we would have
that det 4 =0, which is not possible.

b) a,, =0, a,, # 0, which is possible. In this situation det4 =g, a,, #0. Here
4

Au,v)" = [a” :H:u:| = (@, ay,V) = (@, (X +7¥), 4, (W+62)) = (@, X + a7y, a, W+ a,07)
y Ay ||V
where form because of the condition q,ya,,6 #0, we get that A(u,v)” ¢ M . This

element will belong in the new set in the part where it is added.
¢) a,, #0, a,, #0, which is possible. In this situation det4=aq, a,, #0. Here, as

in the previous case
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a,  ap

A(u,v)" = |: }[“} = (ayu, ayu +ay,v) = (@, (x + ), dy (X +7y) + ap (W+62)) =
v

21 a22
=(a,X+a,yy,a, X +a,,W+a,yy+a,o0z)

where form because of the condition a,y #0 we have that A(u,v)” ¢ M . This
element will belong in the new set {A(u,v)T /AeM, (CD)} .

Situation 2. ¢, =0, g, #0

In this sub case we have the following three possibilities:

a)a, #0, a,, =0, which is possible, because in this case we have
a4y
[

det A= =a,,dy —a,dy, =—d,d, #0.

But, in this case we have that

A(u,v) = {an ap

u . .
}{ }:(alzvvazlu):(a|2(w+bz)’az|(x+7y)):(a1zw+a1zbz»a2|x+a2|7y)
ay Ay ||V

and because of the condition a,da,y #0, A@u,v)" ¢ M
b) a,, =0, a,, #0, which is possible from technical aspect. But, as

detA — all alZ

= a4y — a0y =0-a,,=0-a, =0,

all aZZ

and by the conditions we have that det 4 = 0. Because the contradiction, this case is
not possible in this situation.
¢) a, #0, a,, #0. This case is possible from technical aspect. Indeed,

a,  ap

det 4 = =ay,ay — 4,8, =00y, —a,, -0y =—a,,-a, 0.

y Ay
In this situation, we have
A, = [a“ Zm ”:Ij =(a,Vv,a,u+a,v)=(a,(W+0z),a, (x +yy)+a,(w+dz)) =
21 22
=(a,W+0a,02,8, X+ 0y Yy + Ay, W+ a,,02) =
=a,(W+0z,a,x+a,yy+a,w+a,0z) ¢ M
because the first component w+ 6z € L(x,,x,,x,,%,) -
Situation 3. ¢, #0, q, #0.

In this sub casc we have the following three possibilities:
a)a, #0, a, =0, which is possible, because in this case we have

all a12

det 4= =-a,4a, #0,

aZl (122
and the matrix is nonsingular. According to this,

a, a,|lu
A(u,v) = { e }[ } =(a,Vv,ayu) = (a,(W+0z),a, (x+yy)) = a,a, (w+a,0z,x+yy) e M

Gy Ay |V

b) a, =0, a, #0, which is also possible, where

al] aIZ

detd = =a,a, #0. Here

a4y 4y
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a, a,
o :|[u:| =(a,u,a,v) = (a, (x +yy),a,(W+08z)) = a,,a, (x +yy,w+a,0z) ¢ M )
Ay Gy |V

A(u,v)' :{

a, #0, a, #0. Because of its nature, this case is the most radical one. Here, if we
use the technique from that we have in the 2-normed spaces, we have

Au,v)" —{ Hu} =(a,u+a,Vv,a,u+a,v)=
v

=(a,,(x+yy)+a,(w+06z),a, (x+yy)+a,,(w+0z)) =

ay dp

ay A4y

=(a,X+a,yy+a,w+a,0z,a, X +a,w+ay,yy+a,,0z) ~ (=)
=(det A)(x+yy,w+09z) = ((det A)x +(det A)y y,w+3S5z) ¢ M
and because (det 4)y =0, where from we get that the first element doesn't belong at
any element of M and so, the whole element doesn't belong in A . Also, let us
comment that in the part where we have ~ (=) we have a sign for equality. But, that
is not a problem, becausce from that clement until the last clement we constantly
multiply with a matrix that has a determinant equal to 1, and because of this if one
element doesn't belong in M, then any other multiplied with a matrix with
determinant equal to 1 does not belong in M . The last equality may not be used,
because det 40 u y #0 where from follows the proof.
For this case the extension is arbitrary, i.e. A'(u,v)=« , where « is an arbitrary
fixed scalar.
Case 2. Let € Lo X e X 50X 15X 3 X, Xyyeees Xy yeee) ANAV E Loy X yeris X gy X323 X3 Xy X, pve0)
In this case we will consider several sub cases, as follows.
Sub case 1. « =x, for some ieN.
In this sub case the set {(x,_,,x,),(x,x,,),(x,,v)} = {(x,_,, ), @, x,,,), (w,v)}
generates a 2 -subspace which is a knot subspace and its form is
L= U L(u,w)x L(u,w).

weL(X,_,v,%,1)

Simultaneously the  sets  P'={...,(%_¢.X_s)s(X 5o X, )yoerr(¥,,5%,_,)}  and
P ={(X,,15%,2)5 (X125 X;,3)sees (X, 15X, st generate 2 -subspaces S, and S,
respectively, which are one-sided branch 2-subspaces. At the same time, they, as
well as L are 2 -subspaces from the required extension M '. The forms of S, and
S, are

i-1
Sp = U U L(ay X,y + @ X5 )X L@ X + a1 %,05%,)

k=0 @i, €®

Spe = U U L@y Xy + @ Xy X )X L@ Xy + @y X5 %)

k=i+l  a_y.a;,€®
In order for us to see the form of M ' it is enough to consider several types of
addition of elements of L,S,. and S,.. It is enough to consider several cases.
1 (man) el > ()C, y) € L(('xz—z ’xifl)i(xifl’xi ))
2 (mn)elL, (x,¥) € L((x,_55 %), (X2, %,,)

3 (m’ I’l) el > (X, J’) € L((xi’xi+1)’ (xi+1’xr+2 ))
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4 (mmn)el, (%,3) € L((%;415 X2 )5 (X125 %,,3)) -
In case 1" we have
(m,n) = (b(ax,_, + v+ oux,,)) +byx, b (X, + v+ X, )+ byx,)
(x,») =(a(ax_, + fx,) + a,x,_,a,(ax,_, + fx) +a,x,_,) .
In other words, the following elements should add
(x,»)=(aax,_, + a,x,_, +a,x,,a,ax,_, +a,x,_, +a,Bx,) and
(m,n) =(box,_, +bx; +ba,v+boyx,, . bax,_ +b,x, +bo,v+box, )

412

Since {x,_,,x,_,x} and {x_,x,x

i+l

v} are linearly independent sets, that is possible
only in the case when

a)a,=a,=a=0, ba,=a,=s, a,f=b,=t, 0r

b)o,=a,=a=0, bao,=a,=s, a,f=b,=t,
for any s,z e ® (the cases when 1=0 or s=0 or when s=¢=0 should be considered
separately).

In case a) the elements get the form

(bayx,_ +b,x,,byoyx, | +b,x,) =(sx,_, +1x,,ba,x, , +b,x,)

(@ fBx, +a,x,_,a,px, +a,x,_) = (sx_ +ix,a,0x, +a,x,,) ,
and their sum is

(sx,_, +ix,,(a; f+b)x, +(a, +bya)x,_ ) e L((x,_,,x;)) = L

We similarly get for case b).

In case 2° we have

(x5, y) =(a(ax_s+ Bx_ ) +ayx,_y,a:(ax_s + fx_ ) +a,x,_,)

(m,n) = (b(a,x,_, +a,v+o,x,,)+bx,,b(a,x,_, +a,v+a,x,

W thx)
Similarly as in 1" we have to add the both elements
(x,¥) = (aax_; +a,x_, +a,Bx,_ . a;ox_s +ax,_, +a,fx,,) and

(m,n) =(boyx,_, +bo,v+b,x, +bo,x

i+l

b,oyx, | +b,a,v+bx, +bayx,.)

Since {x,_,,x,_,,x_} and {x_,x,x

i+l

v} are linearly independent sets, that is possible
only in one of the following two situations:

) a,=a,=a=0,a,=b=0, qff=bha, =s

d)a,=a,=a=0, a,=b,=0, a,f=b,, =5,
and for every conditions for arbitrary se® (for the same conditions for s=0
should be considered separately).

In case c¢) the elements get the form

(%0, 8%,, +a,x,,)

(sx,_,bya,x,_ +b,x,)
and their sum is (sx,_,(a,8+b,)x,_, +a,x,_, +b,x,) € L((x,_,,x,_,),(x,_,x,)) = M
We similarly get for case d).

According to that, in this sub case the extension is

M'=MU ) Lg,w)xL(x,w).

WEL(Xiy »X; 5Xi41)
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Situation 3" is completely analogue to situation 1°, and the situation 4° is
completely analogue to situation 2 (in both situations we are considering the case
under the same conditions, but from the opposite side).

Sub case 2. u e L(x,,x,,,) forsome jeN, where u=x,,x

Je

In this sub case we have u=px, +vx,,, where puv#0. The sets {v,u,x;} and

JH1 2
{viu,x,,,} are linearly independent sets. The sets K'={(u.,v).(u.x;)} and
K'={(u,v),(u,x,,,)} generate 2 -subspaces S,. and S,. and their forms are

Se = | Llav+Bx;,u)x L(av+ fx;,u)

a,fed

Ser = U L(av+ Bx;,,u)x L(av+ Bx,,u)

a,fed
The general form of the elements of S,. is
(a)(av+ Bx;)+a,u,a;(av+ Bx;) +au)
and of the elements of S,. is
(b (yv+0x, ) +bu,b(yv+5x,,,)+bu).
We should note that both sets {u,x

independent sets. Here the same elements can be written in the following form:
(qyav+a,Bx, +a,u,a;av+a, fx; +a,u) and

vi and {x,u,v} separately are linearly

1o

(byv+bdx, , +bu,byyv+box,,, +bu).

