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About the geometric interprations of the basic
interactions and some consequences

Kostadin Trencevski
Ss. Cyril and Methodius University in Skopje, Arhimedova 3,
Skopje, Macedonia, e-mail: kostadin.trencevski@gmail.com

Abstract
Our space-time consists of three 3-dimensional spaces: space S, space
rotations SR and time T'. The basic spaces are S and SR, while in case of
constraints of these two spaces, the body will be time displaced, of change the
speed of time as in case of gravitational field. In recent papers [15, 14] it is
given a (possible) geometric description of basic interactions in the nature, by
using the non-commutativity of translations and rotations in two groups of
rotations and translations together: in the affine group, and the group which is
locally isomorphic to SO(4), or Spin(4). In this paper our attention is mainly
to the classical electromagnetic interactions and gravitational interactions.
The electromagnetic interaction can be interpreted such that both charged
particles are mutually rotated for an angle, while the gravitational interaction
can be interpreted such that the gravitational body with mass M radially
translates each point for length GM /c?. Using these two interpretations, in
this paper we prove that the mass is observed enlarged for coefficient

1/4/1— Z—i, while the charge is observed unchanged according to the observer

who moves with velocity v. These two results are ad hoc used in physics, but
now we have a deduction of them.

1 Introduction

The space and time were subject of interest from the old civilizations up to the
present time. They were separated many centuries ago. Even in the Newton
theory they are still separated and the time flow was considered as uniform
phenomena in the universe. Remarkable approach in understanding the space
and time was done by the well known scientist and philosopher Roger Boscovich
(1711-1787), who was not well understood at that time. He made distinction
between the real space-time and the space-time according to our observations
(vef. [1]). More than one century before the Special Relativity, he wrote that
there does not exist an absolute space in rest, i.e. about the relativity among
the moving systems.



According to the Theory of Relativity there does not exist strong separation
between the space and time, which is evident from the Lorentz transformations.
This idea was generalized in the recent refs. ([2, 3, 4]) for the space, time and
rotations. For each small body besides its 3 spatial coordinates, can be jointed
also 3 degrees of freedom about its rotation in the space and also 3 degrees of
freedom for the velocity of the considered body. These 3+3 degrees of freedom
are of the same level and importance as the basic 3 spatial coordinates. There are
three 3-dimensional sets: space S which is homeomorphic to S3, spatial rotations
SR which is also homeomorphic to $% and time T which is homeomorphic to
R3. The space SR is homeomorphic to S? if it is considered as the group of
quaternions with module 1, which is locally isomorphic to SO(3,R). Each two
of these sets may interfere analogously to the space and time in the Special
Relativity.

The group of Lorentz transformations 01(1,3) is isomorphic to SO(3,C),
and if we consider this complex group as a group of real 6 x 6 matrices, this group
is the required Lie group which connects the spaces S and T'. The group which
connects the spaces SR and T is the same group of transformations. This Lie
group of transformations has Lie algebra which is determined by the matrices

of type
X Y
X 1)

where X and Y are antisymmetric 3 x 3 matrices. This Lie group will be denoted
by G, because it connects the space T (temporal space) with the other two
spaces. In ref. [4] the Lorentz transformations are converted as transformations
in S x T, given by 6 x 6 matrices.

The Lie group which connects the spaces S and SR has Lie algebra which

consists of matrices of type
X Y
E )

where X and Y are antisymmetric 3 x 3 matrices. This Lie group is generated
by the following 3 matrices of translation 7(4,0,0y, 7(0,a,0) and 7(,0,«) along the
x, y, and z axes, where

1 0 0 0 0 0
0 cosa 0 0 0 sin a
|0 0 cosa 0 —sina 0
T@00) = g 0o 1 0 0o |
0 0 sina 0 cosa 0
0 —sina 0 0 0 Ccos

while the other two matrices 7(g,«,0) and 7(g,0,«) are obtained by the cyclic per-
mutation (1,2,3,4,5,6) — (2,3,1,5,6,1) and also by the following 3 matrices



of rotation p(a,0,0y; P(0,a,0) a0 P(0,0,«) around the z, y, and z axes, where

1 0 0 0 0 0
0 cosa sina 0 0 0
| 0 —sina cosa O 0 0
Pl00)= 19 o 0o 1 0 0o |
0 0 0 0 cosa sina
0 0 0 0 —sina cosa

while the other two matrices p(g,a,0) and p(o,0,) are obtained by the same cyclic
permutation. This group will be denoted by G5 as a space group, which connects
the spaces S and SR. The group Gy is isomorphic to the group Spin(4) ([5]).
We denote by A the affine group of translations and rotations in the Euclidean
space, and as a set of 6 X 6 matrices it can be proved that its Lie algebra has

the form
X Y
D ox) (3

where X and Y are antisymmetric 3 x 3 matrices.

The elements of the space S are measured in meters, while the elements
of spatial rotations SR are measured in radians, and so there exists a local
constant as a coefficient of proportionality between these two spaces, which is
called radius of range R. The elementary particles, galaxies and the universe,
have their own radii of range. While the velocity of light ¢ connects the space
and time, the radius of range connects the space and space rotations.

The multi-dimensional time was investigated also by another authors, for
example in refs. [6, 7, 8, 9, 10, 11, 12, 13].

2 Exchanging among S, SR and T

The are 4 basic exchanges among the spaces S, SR and T'. If their elements are
denoted by s, r and ¢ respectively, then the basic 4 exchanges are [14, 15]:

l.r—=s, 2.s—=r, 3.r—t 4.s—t.

eps—converted—to .pdf

Figure 1: Basic four exchanges among the spaces S, SR and T.

In general x — y means that if x € X is constrained to occur, then it will be
converted into y € Y. According to 1. and 2., when one of them is constrained
then it converts into the other space from S x.SR. The case 3. says that when the
rotation 7 is constrained, then it makes some changes in the time, for example in
speed of time. But, if the rotation r is constrained, then it tries first to convert
into s € S, and if it is not admitted, then it converts into t € T'. So, the case 3.



must be of composite type s — r — t. Analogously, the case 4. must be of type
r — s — t. But, the cases t — s and t — r are not admitted, because none may
constrain the time. Also it is clear that the composite cases s — r — s are not
admitted. We give some simple examples given in [14, 15].

The first case r — s means that when the rotation is not permitted, then the
particles will be translated, i.e. will be displaced. It occurs for example, when
the spinning bodies are moving in a circle, or a spinning football ball moves
on an arc in the air, instead of parabolic trajectory. In both cases, each point
of the spinning body intends to rotate according to its trajectory in the space.
But it is not completely admitted, because the body is solid. As a consequence,
each point of the spinning body intends to be displaced (or translated) in the
space and it moves according to the sum of all such small displacements. In
general some of these displacements are also constrained, and in such a motion
we obtain also changes of type 4. This is commented in many details in [16]. This
displacement in the previous papers were called induced spin motions, or simply
spin motions. These spin motions are non-inertial motions. For example, if a
football ball stops to rotate around its non-constant axis, then it will continue
to move according to the well known parabolic trajectory. Moreover, in [16] it
is explained the variation of the length of the day with a period of 6 months. It
is important to mention that if the spin motion is constrained, then it becomes
inertial motion.

The second case s — r means that if the space displacement is not admitted
completely or partially, then it induces a spatial rotation. For example, let a
rigid body moves with a velocity v. If one point S of the rigid body is constrained
to move, then the body will start to rotate around the point S. So the rotation
is induced in this case. Analogously to the spin motion, in this case we also
have both cases 2. and 3.

Assume that a non-rotating body initially rests with respect to the Earth on
almost infinity distance. Assume that this body freely falls toward the Earth
under the Earth’s gravitation. When the body comes at the surface of the
Earth, it is not permitted to be displaced further. So, this constraint will cause
time displacement, such that the time will be slower. Indeed, if the velocity
at the surface is equal to v, then the constraint for the space displacement

will induce slower time for coefficient A = /1 — %; This is the case 4 (s — t).
Since v &~ /2G M /R, the time on the surface of the Earth is slower for coefficient
ANrr /1 — 26M ~ GM which is also well known from the General Relativity

RczZ ~ + 7 Rc2

up to approximation of ¢~2. This example is important to mention in order to
emphasize that the speed of time in gravitational field is slower because of the
existence of the acceleration toward the center of the planet, but not conversely.
Indeed, the gravitational acceleration is not a consequence since the speed of
time is not constant close to the planet.

It is also interesting to mention if someone intends to construct a time-travel
machine, it is necessary to use the cases 3. and 4.



3 The induced 4 cases and the basic interac-
tions in the space.

Each of these four cases induces an interaction in the space. In general, it leads
to global classification of the basic interactions in the nature. Let O; and O3 be
the centers of the bodies and X is close to Oy which belongs to the second body,

such that O3 X = (a,b,¢) (Fig. 2), and let 7 be a translation for arbitrary small

vector O2X = (a,b,c). The operator rotor below should be done with respect
to the coordinates a, b and c¢. We consider a solid body, such that the vector 7
can not be constrained. Hence we have the following 4 cases (see also Table 1):

1*. The electro-weak interaction is a consequence of non-commutativity be-
tween 7 and one rotation in the space group G,. The rotation is partially
constrained in Gy, and as a consequence it appears an induced translation in
G, which occurs as electro-weak interaction.

2*. The strong interaction is a consequence of non-commutativity between
7 and one translation in the space group Gs. The translation is partially con-
strained in G5 and as a consequence it appears an induced angle or rotation,
which leads to displacement observed as acceleration.

3*. The electromagnetic interaction is a consequence of non-commutativity
between 7 and one rotation in the affine group A. The rotation is partially
constrained in A, and as a consequence it appears an induced translation in the
affine group A, and further it leads to electromagnetic interaction.

4*. The gravitational interaction is a consequence of non-commutativity be-
tween 7 and one ”radial translation” in the affine group A. The translation is
partially constrained in 4, and as a consequence it appears an induced angle of
rotation, which leads further to gravitational interaction.

Group of trans. | rotation translation
Gy electro-weak int. strong int. & gravity-weak int.
A electromagnetic int. | gravitational interaction

Table 1: Global scheme of the basic interactions.

In all interactions, beside the acceleration a it appears also an angular ve-
locity w. In case of the electromagnetic and gravitational interaction these two
3-dimensional vectors are parts of an antisymmetric tensor field among the in-
ertial systems, which is analogous to the tensor of the electromagnetic field.
So, these two interactions are called temporal interactions. In case of weak and
strong interactions, we have again two vector fields a and vgw instead of cw,
where vg is a local parameter analogous to the radius of range R. Indeed, the ve-
locity c is characteristic only for electromagnetic and gravitational interactions.
Instead of an antisymmetric tensor, in case of weak and strong interaction we
have the following theorem ([15]):

Theorem 1. In case of weak and strong interaction, i.e. in the Lie group
G, it holds a = vgw or a = —vyw.



So, these two interactions (weak and strong) are called spatial interactions.

We will give a short presentations of the interactions classified in the follow-
ing way: 1) strong interaction, ii) electromagnetic and electro-weak interaction,
and iii) gravitational and gravity-weak interaction. The following results were
obtained in [15] and some of them also in [14].

3.1 Strong interaction

We need to present the observation from the center of arbitrary particle with
radius of range R. In [15] is shown that in case of the polar coordinates only
the distance 7 is changed and it is observed as Rsin ;. Moreover, the metric is
given by

(d8)2 _ (COS E) (d?“) <§ sin ﬁ) [(d(b) + sin® ¢(d9)2} =

— R? Kd(sin %))2 + (Sin %)2((@)2 + sin? ¢(d9)2)]. (4)

Figure 2: The strong interaction is a cwﬁwg%gt@@yﬂafof trans-

lations for the vectors r and (a,b,c) in S x SR.

Let us consider two nucleons with centers at O; and Oy with radii of range
R; and Ry respectively, and r = 0102 (Fig.2). The non-commutativity of the

translations obtains by the angle of two translations: translation for vector O

observed by Oi, and then translation by vector —r observed by the point X,
or almost the same by Oy. In Gy the angle as a result of two translations is
analogous to rotation as a consequence of two rotations, i.e. the vector product
of two vectors and we use the coefficient 1,/2 analogous to the Thomas precession.
The endpoint of translation is a point Y which is close to O;, where almost
there is no rotation between O; and Y. We use the notations ki = & sin R—,
ke = R2 sin R , and kI = cos R . Without loss of generality we assume that
the Vector r is parallel to the z-axis, i.e. z = y = 0, and as a consequence of
the metric, the vector 517% is observed from O; as kir + (k1a, k1b, kic), while
the vector —r from X is observed as —ksr. The normalization should be done
with respect to the distance r. Using the form of matrices given in section 1,

the angle ¢ is given by

g [t kb ke Zhr Ly, n (@b,
2 r r 27«2
Further we obtain v
rotg = —klkg—Q,
1 1 r r R1R2 r

—rotg = —fsm—sm— .
2 R1 R2 1"2 7‘2

10



Assume that the rotation is not admitted. The relative acceleration between
the two bodies is given by

v¥ . r . r RiRar
Ay = —— sin — sin — —

2 Rl R2 r2 7“2' (6)

Let us denote by a; and as the accelerations of the first and the second body,
then
ma mi
Are] = A2 —A1, A] = —————— Qrel, A2 = ———— Aare].
mi + mo m1 + mo

The forces toward the first and toward the second body are opposite

mimso
fi =mia; = —————ay, fh=moas=—""—"—aq.
my + ma mi + ma
If the space displacement is not admitted. Then it appears a relative rotation
of the two bodies which is given by

L1 :.lel = —

where I; and I, are the moments of inertia of the two bodies.

The previous formulas can be applied more generally, for example the first
body can be a galaxy with radius of range R;. If the second body is any star
from the galaxy, then we put Ry = oo and the previous formulas can be applied.
As a consequence it is obtained ([15]) that it is not necessary to introduce dark
matter, because the unknown force is just the strong force toward the center
of the galaxy. The radius of range for the Milky Way is 17 kpc, which is twice
longer than the distance from the Sun to the center of the galaxy. In case of
the nucleons, the radius of range is about 1.41 fm.

3.2 Electromagnetic and electro-weak interaction

Let us consider two charged bodies with charges e; and es; and centers at Oy

and Og, and let the second body has mass mo. In the papers [14, 15] it is

axiomatically assumed that the first body rotates the second body for angle
9—»: €1€2 (8)

— < _r
dmegrimaoc?

around the radial direction r = (z,y,z) = 0?2. The angle 6 has a phys-
ical interpretation as a potential, similar to the gravitational potential. Let
7 be a translation for a small vector (a,b,c). We choose the coordinate sys-
tem such that the angle of rotation is (0,0,6), i.e x = y = 0. Then the

11



non-commutativity between the rotation for angle ¢ and translation for vec-
tor (a,b,c¢) in the group A leads to translation of the point O, for vector
020" = (a(cosf —1) —bsinb, asinf +b(cos —1),0). Indeed, it obtains by the
following procedure: First rotation for angle 6, then translation 7, then rotation
for angle —6 and then translation 7. This translation leads to the angle

020105" = (a(cosf — 1) — bsinf, asinf + b(cosd — 1),0)/r.