J+l
Addition of the latter two forms of elements is possible in the following 2 cases:
a) f=0=0,a,=b,=t, aa=by=s
or b) f=0=0, a,=b, =1, aa=by=s.
In case a) the elements get the form
(sv+tu,a,ov+au)
(sv+tu,byyv+b,u)
and their sum is (sv+au,(b,y +a,2)v+(a, +b,)u) € L((u,v)) = M
The result in case b) is similar.
From the whole of the former discussion it is clear that
M'=MUS. US,..
We consider the sub cases 3 and 4 similarly.

u = ax; +bx;

Sub case 3. u € L(x,,x,,,,x,.,.X,.;) , and the coefficients in the representation before x,
are different from zero. In other words, wu=ax +a, %, +a,,%., +,.X,, , Where

i+17+] i

and x,

i+3

a,a,,, # 0. Such element, as coordinate in the elements of the 2-subspace M doesn't exist, so
this case of addition is not possible. If ¢, =0 or ¢,,, =0, then we come to situation which is

in the sub case 4 of this case, or sub case 2 from this case.
Sub case 4. u e L(x,x,,,x,,) . Such case is possible because the vector u has the

i+l

following form u=ex +a,x_ +a,,x,,. Here we can take that u e L(ax, +a,,,x,,,X,.,) .

i+17i+1 +27i+2
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From the other side, the element v can be any element from the vector space X (see drawing).
Here, in order not to disturb the generality, in the most general case we must consider
that u=a,x, +a,,,x,,, +,,x,,, and v=x+ay, where =0 ,y is a nonzero vector
from X, and x is from the subspace generated from the vectors which form the 2-
subspace, i.e. x,x._,,x,_,. The vector cannot be a coordinate of any 2-vector from
M . According to this, (u,v)=(u,x+ay) cannot be a 2-vector from M . From the

other side, for the vector 1 we can say that it is obtained as follows:

l aHl ai 0 az+2 0 1 ar—l
0 1 0 1 (x,x,)+ 0 1 (%1425 %50) | = 0 1 (@, %) H(@ 1%, 5, X))

l «
_ i+l _
|:0 1 (alxl +a1+2x1+2’x[+l) 7(a1x1 +ar‘+lxr‘+l +ai+2xx+2 ’x1+l)

Here we can note that the element « can be obtained also as addition of the elements

(x,,x,.,) and (x,,,x,,), in exactly the same way as before, but in that case we would
get that the elements (x,,x,,), (x.,,%,,), (x

i+l

and with that, the kernel subspace §=L(x,,x,

x;) are elements which generate M ,
x,_,)xL(x,x,,,x,,) would be a

+12

subspace of M , which is not possible. Completely analogous would be the
considerations the generating elements to be (x,

i+l

x,) and (x,,,,x,), which will take
us to the same conclusion.

Let's note that we have three possibilities which imply in this situation, i.e.
a)a, =0, aa,,#0
b) g, =0, a.a,,=0,
¢)a,,=0, aa_ #0
Situation b)

It is clear that the element u belongs in L(x,,x,,) which is completely the same

with the sub case 2 of this case and will be not considered here.
Situation b)
It is clear that the element « belongs in L(x,,,,x,,), which again is completely the

same with the sub case 2 of this case and will be not considered here.
Situation a)
In this situation u € L(x,,x,

i+2

), and this is element from the set generated from

(x,x,,) and (x

i+l

x,,,) and the element v is not a coordinate of 2-vector from M .

But, now, it is clear that the element u = ,x, + &, ,x,

++»X.., » and here for example belongs in
the 2-subspace M' and we have it as a coordinate of the 2-vector
(“axm) = (a,x/ ta; xt+2’xi+|) .

i+2

Let's assume that (u,x,,,) € M. Then

i
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M5 (u,x,) = (0%, + 05X 155 %,) =(@X, + O Xy = QX5 %,0,) = (X, %,,,) ~ (X, %,.,)

The same discussion goes for (u,x,)eM'. But, then we get that the 2-subspace
generated by (x,,x,,), (x,,,%,,), (x,.x), which is a kernel 2-subspace, would be

2-subspace of M ', which certainly is not possible.

Now, if we consider addition of two elements of this 2-subspace, then we would
have that we can add the 2-vectors

(@, (%, + ;5 %;,,) +ap; Ay (X, + Q2% )+ 051 %4

i+27042 i+l

xi+1’

by, + o,
In this case, if for example the second coordinates are equal, then adding the first coordinates
we would get the 2-vector

(@ +BN QX + 05 X0+ (G +Bp) 01 X5 By, (X, + 05X ) + Ay @1 X;)

ic. it is the same as we have multiplied with a matrix in the following form
{“l]"’bn a, +b,

X)) +byo, X,

X Dy (X, 0% 0 )+ 0y, X))

i+2

} , and we would get again 2-vector with the same form.

a?l aZZ

Finally, we have

M'=Mu ] Lwu)xL(wu).
weL(x;,,v)

The €aS€ U £ L{coyX e X oy Xy Xy Xy Xy yeeesXypen)  ANA VE Ly Xy gy Xy y Xy X, Xy Ky Xyyons) 1S
completely analogously considered.

Case 3. Let 1,V € L(cey X_ ey Xy X5 Xy Xy Xy ey X, yece) -
We will consider several possibilities, i.e. sub cases.
Subcasel. u=x, v=x_,

In this sub case L(u,v)=L(x,.x,,), therefore we don’t have a true extension of

AR
M . That is because the 2-vector (u,v) is a 2-vector both in M and in M"'. So, in
this case M =M ".

Xj2 X X;=u X =V Xj12

Sub case 2. u=x,, v=x,,

In this sub case, the pairs (x,,x.,), (x.,,x,,) and (x,x,,)arc included in the
generating of M' so, accordingly, they define a kernel subspace S which is of the
form L(x,,x,,,x.,)xL(x,x,,,X,,). Now, the subspace M ' is generated by one
kernel subspace S, and two Dbranch 2-subspaces, one generated by
e (X5, %), (%, x,) and the other by (x,.,,%,3), (%135 X )sweees (%5 2,05 (0,15, 0 )sove -

The form of S is §=L(x,,x,,,,%,.,) < L(x,,X,,,,%,,,) -

The form of the 2 -subspace S' is

i-1
S'= U U Lla, X + @ XX )< L@, X, +ag %, ,%,)

k=—» a,_,a,,€d

The form of the 2 -subspace S" is

-
w_
St = U U L@, X,y + g X% %)X L@y X + 0 X0, %)

k=i+3 a4 .a5, €D
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Let us notice that the addition of elements of S or §' or S" is again an element of
S or ' or S", respectively. Addition of elements of S' and S", one from §' and
the other from S", is not possible.

We will determine when addition of elements of S and S§' is possible and what
is the result of that addition. Every element of S is of the form

(ax, +bx,,
and the elements from S' for which addition is possible are of the form

(d\(ax,_, + Bx)+ex,_,d,(ax,_, + Bx)+ex, ).

Addition in this case is possible in the following two cases:

a) b=¢=0,a=0,dpf=a=s

b) b,=c,=0, =0, d,f=aq,.

It is enough to consider the case a). Then the elements obtain the form

(sx,,ayx, + by, +0,%,,5) , (5%,,d, 8%, +e,%,_,)

O X0 X, +0,X, 00X, )

and their sum is

(sx;,(a, +d, B)x, +byx, | +C,X,,, +€,X,_ ).

Therefore, the sum of these elements is an element from the 2 -subspace 7 defined
by

T= U L(x,u)x L(x,,u) .

HEL (X g X1 sXi42)

Now it is enough to determine the sum of the elements from the 2 -subspace T
with the elements of the2-subspace generated by the elements of the set
{(x,_5,%_,),(x,_,,x_)} . The former are of the form
A(xi 7alxi—l + aZXi + ‘ZSXH-I + a4xi+2) = *)

=(bx, +b,(a,x, +a,x, + X, + X, ,),bx, + b, (e, X, + o, X, + o X, +Q,X,,,))
The subspace generated by the set {(x,_;,x,,),(x,,,x,_,)} is
U L(ax, 5 + B, x )< Llax, s + fx,_,%,,)

a,fed
and its elements are of the form
(@ (ax, 5+ Bx, )+ ax, y,a(ax,_, + fx, ) tax, ;). (**)

Elements of the form (*) and (**) is feasible in two cases:

) b=0,a=a=0,=0, a=0, a,=0, boy=q,ff=s

d) b,=0, @, =, =a,=0, =0, a,=0, b, =a,f=s.

In the case c) we have

(sx,,byx, +b,a,x,_ )

(sx,, a3 8%, +a,x,_;)
and their sum is

(sx;,byx, + (byoy, + a, )X, +a,x,_,) € L(yx,_, +0x,,%,_ )X L(yx,_, +Ox,,%,,) .
The case d) is considered analogously.

Accordingly, in this case M ' is the 2 -subspace

Xitl

' .7 .....

i1 X T U X =VoXi3 Xiv4
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M'=MULE.xpx,) o | Lex)xLlwx)o ) Lo L)

UEL(X;y X0 5%,42) VEL(X;13,%515%;)

Sub case 3. u=x,, v=x,, j>i+2, for any such j, which is arbitrary, but fixed.

In this sub case the ordered pairs (x,,x,,,),(x.,X.,).....(x,.,X,),(x;,x,) form a cyclic
subspace S . Now, the extension is generated by one cyclic subspace S , and two branch 2 -
subspaces, one S' generated by ...,(x_,,x,_,),(x_,x) and the other S" generated by

[EHE T NETEIG RN C NS NERNE I, S

The formof S is: S =|J[L@,.x,., +a, x, ¥ )<L, g, 4, 3% ]
i=1

i1
Theformof S'is: S'= ) U L@ X, + 40X, %) X L(a, % + 8,000 %)

k=0 @ a4, €D
&
The form of S"is: S"= ) U L@ X, +a,%.005) X L@ X, +a,,%,,,.%,)
k=j+1 ay_,a;,€®
Addition of elements of S' and S", i.e. one element from S' and the other from

S" is not possible.
‘We will consider the remaining possibilities for addition of elements of S, 5' and S". Letus

notice that the sets K'={(x,_,.x,).(x,,x,).(x,,x,)} and K"={(x,,x,),(x;_.x,).(x,,X;,,)}
are generators of the 2 -subspaces S, and S,. which are subspaces of M '. At the
same time they are loop 2 -subspaces generated by three elements. We have:

Se= U L@x)xL@x) and Sp.= |J  LOmx)xL(v,x)

ueL(x.x, 1.%,1) VEL(X, X%,

First we will determine when addition is possible between elements from S,.
and S,. and what will the result from the addition be. The elements from S,. are of
the form

(a,(ax; +a,x;_ +oux, ) +bx,,a, (o, +a,x,  +a,x, ) +b,x))
and the elements of S,. are of the form

(c,(Bx_, + fox,, + /i‘jxj Y+d\x,,c,(Bx,_ + Box,., +ﬁ3xj) +d,x;).

It is clear that addition is possible in two cases:

a)a, =, =4 =5=0, aey =d, =s, ¢}, =b =t

b) o,=c,==4=0, a,0, =d, =5, ¢,p,=b, =t .

In case a) we have the sum

(s, +1x;, (a,0, +dy)x; + (e, By +by)x;) € L((x;,X,))

In case b) we have the sum

(ay +d))x; +(c, B; +b)x,,sx, +1x,) € L((x;,x,))

Therefore in each case the sum is an element from the 2 -subspace L((x,,x,))

We will determine the sums in the remaining possibilities for addition in M ' We
have the following possibilities:

I (x,») € 8. and (m,n) e L((X, 55 %55 (X,55%,,)

2 (x,y) €S and (m,n) e L((X15X,00)s (%1425 %0,5))

3 (x,»)e Sy and (m.n) e LU(x;_3.X; 5. (X, 5.X;,))
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4 (x,y)e Sy and (m,n) € L((x;,5.%;,,).(X;,5.%,,,))

In 1° the elements from S,. are of the form

(@ (Bx,+ Boxiy + ﬁ}'xj )+dx, ¢ (Bx + Box, + ﬁ}xj )+d,x, and

(m,n)=(a,(ax,_; + Bx_)+bx_,,a,(ax,_; + Bx,_)+b,x,,)) .
Therefore, addition is possible in the following two cases:

c) B=5=0,a=0,b=0,d=0,cqf=apf=t

d) ,=5=0,a=0,5=0,d =0, cB=aB=t

In the case c) we get

(v, Bx,, +dyx,)

(%, @, %, +byX, )
and for the sum we get

(B, (@B + @y B)x ., +dyX, +byx, ) € L(X,p,X,), (x4, %)

The case d) can be analogously considered.

Similar results are obtained in 2°, 3 and 4 with the results of the additions
being elements of the 2 -subspaces L((x,,x,,).(x,,;»%,)) » L((x,,.x,.).(x,,.x,)) and
L((x,,,,x,,1),(x,,,,x,)) respectively, and also being elements of M .

Xit1 X; X1 Xj—1 xj Xj+1

The remaining cases for addition, when it is possible, are addition of elements
M and they again belong to M .
Finally, we can conclude that in this sub case:

iz Xop G =UX3=V X4 Xigs

M'=Mu U L(u,x;)x L(u,x,) U U L(v,x)x L(v,x,)US'US"US

ueL (X, X;,,%;) VEL(x),,%,X;.)

Sub case S. u=x, , v=x;, where j=i+3,iec. u=x and v=x,,.

In this sub case we have that the 2-vectors
(u=x,%,), (%, %0 (%105 %5 =), (v=1x,,5,u =x,.,) make a cyclic 2-subspace. According
to the previous sub case, we have that

M=MUSUS'US"UK'UK",
where K' and K" are loop 2-subspaces with loop centers u and v, and §' is the
branch generated from the elements ...x, ,.x ,,x,,, S" is a branch 2-subspase

generated from x,_,,x,..,%,... and S is a cyclic 2-subspace generated from
(1 =X, %), (X115 X0y (K X = V) (V=050 =X,)

i
Sub case 6. u=ax, +bx,,, , v=cx,, +dx,., where ab=0 and cd #0.

Xi—2 X1 X Xit1 Xiv2  Xia3
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In this case we have that the 2-vectors (v,u) and (x,

i+l

u) belong in the new 2-
subspace M ', so according to this in this 2-subspace belongs also the 2-vector

1 1 1

-0 - 0 -0 -0

d (vu)+ (x,u) |=| d ((me +dx,,y,u)+ (_Cx,—z’”)) =|d (dx,p,u) = (x,,,)
0 1 01 0 1 0 1

Now it is clear that we have 2-subspace which is fully analogue to the 2-subspace
which is generated as in sub case 8, that is equivalent with the sub case 2, which is
fully described. So, the 2-vectors (x,.,,x,,,)(x.,,x),(x,,x,,) all belong in M"',
where from we get that the kernel 2-subspace generated from them is also a
subspace M '. That means that the kernel 2-subspace generated from
(X%, (vsu),(u,x,.,) 1s consisted also in the kernel 2-subspace generated from
(%15 %0), (%,5,%,),(x;,x,,,), and in M'. In any case, we have 2-subspace that is
determined with M '=M U L (x,,x,,,,x,,,) -

Sub case 7. u=ax, +bx,, , v=cx,, +dx,_,, where ab=0 and cd #0

i+l 2 i+2 i+32
Xi-2 X X Yl X2 X3

It is clear that both vectors u and v are coordinates of some 2-vectors from the 2-
vector space M (to be more clear see the drawing up for this sub case). The question is
whether the vectors u and v are loops of two loop 2-subspaces of the new 2-
subspace.

Subcase8. u=x, , v=cx,, +dx,,, cd #0

i+l i

..... ﬂ . .7...“
Xl U=X; Xl X2 Xie3
It is clear that both vectors u and v are coordinates of some 2-vectors from the 2-
vector space M ( to be more clear see the drawing up for this sub case). The question is
whether the vectors u and v arc loops of two loop 2-subspaces of the new 2-
subspace. Also, it is important to find the forms of the clements form the new 2-
subspace M '. Now, since the 2-vectors (v,u),(x,,,,u) € M', we get that also the 2-vector
1 0 - 0 1 0 1 0
d [("7ll)+|: J(XHPL‘)J =ld |((ex, + dxi727xr')+(_cxi+l’xi)) =ld  |(dhg,x)=(x,x) €M
0 1 01 01 0 1
According to this, in this new 2-subspace belong the 2-vectors
(u,%,41) = (5, X0, (X5 %20 (K40, %) = (X, 10)
and also the kernel subspace generated of the vectors x,x._,,x,,. Now it is clear that

this extension is equal to the extension from the sub case 2 from this case.

+1°



276 Slagjana Brsakoska, Aleksa Malcheski

Sub case9. u=x,, v=ax,, +bx,,

In this sub case is clear that the 2-vectors (u=x,,x,,),(x,,,%.,),(x,,,v=ax,, +bx_,) and
(v=ax,,, +bx,_,,u) are four 2-vectors which form cyclic 2-subspace. The question
what happens with the vector v=ax, ,+bx,, is implied here, i.e. whether this
vector is a loop vector.

v=ax;,.,+bx; 3

.... 4‘ ' ‘ .7
X uzX Xi+3 Xit4

Xisl  Xp

Sub case 10. u=x,, v=a,x, +a,,X,, +Q;,X,,, +C3X,,5, €5 #0.

In this situation we have one vector which is a coordinate of a 2-vector from M .
This is secured with the condition «;,a,; # 0 . The reviews are the most common as in all

other cases. But here the mutual ratio between i and j must be considered. Because

Jjt+3

of that we have more situations.
Situation 1.7/ = j+1( it is completely analogous and symmetrical i =j+2)

Now, we have situation in which w=x,, v=a_x_ +ax +a,x., +a,,x

i+17Vi+ i+27i+2 9

a_a,, #0.

i+2
In this situation the vector v plays the same role as in the sub case 1 from case 2.
The reviews are completely analogous as in that sub case. Because ¢, ,¢,,, #0 ,i.e.

i+2

a;

i-1°

a,., #0we have that the 2-vectors (x,_,,v),(x,,v),(x.,,v),(x,,,,v) are not neither
from M neither from M '. From the other side, the 2-vectors (x,_,,u),(v,u),(x,,,,u)

are from M ', and also the branch 2-subspace determined with them is a 2-subspace
from M'. According to this,
M=Mu |J Lww=Mu |J Lmx)

wel(X;,V,%1) WEL(Xiy V3% )

Situation 2. i=j;. Now we have a situation in which wu=x,,

i

'xi+1

v=ox ta;, F Xy F Xy, o0 # 0.

X.

i+2

So, we have ordered pair (u,v)=(x,ax +a, X, +a,

i1+ i+2

+a,,,x,,;). Because

(x,,x,_,) and (x,,x.,), we get that the vector x, is a loop. But here, let us note that the 2-
vector (v,x,,,) is nota2-vector from M ', because ¢,¢,

i3

=0, s0also a,,a,,, #0

i+3

In this case the extension is
M=Mu |J Lww=Mu |J Lwx).

WeL(X;_,V,X;) weL(X;_1,v,%;,)

Situation 3. i=;-1 Now we have a situation in which u=x,,

i

a,a.,., #0.

i+42 i+17i+4

v=a,, X ,+a X

i+177+1 +27V+2

+a,, X,

i+3

+a,.,x

i+3

In this situation we have that (x,,,,v),(x,,,,v),(x,,5,v),(x,,,v) are 2-vectors which
#0).
According to this, in this situation we have as in the other cases that the 2-vectors

(x,_,,u),(v,u),(x,,,,u) form loop 2-subspace which has the form U L(w,u),

weL(x_v.x,)

40

1. 3 7 1 b Al 3
doesn't belong neither in M neither in M '(because «,, 2, %0, i.e. ..,
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and the 2-subspace in this case is M'=M U U L(w,u)

WeL(X;VsX,1)
Situation 4. i=;-2 Now we have a situation in which wu=x,,

V=0,X, +a’+3xi+3 + ;14X +ai+5xi+5 s Ui ls =0

From the construction it is clear that (v,x_,),(v,x,.;),(»,x,,,),(v,x,,5) , as 2-vectors

i

are not from M ', and also do not belong in M (that is from the condition that
a, 20, i.e. a,,,a,#0. According to this, in this situation the 2-vectors

z'+2a' i+2°

i+5

(xX_,u),(v,u), (x,,,,u) form a loop 2-subspace in the following form U L(w,u),
weL(X;,v,%;,1)

and the new 2-subspace M ' willbe M'=M U U L(w,u).

WeL(Xy,V,%:41)

Subcasell. u=ax +o, %, , v=a;x,+a, X, +a;,x,,+a,,x,, Wwhere

a,a,,#0 and o, #0.

This case is possible because the element v is not a coordinate of none of the
clements from the 2-subspace M , but it is an clement of the vector space X and is a
coordinate of the 2-vector (u,v) . The same case can be considered also for a vector v, with

the form v=a x, +a,,,x,,, +a,,,x,,,

i +a;X,,, ot X, forany k which is greater

than 3. There is essentially no difference. But here the mutual ratio between i and
J must be considered. Because of that we have more situations.