The unadmitted translation leads to the Coulomb’s acceleration/force

2

¢ 1 . . e 2 I
a= 5rot (;(a(cos@ —1) —bsinf,asin@ + b(cosf — 1), 0)) = (sinf)c 2

€1€2 €1€2

a=-——r, f= r 9)

Amegrdme dregrd’

and so the electric field caused by the first charged body is

€1

E = (10)

4dmregr3 r
The induced angular velocities also appear.
Further let obtain the electro-weak interaction. Let us consider two charged
particles with centers at O and Og, radii of range Ry and Ry and the coefficients
k1 and k] have the same meaning as previously, and let (a, b, ¢) be a small vector
of translation. Only the charged particles cause rotation. The rotations remain
unchanged in both cases as in case of electromagnetic interaction, but there is
change in the vector (a, b, c). Without loss of generality assume that the vector
r is parallel to the z-axis, i.e. = y = 0. Then the vector (a,b,c) from the
first particle is observed as (kia, k1b, kic). Although the basic group is G, the
calculations are analogous as in A. In this case we have translation for vector

020" = (k1a(cos — 1) — kybsin6, kyasin 6 + kib(cos 6 — 1),0)
and it corresponds to angle
£050105" = (kya(cos @ — 1) — ki1bsin 0, kyasin 0k1b(cos 6 — 1),0)/r.

The unadmitted translation leads to the acceleration/force of the second
body toward the first body

2 1
a= U?Orot (;(kla(cose — 1) — kibsin b, kyasin @ + k1b(cos — 1), 0)),
2
_ 10(& n ) o 1
a= 2\ R/ 4megr3ma * (11)
v2 /Ry T ei1es
fzg(4,~40 , 12
2\ r st Ry 47Teo7°3r (12)

12



Symmetrically, the force of the first charged body toward the second charged
body is given by

f:

v} (Rg T ) €169
—— | —sin —
A\ r Ry / 4meqr?
If Ry # Rs, then these two forces are not opposite, and the symmetry is broken
now. In a special case, when the mutual distance r between the two charged
bodies is very close to 0 and vg is close to ¢, i.e. in case of high energies, then
the weak interaction leads to the electromagnetic interaction.
Analogously to the strong interaction, the following angular velocity appears

now R
Vo 1. T €162
w = —2<— sin —) ————T. (14)
c T R/ dmwepr3ms

r. (13)

The electro-weak and electromagnetic interaction can not occur simultane-
ously, but when the distance between the particles increases, the electro-weak
interaction transforms into electromagnetic interaction.

3.3 Gravitational and gravity-weak interaction.

While the charged bodies mutually rotate for an angle 6 determined by the axis
of their centers, in case of gravitation we have radial translation from the center
of the gravitational body. In case of gravitation, the translation refers to all
points, while in case of charged bodies both bodies must be charged, i.e. the
un-charged bodies are not rotated. This axiomatic gravitational translation has
magnitude MG /c?, where M is the mass of the gravitational body.

This gravitational translation combines with translation for a small vector
7 = (a,b, ¢), and the non-commutativity leads to the gravitational acceleration.
Assume that a point X has a radius vector r = (z,y, z), while the point-mass
is at (0,0,0). If we apply first translation for vector 7 and then gravitational
translation, we obtain

GM
X(I,y,z)*>(era,erb,ZJrC)*)Y((I+a,y+b,2+0)(1+774,02))7

where ' = r if we neglect the small lengths a,b,c. If we apply gravitational
translation and then translation for vector 7, we obtain

X(z,y,2) = (z,y,2)(1 + C:T]\j) — Y’((x,y,z)(l + %) + (a, b, c))

The non-commutativity of both translations gives an oriented angle

— —
ZYOY>’ 0y xOoYy" _GM (ye — 2b, za — xe, xb — ya)
oY oY re? r(r + GM/c?)

Half of this angle is not admitted and it induces acceleration given by

c? — GM GM
= —10t/BOB’ = — ~— .
g= 10 rr2(T+GM/02) s

(15)

13



The other half which is admitted induces the known precessions in gravitational
field for moving test body.

Analogously to the electro-weak, we have also gravity-weak interaction. It
is close to gravitation via the group A, and the observer will be a particle with
radius of range R;. Without loss of generality assume that the z-axis is parallel
to the vector r = (x,y,z). Then the coordinates z, y, z, a and b should be
multiplied by &k, = % sin R%v while ¢ should be multiplied by &} = cos R%' It

should be replaced into the coordinates of Y and Y’, while the vectors W and

—b o e GM . .
OY” should be divided by (r + “5%). The calculation shows that the required
acceleration is

2 2
_Y%syoyi = o (Big my . GM
8= rotZYOY' = 02( sin ) r2(r+GM/02)r' (16)

Analogously to the strong interaction, the we have the following angular velocity

Vo Rl . T 2 GM - Vo R1 . T 2GM 1
(i E) mrr e e (i) e ()
In case of gravity-weak interaction the symmetry is also broken. The gravity-
weak interaction is much smaller than the gravitational interaction and it is
unknown.

The gravity-weak and gravitational interaction can not occur simultaneously,
but when the distance between the particles increases, the gravity-weak inter-

action transforms into gravitational interaction.

4 Some results and comments

It is interesting that R.Boscovich in his ref. [1] considered also 4 basic cases
between the space and time which are related to one point and analogous to
them also 4 cases which are related for several points. He also comments which
combinations, i.e. compositions among these cases are possible and which are
not possible. There is an interesting analogy between his comments and the
previous results.

The strong, weak and electromagnetic interactions are studied in the Stan-
dard Model. It is based on the Klein-Gordon equation and Dirac equation, from
the Relativistic quantum theory [17]. While the non-relativistic theory starts
from the formula £ = p?/(2m), the Klein-Gordon equations starts from the
corresponding relativistic formula E? = p?c? +m?2c*. The best experimental re-
sults in this direction are obtained by the Quantum Electrodynamics. Probably
the reason is that the electromagnetic interactions belongs to temporal interac-
tions, and the relativistic approach is convenient. According to this viewpoint
the strong and weak interactions are not convenient to be researched by the
same equation. For example, we can start from ([15]) a = +vow (Theorem
1). Hence it follows that a? = v3w? and by multiplication with m?d? where
m is the mass of the particle and d is a distance, we obtain E? = L?w? where

14



L = mduy is the angular momentum. The equation is (E — Lw)(E 4+ Lw) = 0,
and the sign + in eq. £ = +Lw depends of the sign of the spin of the particle.
It is analogous to the energy of the photon £ = hw = hr. Using wave theory
the standard physical theory gives much attention of the interaction between
the photon and the matter, and there Quantum Electrodynamics gives the best
results. The results in section 3 are complementary, because in this paper we
start from geometry and ignore the quantum and wave theory. The most im-
portant assumption is that we use the elementary particles as solid bodies, and
the introduced small vector (a,b,c) can not be constrained. So we may con-
clude that if we consider the particles from wave theory, known theory should
be applied, while if we consider as solid body, this model gives description of
the interactions. However, the particles have dual nature.

To the end of this paper we consider some consequences from the previous
results. Indeed, we start from the Lorentz invariance of the interactions. First
we given some preliminaries which come from the metric in the 3-dimensional
time. In the 3-dimensional time we distinguish two cases: i) the metric in the
6-dimensional space-time in rys X ry, where the motion with velocity interpretes
simply by rotating for an imaginary angle [3, 2], and ii) in case of active motion.
In case i) the distance from a moving inertial coordinate system observes the

length
v2 s 2
= S
|Amp4AﬂM1+£13%f, (18)
T2

where 1 is the angle between v and Ar. In case of active motion, all lengths,
i.e. in each directions should be multiplied by 4/1 — v2/c2. The last step (active
motion) is a consequence since the time in moving systems changes, which is
a subjective observation. Note that in case of both cases i) and ii) we obtain
the same observation known from the Special Relativity. But since the active
motion includes a subjectivity, we will use only the case i). According to this
observation, each length in the direction of motion (¢» = 0) remains unchanged,
while each direction which is orthogonal to the direction of motion (¢ = 7/2),

_ 2

observes that the length is enlarged for coefficient 1/ o

Now let us return to the Lorentz invariance. In case of the strong and
weak interactions, the Lorentz covariance need not to be considered because
the interactions are inside the group Gg. Let us start with the gravitational
interaction. Assume that the observer is moving with velocity v with respect to
the system in which the mass is in rest. In this case it is convenient to choose
motion in a direction, such that the mass and the point which is translated for
vector GM /c? are simultaneous. It occurs when the velocity is orthogonal to
these two points. The Lorentz invariance means that the coefficients G;Q/I ir
must be preserved for the local observer and for the moving observer. It means

that

GM  aM'

—r o7
c? c?

where the mass M and the distance r are observed as M’ and r’ according to
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_ v2

the moving observer. Since ' =r1/4/1 — g—;, we obtain that M’ = M/ o

This is known result, but accepted ad hoc without proof. It is suggested since

the kinetic energy mwv?/2 can be written more precisely as m(1/4/1 — Z—; —1).

Now, when we have a precise definition of the mass, we have also a precise proof.

Future let us consider two charged bodies with charges e; and es; which
mutually rest on a distance r, and let the mass in rest of the second body
be mg. Then the second body is rotated for an angle (8). Let us choose an
observer who moves with velocity v. Since the rotation is in the plane which is
orthogonal to the axis which connects the two bodies, the observer should move
in this direction. Otherwise he observes the angle as a part of ellipse. Let he
observes the charges as e} and ej. Since the angle # must be the same for both

observers, we obtain
eres el eh

dmegrmac?  Amegr'mac?’

Since r’ = r according to (18), we obtain ejes = ejeb. If €] = key, and hence
also ej = ke, we obtain k2 = 1, and hence k = 1 because k > 0. Thus we
come to the known conclusion that the charge is observed unchanged in all
inertial coordinate systems. It is accepted ad hoc without proof, according to
the experiments.

Theorem 2. The mass is observed enlarged for coefficient 1/4/1 — Z—; while

the charges is observed unchanged according to the observer who mowves with
velocity v.
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1 Introduction

In metric spaces the Cantor’s intersection theorem is well known fact and charac-
terizes the metric completeness. It states that for an arbitrary complete metric
space X, a sequence of nonempty, nested and closed subsets of X whose diam-
eters tend to 0, has a single point intersection, and vice versa. Different type of
generalisations have been obtained considering generalization of the spaces or
the notion of decreasing sets.

Generalizations of metric spaces have been considered in lot of papers by
many authors: Menger [14], Aleksandrov, Nemytskii [1], Mamuzié [15], Géahler
[12], Nedev, Choban [18, 19, 20], Kopperman [13], Dhage, Mustafa, Sims [5, 16].
The notion of an (n,m, p)-metric, n > m, generalizing the usual notion of a
pseudometric (the case n = 2,m = 1), and the notion of an (n + 1)-metric
(as in [14] and [12]) was introduced in [6]. Connections between some of the
topologies induced by a (3,1, p)-metric and topologies induced by a pseudo-
o-metric, o-metric and symmetric (as in [19]), are given in [7]. Some other
characterizations of (3, j, p)-metrizable topological spaces, j € {1,2}, are given
in [3, 4, 8, 9].

In this article we will consider only (3,1, V)-metrics, i.e. (3,1, p)-metrics
where p = V = {(z,z,y)|z,y € M}. The concept of subbasis that forms
a topological space has also been considered by Géhler in [12]. Similarly we
define the topology 7(G, d) for a (3,1, p)-metric d generated by the subbasis of
all e-balls with center at (z,y), defined as in [3]. Here we gained some properties
of (3,1, V)-G-metrizable spaces which combined with some assumptions enabled
us to prove a variant of Cantor’s intersection theorem in these kinds of spaces.

19



2 Preliminaries

We use basic definitions for (3,1, p)-metric spaces and (3, 1)-metric spaces, as
in [3].

Let M # @ and M® = M?/a, where a is the equivalence relation on M3
defined by:

(x7 y7 Z)a(u’ 'U,w) <:> 7(-(7‘[’71]71’0) = (‘r’ y? Z)’

where 7 is a permutation.

Note 2.1. We will use the same notation (x,y,z) for the class in M®) con-
taining the triplet (x,y, z).

Let p be a subset of M), We consider the following conditions for such set.
(E0) (z,x,x) € p, for any = € M; and
(E1) (a,y,2),(z,a,z2),(z,y,a) € p = (x,y,2) € p, for any x,y,z,a,€ M.
Definition 2.2. If p satisfies (E0) and (E1) we say that p is a (3, 1)-equivalence.
We give the following trivial examples.
Example 2.3. The set A = {(z,z,z)|x € M} is a (3,1)-equivalence on M.
Example 2.4. The set V = {(z,z,y)|x,y € M} is a (3,1)-equivalence on M.
Let d: M®) — R(J{. We consider the following conditions for such a map.
(MO) d(z,z,x) =0, for any x € M; and
(M1) d(z,y,2) <d(a,z,2) +d(z,a,z) + d(z,y,a), for any z,y,z,a € M.

Lemma 2.5. Let d: M®) — RS and pg = {(x,y,2) € MP|d(z,y, z) = 0}. If
d satisfies (MO) and (M1), then pq is a (3,1)-equivalence.

Proof. Tt follows directly from the previous definition. O

Definition 2.6. Let d: M©®) — RS and p = pa.

i) If d satisfies (MO) and (M1) we say that d is a (3,1, p)-metric on M, and
the pair (M, d) is said to be a (3,1, p)-metric space.

it) If d is a (3,1, A)-metric on M, we say that d is a (3,1)-metric on M, and
the pair (M, d) is said to be a (3,1)-metric space.

Again we state certain examples.

Example 2.7. Let M be a nonempty set. The map d: M®) — Rar defined by:

_ [0 (zy2)eA
d(z,y,z) = { 1, otherwise

is a (3,1)-metric on M (the discrete 3-metric).
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Proof. Follows directly from Definition 2.6. O

Example 2.8. Let D : M? — R} be a metric on M. The map d: M®) — RY
defined by:
D(z,y) + D(z,2) + D(y, 2)

d(.T,y,Z) = 2 ’

is a (3,1)-metric on M.

Proof. Follows directly from Definition 2.6. O

2.1 Topological framework

In this subsection we define a suitable framework in which we are considering
our results. We define all the necessary topological notions in the sequel.

Definition 2.9. Let (M,d) be a (3,1, p) metric space and A C M, A # 0. We
say that A is bounded if there is an M > 0 such that d(x,y,z) < M, for all
x,y,z € M.

If A is bounded, we define the diameter of A as

diamA = sup{d(z,y, 2)|z,y,z € M}.
If A is not bounded, we write diamA = co.

Definition 2.10. We say that a sequence ()2, in a (3,1, p)-metric space
(M, d) is G-convergent if there is an x € M such that d(x,,z,y) — 0 asn — 00
for each y € M.

For simplicity we use the notation z,, — x as n — oo for G-convergence of the
sequence (x,)2 ;.