Situation 1. j=i-l,u=ax +a,x,, v=L_x_+Bx +B.%.,+8.,%.,, where
BB, #0 and ¢, 0.

i+
Because B_ 8., #0,ie. B_.,5., =0, we get that the vector v is not a coordinate of
the 2-vector from M . According to this, the 2-vector (u,v) is completely the same as the sub
case 2 from the case 2. So, in this case we will have 2-subspace determined with
M'=MuUS,,
where S, is a 2-subspace which is a loop one with loop center «. This loop 2-
subspace will be determined with (x,,u),(x,.,,u),(v,u) . so, we have that
M'=Mu U L(w,u)x L(w,u) .
WeL (% X,¥)
Situation 2. j=i,u=ox+ao,x.,, v=L0x+0,%.,+P 2%+ ,X,,, wWhere
BB.,#0and o, #0.

il

From the condition B4, #0,1ie. fiom 3,4, , #0, we get that the vector v is nota

coordinate of any 2-vector from M . According to this, in this situation also we will have that
the vector u will become a loop element and will generate the loop determined same as in the
previous case with (x;,u),(x,,,,u),(v,u) . So, we have that

i+12

M'=Mu U L(w,u)x L(w,u) .

weL(X;,X;41,V)

Sltuatlon 3' J=1 + 1 s U =X, + ai+lxi+l > v= /3i+]xi+1 + i+2x[+2 + i43%143 + [+4xi+4 >

where 8.,5., #0 and o, #0.

i i+l
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From the condition of the case g,,45,, #0,ie. 8,,.5., #0 we have that the vector

v, as in the previous situations of this sub case, is not a coordinate of a 2-vector from M .
Now, it is clear that the 2-vectors (x,,u),(x,,,,u),(v,u) form a loop 2-subspace, and the
whole 2-subspace M ' now will have the following form

M'=Mu U L(w,u)x L(w,u) .

WEL(X; X1 V)

It is clear that the vector v as such can only be in a combination for a 2-vector. It cannot be
obtained as a coordinate of vectors from M , even it is obtained from the generators of M .

Situation4. j=i+2 u=ax,+&, X, ,V=LsXr+ BsXiis T BsXss + PsXis s
where 3.,,5.,#0 and a,cr;,, =0 .

i+l

This situation is completely the same as the previous.
Situation S.j=it3u=ax + 0%, V=BoXn T BN B+ BusXius
where S3,,4,;#0 and a,cr;,, 20 .

i+l
This situation is completely the same as the previous.
Sub case 12. U= QX+ O X+ Oy Xy F 03 Xy + o O X,

i+17Vi+] +27i42 i+37i+3 i+k ik

and

O X, U X, X where k,s>3. In this situation,

V= ajxj + aj+1xj+1 j+2vj+2 J+37Vj+3 sV jas o
neither the vector u nor the vector v are not coordinates of a 2-vector from M , so, according
to this, this sub case is the same as the case 1. Between them is not possible to perform an

operation. In other words, for any 2-vector (x,y) and the 2-vector (u,v) cannot be

performed the operation addition of 2-vectors. In this case, automatically come to
the situation completely analogous as the situation in the case 1.
Sub case 13. u=ax, +a, X, v=ax, +a,5.,+0,,5,, a,a,,#0 and aa,, 0.

i+17Y j+2 i+l
This case is possible, where u and v are vectors which are coordinates of some 2-

vectors from the 2-subspace M . The condition «,a,,, #0, i.e. «,,a,,, =0 in general

case ensures that the vector v cannot be from the form v=ca x, +a,, x,,, or from the

which as a sub case of this case we consider in the sub case 15.
which will be

fom v=a, x;, +a,,X;,,,

Still, here it is ensured that it is at least from the form v=a x, +a, ,x

Jt2
considered.
Now, separately we will consider the addition of 2-vectors in this sub case.
Situation 1. v =ax, + o, x,.,, v=a,_x_, +ax, +,, X, ,where a,_a,, #0.

i+17Vi+1 i+17Vi+1 2

Let's note that the vector v=¢_x_ +ax +,,x is on the branch

i+l

(e, %, +@,,%,,,x) - But, as mentioned, it is not either in {A(x,_,,x,)/ A€ M,(®)} nor in

i+12
{B(x,,x,,)/ Be M,(®)}, and for this key condition is ¢,_a,, %0, ie. ., #0.
Here, let's note that the 2-vectors (x;,u),(u,v),(v,x,) are 2-vectors such that two of them
belong in the 2-subspace M and one of them, ie. (u,v) does not belong in M . But,
however, those three vectors form a 2-subspace S, , which is a loop 2-subspace. It is worth
mentioning that av (belongs in the one-dimensional vector space generated by v ) belongs
in M, ie belongs in L(a_x_ +a,x,.x). But, here also the 2-vectors

i+l
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(%), (u,av),(av,x,) are also 2-vectors from M . Here, (u,av)= A(u,v)= Ll) 0}(14,11) .
(24

According to this, this is a new loop 2-subspace which also belongs in M '.
Situation 2. u = a,x, +a,_,x, X +a,,,x,,, where g,a,,, #0.

i+17Vi+l 0 +27i+2 P42

vV=ox +q

i+1

This situation is completely analogous to the previous situation of this sub case, just the
vectors has exchanged its places. Here, the 2-vectors which build this 2-subspace are the 2-
vectors (u, x,,,),(x,.,,v),(v,u). Of course it is a kernel 2-subspace.

+1°

Situation 3. u=ax, + ¢, \x,,,, V=0,,%,, + & X, + ;% , Where ¢,

i1V i+l

ai +3 # 0
In this situation we have that u = a,x. + @,

i+l
subspace  {A(x,,x,)/AeM,(®)}. On the other hand, the vector

v=a,, X, +a,.,X,,+a X, belongs in the branch 2-subspace determined with

i+17Vi+1 i+27i+2 i+377i 43

x,., 1s a vector that belongs to the vector

L (a;,X,., +0,x,5,X,,,) . According to this, the 2-vector (u,v) is not a vector from M , but
it is a vector from M '. So, the vector v is a coordinate of 2-vectors from M . Because of the
nature of the operations over the vectors from M ', we have that also the vector av has the
same nature. But, here for the vector (u,av) we have that it is also from A '. Indeed for

1 0 . .
(u,av)=|:0 :|(u,v)=A(u,v)eM '. Now, it is «clear that the 2-vectors
a

(@, x,,,)5 (%1%, (%, ., v), (av,u) are also generators of one cyclic 2-subspace.
Situation 4. u=ax, + o, X, , V=0, %, + X, 5 + &, X, , Wheree, o, , #0
In this situation, everything is the same as in the previous sub case, except that
the number of generator elements of the cyclic 2-subspace is for one greater than
before, which gets us to a different situation.

Sub caseld.u=x,,v=ax, +a, x 0.

This case is possible, and # and v are vectors which are coordinates of some 2-vectors
from the 2-subspace A/ . It is worth mentioning that the condition «,a, ,=0, ie.

jr T X0y X0,

j+2

a,,a;, =0 is key condition, because we will not have a situation in which the

vector v can be in the form v=¢x, +a,,x,, orinthe form v=q,,zx,, +a

NEN 1% j+2 X
which as a situation we have as a sub case 8 or sub case 9 in this case. The least variant is the
vector v to be in the form v=a,x, +«,,,x,., . f we put that i is fixed index, and only
is variable, then we have the following situations:

Situation 1. u=x,, v=0a,_x_ +ax +a,, #0.

In this situation we have a 2-vector (u,v)=(u=x,,v)e M < M. So, in this situation we
do not have extension of the 2-subspace M .

Situation 2. u=x,, v=ax,+o, ,x,, +,,x,,. a,, =0.

i

Xiv1 s OOy

In this situation we have the 2-vectors (u,x,,,),(x,,,v),(v,u) which solely for
themselves form loop 2-subspace, which we will denote with S . So, now we have
extension in the form M'=M U S'.

Situation 3.u=x,,v=¢

X T G Xin + Xy Xy s Gy Uiy 0.

It is clear that the 2-vectors (u,x,,,),(x,,,,X,,,).(x,,,,V),(v,u) is a fourth vectors which
form cyclic 2-subspace from X* and with that a cyclic 2-subspace from the new 2-
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subspace M '. Now it is clear that the new 2-subspace which is a 2-subspace from
X?, has the following form M'=M U S,
where S is the cyclic 2-subspace which is previously described.

Situation 4.u =x, ,v=0,,,%,, + ¥ X3 + A4 X, g Qrlly %0

In this situation we have totally analogous situation as before, just that the
number of generator elements is for one greater from the previous situation.

Sub case 15. u=ax, +a,,x,,,, v=a,x, +a,,x #0.

1% X GOy F 0, a;a

j+l

In this sub case we have mutual relationship between i and ;. In this sub case
we will consider that ; as an index is fixed, and only ; will be variable. Here we
have the following situations:

Situation 1. u=a,x, +a,.,x,,,,v=F_x_ +6x,.

In this situation we have a 2-vector (u,v) which has the form
(u,v)=(ax, +a,, %, fox, +Bx). It is  clear that the  2-vectors
(u,x,) =(a,x, +a,,,x,,,,x,) and (x,,v)=(x,,B_x,, +Bx,) are 2-vectors from the space
from the beginning. According to that, we have a situation that these three 2-vectors
make a new kernel 2-subspace from M '. This 2-subspace is as the 2-subspace from
the sub case 6 of this paper. So, in this case we have a 2-subspace which is a kernel
one, i.e. the whole extension is like in the sub case 6 from this paper, i.e.
M'=M UL (x,X,,,%,.,)

Situation 2. u =ax, +a,. x,,,,v=Bx+ 5%,

In this situation we have a 2-vector (u,v) which is in the 2-subspace M , i.e. it

. . a, a.| .
can be written as a 2-vector in the form A(x,,y,), where 4 ={ Y '} ,1.e.
B B
ai aiﬂ
(u,v) = A(x, »xm) = s B (xnxm) =(x, +ar+|xm’ﬁ[xi + z+]xi+1)
i i+l

So, in this situation we do not have any extension.
Situation 3. u=ax, + &, X, , V=L, %+ B¥X.s
In this situation we have a 2-subspace which is totally the same as in the
previous situation 1.
Situation 4. v =ax, +o, ..,
In this situation we have a 2-subspace which is the same as the sub case 7 from
this case and here we will not describe it.
Situation 5. u=ax, +a, X, , V=0 X+, X,
In this situation 5 we have a 2-subspace which is generated from

u=ox +a,x, and v=q,,x_;+a,,x,, which is equal to subcase 7.

i+17V L

V=0 ,X, O X,

i+37Vi+3

Sub case 16. u=a.x +a, %, + X, ,v=Bx,+ X+ Bx, 0, 20, oo, #0

P17+ T+277i42

From the conditions e,e,,, #0 and «;q,,, =0 itis clear that these vectors cannot

P42 j+2

be in the form u=ax +a

i+l

X, OF u=a,Xx, +a.,X

i+ a2 Xis2 s 1.C. V= ﬁf+|x/'+l +paX;, OF
v=px,+p,..x,,. That case is considered in the sub case 15 of this case 3. Also, it

is clear that the vector v=gx + 8, x,, +p,.,x,, belongs in the 2-subspace



Extension of two sided branch 2-subspace... 281

L(Byx; + BiaX 2%, )X LB X, + B o025 %) 5
and also that the vector u =a,x, +a,, x,., + @, ,x,

i+17Vi+1 i+27i+2

belongs in the 2-subspace
L(ax, +o,,x

+27i+22

Here, it is clear that the 2-vectors (v,x,,) and (u,x,) also belong in the 2-

X )} L(@x, + @0 X5 %,) -

i+2

subspaces
L(ﬂ/x/ + ﬂ/+2x1+2 H x1+1 ) x L(ﬁlx,l + ﬁﬁlxﬁl ’XJH) and
x,,,) accordingly.