Definition 2.11. We say that a sequence (r,)22, in a (3,1, p)-metric space
(M, d) is G-Cauchy if d(xyn, xm,2;) = 0 as n,m,l — oo.

Definition 2.12. We say that a (3,1, p)-metric space (M,d) is G-complete if
each G-Cauchy sequence is G-convergent (with respect to d).

Definition 2.13. Let d be a (3,1, p)-metric on M, z,y € M and e > 0. We
define the e-ball with center at (x,y) and radius € to be the set

B(z,y,€) = {z]z € M,d(x,y,z) < €}.

Definition 2.14. For a (3,1, p)-metric d on M, we define the topology T(G, d)
on M to be the topology generated by all e-balls B(x,y,¢€) for all x,y € M, i.e.
the topology whose base is the set of all finite intersections of all e-balls B(z,y, €)
for all x,y € M.

Definition 2.15. We say that a topological space (M, T) is (3,1, p)-G-metrizable
if there is a (3,1, p)-metric d on M such that T = 7(G,d).
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Definition 2.16. Let M be a set and M = P(M) be the power set of M. We
say that a sequence (F,)22, of subsets of M is decreasing (in M) if Fr 41 C Fy,
for each n € N.

Lemma 2.17. Let (M,d) be a (3,1, p)-metric space and x,y € M are fixed. If
Zn =z as m — 00, then d(zy,x,y) — d(z,x,y) as n — oo.

Proof. Let z, — z asn — oo and z,y € M. Taking (M1) in to account one
obtains
d(zn, x,y) < d(z,2,y) + d(2n, 2,y) + d(zn, 2, 2),

- d(zn,x,y) — d(z,2,y) < d(zn, 2,y) + d(zn, x, 2), (1)
for arbitrary n € N. Interchanging z, with z implies

d(z,z,y) — d(zn, z,y) < d(2,2n,y) + d(z, 7, 2). (2)
Combined inequalities (1) and (2) impliy

|d(zn, x,y) — d(z,2,y)| < d(zn, 2,y) + d(zn, z, 2).

The convergence of the sequence (z,)52 ; implies that the right-hand side tends
to 0 when n — oo. Therefore, the proof is completed. O

Lemma 2.18. [4] Let (M, 7) be a (3,1, V)-metrizable space, via (3,1, V)-metric
d. A subset U from M is open iff for any & € U there are finite number of points
ai1,as,...,an € M and €1, €a, ..., €, > 0 such that © € N>, B(z, a;,¢;) CU.

Lemma 2.19. Let (M, 1) be a (3,1, V)-metrizable space, via (3,1, V)-metric d.
A sequence (x,)52, G-converges to x € M iff for any U € T such that x € U,
there exists an ng € N such that x, € U for all n > ny.

Proof. Follows directly from the previous lemma. O

3 Main results

We impose additional conditions on the set M.
Let (M, 7) be a (3,1, V)-metrizable space, via (3,1, V)-metric d, satisfying the
conditions:

(1) For x,y € M,z # y there is a sequence (z,)52; in M \ {z,y} and z €
M\ {x,y} such that z, — z and d(z,,z,y) — 0 as n — oo,

(2) If there exists a subsequence (z,,)%2; from G-Cauchy sequence (z,)52,
such that x,, = = as k = oo, then z,, = = as n — co.

Our first concern is the existence of nontrivial example of such space (M, 7).
The condition (1) seems really restrictive. Nerveless, such spaces exist. Our
example of this type of space is geometrically motivated, so the details are left
for an interested reader.
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Example 3.1. Let M be the set consisted of all triples (x,y,z) of not collinear
points in R? and all the triples (x,y,z) of points in R? such that at least two
of them are the same. Define d(x,y,z) by the area of the triangle in R? with
vertices x,y, z. It is not difficult to confirm that (MO0), (M1), together with (1)
and (2) are satisfied.

Lemma 3.2. Let A C M. Then diamA = diamA.

Proof. 1t is obvious that diamA < diamA.
Let x,y,z € A. We consider the following cases.

19 If ,y,2 € A, then d(z,y,2) < diamA.

20 If z € A\ A and y,z € A, then for each ¢ > 0 there exists u € AN
B(z,y,e) N B(x, z,€). Then

d(x,y,2) < d(u,y,z) + d(x,u, z) + d(z,y,u)
< 2¢ + diamA.

30 If v,y € A\ A and 2 € A, then for each ¢ > 0 there exist u,v such that
u€ AN B(z,y,e) N B(x, z,¢) and v € AN B(y,u,€) N B(y, z,€). Then

d(z,y,z) < d(w,y, z) + d(z,u, z) + d(z, y, u)
< d(u,y,z)+ 2
<d(v,y,z)+d(u,v,z) + d(u,y,v) + 2
< 4e + diamA.

49 If x,y,2 € A\ A, then for each ¢ > 0 there exist u,v,t such that u €
AN B(z,y,e) N B(z,z,€), v € AN B(y,u,e) N B(y,z,¢) and t € AN
B(z,u,e) N B(z,v,€). Then

d(z,y,2) <d(u,y,z) +d(z,u, z) + d(z,y,u)
< d(u,y,z) + 2
<d(v,y,z) +d(u,v,z) + d(u,y,v) + 2
< de+ d(u,v, 2)
<de+d(t,v,z) +d(u,t, z) + d(u,v,t)
< 6e + diamA.

Regardless of the cases, arbitrariness of € implies the claim. O

Next will prove analogous theorem of Cantor’s intersection theorem in (3,1, V)-
G-metrizable spaces.
Let us consider another condition.

(C) For each decreasing sequence (F,); of closed subsets of M such that
lim,, oo diamF;,, = 0 the set NS F), consists of a single point.
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Theorem 3.3. If (M, 1) is G-complete, then the condition (C) is satisfied.

Proof. For each n € N, let x,, € F),. Since (F},)22 is a decreasing sequence, for
m,l > n we have x,,,z; € F,, and

d(Tpn, Tm,x;) < diamF,, — 0,

as n — oo. Thus, the sequence (x,)%2; is a G-Cauchy sequence. This means

that there is an z € M such that z,, — = as n — oo. We will prove that
T € Ny Fy.

Let n be fixed arbitrary positive integer and U € 7 such that z € U. Then
there is a kg € N such that x, € U for all £ > kg. Thus, 2, € U N F, for all
k > max{n,ko}, ie. z € F, = F, (F, is closed). So, x € N%_,F,. Let us
suppose that there is a y € M \ {«} such that y € NS, F},. From the condition
(1) it follows that for each € > 0, there are a sequence (z,)5%; in M \ {z,y},
z € M\ {z,y} such that z, — z, and ng € N such that for n > ng

0 <d(x,y,zn) < €.

Letting n — oo we obtain that d(z,y,z) = 0, which is a contradiction since

xF#yFzF#w. O
Theorem 3.4. If (M, 7) satisfies the condition (C), then (M, ) is G-complete.

Proof. Let (x,)52; be a G-Cauchy sequence in M and for each n € N set
Fy = {%n,Tn11,..}. Then the sequence (F,)52; is decreasing and moreover,
(Fn)$2 4 is decreasing sequence of closed sets. For € > 0 there is an ng € N such
that

d(Tpm, Ty, xp) < €

for each m,n,l > ng, and lemma 3.2 infers diamF,,, = diamF,,, < e. But then
diamF,, < € for each n > ny meaning that lim,_,., diamF, = 0. So, there is
x € M such that N>, F,, = {z}.

Let z € M be arbitrary. For each n € N there is y,, € B(z,x, %L) N F,. Thus,
(yn)22; is a subsequence of (x,)5% such that d(yn,z,%2) — 0 as n — oo, ie.
Yn — T as n — oo. From condition (2) it follows that x,, — = as n — oo, ie.
(M, ) is G-complete. O

From the previous two theorems we obtain the analogous Cantor’s intersec-
tion theorem in these kinds of spaces.

Corollary 3.5. Let (M,7) be a (3,1, V)-metrizable space, via (3,1, V)-metric
d satisfying the conditions (1) and (2). Then (M, 1) is G-complete iff it satisfies
the condition (C).
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SPACE OPERATORS
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Abstract . In this paper we prove some results on the existence of a dense set of
pairs in the direct product of an infinite-dimensional complex Hilbert space
with itself such that each pair in this set has an n-tuple weak orbit tending to
infinity for a specific countable family of mutually commuting bounded linear
operators.

1. INTRODUCTION

For bounded linear operators on Banach spaces the concepts of n-tuple orbits
and n-tuple weak orbits are defined as follows. If X is a complex and infinite-
dimensional Banach space, B(X) is the algebra of all bounded linear operators

on X and 7;,75,...,T, € B(X) are mutually commuting operators, then the n-
tuple orbit of the vector x € X is the set

Orb({T};,x) = {leszkZ TRk >01<i<nl. (1.1)
The n-tuple orbit tends to infinity if

lim Hleszkz...Tnk"x‘:OO,forall k;j20, j#i,1<i,j<n.

k;—o0
For n=1, the n-tuple orbit (1.1) reduces to a simple sequence of form
Orb(T, x) = {T"x ‘= 0,1,2,...} :

usually referred as single orbit (or simply orbit) of the vector x € X under the
operator 7. If X * is the dual space of X, i.e., the space of all bounded linear
functionals x : X —>C, and for xe X and X eX*, <x,x*>:=x*(x), the n-
tuple weak orbit of the pair (x,x")e X x X~ is a set of form

Orb({T VL, x,x™) = {<lelT2k2 T )k 2 051 <i < n} (1.2)

The n-tuple weak orbit tends to infinity if
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tim (1T x| =0, forall &; 20, j#i, 15i,j<n |
k;—0

For n=1 , the n-tuple weak orbit (1.2) reduces to a simple scalar sequence of
form

Orb(7,x,x") = {<T”x,x*>:n = 0,1,2,...} ,

usually referred as weak orbit of the pair (x,x*) e Xx X" under the operator 7T .

For the case of Hilbert spaces, by the Riesz Theorem for representation of a
bounded linear functional on Hilbert spaces (cf. [7,II1.6]), given an infinite-

dimensional complex Hilbert space H with an inner product {-|-), its dual space
H canbe fully identified with the space itself since

H ={x}—><x|y>,er:yeH}.
Hence, for a set of mutually commuting operators 7;,75,...,7,, € B(H) the n-

tuple weak orbits will be the sets of form

Orb({T V", x, ) = {<T1k1T2k2 T y) ik 2 051 <i < n} vy e HxH .

In this paper we will consider only the conditions under which the direct
product H x H contains a dense of pairs (x,y) with n-tuple weak orbits

tending to infinity that do not involve any requirements upon specific subsets of
the spectra of the operators. For H xH we will assume that is endowed with
the product topology. Given an operator 7' € B(H), o(T) and »(T) will denote

the spectrum and the spectral radius of the operator 7', respectively.
2. PRELIMINARY RESULTS

Theorem 2.1. ([6, Theorem V.39.8]) Let H and K be Hilbert spaces, (T,),>
be a sequence of operators in B(H,K) and (a,),> be sequence of positive

numbers with ) - a, <. Then

(1) there are xe H and y € K such that and |<Tnx|y>| >a, ||Tn

,forall n;
(i1) there is a dense subset of pairs (x,y) € HxK such that |<Tnx| y>| >a, ||T 0

b

for all n sufficiently large.

Corollary 2.2. ([6, Corollary V.39.9]) Let H be Hilbert space and T € B(H) is

such that ZfZIHTk”_I <. Then there exist x,y € H such that ‘<T”x‘y>‘ —> 0.

Moreover, the set of such pairs (x,y) is densein Hx H .

28



N-TUPLE WEAK ORBITS TENDING TO INFINITY FOR HILBERT SPACE
OPERATORS
29

Lemma 2.3. ([6, Lemma V.37.15]) Let £>0 and (a,),> be a sequence of
positive numbers satisfying Y - a, <&. Then there is a sequence of positive

numbers (b, ),> such that b, —w© as n—>o and ), . a,b, <¢.

3. MAIN RESULTS

Let F={1,2,...,N} forsome NeN, N>2,or F=N.
Theorem 3.1. Let H be a Hilbert space, {T;:ieF}c B(H) and
{(g;, j) jo1iiEF } be a family of sequences of positive numbers such that
ZieF,jZlai,j <. Then for any open balls B; and B, in H there are vectors

xe B, yeB, and kyeN such that
k
(] e

Proof. Let T == T,-k (ieF, keN), f:FxN—>N be the bijective mapping
defined with

Y}k Jforall ieF and k> k.

i+N(i-1), if F={,2,...,N}
i, s — . ._ . ._ s
SUGHD=G+] 2;(1+] 1)+j, PN

and let g:N — FxN denote its inverse mapping. If (a,,),>; is a sequence of
positive numbers and (7)), is a sequence of operators defined with
ay =ag(y and Ty =Ty, forall neN,

then > a4, =2 F,j=14;,j <. Hence (by Theorem 2.1. (ii), applied on
(ap)p>1> (T,),> and H=K), if By and B, are open balls H , then there are
xe B, ye B, and ny €N such that

(Tl )= @i I
Since f : F'xN — N is bijective, there is a unique pair (i, jj) € " xN such that
) Zf(io,jo) . Let

,forall n>n. (3.1)

‘ _{j0+1, if F={1,2,...,N}
O Vig+jo, if F=N '
If (i,k) e FxN 1is such that k >k, then by the definition of f:FxN >N we
have:
1. for F={1,2,...,N},
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fl,k)y=i+N(k—-1)>N(kg—1)=Njo=N+N(jy-1)
2ip+N(jo=1=ng,
2. for F=N,
fGk) = (i+k—2;(i+k—1) ks iy + Jo —2)2(1’0 +Jjo—1)
Hence, by (3.1) and the definition of (a,,),>; and (7},),>; Wwe obtain

+j0 =ngy.

(| ) = (7 1) =T33 2 g | = e [

forall ie F and k> k,. W

b

Theorem 3.2. If H is Hilbert space and {I;:ie F}c B(H) is a family of
-1
operators such that Zle”leH <oo, for all ie F, then there is a dense set

D c HxH such that the weak orbit (<Tl~kx‘y>)k>0 tends to infinity for every
pair (x,y)eD and every icF. If, in addition, {I;:ic€F} is a family of
mutually commuting operators such that the sequence (Tl-k —Tjk Vi>1 IS norm

bounded for all i,je F, then for every neF and 1<m<n, the m—tuple
weak orbit

{<T.k1 T2 .Tnx

h I

y>:k,-20;1£i£m},
tends to infinity for all 1<i) <iy <...<i, <n.

Proof. Let B; and B, be open balls H . For ie F', let &; >0 be such that

© 1 1

and (by Lemma 2.3) let (b; 4 )x> be the sequence of positive numbers such that

biy > as k —> o and

® &bk 1

) <—. 32
=1 ]—;k 2l+1 ( )

-1
, (i,k) e FxN, then by (3.2) we have

Sip g = L 5k e L]
jeF k>1%k = - 5
= ieF k=1 Tik ieF ZH—I 2

If a; j =& ¢

Hence, by Theorem 3.1, there are x € By, y € B, and k; € N such that
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(1] )| = s || = s 1] 3] = e for all 7 F and k2 kg
Letting £ — o, we have
lim |(7x|y)| =<0 , forall i e F | (33)
k—o0

If, in addition, {7;:i e F'} is a family of mutually commuting operators such

that the sequence (Tl-k -T Jk )i>1 18 norm bounded for all i, j€ F', let M; ;>0 is

such that

Tik—TJk“SM for all k>0, and let (x,y)e HxH be a pair

i’j >
satisfying (3.3). We continue by induction.
Let m=2 and 1<ij <iy<n. By the Cauchy-Bunyakovsky-Schwarz

ki ke
) el(r )
o
)

Al ol + (7

o)

y>‘—>oo as ky > oo, for all

inequality we have
‘ <Tk1+k2x y>

h h h I

< <T.k1 ke ki

ky ok k ky ke
g N

]

ky ok k Iy ok
<Jri e —mf oo

ky

i

h

Tk

h

IN

_rk
%)

o)

AR RN

ll ,12
<T.k1+k2x
b

Since — o0 as n—> o (hence

n
()

ky > 0), the above inequalities imply that

<T.k1 Thy y>

h I
<T.k1+k2x _rh Tiifzx

y> 5] I

— o, as ky >, forall i;>0.

ky ko
y>‘+‘<T,~11Tizzx y>‘

ky ke
el

S”T ||k2 M. i ."x”.”y”_'_KTleka y>

) I, i I
y> —o0,as ky > oo, forall £k, 20.

To complete the proof, it is enough to show the claim is true for m =n, under
the assumption that the (n-1)-tuple weak orbit

Similarly,

‘ <Tk1+k2x
)

<

= KT.kZ (rh —h)x
h " h b

b

which implies that
<T.k1 TR
b

h

31



N-TUPLE WEAK ORBITS TENDING TO INFINITY FOR HILBERT SPACE
OPERATORS
32

<T.k1 Tk TRty
h I In-1

y>:kj20;1£j£n—1},
tends to infinity for all 1<i <...<i,_; <n.Fora fixed i e{l,2,...,n}, arbitrary
je{l2,...,n}\{i} and fixed ky,k,,...,k,, 20 we have

)

k ki1 ki ok, k
<T1 TSR Ty

k k; g roke; ok k, ky ke k, Ky ok k,

< <Tll...Ti_11Tj Tiﬂ”...Tn -7, T, xy>‘+‘<TllT22...Tn xy>‘
ki kg ki k, ki ki ky ok k,

o (oA b A C O ey )x‘y>‘+‘<TllT22...Tn )
k k;_y ok ky (ki mk; ky ok k,

<\ T T (T T, )x”-||y||+‘<TllT22...Tn xy>‘

ol

Since je{l,2,...,n}\{i}, by the inductive assumption, we have
)
This, together with the above inequalities implies that

Klel T2 .. Tnx
which completes the proof. B

< f[nz;“k, M Il (R s
=1

1#i

k ki1 k; pk; k
<T1 LTSI T

— o0 as k; - oo, for all ijO, J#IL.

y>‘—>oo as k; >0, forall k; 20, j=i,

Corollary 3.3. If H is a Hilbert space and {I;:ie F}c B(H) is a family of
operators such that v(T;) >1, for all i € F', then there is a dense set D c Hx H

such that the weak orbit (<Tl~kx‘y>)k>0 tends to infinity for every pair
(x,y)eD and every ic F. If, in additio;a, {T;:ie F} is a family of mutually
commuting operators such that the sequence (T,-k -T Jk )ic>1 is norm bounded for

all i,j e F , then for every ne F, every 1 <m <n the m— tuple weak orbit
{<T.k1 T Ty

h I m

y>:kl-20;1£i£m},
tends to infinity for all 1<i) <ip <...<i, <n.

-1
Proof. If T e B(H) has a spectral radius »(7)>1, then ZfZIHTk” <.
Namely, if #(T)>1, then there is A€o (T) such that 1<|1|. By the Spectral

Mapping Theorem, A" € o(I") for every neN. Hence |A|" <r(T")< ”T””
and
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® 1 © 1

D e

| a2l
Now the conclusion follows from Theorem 3.2. B

< 0

4. REMARKS ON N-TUPLE ORBITS TENDING TO INFINITY

By the Cauchy-Bunyakovsky-Schwarz inequality we have
(rhrf . Thix y>‘ <|rhrfe . rfx

[
for all (x,y)eHxH, k ;20 and 1< j<n . These inequalities clearly imply

b

that the n-tuple orbit Orb({T;}/_;,x) tends to infinity whenever there is y e H

such that the n-tuple weak orbit {<le1T2k2 ...Tnk"x y>:k,- 20;1<i< n} tends to

infinity. Hence, from the results in the previous section we can derive the
following results for n-tuple orbits tending to infinity.

Theorem 4.1. If H is Hilbert space and {I;:ie F}c B(H) is a family of

operators such that Y7 Tik <o for all ieF, then there is a dense set

D c H such that the orbit Orb(T},x) tends to infinity for every xeD and
every i€ F. If, in addition, {T;:icF} is a family of mutually commuting
operators such that the sequence (Y}k -T Jk )i>1 s norm bounded for all i,j e F ,
then for every neF, every 1<m<n, the m—tuple orbit Orb({Tij }?’:l,x)

tends to infinity for all 1<) <ip <...<i, <n.

Corollary 4.2. If H is Hilbert space and {I;:ie F}c B(H) is a family of
operators such that r(I;)>1 for all i€ F, then there is a dense set D c H

such that the orbit Orb(T;,x) tends to infinity or every x e D and every ieF .
If, in addition, {T; :i € F'} is a family of mutually commuting operators such that

the sequence (T,-k -T jk)kZI is norm bounded for all i,jeF, then for every
ne k', every 1<m<n, the m—tuple orbit Orb({Tij }'}1:1,)() tends to infinity for

all lSi1<i2 <...<imén.
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CHAIN CONNECTED SET
IN A SPACE

Zoran Misajleski, Aneta Velkoska, and Emin Durmishi

Abstract. The paper gives a generalization of connectedness and chain
connectedness of a space that is more general than a topological space and it
consists of a set and a family of coverings of the set. In these spaces we define
the notions of connected and chain connected sets, that are generalization of
the notions with the same name in a topological spaces ([1]), and we study
their properties. Also, the notions of a chain relation and a chain component in
a space that are generalization of a chain relation and a chain component in a
topological space ([1]), are defined and their properties are presented. Some
new results for topological spaces are also provided.

1. INTRODUCTION

The definitions of connectedness by using the notion of chain as well as
chain connectedness in a topological space, are given and theirs properties are
studied in [1]-[5].

In this paper we use the notions and properties from article [1] and we
generalize the notions to a space that is more general than a topological space
and it consists of a set and a family of coverings of the set.

2. Space, subspace and chain
A space is a set X with added structure. By a space in this paper we

understand the notion given in the next definition. By a covering of X we
understand a covering of X in X .

Definition 2.1. The space X =(X U ) is a set X together with a family of
coverings U = {I/{a |a € I} of X.

In this paper by a covering U/ of X we understand a covering that is an
element of the family of coverings of X ie. Ueld.

Definition 2.2. Subspace Y of the space X =(X U ) is the set Y with the
Sfamily of coverings Uy =UNY = {Z/Ia N Y|a € I} .
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In this paper by subset ¥ = X we understand the subspace Y of the space

X.

Definition 2.3. Let U be a covering of the set X and x,y e X . A chain in
U that connects x and y (from x to y, from y to x) is a finite sequence of
sets Uy,U,,...,U, of U suchthat xeU, yeU, and U; "U; #O for every
i=12,.,n—1.

If X is a topological space, then the topology of X generate a family U,

of all coverings U of X that consists of open sets. So, every topological space
can be considered as a space that consists of a set X and a family U . When a

topological space is considered as a space, this space is meant. Topological
subspace Y of X is a subspace of the space X .

3. Chain connected set in a space

Using the notion of a chain we define the notion of chain connected set in a
space.

Let X beaspaceand Cc X .

Definition 3.1. The set C is chain connected in X , if for every covering U
of X and every x,y € C, there exists a chain in U that connects x and y .

Let X beaspaceand CcYc X .

The first property of a chain connected set, shown in the next theorem, is an
implication of chain connectedness from a space to each of its super spaces ( X
is a super space of C, if C is a subspace of X ).

Theorem 3.2. If C is chain connected in Y , then C is chain connected in

X.
Proof. Let C be chain connected in ¥ and U be a covering of X . Then:

Uy =UNY={UNYU cU}
is a covering of Y . Since C is chain connected in Y , it follows that for every
two points x,ye X, there exists a chain U nY,U,nY,..,U,NY of
elements of Uy . Then since U;NU; ;1 #< for every i=12,..,n—1 and

36



CHAIN CONNECTED SET IN A SPACE

U; el forevery i=1,2,...,n, the sequence U;,U,,...,U,, is achainin U that
connects x and y. It follows that C is chain connected in X .m

Remark 3.3. The most important case of the previous theorem is when
Y=C.m

Example 3.4. Consider the space X ={1,2,3} with the family with one

covering:

u={{1.2).{2.3)).

The set Y = {1,3} is chain connected in X, but it is not chain connected in Y
since there does not exist a chainin Uy =UNY = {{1} ,{3}} that connects 1 and
3.m

The next claim, which directly follows from the definition, shows that each
subset of a chain connected set in a space is chain connected in the same space.

Remark 3.5. If the set C is chain connected in X , then each subset of C is
chain connected in X .m

We will give criteria for chain connectedness in a space, using the notion of
infinite star of a covering [1].

Let X beaspaceand Cc X .

Let U be a covering of X and x e .X . Then the set sz(x,U) is a union of all

U €U which have nonempty intersection with x. The set:

st" (x,LI) = st(st"_1 (x,L{)) and st~ (x,Z/{) = G st" (x,Z/l).

n=l

Theorem 3.6. The set C is chain connected in X, if and only if for every
x € C and every covering U of X, C < st™ (x,Ll) .|

Corollary 3.7. The space X is chain connected in X, if and only if for
every x € X and every covering U of X, X = st™ (x,U) N |

4. Chain relation and chain components

Let X =(X,U) beaspaceand xeCc X .
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Definition 4.1. The chain component of the point x of C in X, denoted by
Vex (x). is the maximal chain connected subset of C in X that contains x.m

Proposition 4.2. The set Viy (x) consists of all elements y e C, such that

for every covering U € U there exists a chain in U that connects x and y .

If C=X, then we use notation Vy (x) or V(x) if we work only with the
space X, for Vyy (x). Clearly Vey (x)=C ¥y (x).

Example 4.3. For the space X = {1,2,3} with the family consisting of one
covering U = {{1,2},{2,3}} , and the set C ={1,3}:
Vy (1)={1,2} and Vy (1)={1}.

The set C is chain connected in X if C is subset of Vy (x) for every

xeC.
We denote by Uy (C) or U(C), the set that consists of all elements y e X,

such that for every covering U € U there exists a chain in U that connects
some x € C and y. This set is a union of chain components.
If C is a chain connected set in X, since for every x,yeC the chain

components V' (x) and V() coincide i.e. ¥V (x)=V(y), it follows that U(C)
is chain component and it is denoted by V(C). Clearly CcVy(C) and
V(C)=V(x) forevery xeC.m

Remark 4.4. If the set C is chain connected in X, then each subset of
V(C) is chain connected in X .m

When X is a topological space, then it is obvious that the next statement
improves the remark 2.2 from [1].

Remark 4.5. [f the set C is chain connected in a topological space X, then
each subset of V(C ) is chain connectedin X .m

Let X beaspaceand x,ye X .
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Definition 4.6. Th element x is chain related to y in X, and we denote it
by x ~y if for every covering U of X there exists a chain in U that connects
x and y.

The chain relation in a space is an equivalence relation and it depends on the
set X and the family of coverings of X .

Remark 4.7. The set C is chain connected in X if and only if for every
x,yeC, x~y.m

Therefore C is not chain connected in X if and only if there exist x,y e C
such that x + y.

The chain relation decomposes the space into classes. The classes are chain
components.

Let X,y € C.If ye VCX (}C) . then VCX (X) = VCX (y) CIf VCX (X) * VCX (y) ,
then Vey (x) NVey (v) =@ . As a consequence, the next proposition is valid.

Proposition 4.8. For every xeC, Vey(x)=CnVyy(x). Each chain

component of X in X contains at most one chain component of C in X .m

Proposition 4.9. For every xe C,
Vee(x)sVex (x)= U Vec(v)SVxx (x).m

erCX(x

The proposition shows that every chain component of C in X is a union of
chain components of C in C and is a subset of chain component of X in X .

Proposition 4.10. The set of all chain connected subsets of C in X consist
of all chain components and their subsets.m

5. Properties of chain connected sets that consist chain components
Next we turn to a union of chain connected sets in a topological space.

Lemma 5.1. Let C,Dc X . If C and D are chain connected in X and
V(C)mV(D);t@, where V(C) and V(D) are chain components of C and

D respectively, then the union V(C ) v V(D) is chain connected in X and
v (C)uV(D)=V(C)=V (D).
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Proof. Let U be a covering of X and x,y eV (C)uV(D).If x,y € V(C)
or x,y eV (D), thensince V' (C) and V(D) are chain connected, there exists a
chain in ¢/ that connects x and y.If x € V(C ) and y eV (D), it follows that
firstly there exists ze ¥ (C) NV (D), and secondly that there exist chains in 2/
that connect x with z, and z with y, from which it follows that there is a
chain in I/ that connects x and y.So V(C)uV(D) is chain connected in X .

Since V' (C)=V¥(x) is chain component of some xeC, and V' (C)uUV (D)
is a chain connected set that contain x it follows that V' (C)uV (D)=V(C).
Similarly V' (C)uV(D)=V (D) .m

Corollary 5.2. Let C,D < X . If C and D are chain connected in X and
V(C)mV(D);t@, where V(C) and V(D) are chain components of C and

D respectively, then the union C U D is chain connected in X .

Theorem 5.3. Let C;,iel be a family of chain connected subspaces of X .
If there exists iy €l such that for every iel, V(C )r\V(C,-);tG, then the

lo
union |JV(C;) is chain connected in X and JV(C;)=V(C;) for every
iel iel

iel,

Proof. Let U be a covering of X and C;,iel be a family of chain
connected subspaces of X. Let x,yeJV((;), ie. xeV(C.) and

iel

er(Cy) for somex,yel.