Lax, +a, ,x

i+2 :+2"xi+l)><L(a[xl+a X

i+27Vi+2°
But, in this sub case we have a mutual relationship between i and j, which we
will thoroughly consider.
Situation 1. u =a,x, +a,,,x,,, +a,,x,

17+ i+277i+2 9

V=4 ,X T oX T A X,

From the definition of M ' certainly (u,v) is a 2-vector which belong in it. But
now we have that the four 2-vectors (v,x,),(x,,x,,,),(x,.,,,u),(u,v) belong in M ', so
the cyclic 2-subspace generated with them, also belongs.

Situation 2. u =a,x, + 0, X, +,,%.,, V= Bx, + B X, + X,

In this situation we have that the 2-vectors (v,x,,),(x,,,u),(u,v) are three 2-
vectors which belong in M', so, according to that in the same 2-subspace will
belong also the kernel 2-subspace generated by them. So, we will have that
L’ (u,v,x,,,) = M',and now it is clear that M'=M O L*(u,v,x,,,) .

Situation 3.u=a,x, + &, X, + ¥, %,0 s V=L X0 + PraXiis + BrsXiis

It is obvious that this 2-subspace from this situation is totally analogous to the 2-
subspace from the situation 1 from this sub case.

Situation 4.u = a,x, + 0, X, + 0% V=LK + Bria Xy + BrsXins

In this situation we have that the five 2-vectors

(u’xm )v (xm sXio )v (xi+2 > Xy )’ (xi+3 > V)7 (V7 u) °
form a cyclic 2-subspace which at the same time is a 2-subspace from M ', too. We
will denote it with S, . So M'=M US,

Situation 5.u =a,x, + &, X, + U5X,5 s V= L3X s + BraXins + BrusXins -

According to the previous notes, from the introduction of these situations, as
well as from the general sub case, we have that the 2-vectors

(00210 (10561405 (X125 %55 (X35 %3, (65 V), (V)
form a cyclic 2-subspace which is a 2-subspace generated from six 2-vectors. This
2-subspace is also a 2-subspace from M'. We will denote it with S.. So,

M'=MUS,.

3. EXTENSION OF A TWO-SKEW-SYMMETRIC LINEAR FORM

In this part we will consider that the field @ is the field of real numbers, R .

Case 2, sub case 1

Theorem. Let A:M —>R be a 2-skew-symmetric form such that
A, )< p(x,y) for every (x,y)eM, p:X> >R be a 2-semi norm and M is a
branch 2 -subspace of the 2 -space X*. Let M' be an extension of M as in sub
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case 1 of case 2. Then there exists a 2 -skew-symmetric linear form A':M'—>R
such that

AN/M=A

—p(=6, M) SA'(x, ) < p(x, ). (*)

Proof. We will choose two arbitrary elements from the 2-subspace M , which in
the same time belong in the loop u . let that be the elements (¢x,_, +ax,, ,u) and

i+l

(e, , +ax, ,u) . For the 2-skew-symmetric form A, according to the conditions

i1
of the theorem, we have that
u)+ Ao, X, +ax,

i+l

) = N0 X,y + Xy + 0 X+, 1) <

i i+17Vi+l i

Aea,_x_ +ax,

i-17vi-1 i+1?

O X+ X 1) = PO X+ X — VO X X, Vi) <

i i+l

<pla,_x_ +ox

i+l

<plo_x_ +ox,, —v,u)+ +P(a,'71x‘71 +ax

i+l

+v,u)
In other words, the inequality is fulfilled
Ae,_x,_, +ax,

i

+v,u) =A@, x,_, +ax,,,,u)

i

)= plax +ax,, —v,u) < pla,_x_ +ax,

i+

Since a.

i-12

(ZH]

eR and «, ,,a,, €R are arbitrary, we get that

—1>

sup Aa,_ X, +ax,,,u)—ple, X  +ax,, —vu)=d < pla, x,_ +ox, +v,u)=Aea, x,_ +ox,,u)

i+l
@iy, Ay
So, for arbitrary «,_,,«,,,,a,_,,a;, € R, the inequalities are fulfilled
Alayx,_ +ax,,u)—plax, +ax,, —v,u)<d

d < pla_x,_ + o X, +v,u) = Ma_ X, + o X, 1)
ie. Ale_x_ +a,, x, ,u)—d < plax,_ +ax,, —v,u) €))

u)+d < p(ot;ilxH +ax +v,u) (2)

Aay_x, +ax, i1

i+12

Now, we will determine A': M' >R with
A A(e,_x,_ + . X, +yv,u)] = (et H[Ae,_x,_, +a,. x.,u)+yd], yeR,

i+17Vi+]

AN N]=A,y), (x,y)eM.
According to this AYM =A.

. epe s o, o,
From the other side, if in instead of «, , and «,, we choose —tand ==L, >0
t t

and if we use the properties of A and p accordingly, we get that
—tv,u). 3

Ao, x,_ +a,,x

i+

u)—td < p(a,_x,_, +a,,,x

17+

Fully analogous, if in (2) instead «,, and «,, we choose %=1 and ﬂ, t>0
t t

accordingly, and again, if we use the properties of A and p, we get that

+1v,u) . “)

A % +a
Now, from (3) and (4) we see that
Ao X, +a,, X, +yv,u) < pla,_ X, + 0, X, +yv,u),

X ow)+td < plo,_x, | +a,,x

it

where from it is clear that in general case A'<p on M'. in other words, the
inequality (*) is fulfilled.

Case 2, sub case 2

Theorem. Let A:M —>R be a 2-skew-symmetric form such that
Ax, ) < p(x,y) for every (x,y)eM, p:X*> >R be a 2-semi norm and M is a



Extension of two sided branch 2-subspace... 283

branch 2 -subspace of the 2 -space X’. Let M' be an extension of M as in sub
case 2 of case 2. Then there exists a 2 -skew-symmetric linear form A':M'—R

such that
A'M=A
*

—p( M SA'(x, ) S p(x, ).
Proof. We will choose two arbitrary elements from the 2-subspace M , which at

the same time belong in the loop u. Let us note here that the choosing of the
elements from this 2-subspace can be done in the following way

a, a,
{ al Z’; :|(x X)) =(ox, + @, x.,,u),

{ﬁ, ﬁ“l:|(x,-:x/+l):(ﬂ1x’ +ﬂ;+1x1+w”)’
a b

a a

where detA=0, A= % %l and det|| % % , det B B #0. In that case,
B P b b

+1Xx+l7u) + A(ﬂixi + IBiflel’u) = A(aixi + ai+1xi+] + ﬁixx + ﬁl+lxl+l7u) <

Alayx; +a;
S plex, + @ X + Bix + Box . u) = plax, + X, —v+ Bx + fx,, +vu) <

< plogx, + %, —v,u)+ p(Bx; + B, %, +v,u)

In other words, the inequality holds
o tt) = (X, + @ X, =v,u) S PBX+ Bxy +v) = ABx + Bx,u) -
eR and of B,4,, € R we have that

Aax, +a,,,x,
Now, from the arbitrariness of «;,«,,,
+v,u)—A(/ix[ +ﬂ¢+lxi+l’u)

sup [A(a;xz + a;flxma“) - p(aixi F0Xn —vu)]=d < p(ﬂixi + ﬁmxm

So, for arbitrary «,,a,,, € R and £,f,, € R the inequalities hold
Moy, +0.,%,,,1) = plogx; +0.,x, —v,u) <d - (D
d < p(Bx +Boxy +v,u)=MBx + B0 2
Now, let A': M'— R be determined with

A[A(ax, +a, x,, +yv,u)] = (det A)[A(a,x; +a,.,x,,u)+yd]

A y)=Ax,y), (x,y)eM
Here AVYM =A.
Let's substitute % and Z=L instead a, and «,,, in the inequality (1), and in the

B, and L instead B, and 3., . Then

inequality (2) we substitute e p
u)=id < plox, +a,,x,, ~v,u) 3
“

Ao, + a5,
+v,u)

A(ﬂ’xi +ﬂ[+lxi+l 7“) +td < p(ﬂx'xx +ﬂr+|xr+|
Now, from (3) and (4) it is clear that
A‘(aixi T X T yvu) < p(aixi T %

+yv,u).
With this, the proof that A'< p through ', is completes, i.e. that (*) holds.

Case 2, sub case 3
There is no case, and there is no Hahn-Banach theorem.