Since V(Cio)ﬁV(Ci);t@ for every iel, from the previous lemma, it

follows that V(Cio)uV(Cx) is chain connected in X . Similarly

V(C- )UV(Cy) is chain connected in X'. Then because C; #@, from the

)

previous lemma it follows that V(Cl-0 ) ur(C,)u V(Cy ) is chain connected in

X , i.e. for every covering U of X, there exists a chain in ¢/ that connects x
and y.So |JV(C;) is chain connected in X .
iel
Since V' (C;)=V(x;) is chain component of some x; €C; for every iel,
and |J ¥V (C;) is a chain connected set that contain x it follows that:
iel
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UV(C;)=V(C;) forevery icl.m

iel

Corollary 5.4. Let C;,i el be a family of chain connected subspaces of X .
If there exists iy €1 such that for every iel, C; NC;#@, then the union

\J C; is chain connected in X .
iel

If X is a topological space then the next two statements which directly
follow from the lemma 5.1 and the theorem 5.3, respectively, improves the
lemma 3.1 and theorem 3.6 from [1].

Corollary 5.5. If C and D are chain connected sets in a topological space
X and V(C)mV(D) # @, where V(C) and V(D) are chain components of

C and D respectively, then the union V(C )u V(D) is chain connected in X .

Theorem 5.6. Let C;,iel be a family of chain connected subspaces of a
topological space X . If there exists iye€l such that for every icl,

V(Cio ) NV (C;)#Q, then the union |JV (C;) is chain connected in X .m
iel

Corollary 5.7. If every two points x and y of Cc X are in a chain

connected set ny in X, then C is chain connectedin X .m

6. CONCLUSIONS

The notion of connectedness by using the standard definition cannot be
generalized from a topological space to a more general space, without
generalizing the topology of the space, since it is related to it. However
connectedness defined by chain ([1]), as well as its generalization chain
connectedness to a pair of a topological space and its subspace, can, such that
instead of families of all coverings of open sets, subfamilies of coverings of
arbitrary sets will be considered. The generalizations can also be defined on
even more general structures, such as a set of subsets of a given set, i.e. to
define connectedness in this set.

The paper gives a generalization of connectedness and chain connectedness
of a space that is more general than a topological space and it consists of a set
and a family of coverings of the set. In these spaces, the notion of chain
connected set, as well as the notion of chain relation are defined and their
properties are presented. A number of statements from [1] cannot be generalized
to the space level. Two examples for spaces that are not topological, are given,
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to be shown that one statement must not be true in the converse direction and in
one statement two sets are not equal. Also, the special cases of claims 5.1 and
5.3 of the paper provide a new results at a level of topological spaces. They
reduce to stronger claims than the corresponding claims lemma 3.1 and theorem
3.6 from [1], since they are expressed by using chain components instead of
closed sets.

The generalizations to a space can be done to other topological notions and
spaces.
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DEFORMED SPHERICAL CURVES

Marija S. Najdanovi¢, Miroslav D. Maksimovi¢,
Ljubica S. Velimirovi¢, Svetozar R. Ran¢i¢

Abstract. This paper is devoted to the study of spherical curves in Euclidean
three-dimensional space using the theory of infinitesimal bending. Some
interesting infinitesimal bending fields are obtained and discussed. In
particular, the infinitesimal bending of a spherical curve such that all bent
curves are approximately on the initial sphere (with a given precision) is
studied. Some examples are analyzed and graphically presented.

1. INTRODUCTION

A spherical curve is a curve traced on a sphere. The curvature-to-torsion
ratio completely describes a spherical curve in the sense that certain relations
between curvature and torsion are necessary and sufficient for the space curve
to lie on the sphere.

Deformations of spherical curves represent an interesting field of research.
Some of the recent results in this regard are in the papers [3], [4], [6], [14]. A
special type of small deformation is the so-called infinitesimal bending. A
concept of infinitesimal bending first appeared in the description of the
deformation of surfaces in three-dimensional Euclidean space, and then further
extended to the curves and the manifolds. The theory of infinitesimal bending
deals with vector fields and quantities associated with them, defined at the
points of observed geometric objects and satisfying deformation equations.
Under infinitesimal bending, the length of the arc is invariant with appropriate
precision. In other words, in the initial moment of a deformation, the arc length
is stationary, i.e. the initial velocity of its change is zero. Some papers related to
infinitesimal bending of curves, knots and surfaces are [1], [2], [5], [7-14]. In
this paper, we pay attention to spherical curves and their behavior during this
type of deformation.

The paper is organized as follows: In Sec. 2 preliminary results and notation
regarding infinitesimal bending of curves are presented. In Sec. 3 spherical
curves and corresponding infinitesimal bending fields are studied. We suppose
that the curves suffer a small deformation such that they remain on the same
sphere with a given precision. In Sec. 4 and Sec. 5, respectively, Viviani’s curve
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and spherical curve with constant slope (spherical helix) are discussed both
analytically and graphically.

2. INFINITESIMAL BENDING

Let us consider a regular curve

C:r=r(t), teJcR3 (1)
of a class C¥, k > 3, included in a family of the curves
Coir.(t) =r(t) + ez(t) 2)

where € > 0,€ — 0, and we get C for e = 0 (C = Cp).

Definition 1. A continuous one-parameter family of curves C,, given by Eq. (2),
is called an infinitesimal deformation of the curve C, given by Eq. (1). A field
z(t) € C*, k = 3, is a vector function defined in the points of C called a
deformation field.

Definition 2. [2] An infinitesimal deformation C. is an infinitesimal bending of
the curve C if

ds? — ds? = o(e). 3)
The field z(t) is the infinitesimal bending field of the curve C.

According to Def. 2, the next theorem states.

Theorem 1. [2] Necessary and sufficient condition for the curves C. to be

infinitesimal bending of the curve C is to be valid
dr-dz = 0. “4)

If infinitesimal bending is reduced to rigid motion of the curve, without
internal deformations, we say it is trivial infinitesimal bending. The
corresponding bending field is also called trivial.

Based on [11] we have the following theorem.

Theorem 2. Under infinitesimal bending of curves each line element gets non-
negative addition, which is the infinitesimal value of the order higher than the
first with respect to €, i. e.

dse —ds = o(e).

The following theorem is related to determination of the infinitesimal bending
field of a curve C.

Theorem 3. [12] The infinitesimal bending field for the curve Cis
z(t) = [ [p(On, (O + q(On, (O] dt, (5)
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where p(t) and q(t) are arbitrary integrable functions, and vectors n,(t) and
n,(t) are respectively unit principal normal and binormal vector fields of the
curve C.

3. SPHERICAL CURVES UNDER INFINITESIMAL BENDING

Let
C:r(t) = (acosu(t) cosv(t),asinu(t) cosv(t),asinv(t)) (6)
be a spherical curve on the sphere
S:r(u,v) = (acosucosv,asinucosv,asinv),

with radius a and

Ce: re(t) =1(t) + ez(t)
be an infinitesimal deformation of C, where z(t) is a deformation field. The
following theorem gives the explicit expression for the field z(t) to be
infinitesimal bending field for the spherical curve C.

Theorem 4. Let z(t) = (z,(t), z,(t),2z5(t)) be the vector field such that
z.(t) = f cosu (t) cosv(t)dt + cq,
z,(t) = [ sinu(t) cosv(t)dt + c,, (7
z3(t) = f sinv(t)dt + c3,

c1,Cy,c3 are constants. Then z(t) is the infinitesimal bending field for the

spherical curve C given by Eq. (6).

Proof. We have

—au(t) sinu(t) cosv(t) — av(t) cosu(t) sinv(t)
r(t) =< au(t) cosu(t) cosv(t) — av(t) sinu(t) sinv(t)
av(t) cosv(t)
and
Z(t) = (cosu (t) cosv(t),sinu(t) cosv(t),sinv(t)),

where ‘dot’ denotes derivative with respect to t. From the previous two

equations we obtain 1+ Z = 0, which means that z is infinitesimal bending field.
]

Note that the previous equations do not determine all infinitesimal bending
fields of the spherical curve C. If Z(t) = (z.(t), z,(t),z5(t)), where
z1(t), z,(t), z3(t) are arbitrary real continuous differentiable functions, then z
can be determined from the following equation

(—au(t) sinu(t) cosv(t)
—av(t) cosu(t) sinv(t))z; + (au(t) cosu(t) cosv(t)
—av(t) sinu(t) sinv(t))z, + av(t) cosv(t) Z3 = 0,
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which has many solutions. Our field is obtained having in mind that ||r|| =
a? - 2r-¥ = 0 and we put Z =§r.

We posed the question whether it is possible to infinitesimally bend the
spherical curve so that all bent curves are on the initial sphere. Regarding that
we have the following theorem.

Theorem 5. [14] Let C:r: (t;,t,) = R3 be a curve on the sphere S. It does not
exist nontrivial vector field z(t) so that the family of curves

Ce: re(t) =1(t) + ez(t)
belongs to the sphere S.

Further, we are weakening the previous condition by requiring that the bent
curves lie on a given sphere with a predetermined precision. Precisely, let us
determine an infinitesimal bending field so that all bent spherical curves are
on the initial sphere with a given precision, i.e. let be valid

F(x(®),y(),2(t)) =0,
F(xe(t), Ye(t), ze (1)) = o(e),
where F(x,y,z) = 0 is the implicit sphere equation in Cartesian coordinates
x,y,z and o(€) is an infinitesimal of at least second order with respect to €. In
connection with that we have the following theorem.

Theorem 6. Necessary and sufficient condition for the infinitesimal
deformation of the spherical curve C to be on the sphere S with a given
precision is that the field z satisfies the condition

r-z=0. (®)
Proof. A vector equation of a sphere S of radius a is

[Ir[|? = a?,
r is the position vector of an arbitrary point on S. Let z be deformation field
which given spherical curve leaves on the initial sphere with a given precision,
1.e. let the following condition be valid
|Irell? = a® + o(e),
where o(€) is an infinitesimal of at least second order with respect to €. Since
I. = I + €z, the previous equation reduces to
|Ir + €z||? = a? + o(e),
wherefrom we obtain
[Ir||? + 2er -z + €2||z||?> = a? + o(e)

which leads to Eq. (8). |

In the case of the sphere it is easy to see that the unit normal v(u, v) satisfies

1 .. .
v(u,v) = Er(u, v). So, based on the condition (8), we conclude that z L v, i.e.
z lies in the tangent plane of the sphere along the curve C. It means that we can
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present the vector z as the linear combination of the vectors r, and r, that
determine tangent plane along C, i.e.
z(t) = f(O)r, + g(Ory,
where f(t) and g(t) are arbitrary real continuous differentiable functions.
Since
z(t) = f (O, + f (&) (rytt + 1) + g(OT1, + g() (K, U + 1y V)
and
r(t) =r,u+r,v
using the condition for infinitesimal bending ¥ -Z = 0, we obtain the following
equation
F(Or, T+ 1,0 + f () (gt + Fyp?) - Tyt + 1,0 + G(Or, - T+ 1,0
+g(t)(ryt + ry,v) -ru+ 1,0 = 0.
Using one of the functions f(t) and g(t) arbitrarily, we obtain the other from
the previous linear differential equation. In this way we find infinitesimal
bending of a spherical curve such that all bent curves are on the initial sphere
with a given precision.

Example 1. A circle r(t) = (acost,asint,0) has an infinitesimal bending
field z(t) = (—sint,cost, f(t)), where f(t) is an arbitrary real continuous
differential function. Corresponding infinitesimal bending is on the sphere with
a given precision, i.e. it is valid ||r¢||? = a® + €2(1 + f2(t)) = a®? + 0(€). In
Fig.1 we can see deformed circle for f(t) = sint cost. The red color denotes
original curve, and blue deformed ones for e= 0.5 and e= 1.

Figure 1: Circle and its infinitesimal bending for e = 0.5and e = 1.
Based on Theorems 4 and 6 we obtain the following corollary.

Corollary 1. Necessary and sufficient condition for the infinitesimal bending of
the spherical curve C, determined by the field z given by Egs. (7), to be on the
sphere S with a given precision is that the field z is of constant intensity.

Proof. Since for the field z holds z = %r, the condition (8) reduces to Z-z =

O<—>(z-z)'=0<—>||z||=const. [
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4. VIVIANI’S CURVE

Viviani’s curve is obtained as an intersection of a sphere with a cylinder that
is tangent to the sphere and passes through two poles of the sphere. The
parametric representation is

t
r(t) = (a(1+ cost),asint,2a sini), t € [-2m 2], a>0.

It is easy to see that the vector field

z(t) = (sint,—cost,0)
is an infinitesimal bending field for which all bent curves are closed, i.e.
z(—2m) = z(2m). In Fig.2 we can see deformed Viviani’s curve for € = 0.5
and € = 1. The red color denotes original curve, and blue deformed ones.

Figure 2: Viviani’s curve and its infinitesimal bending for ¢ = 0.5and e = 1.

Let us examine whether this infinitesimal bending lies with a given precision
on the sphere
S:|Ir||? = 4a?
containing the initial Viviani’s curve. Since

t
re = (a(1 +cost) + esint,asint — ecost,ZasinE)

we easy obtain
|Irc|]? = 4a® + 2aesint + €2.

We conclude that bent curves are not approximately on the sphere S. However,
the points for t = km < sint = 0 are on the sphere S with a given precision.

5. SPHERICAL CURVES WITH CONSTANT SLOPE

Spherical curve with constant slope (spherical helix) has the following
parametric equation
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+b
((a+b)cost—bcosab t

a
T(t)=l(a+b)sint—bsin t

+

b

2+ ab + b2 cosit
2b

a = b > 0. It lies on the sphere of the radius a + 2b. The vector field
2b a+2b 2b a+2b
z(t) = ( ' t,0)

t
at+2b > 2b 'a+2b " 2b
is an infinitesimal bending field. In Fig.3 we have deformed spherical helix
(a=1,b=1)fore = 0.5and € = 1 together with original curve (red colour).

Figure 3: Spherical helix (1,1) (spherical cardioid) and its infinitesimal
bending fore = 0.5and e = 1.

By checking the condition
lIrel1? = (a + 2b)* + o(e)
we conclude that this infinitesimal bending is not on the initial sphere. More
precisely, it holds
[Ire||> = (a + 2b)? + € 4ab cos—t + 624—1)2
e a+2b 2b (a + 2b)?
The points for cos % t = 0 are on the initial sphere with a given precision.

6. CONCLUSIONS

In this paper we point out to the possibility of infinitesimal bending of
spherical curves. We give explicit formulas for bending fields with appropriate
graphic illustration using program packet Mathematica.

Many geometric magnitudes of curves are changed during the process of
infinitesimal bending. For instance, in Fig.4 we can see how the curvature and
the torsion of the Viviani’s curve is changed for different values of the
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infinitesimal €. Our next step is investigation of these changes and finding the
appropriate variations.

" 4 I T 4 : ¥
Figure 4: Curvature and torsion of Viviani’s curve under infinitesimal bending
fore=0, e = 0.5ande = 1.
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INVERTIBILITY OF LINEAR COMBINATIONS OF K-POTENT
MATRICES

Marina Tosi¢, Jelena Vujakovic¢

Abstract. We study the problem of the invertibility of linear combinations of two or three
k-potent matrices under various conditions. In these cases, we give explicit formulae of
their inverses.

1. INTRODUCTION

Let C™ ™ denote the set of all m X n complex matrices. Specially, let C™*™
denote the set of all n X n square complex matrices. The symbols R(A) and N (A)
denote the range (column space) and the null space of a matrix A4, respectively,
while (A) is rank of A. C™**™ is symbol of the set of all n X n matrices with rank
r. Also, I, denotes the identity matrix of order n. We say that integers k and [ are
congruent modulo the positive integer m, and we use notation k = [ (mod m), if
m divide k — L.

In this paper, we deal with k-potent matrices, where k is a positive integer greater
than one. This type of matrices is defined as follows.

Definition 1. ([4]) 4 matrix AeC™V™ is k-potent if A¥ = A, where k is a positive
integer greater than one.

Any k-potent matrix is group invertible. For AeC™*™, the group inverse of A is
the unique, if it exists (see [2]), matrix A*eC™ ™ such that:

A = AA¥A At = AMAAY AAY = ARA.
Thus, if AeC™™ is a k-potent matrix, then A* = Ak~2,

The research dealing with k-potent matrices is quite extensive (see [1], [4]-[6],
[8], [9]) because they have a wide application, for example in statistics (see [7],
[10]). A particularly interesting research topic related to k-potent matrices is the
invertibility of a linear combination of k-potent matrices. In this paper, we study
the invertibility of linear combinations ¢;A + ¢, B and ¢;A + ¢, B + c3C, where
A, B, C are k-potent matrices and ¢4, ¢,, c3 are nonzero complex numbers. Also,
we give some formulae for (c;A + ¢;B)™! and (c;A + ;B + ¢3C) ™! under
various conditions.

2010 Mathematics Subject Classification. 15A09, 15A24
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2. INVERTIBILITY OF A LINEAR COMBINATION OF TWO K-
POTENT MATRICES

Recently, there has been interest in investigating the invertibility of a linear
combination of two k-potent matrices. In [3], J. Benitez, X. Liu and T. Zhu proved
the following results.

Theorem 1. [3] Let A, BeC™™ be two k-potent matrices such that A¥"1B =
B*=1A or BA¥=' = AB*=1, If a linear combination d,A + d,B is nonsingular
for some d,d,€C \ {0} satisfying d; + d, # 0, then c;A + c,B is nonsingular
for all ¢y, c,€C \ {0} satisfying ¢, + ¢, # 0.

Theorem 2. [3] Let A, BeC™™ be two k-potent matrices such that I,, — AX=1B*=2
is nonsingular. If there exist c1,c,€C \ {0} such c;A + ¢, B is nonsingular, then
A — B is also nonsingular.

Theorem 3. [3] Let A,BeC™™ be two commuting k-potent matrices. If there
exists aeC \ {0} such that A + aB is nonsingular, then c;A + c,B and c,1,, +
c,AB are nonsingular for all cq, c,€C \ {0} with _C—Cl ¢ “V1.

2

Theorem 4. [3] Let A, BeC™™ be two k-potent matrices, and let c,,c,€C \ {0}.
Then the following statements are equivalent:

(i) c;AB*=1 + ¢,BA¥~1 is nonsingular.

(ii) c;B¥1A + ¢, A¥"1B is nonsingular.

(iii) c;A + ¢, B and I, — A*~* — BX~ are nonsingular.

Theorem 5. [3] Let A, BeC™™ be two k-potent matrices such that A¥"1B =
B*=1A, and let c;,c,€C \ {0}. If A or B are nonsingular, then c;A + c;B are
nonsingular if and only if c; + ¢, # 0. In this case,
(i) If A is nonsingular, then
(c1+ c)(c1A+ c;B)™ Y = A7 + cye*AY (1, — BFY).
(i) If B is nonsingular, then
(c1+ c)(c1A+ c;B) = B~  + ¢y c5* B7Y(1, — A1),
Theorem 6. [3] Let A, BeC™™ be two k-potent matrices such that AB = 0, and

let ¢q,c,€C\ {0}. Then N(c;A+c;B)=N(A+B) and R(c;A+c,B) =
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R(A + B). In particular, c;A+ c,B is nonsingular if and only if A+ B is
nonsingular, and in this case, we have

(ctA+cB) P =ci " (A+B) ™ + (51 — g HB*2(1, — Ak 1),

However, the invertibility of a linear combination can be studied under other
conditions.
Let A,BeC™™ be two k-potent matrices for some natural k > 1. Since
AeC™™ r(A) = r is k-potent, this matrix can be written as:

_g[K 0];-1
a=uly JJu )
where UeC™" is nonsingular, K = diag(Ay, ..., 4,), AX" P =1fori=1,..,r.

Obviously, KeC™" is nonsingular and K*~! = I... Furthermore, we can write

BeC™ ™ as follows:
_[B1 Bz2];,-1
B=U [33 B4] v )

where B; = €™ and B,eC—")x(n-7),

Theorem 7. Let AcC*™ and BeC™ ™ be k-potent matrices such that AB = 0 =
BA, and let c;, c2€C \ {0}. Then c;A + c,B is nonsingular if and only if A¥~1 +
(In - Ak_l)B is nonsingular. Furthermore,

(c1A+ c3B)™t = c7 AR 2 + 7 1(1, — Ak-1)Bk-2,

Proof. Let AeC™™ be of the form (1). Since AB = 0 = BA, then B has the form:

B=U [8 34] U1, 3)

where B,eCM="x(=7) From B¥ = B, it follows that BY = B,, i.e. B, is k-potent.
In addition,
K 0

C1A+CZB=U[O CzB4

=

Based on the invertibility of K, we conclude that c; A + ¢, B is nonsingular if and
only if B, is nonsingular. Since

- _ I, 07, _
AR 4 (1, — AF 1)B=U[OT B4]U L

we have that c;A + ¢, B is nonsingular if and only if A*~1 + (In - Ak_l)B is
nonsingular. Furthermore,

55



INVERTIBILITY OF LINEAR COMBINATIONS OF K-POTENT MATRICES
56

U—l

—lK—l 0 —1Kk—2 0
(c,A+c,B) 1 =U [Cl ul=y|?

0 c; 1Byt 0 c; 1BK2
=i A2 4 o (L, - AFY)BRE O

Corollary 1. Let AeC**™ and BeC™™ be k-potent matrices such that AB = 0 =
BA, and let ¢4, c,€C \ {0}. Then, c;A + ¢, B is nonsingular if and only if A+ B
is nonsingular.

Beside forms (1) and (2), the following fact: If E, FEC™"™ and EF = FE, then
E¥ + (-1D)**Fk = (E + F) Y- (1)  EF"1IF! keN, k > 1,

is very useful for next results. First, note that A' = AS, where A is a k-potent
matrix and [ = s(mod(k — 1)).

Theorem 8. [11] Let AeC™ and BeC™ ™ be k-potent matrices, and let
c1,Cc2€C \ {0}.
() IfAB = A5,5€{0,1,3, ...,k — 2}, and c¥=* + (=1)kck=1 % 0, then c;A +
c,B is nonsingular if and only if Ak! +B(In —Ak_l) is nonsingular.
Furthermore,

(c1A+;B)™" = Ay — B¥2(I, — A1) BAF Ay + 2 BK2(I, — A1),
2

. — 1 k-2 i k=210 gk—2—i+(s—1)i
where: A; = WZi:o (=1D)'c ;A (s—1)i
1 2

(i) If AB = A% and ¢, + ¢, # 0, then c;A + ¢, B is nonsingular if and only if
A1+ B (In - Ak_l) is nonsingular. Furthermore,

(1A +cB)t = k=2 - 1 _pk=2(] _ gk=1)?pgk-1gk-2 |

ci1tcy ci1tcy

—B (I, — A7),

Corollary 2. Let AeCH™ and BeC™*™ be k-potent matrices, and let cy,c,€C \
{03.
() IfAB = A5,5€{0,1,3, ...,k — 2}, and c¥™* + (=1)kck=1 + 0, then c; A +
¢y B is nonsingular if and only if A + B is nonsingular.

(i) If AB = A% and ¢, + ¢, # 0, then c; A + c,B is nonsingular if and only
if A + B is nonsingular.
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Theorem 9. [11] Let AeC™ and BeC™ ™ be k-potent matrices, and let
1, c2€C \ {0}.

(i) IfBA = A5,5€{0,1,3, ...,k — 2}, and c¥™* + (=1)kck=1 = 0, then c; A +
c,B is nonsingular if and only if A¥~1 + (In —Ak_l)B is nonsingular.
Furthermore,

(LA +zB) ™" = Ay — A A B (1, — A1) BR2 + 1 (I, — AF1)BF2,
2
(6)

1 _ L
where: Ay = WZ?:OZ(_l)LC:{( 2-ich Ak—2-iH (-1,
(ii) IfBA = A?% and c1 + ¢y, # 0, then ¢, A + ¢, B is nonsingular if and only

if A1 4 (In - Ak_l)B is nonsingular. Furthermore,

L pk-2 _ ;Ak—zAk—lB(In _ Ak—l)sz—Z +

ci1tcy ci1tcy

= (I — A1)B*2,

(ClA + CzB)_l =

Corollary 3. Let AeCH™ and BeC™ ™ be k-potent matrices, and let c1,c,€C \

{0}.

(i) IfBA = A%,5€{0,1,3, ...,k — 2}, and c¥=* + (=1)kck=1 % 0, then c; A +
¢y B is nonsingular if and only if A + B is nonsingular.

(ii) IfBA = A% and ¢, + ¢, # 0, then c; A + c,B is nonsingular if and only
if A+ B is nonsingular.

Theorem 10. [11] Let AeC**™ and BeC™™ be commuting k-potent matrices,
and let ¢;, cy€C \ {0}, c¥~1 + (=1)kck=1 = 0. Then c; A + c,B is nonsingular if
and only if A~ + (In - Ak_l)B is nonsingular. Furthermore,

_ 1 k-2 | k—2—i i gk—2—i( 1k—-1p)!

o (1 — A 1)Br2,

(c1A+c,B)71

Corollary 4. [11] Let AeC}*™ and BeC™™ be commuting k-potent matrices, and
let ¢y, c€C \ {0}, ¢k~ + (—=1)kck=1 # 0. Then, ¢, A + ¢, B is nonsingular if and
only if A + B is nonsingular.
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Lemma 1. [11] Let AeC™™ be a k-potent matrix, and let c,,c,€C,cq #
0,ck=t + (=1)*ck=t £ 0. Then c;1,, + c, A is nonsingular and:
1

— — [ k—=2—i i ai 1 -
(c1In+cA)™ = WZ{LOZ(—DLC{‘ oA+ (- A,

Theorem 11. [11] Let AeCH™ and BeC™™ be k-potent matrices, and let
c1,c2€C\ {0}, ¢k~ + (—=1)*¥c¥~1 # 0.IfAB = B or BA = B, then c;A + c,B is
nonsingular if and only if A is nonsingular. Furthermore,

_ _ 1 _ . o s 1
(ctA+c;B)" 1 =4 1(W2?=02(—1)lcf 27leyB + C_l(ln -
Bk_l)).

Corollary 5. Let AeC}*™ and BeC™™ be k-potent matrices, and let c1,c,€C \
{0}, ck"t + (=D)*ck¥"*+0. If AB=B or BA=B,then c;A+c,B is
nonsingular if and only if A + B is nonsingular.

3. INVERTIBILITY OF A LINEAR COMBINATION OF THREE K-
POTENT MATRICES

Now, we study the invertibility of a linear combination of three k-potent
matrices.

Theorem 12. Let AeC™*™ and B, CeC™™ be k-potent matrices such that AB =
0 =BA,AC = 0 = CAand BC = CB, and let c;, c3, c3€C \ {0} such that c¥~* +
(—1D)*ck=r # 0. Then c;A + c,B + c3C is nonsingular if and only if A¥=1 +
(B+0C) (In - Ak_l) is nonsingular. Furthermore,

(1A + ¢3B + c30)7™1 = c7LAR2 4 [(c,B + ¢5C) (I, — A4 1)]". @)

Proof. Let AeC**™ be of the form (1). Since AB = 0 = BA, then B has the form
(3). Suppose that CeC™™ has the next representation:

_ a6 Cel,,-q
C‘”[cg 64]” '

where C;eC™" and C,eC*™=") From AC = 0 = CA, it follows that C; =
CZ == C3 - O, le

0 07, _,
0 U

where C,eC*®™=7) jg the k-potent matrix because C is the k-potent matrix.
Now, ¢4 + ¢, B + ¢3C can be represented as:

C=U[
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K 0
clA+c,B+csC=U|" ] -1

0 By +c3C,

where By, C,eC™*@™=7) are k-potent matrices. Since BC = CB, then B,C, =
C4B,. Based on the invertibility of K, we conclude that c;A + ¢, B + ¢3C is
nonsingular if and only if c,B, + c3C, is nonsingular for all constants
¢1, €3, c3€C \ {0}. By Corollary 4, we deduce that c,B, + c3C, is nonsingular if
and only if B, + C, is nonsingular for all constants c;,c3€C \ {0} such that
c¥~t + (=1)*c¥~t # 0. Furthermore,

I 0
k-1 _ k-1 — T
AL+ (B +0) (I, — A¥ 1) U[O B4+C4]'
Thus, the necessary and sufficient condition of the invertibility of c;4 + c,B +
c5C is invertibility of A¥~1 + (B + C)(I, — A¥™1).
In addition, by direct computation, we get

iK™t 0
ctA+c,B+c;0)1=U|" Ut
(e 2 :C) [ 0 (c2By 4 c3C4) 71
_u cr1Kk2 0 y-1
0 (c3By +¢5Cy)7 1
0 0
_ k-1 — -1
Note that (c,B + c3C)(In A ) U [0 (c,B, + 6364)‘1] u—.

Hence, the formula (4) holds. [J

Corollary 6. Let AcC™™, and B, CeC™™ be k-potent matrices such that AB =
0=BA, AC=0=CA and BC = CB, and let c,,c,, c3€C\ {0} such that
c¥ 1+ (=D*ck"1 £ 0. Then, c;A + c3B + c5C is nonsingular if and only if
A + B + C is nonsingular.

The next results are proved in [11].

Theorem 13. [11] Let AeC™™ and B, CeC™ ™ be k-potent matrices such that
AC =0 = CAand BC = CB, and let ¢y, c5,c3€C \ {0}, X1 + (=1)kck1 = 0.

() IfAB = A5,5€{0,1,3, ...,k — 2}, and c¥=* + (=1)kck=1 % 0, then c;A +

¢,B + ¢3C is nonsingular if and only if A*"'+ (B + C)(I, — A1) is
nonsingular. Furthermore,
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(CIA + CzB + C3C )_1 = Al - C_lz [(CZB + C3C)(In - Ak_l)]#’

where:
A - 1
Tkl (ke

k-2
ik=2-i_.1 gk—2—-i+(s—-1)i
2 =0

(ii) If AB = A?, then c;A + c3B + c5C is nonsingular if and only if A¥~1 +
(B+0) (In - Ak_l) is nonsingular. Furthermore,

(cLA+ B+ C5C) L= —— A2 - —2_[(c;B + c30) (I —

C1tC2 ca(c1+cr)

A (1, — A 1)BAK1A2 4 [(C,B + C3C) (I, — A1),

Corollary 7. Let AeC*™ and B, CeC™™ be k-potent matrices such that AC =
0 = CA and BC = CB, and let ¢y, 3, c3€C \ {0}, k™1 + (—=1)kck=1 = 0.