Case 2, sub case 4
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Theorem. Let A:M —>R be a 2-skew-symmetric form such that
A(x,») < p(x,y) for every (x,y)eM, p:X> >R be a 2-semi norm and M is a
two-sided branch 2 -subspace of the 2 -space X*. Let M' be an extension of M as
in sub case 4 of case 2. Then there exists a 2 -skew-symmetric linear form
A':M'—>R such that

AN/M=A

—p(=x, ) S A'(x,y) < p(x, ). (*)

Proof. Let the vector u is given with u=a,x, +«,,,x,,, +,,,x,,, (We will consider

(AR RN i

especially the case when ¢,a,,#0- the rest of the situations are already
considered). It is clear that we can choose 2-vectors in the form (u,x) and (u,y)

which belong in the 2-vector subspace M . Indeed, we choose 2-vectors
(o,x,,x,,),(a,,,%,,,,%,,) Which according to the definition of M belong in M . But

P

then, in M belongs also the 2-vector (a,x;,x,,,)+ (0 2%,2.%,) = (XX, + Q2% 0, %) -

i i

. . . 1 1 .
We choose matrices 4,B e M,(R) given with 4 =L ag‘} , B= [0 a"‘} , and we
i+l
get the 2-vectors
(u9 czixi + ai+le+2
which belong in M . Now, it is clear that in this 2-subspace, belong every 2-vector
in the form

) and (u’a'+1xi+l) >

i

1 0
Cu, Bx, + B,,1%,,,) = ':0 a}(u’ﬂxi + LX) =W, a(Bx, + B,x,.,))
as well as every 2-vector in the form

1 o
D, f;,%;,1) :[0 ﬁ:|(”’/}n1x“1) =, %)
Finally, in this 2-subspace M belongs also every 2-vector in the form
(w,a(Bx, + Bax )+ W, BBx.0) = w,a(Bx, + Bi%.) + BBuixi) »
which can be obtained also in another way.
Let us now have two vectors in that form, which belong in the 2-subspace M
and let it be the 2-vectors
(u,a'(BX, + BuXi2) + B BraXit)
(w,a(Bx, + B, % 2)+ BBx.) -

Now, the proof continues the same as in the previous two theorems like this one.
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EXTENSION OF ONE SIDED BRANCH 2-SUBSPACE AND SOME
EXTENSIONS OF HAHN - BANACH TYPE FOR SKEW-SYMMETRIC 2-
LINEAR FUNCTIONALS DEFINED ON IT

UDC: 517.982.22:515.173
Slagjana Brsakoska', Aleksa Malcheski?

Abstract. In this paper 2-subspaces from 2-space X, which are from one sided branch
2-subspace type, will be taken in consideration. Then all its possible extensions adding one

clement (u,v) and their complete description will be considered. Also, all extensions of 2-

skew-symmetric lincar form defined on 2-subspacc M ' Hahn-Banach type will be
considered, in the cases when one vector belongs in 2-vector from M , and the other does
not belong (u belongs and v does not belong and vice versa), as well as cases when the two
coordinates of (#,v) do not belong in M .

1. INTRODUCTION

Extensions of mappings is something that is often looked at in various
mathematical disciplines. One classical example of extension of a given mapping is
of course the Hanh-Banach theorem for linear functionals. One version of it
comprises the contents of the following theorem.

Theorem 1. Let M be a vector subspace of the vector space X . The functional
p: X >R satisfies the conditions

a) p(x+y)< p(x)+p(y)

b) p(tx) =tp(x),
forevery x,ye X and t>0.

The functional f:M —R is linear and f(x)< p(x). There exists a linear
functional A:X —R suchthat AN/ M = f and —p(—x) < A(x) < p(x) .

Of course, it is worth mentioning here both the definitions, for 2-norm, and
especially for 2 semi-norm, which we will use many times further.

Definition 1. Let X be a vector space over the field @ . The mapping
|e,®]: X* - R, for which the following conditions are fulfilled

(i) || x,y|I=0 if and only if {x,y} is a linear dependent set

(i) || x, v ||=| y,x|| for arbitrary x,ye X

(iii) || ax, y |9 a|-|| x, | for arbitrary « € ® and for arbitrary x,ye X

@) | x+x,y|I<x,y ||+ x,y]|, for arbitrary x,ye X,
we call 2-norm, and (X?,||,¢|)) we call 2-normed space.

Definition 2. Let X is a vector space over the field ® . The mapping p: X* > R,
for which the following conditions are fulfilled

(1) p(x,y)=0 ifandonlyif {x,y} is alinear dependent set

(i) p(x,y)= p(y,x) for arbitrary x,y e X

(iii) p(ax,y)9a|- p(x,y) for arbitrary a € ® and for arbitrary x,ye X

AMS Mathematics Subject Classification (2000): 46A70
Key words and phrases: n-semi norm, 2-subspace, n-linear functional
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(iv) p(x+x".y) < p(x,y)+ p(x',y), for arbitrary x,ye X,
we call 2-semi norm, and (X, p) we call 2-semi normed space.

It is worth to note here that for any 2-norm the following equation is fulfilled
I x,y =l x,y+ax] , for arbitrary x,y € X and for arbitrary scalar ¢ e ® .

Due to the definition of an »-norm and the definition of ann-semi norm it
turned out that, on the set X, where X is a vector space over the field ® (® is
the field of real numbers or the field of complex numbers), it is convenient to
consider additional operations, two of which are partial and one of which is a
complete operation, with the aim of making the notation and considerations easier.

Definition 3. Let X be a vector space over the field @ . The set X* together
with the operations

(x.2)+(1.2) =(x+,2)

(ZX)+(z ) =(zx+y)

A(x,y) = A(x, )’
where x,y,ze X and 4e M,(®) is called a 2-vector space or 2-space.

Comment. The third operation in the previous definition is a complete
operation, and on the right-hand side of the equality is a multiplication of a matrix
with a vector.

Definition 4. Let X be a vector space over the field @ . The functional
A:X* - ® for which the following conditions hold

(@) Alx+y,z2)=A(x,2)+A(,z2), for arbitrary x,y,ze X

(b) A(x,y)=-A(y,x) for arbitrary x,ye X

(c) Alax,y)=aA(x,y), for arbitrary x,ye X and a¢e®.
is called skew-symmetric 2-linear form.

It is not hard to prove that the previous definition (Definition 4) is equivalent
with the following definition.

Definition 5. Let X be a vector space over the field ©® . The functional
A:X* - ® for which the following conditions hold

(@ Ax+y,2)=Axz2)+A,2), for arbitrary x,y,ze X

(b) A(A(x,y)) = (det HA(x, ), for arbitrary x,y € X and 4e M, (D)
is called skew-symmetric 2-linear form or simply 2-linear functional.

Completely analogously to the definition of 2-linear functional, which is
essentially a definition of a 2-skew symmetric form, the definitions of 2-seminorm
and 2-norm are changing and adapting.

Definition 2'. Let X be a vector space over the field ® . The mapping

p:X* >R for which the following conditions hold
(@) p(x+y,2)<plxz)+p(y,2), forevery x,y,ze X
(b) p(A(x,y)) = det 4| p(x,y), forevery x,y e X and 4e M, (D).

is called a 2-seminorm and (X7, p) is called a 2-seminormed space.
Definition 6. The mapping || -||: X" >R, n>2 for which it is fulfilled that:
(@) || x,,x, ||=0 if and only if x,,x, are linear dependant vectors;
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(b) || A(x,,x,) ||= det A|| x,,x, ||, for all x,,x, € X and for all 4e M,(D);

(©) 11X +x,,% 1€l x5, |+ X% |, for all x,x,,x, € X,
we call 2-norm of the vector space X, and the ordered pair (X,||--|) we call 2-
normed space.

In this section a special type of subsets from X* will be considered separately.
In fact, we will consider subsets of X* which are from this type.

Definition 7. The subset S, S ¢ X* which is closed with respect to the operations
of the 2-space X~ is called 2-subspace of X" .

Of course in these considerations the following two theorems are important.

Theorem 2. The intersection of an arbitrary family of 2-subspaces of the 2-
vector space X’ is a 2-subspace.

According to the last theorem, each subset 4 < X’ determines a 2-subspace S,

the smallest 2-subspace of the 2-vector space X which contains the set 4. We
will call the 2-subspace S, the 2-subspace generated by the set 4, and the set 4 -
the generating set.

In this matter we will consider a special type of generating sets, i.c. a generating
set of the form M U{(u,v)}, where M is a special type of a 2-subspace, and
(u,v) e X is arbitrarily given where {u,v} is a linearly independent set.

The basic question which we will consider here is whether it is possible to
extend a 2-skew-symmetric linear form defined on some types, i.e. classes 2-
subspaces to a bigger subspace, in the sense of extension of linear functionals, i.e.
of the type of Hanh-Banach.

The main aim if all such considerations is whether we can prove the following
theorem or some of its variants.

Theorem 3. Let S be a 2-subspace of the 2-space X*, A:S—>R be 2-skew-
symmetric linear form, and p: X* - R be a mapping for which

(@) p(x+y,2) < p(x,2)+p(y.2), Jorall x,y,zeX
(b) p(tx,y)=tp(x,y), forall x,yeX and t>0.

There exists 2-skew-symmetric linear form A': X> >R , such that A/ S =A.

Each 2-seminorm satisfies the conditions a) and b) from the previous theorem.

Furthermore, in many parts we may come across a special kind of subset of X~ .
One type of them is given in the following definition.

Definition 8. The subset T, T c X* is called n-invariant if AT <7 for every
AeM,(®), detA=1.

The general structure of 2-subspaces is, of course, not simple. The simplest
forms of 2-subspaces are the kernel subspaces, loop subspaces, branch subspaces
and cyclic subspaces. Those are discussed and described in [6,7].

Solving the problem presented in the last theorem is of course not simple. An
affirmation of that is of course the complex structure of the2-subspaces of the 2-
space X”. Due to this, we will discuss partial cases of this problem.
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In this matter we will look at extension of 2-skew-symmetric form defined on a
branch-2-subspace and extension of a 2-skew-symmetric form defined on a cyclic2-
subspace.

From here on, we will assume that the subset {x,x,,...x,,..} is a linearly
independent subset of the vector space X , not excluding the case when it is finite.

Definition 9. Let X be a vector space over the field ® . The2 -subspace §
generated by the subset  {(x,,x,),(x,,%;),(X5,%,)sees (X, X, )seen ), Where
{X,,%,,...,X,,...} 18 linearly independent set is called a one-sided branch 2-subspace.

n’

These 2-subspaces are also called one sided branches, i.e. one sided branch 2-
subspaces. In other papers two-sided branch 2-subspaces, which are sets that are 2-
subspaces generated with set in the form
{"'5(xfn’x—(nfl))""’(x—]’x 2 (%, 3), (X, X5 ), (X, X5 )5 (X, X, ), will be also

considered. Parallel to this we can consider also 2-subspaces which are gencrated
with finite number of elements {(x,,x,),(x,,X;), (X3, X, )05 (X5 X, )} -

A detailed description of branch 2-subspaces is given in [7]. That is the content
of the theorem that follows.

Theorem 4. If M is a bmnch 2-subspace generated by the set
HETET N E AN E I KN € T o where  {x,x,,...X,,...} is a linearly
independent set, then

M = U U L(a,,x,,, +a,_x_,x)xLa,x,, +a,_x_,X).

ieN\{l}  a;_y,a;, €d

In the following part we will consider extension of a branch 2-subspace M with

the addition of one element (u,v) as well as extension of a 2-skew-symmetric form

A:M —R to askew-symmetric form on A":M' >R, where M'=(M U{(u,v)})

The leading result in the description of the special 2-subspaces such as cyclic,
branch 2-subspaces, kernel 2-subspaces and loop 2-subspaces is the following
lemma:

Lemma. The subspace generated by the elements (x,_,x,),(x;,x,.),(X;.15%,.),

where {x,_,x,,X,,.x,,} is a linearly independent set is

L(b,,x,, +bx,,x,, )< L(b,

i+2

X, +bx.,x, )Ul(a

427542

X T X X)X LA, X+, %X)

The idea for such lemma is because here it seems as if we have put together two
branches, i.e.