() IfAB = A5,5€{0,1,3, ...,k — 2}, and c¥=* + (=1)kck=1 # 0, then c;A +
¢y B + c3C is nonsingular if and only if A + B + C is nonsingular.

(i) IfAB = A2, then c;A + c,B + ¢5C is nonsingular if and only if
A + B + C is nonsingular.

Theorem 14. [11] Let AeC**™ and B, CeC™™ be k-potent matrices such that
AC = 0 = CA, and let c1,cy,c3€C\ {0}, ¥ + (=1)kck"1 0. IfAB =B or
BA =B, then c;A+ c,B+c3C is nonsingular if and only if AF1+
C (In - Ak_l) is nonsingular. Furthermore,

i . . ) o
(LA + ¢, B + c5C)~1 = A¥ Z(Wzi‘:é(—l)‘d‘ 2y B +

= (=B 1)) + - ck 2,

Corollary 8. Let Let AcC¥™ and B, CeC™™ be k-potent matrices such that
AC = 0 = CA, and let c1,c5,c3€C\ {0}, ¥ + (=1)kck"1 0. IfAB =B or
BA = B, then c1A+ c3,B + c3C is nonsingular if and only if A+ B+ C is
nonsingular.

Theorem 15. [11] Let AeC**™ and B, CeC™™ be commuting k-potent matrices
such that AC = 0 = CA, and let ¢;,c,,c3€C \ {0}, ¥t + (=1)*ck~1 % 0, and
c¥ 1+ (=D*ck"1 # 0. Then, c;A + c,B + c3C is nonsingular if and only if
AR 4 (In - Ak_l)(B + C) is nonsingular. Furthermore,
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(ClA + CzB + C3C)_1 =
1 k- D i 0 Ak—D—i _ i 1
TR imo (FD e e AN "(A1B) + (I -

AR1) B2 4 [(¢,B + ;) (I, — A 1)]".

Corollary 9. Let AeC¥*™ and B, CeC™™ be commuting k-potent matrices such
that AC =0 = CA, and let c;,cy,c3€C\ {0}, cF~t + (=D)*ck 1+ 0, and
c¥ 1+ (=D*ck™1 # 0. Then, c;A + c,B + c3C is nonsingular if and only if
A + B + C is nonsingular.

4. CONCLUSIONS

The paper provided investigations of the invertibility of linear combinations
of k-potent complex matrices. Several new properties of the invertibility of k-
potent matrices are identtified. Furthermore, some results in the literature are
restablished. The most important conclusion is that the invertibility of the
linear combination of k-potent matrices is equivalent to the invertibility of the
sum of given matrices. Thus, the invertibility of the linear combination of two
or three k-potent matrices is independent of the choice of the nonzero complex
constants.
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Abstract The most important part of any maintenance process is to achieve the
optimal level of system availability. Having reviewed the available literature, we
noticed that the availability mostly depends on the number of spare parts in stock,
reliability, and repair time. Due to that fact, in this paper, we are analyzing the
stochastic nature of the repair process. The aim is to determine the repair time for the
required level of availability. First, we analyze the repair time of a single component.
The final equation of the mathematical model that we present herein is the probability
density function of the repair rate which allows us to determine the repair time for the
related level of availability and mean time to failure. Further, based on this equation,
we present the approach for the determination of the repair time of a series system
comprised of two components. The model’s output can be used in making important
decisions such as the planning of maintenance activities, capacity, labor planning, etc.
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Keywords and phrases. Maintenance, Repair rate, Availability, Probability
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1. INTRODUCTION

Maintenance comprises a set of procedures and methods for keeping the
system in an operational state or returning the system to that state after failure [1].
So, when the component or system fails, it needs to be repaired or replaced. Each
of these activities requires a certain time for their implementation. This period is
usually called downtime. Since many factors influence the delay duration, they
can be divided into waiting and active downtimes. Waiting downtimes are delays
that occur due to waiting for spare parts, administrative procedures, deliveries,
staff, etc. Active downtimes are used to repair or replace a component or system,
so the repair time can be observed as a random variable. In this paper, we will
observe only repairable systems i.e. systems that can be returned to their
functional state with certain activities, after the occurrence of failure.

The key performance measures of both repairable and non-repairable systems
are availability and reliability. Availability is defined as the probability that a
system will perform its function in a time [2]. Conversely, reliability is defined
as the probability that the equipment or the system will complete a specific task
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under specified conditions for a stated time [3]. The main goal of each
maintenance system (MRO) is to achieve the desired level of availability and for
that purpose, maintenance contracts have been used. Their characteristic is that
no specific maintenance activities such as servicing, repairs, and required
materials are paid for, but only performances of the system resulting from the
undertaken maintenance activities. This concept originates from the military
industry i.e. it is related to the maintenance of military aircraft and weapon
systems. Maintenance contracts have also found their use in civilian companies,
under the name Performance Based Contracts (PBC) [4]. In practice, it comes
down to this, when the component under a PBC contract is serviced, maintenance
is not charged by the number of working hours used for engine repair or by the
number of used spare parts, but by the time in which the airplane is available after
repairs i.e. number of hours the engine is in an operational state. [5]

Kang et al. [6] have observed systems whose maintenance was regulated with
maintenance contracts. They concluded that the mean time to failure (MTTF),
mean time to repair (MTTR), and the number of spare parts impact availability.
Evaluating the availability of a certain component or system is a common topic
in related literature. Inherited availability and methods for its evaluation in
repairable systems have been researched in papers [7 - 9]. Papers [10-13]
contributed significantly to determining the availability of repairable systems and
components under maintenance contracts. A similar issue was researched in the
paper [14] and it was concluded that repair time and reliability have a significantly
greater effect on the system’s availability than the number of spare parts in
inventory.

Based on the previous, this paper presents the model for the repair rate of one
component and the series system comprised of two components.

2. MODELING OF REPAIR RATE

Stochastic modeling of the component or system repair time is not new and
has been already presented in the paper [15]. The method presented in [16]
observes the repair rate as a stochastic process and aims to determine this
parameter for the preferred level of unit availability. Only repairable components
and systems were considered, actually the systems that alternate between
successive up and down intervals. We assumed that at the start system is
operative. It remains in that state for a certain time 7 (failure time), then it stops
operating for time R (repair time) and after being repaired system is back in the
operative state. This process of failure and repair will repeat. In the literature, this
approach is known as the alternating renewal process [17] and it is defined as a
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sequence of independent and non-negative random variables. In this case, the
random variables are the times-to-failure and the times-to-repair/restore. Each
time a component fails and is restored to working order, a renewal occurred.

We also assumed that perfect repair has been carried out at a constant rate after
which the system behaves the same as the new one. As already stated, the main
purpose of maintenance contracts is to optimize system availability and in the
case when we have a maintenance contract, inherited or steady state availability
is often used availability measure. The steady-state availability is inherited
availability when considering only the corrective downtime of the system and is
equal to:

A(o)=1lim A(r) (1)

t—

According to the key renewal theorem the limited probability that the system
is available can be expressed as the ratio of the mean of the period when the
system is operative and the mean of the period which represents one renewal cycle
[18]:

E|T
A=1limA(t)= 1] mriF ,
(e E[T]+E[R] MTTF +MTTR
)
where E is the expected value operator. Further, MTTF is a random variable and
if there exists probability density function p(t), then the MTTF can be defined as:

MTTF = [1p(t)dt. 3)

We assumed that failure time has Rayleigh distribution so the probability

density function is:
p(1)=2/exp(-1/ )

where the distribution parameter x is determined by relation E(£’)= x.
By replacing (4) with (3) the equation for MTTF is:
s £
MTTF = j—exp = . (5)
0 X X

From the maintenance theory, we know that the rate of repair p can be observed
as a reciprocal value of MTTR as in Eq. (6)

p=1/MTTR . (6)
Based on the all presented facts in the paper [16] and according to the previous,
the probability density function (PDF) of the repair rate can be stated as:
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84° —44°
p(p)= exp , (7)
(I—A)2 p3nx0 ((I—A)ZHZT%J
while the CDF can be calculated as:
By _4A2
F(w=|p(wdp=1-exp| ———5—| (3)
! S

Further, we will observe the repair rate of the series system of two
components. If one component fails, the system will fail too. This system can be
illustrated in Fig. 1

Figl. The series system of two components

The repair rate of such a system can be expressed asp, =, -, , so the PDF
function of the system repair rate is:

+00 1

p(,) = [ —p, (&Jpz(uz)duz- )

o M2\ M
Since the repair rate of part 1 is 1, = H then the PDF function of the first

H,

part is:
2 WYL
p( at ] - 84, exp 4 . (10)
W,

(l_Al)Z[MS] o) (1_A1)2(MSJ o1
u u

2 2

Similarly, the PDF of the second part is:

84, —-44;
p(l"lz): 22 3 exp[ 2 22 J (11)
(I—AZ) 15T, (1-4,) p;ymx,

Now, we can determine the PDF of the series system repair rate as:

44 A e —44? —44?
_OAA [l A A L (2
1'Al )(1"42 )mmxozus o M2 (1"41 )H'STUCOI (1"42 )uzmoz

p(us)=(

66



STATISTICAL ANALYSIS OF REPAIR RATE FOR MAINTENANCE
DECISION-MAKING

By solving the integral in the previous in Eq., we get the following:

644,A, 84,4,
1-47)(1- 4 )y xppe? usn\/(l-Af)(l-Af)xleoz
(13)

b

p(us)=(

where Ky is BesselK function [19].
NUMERICAL RESULTS

In this section, the model presented in the previous section will be tested for

two components. We assumed the failure rates A of both components are known
(A, =15 and A, =2).
Numerical analysis was conducted to calculate the annual expected time for the
repair to acquire availability of A=0.85, A=0.9, A=0.95 by emphasizing the
stochastic nature of this process. A similar analysis can also be conducted for
other values of parameter A.

0.3

—A1=0.95
——A1=0.85
——A1=0.90

025

0 5 10 15 20 25 30
I

Fig 2. PDF function of the first component (A=1.5)
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——A2=0.95
——A2=0.85 |
—v—A2=0.90

25 30

Fig 3. PDF function of the second component (A=2)

Fig.2 represents the probability of repair rate of the first part depending on
time for cases when it is expected that availability of this component is 85%, 90%,
and 95%. Likewise, Fig.3 provides data related to the second part.

Finally, we have determined the repair rate of the series system comprised of
these two parts based on Eq. (13). The results have been illustrated in Fig4.

——A1=A2=0.95
0.06 - ——A1=A2=090 _
——A1=A2=0.85

I I I ez s S88S TR RRaEREARESRRRIRRRS
o 10 20 30 40 50 60 70 80 90 100

I

Fig 4. The repair rate of the series system comprised two components

The time necessary to repair such a system, as can be seen in Fig. 4, is known
to be longer than the time necessary to repair individual parts.
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5. CONCLUSION

Related research on repairable systems’ maintenance processes showed that
reliability and repair rate have a significant impact on the availability of such
systems. In this paper, we examined a repairable system that can be modeled with
an alternating renewal process. First, we observed separate units/components of
such a system. We assumed that the failure rate is Rayleigh distributed and that
the MTTF is a predetermined value. Also, after repairs, the unit returned to its
original state and performed as new. By observing repair time as a stochastic
process, we presented the exact expressions for the repair rate‘s PDF. After
determining the repair rate characteristics of a single unit or subsystem, we
calculated the PDF of a series system of two components. In the Numerical
section, the proposed model was applied to the system comprised of two
components. The PDF of the repair rate for each component was graphically
presented as well as the PDF of the series system. Based on this information we
can conclude in which time interval maintenance action should be completed to
achieve the desired level of availability. Even though we set availability on certain
levels, the numerical analysis can be repeated with different values of availability.
This model can be applied in the same manner to other repairable systems with
the alternating renewal process. The obtained results can be used in the planning
of maintenance activities, inventory, service systems, and the number of required
employees, in the process of system maintenance.
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A PARTICULAR SOLUTION TO THE SPECIAL CASE OF A FOURTH-
ORDER SHORTENED LORENZ SYSTEM

Biljana Zlatanovska!, Boro Piperevski?, Mirjana Kocaleva Vitanova', Marija Miteva'

Abstract. In this paper, from the expanded class of the second-order linear
differential equations, a subclass of the second-order linear differential equations
will be obtained. For this subclass, a new condition for reductability according
to Frobenius, as well as explicit formulas of its particular solution will be
received. This subclass of the second-order linear differential equations and its
particular solution, for obtaining a particular solution of the special case of the
fourth-order shortened Lorenz system which was obtained from the Modified
Lorenz system will be applied.

1. INTRODUCTION

For the class of second-order linear differential equations of B.S. Popov in
[1] necessary and sufficient condition for reductable according to Frobenius is
obtained. In mathematical literature [2-7] the following theorem is known:

Theorem 1. Let the differential equation

(Ax* + Bx+C)y"+ (Dx+E)y'+ Fy=0, A,B,C,D,E,FeR (1)
is given. The differential equation (1) is integrable if there exists an integer n € Z
(the smallest number after absolute value if there are such numbers) that satisfies
the condition

nn—-1)A+nD+F =0 )

In doing so, the differential equation (1) has a particular solution which is given
by the formula

j Dx+E Dx+E dx

- dx
,(xX)=P,(x)=(Ax" + Bx+C)e ~ 4 +5+C " [(Ax> + Bx + C)'HeI At eBesC ) (3)

if neN (apolynomial solution).
But, if neZ™,k=—(n+1)eN then a particular solution will be given by the

formula
j Dx+E

¥, () =[(Ax* + Bx+ C) e Jatemac™ 0 (g

The Lorenz system in mathematical literature (e.g. [8-20]) is already known.
Its explicit solutions are unknown and its behavior is analyzed through graphical
visualization (e.g. [8-14]). It has the following form

2010 Mathematics Subject Classification. 34A34, 34A05.
Key words and phrases. Fourth-order shortened Lorenz system, particular solution.
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x=o(y-x)
y=x(r—z)-y
z=xy—bz

o,r,b>0

and initial values x,;, = x(0), y, = ¥(0),z, = z(0) . The Modified Lorenz system in

»)
[21] with initial values x, = x(0),y, = ¥(0),z, =2(0), z, = IZ(O) ,p €1{12,3,4}
x=0(y—x)

y=x(r-z)-y (5)
(? =—(4+b) (Z)+ (B — Ab)z —(C — Bb)z + (D — Ch)z + Dbz

oyr,b>0,A=1+O'+b,B=6(r—zo)—x02,C=O'x0y0,D=—0'2y02

is presented.

The third equation of the Modified Lorenz system is a five-order linear
homogeneous differential equation with the constant coefficients. Its
characteristic equation is

m’ +(A+b)ym* —(B— Abym® +(C - Bb)ym* —(D-Cb)ym—-Db=0  (6)
which solutions are m= -b, masus=k(A,B,C,D,b). The explicit solutions of the
Modified Lorenz system in [21] for any value of the parameters o,7,b >0 >0
and initial values x,,),,z, are obtained.