L(b, %, + 0.5, %, VX L(b, ,X,,, +b.X,,X,,,) (1)
and L(a
Here, as its 2-subspace appears a sct determined with

M ={(A(x,,x,.)" | Ae M,(D)}.

Addition of elements from (1) and (2) certainly is possible, but the result is always
an element which can be considered that belongs in one of these 2-subspaces, i.e.
either in (1) or in (2). If it belongs in both sunspaces, then it is an element from the
2-subspace M ={(A(x,,x,,) / Ae M,(®)}. That fact will appear in the whole paper.

i+17 1+l i—-17i-12

+a_ X, X)X L(a,, %, +a,_x,_,X,). 2)
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2. EXTENSION OF A ONE-SIDED BRANCH 2-SUBSPACE

Let A be a skew-symmetric linear form defined on a branch 2-subspace M
which is generated by the elements of the set
{055 (535X, (655X, )y eeves (X5 X, )seee b, WheTE  {x,X,,..,x,,...} 1S a linearly
independent set. Let (u,v)e X* be such that {u,v} is a linearly independent set.
We denote the 2-subspace of X° generated by M U{(u,v)} by M'. Several cases
are possible.

Case 1. u,veL(x,x,,...,X,,...), Where L(x,x,,....x,,...) 1s the subspace of X
generated by {x,,x,,....x,,...} .

The 2-subspace generated by {(u,v)} is L(u,v)xL(u,v). Let us notice that
L(u,v) N L(x,,%,,.... %,,...) ={0} = A, . Accordingly,

M'=M O L(u,v)x L(u,v),
where M is determined in theorem 3.

XX X X, Xs
e—o
u v

Case 2. Let u € L(x,,%,,..., X,,...) and v £ L(x,,%X,,...., X, ,...) .

In this case we will consider several sub cases.

Sub case 1. u=x, forsome i eN, and v g L(x,,x,,...,X,,...) -

In this sub case there are two situations, i.e. u=x, or u=x,, i>1. These
situations will be considered separately.

Situation i) u=x, for some ieN,i>1

In this situation from sub case 1, the set

1), (65 x4, (06, V) = {00, u), (u, X, ), (. v)}
generates a 2-subspace which is a loop subspace and its form is

L= |J LawxLu,w),

weL(X;_y,v,X;,1)
even when i =2. Now the proof'is as follows.
Simultaneously the sets Pr={(2,2)5 (35, X3 )seenns (X5, X))} and

P = (%15 %,0)s (X0 X3 seees (X5 X, )y e} generate 2-subspaces S, and S,.
respectively, which are branch 2-subspaces. Here, one of them is finite branch 2-
subspace, and the other is infinite branch, as it is the starting branch. We should
note here that when i =2, the 2-subspace P' doesn't exist, and we consider only the
2-subspace P". But, we will continue with the second case when P' exists. At the
same time, they, as well as L are 2-subspaces from the required extension M '. The
forms of S,. and S,. are

i1
Sp = U U LAy + @ X5 X)X L@y + @y X5 %)
k=2 a.a.,€®
®
Sp = U U L@y %, + @ X0 %) X L@y % + 40 X05%)

k=i+l  a,_y,a;, €D
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In order for us to see the form of M' it is enough to consider several types of
addition of elements of L,S,. and S,. i.e. the following cases:

I (mn)el, (0, ) € LA(xi05 X, (X,5%,))

2" (mn)el, (x, ) € L((x,_5,%,_5), (X5, %))
3 (mmn)el, (x,y) € L((x;, x;,),(X;,15,X,,5))

4 (mmn)el, (x, ) € L((X,, 15 %,,5)5 (X155 X,,5)) -

In situation 1I° we have
(m,n) = (b(ayx,_ + v+ ox,,) +byx, by(ayx,, + av+ onx,, )+ byx,)
(. y)=(a(ax_, + px)+a,x,_,a,(ax,_, + fx)+a,x, ).
The sum of two such elements is possible in 2 cases:
a) a,=a,=a=0, bo,=a,=s, af=b, =t
b) a,=a,=a=0, ba,=a,=s, a,f=b,=t
In case a) the elements get the form
(beyx,  +bx,,byax, | +b,x,)=(sx,_, +tx,,byoyx, | +b,x,)
(a,fx, +ayx_,a,fx, +a,x,_) = (sx,_, +tx,,a, %, +a,x,_,) ,
and their sum is
(sx,_, +1x,,(a; f+b)x, +(a, +bya))x, ) e L((x,_,,x;)) < L
We similarly get for case b).
In case 2° we have
(x,y) =(a(ax_,+ pBx_ ) +ax,_,,a;(ax,_, + Bx._ ) +a,x,_,)
(m,n) = (b (a,x,_, +,v+ayx,,,) +b,x, b (o x_ +a,v+o,x,, )+ b,X,)
The sum of two such elements is possible in 2 cases:
)a,=a,=a=0,a,=b,=0, aqff=ba, =s
d)a,=a,=a=0, a,=b,=0, a,f=bo, =s
In case c) the elements get the form
(sx,_,a 8%, +ax, ;)
(Sxi—l’b3alxi—1 +b4xi)
and their sum is
(sx,_, (@ B+byen)x +ax,_, +bx) € LU(x,_,. %), (%, x) =M
We similarly get for case d).
According to that, in this sub case the extension is
M'=Muv U L(x,,w)xL(x,,w).

WeL(X1,%; %)

Situation ii) i =1.
In this situation, together with the condition that v is an element which doesn't
belong as coordinate in any of the elements in M , i.e. v L(x,,x,,....), we get that

the 2-subspace M is extended and it is again a branch 2-subspace from X . In fact,
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that is a branch determined with the set v,x,x,,....,x,,...., which is not hard to
describe.
Sub case 2. u € L(x,,x,,,) for some jeN, where u#x,,x,,.
Here, maybe it is more convenient to consider that u =a x; +a,, X, , € L(x;,x,,,)
,and v L(x,x,,....) .

In this sub case we have u = ux, +vx,,, where wv=0. The sets {v,u,x,} and

J+le
{vu,x,} are linearly independent sets. The sets K'={(u,v),(u,x,)} and
K'={(u,v),(u,x,,,)} generate 2-subspaces S,. and S,. and their forms are

Sy = U L(av+ fx;,u)x L(av + fx; ,u)

a,fed

Sen = U L(av+ px,, , u)x L(av+ Bx,,u)

a.fed
The general form of the elements of S,. is
(a,(av+ Bx))+au,a(av+ Bx;) +a,u)
and of the elements of S, is
(a,(yv+0x;. )+ au,a;(yv+6x;,)+au).
Addition of the latter two forms of elements is possible in the following 2 cases:
a) f=0=0, a,=b,=t, aa=by=s
b) f=0=0,a,=b,=t, aa=by=s.
In case a) the elements get the form
(sv+tu,a,av+au)
(sv+tu,byyv+b,u)
and their sum is
(sv+tu,(byy +a,a)v+(a, +b)u) € L((u,v)) c M'
The result in case b) is similar.
From the whole of the former discussion it is clear that
M'=MuUS, US,..

u = ax; +bx;
----- —@ @ L ®*—
Xi-1 X; Xitl Xit2 Xit3

v

We consider the sub cases 3 and 4 similarly.

Sub case 3. wuel(x,...x), k>3, u=ax+ox +ax +G x5 +...+ax,,
oo, #0.

In this sub case, the vector « is not a coordinate of any of the 2-vectors in M ,
so the extension in this sub case is the same as in the case 1.

Sub case 4. ue L(x,,..... %), k>i+3,

Xiytos O, 0.

U=OX, + O X,y + QX + 03X + 0 a,.

i+17Vi+1 i+27Vi+2 +37Vi+3 i+47Vi+4

In this sub case, same as in the previous sub case, the vector u is not a
coordinate of any of the 2-vectors in M , so the extension in this sub case is the
same as in the case 1.
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The case u £ L(x,,x,,...,x,,..) and v e L(x,x,,...,x,,...) is completely analogously
considered.

Case 3. Let u,ve L(x,,x,,...,X,,...) .

We will consider several possibilities, i.e. sub cases.

Sub case 1. u=x

i

V= xi+l :

In this situation in completely analogous way are considered also the case i =1
and all other cases for i >1.

In this sub case L(,v)=L(x,,x,,,), therefore we don’t have a true extension of

M.

X:=Uu X

Yj-2 Yj-1 J =Y Xj+2

The same is the discussion when the 2-subspace begins with the element x, . In
this case, the vector (u,v) is in fact the vector (x,,x,) .

Sub case 2. u=x,, v=x,,, i>1

i+29

In this sub case, the pairs (x,,x.,), (x.,,x,,) and (x,x,,)arc included in the
generating of M' so, accordingly, they define a kernel subspace S which is of the
form L(x,,x,,,x,,)xL(x,x,,,%,,). Now, the subspace M' is generated by one
kernel subspace §, and two branch 2-subspaces, one generated by
(), (0, 2,0 (35,2, ), (%, ,%) and the other by (5,350,555 % e (5 %) (g5 Ky )

The form of S is

S =L(x,,x,

i+l

X.

i+2

) x L(xi’le ’xi+2) *
The form of the 2-subspace S' is

i1

S'= U U L(ay X, +ap, X, %)X Llag X, +a,,%,,%,)

k=2 ay_y,a;, €®

The form of the 2-subspace S" is

o
"n_
§"= U U LA Xy + X X)X L%y + @ X0 %,)

k=i+3  ay_y,a;,€®

Let us notice that the addition of elements of S or S' or S" is again an element
of § or S' or S", respectively. Addition of elements of S' and S", one from S’
and the other from S" is not possible.

We will determine when addition of elements of § and S' is possible and what
is the result of that addition. Every element of S is of the form

(a,x, +bx,

i+l

O\ X0, X, + Dy,
and the elements from S' for which addition is possible are of the form
d\(ax_, + Bx,)+ex, ,,d,(ax,_, + fx;)+e,x, ).
Addition in this case is possible in the following two cases:
a) bh=¢=0,a=0,dpf=aq =5
b) b,=¢,=0, =0, d,f=aqa,.
It is enough to consider the case a). Then the elements obtain the form
(X, a,x, +b,x,, +¢,%,,,), (sx,,d,x, +e,x,_))
and their sum is

+C,X,.,)
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(sx,,(a, +d, B)x; +byx,, + X, +e,x,_ ).

Therefore, the sum of these elements is an element from the 2-subspace T defined by

T=|J Lx.xLx.u).

UL (X, 1,X;41:X142)

Now it is enough to determine the sum of the elements from the 2-subspace T
with the elements of the2-subspace generated by the elements of the set
{(x,_5,%,_,),(x,_5,x,_)} . The former are of the form
A(x,,ox,_ +o,x, + X, +a,X,,,) = *

=(bx, +b,(oyx,_ +a,x, +ayx,  +a,x,,),bx, +b,(ax,_, +o,x, +ox,,, + X, ,))

The subspace generated by the set {(x,_,,x_,),(x,_,,x,_,)} is

U L(ax, s+ fx, 1, X%, ) x L(ax,_, + Bx, ,%, ,),

a,fed
and its elements are of the form
(a,(ax,_,+ Bx,_ )+ a,x,_,,a,(ax,_, + Bx,_ ) +ax,_,). (**)

Elements of the form (*) and (**) is feasible in two cases:
c)by=0,=0,=0,=0, =0, a,=0, b, =a,f=s
d) b,=0, ,=a,=0,=0, =0, a,=0, by =a,=s.
In the case ¢) we have
(sx;,byx, +b,ax, )
(sx,,a, 5%, +a,x,_ ;)
and their sum is
(sx;,byx, +(bya, +a; f)x,_ +a,x, ,) € L(yx, , +0x,,%,_ )X L(yx,_, +6x,,x,}) .
The case d) is considered analogously.
Accordingly, in this case M ' is the 2-subspace
M =MULx, x50 ) Lax)xLax)o ) LOx,)xLmx,).

UEL (G K12 Vel (33501 .%)

Xiyl

Sub case 2’. u=x,, v=x,.

In this sub case, the 2-vectors (x,,x,), (x,,x;) and (x,,x,) which are in the new
2-subspace, form a kernel 2-subspace from the form S = L(x,,x,,x;)x L(x,, x,,x,) . On
it a branch 2-subspace is added on, with form

©
"
S'= U U L@y X + @ %05 X)X L(a X 01X 05X,)

k=4 ay_,a;, €®
This new 2-subspace has form
M'=SuUS'
Sub case 3. u=x,, v=x,,
This situation when />1 is similar to the previous one. But now, additionally
appears one more loop 2-subspace with loop in the vector x,, besides the loop x,

i>land j>i+2.
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which is analogous to the loop in x,. If i>2, then besides the appearance of one
cyclic 2-subspace, two loop 2-subspaces, one branch 2-subspace, appears one more
branch 2-subspace which at the same time is a finite branch, generated by the
elements (x,,x,),(x,,x,),-.,(x,_,,x,_,) . But now let's consider them one by one.

In this sub case the ordered pairs (x;,x;,,), (X, 15X, 55+ (X1, X;): (x;,%,) form a cyclic
subspace S . Now, the extension is generated by one cyclic subspace S, and two branch 2-
subspaces, one S' generated by (x,,x,),(x,, %300y (X5, %), (x,_,,x,) and the other S"
generated by (x;,,,1), (3,15 X5 )sweees (65X, 1) (X015 %000 s eves -

The form of S is.

i

n

S= U[L(ai+l'xi+l a4, X)) L@, X+ XX, )] .
i

The form of S'is

i1
L
S'= U U L(ay x, ) + @y X, X)X L@ Xy + %0, X,)

k=2 a_y,a;, €®

The form of S"is

»
n__ .
"= U U Lay %y + @y XX )X L X +ag, %, ,%,)

k=) a5, €®
Addition of elements of S' and S", i.e. one element from S' and the other form

S" is not possible.
We will consider the remaining possibilities for addition of elements of S, S' and S". Letus
notice that the sets K'={(x,_,x,),(x;,x, ), (x.x,)} and K"={(x,,x),(x,_, X, (x;, %)}
are generators of the 2-subspaces S, and S,. which are subspaces of M'. At the

same time they are loop 2-subspaces generated by three elements. We have:
Se= U Lex)xL@x) and Se.=  |J  LO.x)xLivx)
UeL (XXX 0) VeL(X g, X %))

First we will determine when addition is possible between elements from S,.
and S,. and what will the result from the addition be. The elements from S,. are of
the form

(a(ox, +ayx,  +oux, ) +bx,,a,(ox; +a,x,  +a,x;, ) +D,x;)

j+1 J+l

and the clements of S,. arc of the form
(e (Bx_y + Boxiy + Bix)) +dix 0 (Bix + Box,, + ,B3x/ )+d,x;).
It is clear that addition is possible in two cases:
a) a,=a,=f=4=0,aa=d=s,cf=b=t
b) a,=a,=5=4=0, a,a,=d,=s, ¢,p,=b, =t.
In case a) we have the sum
(sx; + Ix; (a0 +dy)x; + (¢, + b, )x/) € L((x,, X; )
In case b) we have the sum
((q,a, +d)x; + (¢, By +b)x,, 5%, +1x;) € L((x;,x,))
Therefore in each case the sum is an element from the 2-subspace L((x;,x,)).
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We will determine the sums in the remaining possibilities for addition in M ' We
have the following possibilities:

I (x,3) € Sg. and (m,n) e L((x, 5, %, 5), (X, 25 %,))

2 (x,y) €Sy and (m,n) € L((x,,,,X;,, ). (X;,5,%,,3))

3 (x,y) €S and (m,n) e L{(x; 5%, 1), (%, 5,%, )

4 (x,y)e S and (m,n) € L((x,,3,%,,,),(X,,5,X;.,))

In 1’ the elements from S,. are of the form

(Cl (ﬁlxi—l + IBZXHI + ﬁ}xj) + dlxi > CZ (ﬁlxi—l + IBinH + ﬂij ) + dlxi
and (m,n) = (a,(ex,_; + X)) +bx_,,a,(@x,_y + fx,_ ) +Dhx,,)) .
Therefore, addition is possible in the following two cases:

c) B=5=0,a=0,5=0,d=0,cf=af=t

d) ,=5=0, a=0, b=0,d =0, ., =a,f=t

In the case c) we get

(.6, 0%, +d,x,)

(6, a,Bx, +byx,,)
and for the sum we get

(tx[—l 2 (c'lﬂ] + alﬁ)x[—l + dzxi +b2‘x[—2) € L((XI—Z > x[—] )’ (Xi—l ’x[ ))

The case d) can be analogously considered.

Similar results are obtained in 2°, 3° and 4 with the results of the additions
being elements of the 2-subspaces L((x,x,,),(%.,1.%.,)) > L((x; 5,X; ), (x;,,x,)) and
L((x,,,,%,.),(x.,,x;)) respectively, and also being elements of M .

The remaining cases for addition, when it is possible, are addition of elements
M and they again belong to M .
Finally, we can conclude that in this sub case:

M'=Muy U L(u,x,)x L(u,x,)V U L(v,x;)x L(v,x,) .

UEL(X,y X0 0X;) VEL(X)41,%; %))

The sub case u=x,,v=x;,;>4, due to its specifics we will consider it
scparately.

In this situation we have that the vector x, is a loop element, same as the vector
v=2x;.

Subcase 3. u=x,, v=x,,;>3.

It is enough to consider the situation when j=4. In this situation, we have 2-
vectors  (x,,x,),(x,,x;),(x;,x,),(x,,x,), which belong in the new 2-vector subspace.
According to this, they form a cyclic 2-subspace, which we didn't have before. Its form is

4
§= U U [L(a,uxm +a_x,_,x)xL(a,x,, +ai—lxi—1’x:)] s

i=l  agy.a,,€®



298  S. Brsakoska, A.Malcheski

which is at the beginning, and then follows a branch 2-subspace generated from
already existing 2-vectors (x,,x;),(x,,x,),.... Its form is

N
[
S'= U U L(ay % + a1 Xy X )X L(ay % + @ X,05%,) .

k=5 a4, €
But, here appears one loop 2-subspace for which a loop element is the vector x, .
Its form is
S'= U LOmx)xL(wx,).

weL(x),X3,X5)

Between the elements of these three types of 2-subspaces should be determined
addition and we should see what will the results be.
In any case, we have that the extension of this 2-subspace is M'=SUS'US"

u=x X X3 x

Sub case 4. u=x, v=cx., +dx.,, where cd =0 for some i>1

i i+l i+2 2

v=cx\ | +dx;,

X2 X u=x; Xit1 Xy Xiy3

Now, because the 2-vectors (v,u), (x,

i+l

u) e M', we get that also the 2-vector
% 0 ((v,u)+{_oc ﬂ(xm,u)J = % 0 ((cxﬁl +dxl+2,xl)+(—cxl+|,xl)) = % 0 (dx,,5,%,)=(x,,,X,)eM'
0 1 0 1 01
According to this, in this new 2-subspace belong the 2-vectors

(”axm) = (xi’xl~1)=(‘xi+l’x1+2 )ﬁ(xuz ’Xx) = (xf+2=”) >

and together with that also the kernel subspace generated by the vectors x,,x,

i+l

Xiyo -
Now it is clear that this extension is equal to the extension in the sub case 2 of this
case.

Sub case 5. u=x, , v=ax,+bx,, ab=0.

In this situation the vectors x,,x,,ax, +bx, form a triple of vectors which are
linearly independent. According to this, the triple of 2-vectors

(x3,%,) = (U, X, ), (x,, ax, +bx;) = (x,,v), (ax, +bx;,x,) = (v,u)
form a kernel 2-subspace in the new 2-vector subspace M '.
But now, since the 2-vectors (v,u), (x,,,,u) € M ', we get that also the 2-vector

1 1

1
b 0 [(v,xl)+|:_a 0}()52’)‘1)): b 0 ((ax, +bxy,x,)—ax,,x,)) = b 0 (bxy, %) = (x, %) eM "+
0 1 0 1 0 1 0 1

According to this, the 2-vectors (u,x,) =(x,,x,),(x,,x;),(x;,x,) belong in this new 2-
subspace, and with that also the kernel subspace which is generated by the vectors
x,%,,x, . Now it is clear that this extension is equal to the extension from sub case 2'
in this case.

Additionally, as an extension of this 2-vector subspace appears the branch 2-
subspace which is one sided branch and is generated by the elements  (x,,x,),(x,,%)....