By using of two solutions from the solutions m ;345 of the equation (5), the
7th order Modified Lorenz system (5) in [22] is transformed in a fourth-order
subsystem Modified Lorenz system

x=0(y—x)
y=x(r'=2)-y  (6)
zZ=u

u = (my; +m,)u—mm,z

o,r >0, my;,m, € R
with the initial values x, =x(0),y, =»(0),z, =z(0), u, =u(0) =z(0) =z, .The
fourth-order subsystem from the Lorenz system will be called fourth-order
shortened Lorenz system. For this system (6) in [23] is done dynamical analysis.
When the system condition

my,m, =2m €R  (¥*)

is true, we will speak for a special case of a fourth-order shortened Lorenz system

(6).
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Remark 1. By the notation r* in the fourth-order shortened Lorenz system (6),
the parameter » from Modified Lorenz system (5) has been replaced. Because the
notation r will be used with another meaning in this paper.

The explicit solutions of the Modified Lorenz system (5) from [21] can be
used for solving of the fourth-order shortened Lorenz system (6). But, these
solutions are complex for use. In this paper under specific conditions with proving
integrability of a subclass of differential equations from the extended class linear
differential equations [24] which are presented in [1], we will be offered simpler
obtaining of a particular solution for a special case of the fourth-order shortened
Lorenz system (6).

Remark 2. In the paper [25] in the same way, a particular solution of the third-
order shortened Lorenz system via integrability of a class of differential equations
is already offered. Therefore, this paper will follow the already published paper
[25].

The integrability of this extended class of differential equations gives us
explicit formulas for one particular solution. A subclass from this extended class
of differential equations will be obtained, which will be used for solving the
fourth-order shortened Lorenz system (6).

This paper gives only theoretical access without examples, which is small,
but an essential contribution to solving differential equations.

2. MAIN RESULTS

In this part, the subclass from the extended class of second-order linear
differential equations of B.S. Popov is obtained, which can be used for solving of
the fourth-order shortened Lorenz system (6). For this goal, the following
Theorem 2 will be proved.

Theorem 2. Let the differential equation

P+ fz+(4e” +Be +C)z=0, B,4.,B,C,eR (7)
is given. The differential equation (7) is integrable if there exists an integer n € Z
that satisfies the condition

By +(F[~4)[2n+1+ (T4 2 —4C))]=0,4,<0 (8)

In doing so, the differential equation (7) has a particular solution which is given
by the formula
7J.(re'+s)dt

y,(e) ©)

z,(t)=e
where
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yp (.X') — I)”(X) — xl—Ee—Dxl:xn—HEer](n) (10)

if neN
or

yp (x) — [xk+17EefDx ](k) , (1 1)

ifneZ ,k=—(n+1)eN.
By the relations

D=27-4), E=1+@/B-4C), r=tJ-4,
s=BEJF 4G, =B+ @A+ 4G

the coefficients in the formulas (9), (10) and (11) are obtained.

(12)

Proof. Let us consider the differential equation
xy"+(Dx+E)y'+Fy=0, D,E,FeR (13)
where

_ _dy o, _d’y
y=y(x),y =) T

By the substitution
x=e (14)
the differential equation (13) can be written as
Vy+[De +E-1]y+Fe'y=0 (15)
where
ody .. d’y
y=y(x),y =V
By the substitution
eJ'(re‘ +s)dt

y(t) = z(t), r,seR  (16)
the equation (15) is transformed in the differential equation
Z+[Q2r+ D)e' +2s+ E -1z +[(r* + rD)e* + (2rs + rE + sD + F)é'
+5° +sE—s]z=0

(17)

where
. dz .. d’z
z=z(t)yz=—,z2=—5.
2 d dr’

The equation (7) is equal of the equation (17) if the following relations
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2r+D=0
2s+E—-1=0
r*+rD=4 (18)
2rs+rE+Ds+F =B,
s> +sE-s5=C,
are satisfied. From (18), the relations (12) are obtained.

By using the Theorem 1, the equation (13) is integrable if there exists an integer
n €7 that satisfies the condition

nD+F=0 (19)
In accordance with the relations (12), the condition (19) is equal to the condition
(8). By using the formulas (3) and (4) from Theorem 1 applied to the equation
(13), the formulas (10) and (11) are obtained. Finally, in accordance with the
substitutions (14) and (16), the formula (9) is obtained. i

Remark 3. In connections (12) the sign before the roots is equal to the sign before
the roots the condition (8).

By Theorem 3, the last two equations of the fourth-order shortened Lorenz
system (6) for given initial values offered a particular solution.

Theorem 3. The last two equations of the fourth-order shortened Lorenz system
(6) are transformed in a second-order linear homogeneous differential equation
with the constant coefficients

Z—(m, +my)z+mmyz=0 (20).
The differential equation (20) with the initial values z, = z(0), z, = 2(0), and the
condition (*) for m, = m has the particular solution

2mz,

Zy —mz,

z,(t)=We" + L™ W = —4 , L= (21)

m

Proof. By help of the fourth equation and differentiation of the third equation of
the fourth-order shortened Lorenz system (6), a second-order linear homogeneous
differential equation with the constant coefficients (20) is obtained. The
characteristic equation of the differential equation (20) is

m* —(m, +m,)m+mm, =0
by solutions m,,m, . The general solution of the differential equation (20) is
z(t)y=Wwe™ + Le™', W,L=const.
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Nothing is lost from generality, if we assume that m; =m . For the initial values
z,=2(0), z, =z(0) and the condition m, =m, m, =2m, =2m, the particular
solution

_ 2mz, | —mz,

—Z y4
1 —
’L_

z, () =We" +Le*™, W
m m

is obtained. O

By Theorem 4, the first two equations of the fourth-order shortened Lorenz
system (6) in a second-order linear differential equation are transformed.

Theorem 4. The first two equations of the fourth-order shortened Lorenz system
(6) are transformed in a second-order linear differential equation

¥+(c+D)x+o(l-r +We™ +Le*™)x=0, o,r >0, meR (22)
where

oz —mz,

dx
x=x(t),x=—,X= W=
® dt dr m m

Proof. By help of the second equation and differentiation of the first equation of

the fourth-order shortened Lorenz system (6), a second-order linear differential
equation

it(c+Dito(l—r +z,(0)x=0, o, >0

is obtained, where

x=x(t) x—@ )'c'—d—2x

Todt df?
By using of the particular solution (21), the second-order linear differential
equation (22) is obtained. ]

The condition for integrability of the differential equation (22) in Theorem 4
is given by Theorem 5. In accordance with the formulas of Theorem 2, one
particular solution is obtained by Theorem 5.

Theorem 5. Let the differential equation (22) is given. The differential equation
(22) is integrable if there exists an integer n € Z that satisfies the condition

oW +(F-cL)2n+Dm+(F(c -1 +40r )=0,L<0,meR, (23)

2mz, — —-m
where =220 "5 AT L eR.
m m
In doing so, the differential equation (20) has a particular solution which is given

by the formula
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5= @ e
where

v, (x) = P, (x) = xl—Ee—Dx[xn—1+Eer](n)
if neN
or

v, (x) = [xk+17EefDx ](k)

ifneZ ,k=—(n+1)eN for t =mt.
By the relations

D=%(¢\/E), E=1$$\[(U—1)2+407’*, rzi(i —O'L),
s=2i[(0'+1)i1/(0—1)2+40r*},

m

F = l[laW +(FV-oL)1F i«/(a -1 +4o0r }
m| m m

the coefficients D, 1, s, E, F are obtained.

Proof. By the substitution
mt=t (25)
the equation (20) are transformed in the differential equation

H() (o + DR(E) + Lzo(Lezf* +We +1-r)x()=0 (26
m m

where
. dx . d’x
x=x(t),x=—,x=—=".

Q) PR

The differential equation (26) is equal by the equation (7), if the relations
B= i(a +1), 4, :LZUL’BI zizgw,cl =L20(1 RN
m m m m

are valid.

The condition (8) of Theorem 2 applied to the equation (26) is the condition (23).
By using the formula (9) of Theorem 2, formula (24) is obtained. In accordance
with the substitution (25), the formula of one particular solution is obtained. O

A particular solution (x,(7),y,(7),z,(?)) of a special case of the fourth-order
shortened Lorenz system (6) is obtained by the following Theorem 6.

Theorem 6. A particular solution (x,(?),y,(t),z,(¢)) of a special case of the

fourth-order shortened Lorenz system (6) when the condition (23) is satisfied is
obtained as follows:
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- for x,(#) with the formula (24);

1. here & (1) dx,
- t)=— t t X = ;
Y,(0) O_xp()+xp()w ere X, 7

- for z,(z) with the formula (21).

Proof. ltis clear that a particular solution (x,(¢),y ,(¢),z,(¢)) of the fourth-order

shortened Lorenz system (6) can be found in the condition (23) of Theorem 5 is
satisfied. The particular solution is obtained by using the formulas for one
particular solution (24) for one particular solution from Theorem 5 for x,(#), the

formula (21) from Theorem 3 for z ,(7) and by using the first equation of the

fourth-order shortened Lorenz system (6) with y, (;):l x,(t)+x,(r), where
o

) d x, 5
X = .

r dt
3. CONCLUSIONS

In this paper for the special case of the fourth-order shortened Lorenz system (6),
a way for theoretically obtaining one particular solution was presented. We speak
for a finding of a particular solution for a small class of systems of differential
equations, but solving such a nonlinear system is complex even with a computer.

It would be good to be given an appropriate example with concrete initial values
and its geometrical visualization. But, the choice of such an example is a difficult
and complex process even with a computer.

Therefore, this paper gives only theoretical access, which is an essential
contribution to solving differential equations.
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APPLICATION OF MARKOV CHAINS IN BIOLOGY

Natasha Stojkovikj, Limonka Koceva Lazarova, Aleksandra Stojanova Ilievska

Abstract. The Markov chain is a random process with Markov characteristics, which
exists in the discrete index set and state space in probability theory and mathematical
statistics. Markov chains are powerful tools for stochastic modelling that can be useful in
any science discipline. In this paper, we give an overview of some basic applications of
the Markov chains in biology. We will describe the application in crossbreeding of the
animals in close relation and carcinogenesis.

1. INTRODUCTION

Markov Chain is a powerful and effective technique to model stochastic
processes with discrete time space and states space. Markov chains can be used
to model many real-life processes. They have very wide applications in various
fields such as: physics, chemistry, biology, medicine, music, game theory, sports,
economics etc. They can be used for animal life populations mapping, to search
engine algorithms, for music composition, speech recognition etc., [1].

In chemistry, Markov chains are used when physical systems closely approximate
the Markov property. More chemical reactions can be considered as Markov
chains. The reaction networks can be modelled with Markov chains, also the
model of enzyme activity, Michaelis—Menten kinetics, can be viewed as a
Markov chain. There are many advantages of using the Markov-chain model in
chemistry. Some advantages are: physical models can be presented by state vector
and a one-step transition probability matrix, it is easy to obtain all distributions
of the state vector from the Markov-chain solution. Also, with Markov chain can
be modelled various processes in chemical engineering by combination of flows,
recycle streams, plug-flow and perfectly mixed reactors [2,3].

Claude Shannon, the father of Information theory, used Markov chains to model
the English language. Through this model, he introduced the concept of entropy.
In this language model, he assumed that letters from some text have a certain
degree of randomness and are dependent on each of others. Also, this Markov
model allow to produced text similar to text written to English language. Hence
Markov models are widely used in Natural Language Processing and
Computational Linguistics. Markov model can be used for effective data
compression through entropy encoding techniques. Even without describing the
full structure of the system perfectly, such signal models can make possible very
effective data compression through entropy encoding techniques such as
arithmetic coding [4].

Also, Markov chains are a base for hidden Markov models (HMM). These models
are used in telephone networks, speech recognition and bioinformatics [5].
Process of birth and death that are basis of queueing theory are homogeneous
Markov process. More of the queue systems (M/M/n, M/m/,) can be modelled
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by using Markov process or Markov chain. For example, for the queue M/M/m,
the time spent by a client in the queue is a Markov process and the number of
clients in the queue is a Markov chain [6,7].

The Markov chain has applications in Internet applications. For example,
Google’s PageRank algorithm of a webpage is defined by a Markov chain [8].
In economics and finance, Markov chains are used to predict macroeconomic
situations like market crashes and cycles between recession and expansion. Other
areas of application include predicting asset and option prices and calculating
credit risks [9].

In this paper, we will consider the application of Markov chains in biology.
Concretely, we will regard two applications of Markov chains: the genetic
problem of interbreeding animals in close relatives and application in
carcinogenesis.

2. RANDOM (STOCHASTIC) PROCESS

The neediness for introducing the concept of stochastic (random) process
follows from the work of different systems and variables that are random by their
nature. Also, those variables depend on one or more parameters such as time,
length, elevation, and others. Stochastic processes are widely used as
mathematical models of systems and phenomena that appear to vary in a random
manner. The variables that are considered by meteorological research like:
temperature, humidity, pressure, concentration of smoke, sulfur dioxide, winds
speed on the certain place are functions of the time, latitude, altitude of the place,
are random.

Brownian motion of particles, voltage and power of electric current, number
of car accidents, number of earthquakes, the speed of the vehicles etc., are the
real processes that are random functions of the time [10,11].

Let (Q,F,P) is a probability space and nonempty parameter set 7. The

stochastic or random process {X,,f €T} is usually defined as a family of

random variables.

Depending on the parameter set 7', random process can be:
1. Random process with discrete parameter set (discrete random sequence).
2. Random process with continuous parameter set.

If the distribution of random variables {X,,f €T} is considered, then random

process can be:
1. Discrete random process.
2. Continuous random process.

Usually, 7' is one-dimensional set and the parameter can be interpreted as time.
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For each fixed € T, X, is arandom variable that is called intersection of process
at the moment ¢. For fixed @€ Q, X,(w)is a function of 7, that is called
realization (trajectory) of the random process {X,,r €T'}.

Definition 2.1 A random process {X,,f €T}is said to be Markov, if for each
neN,f<t,<...t, t,€T,i=12,...n and for each x,,x,,...x,:

P{X, <x,|X, =x,,X =x

n—1° t,_o n—-29%°*"
= P{th <X, | an-1 = xn—l}

Because of that, it is said that a random process {X,,# € T} is a Markov if the
“future” state X, is independent of the “past state” X, , if the “present state”

X, | is given.

For discrete Markov process the following holds:

P{X, =x,|X, =x,,X, =x

n—1° t,_o n—29%°""
=P{X, =x,[X, =x,,}.

A discrete Markov process with a discrete set of states and a discrete parameter
set 1s called a Markov chain, i.e.

Defeniton 2.2 A discrete random process {X,} -, is said to be Markov chain, if
for each n €N, and for each x,,x,,...x,, the following holds:

P{X, ., X=X} =
=P{X, ., <x,,|X,=x1}.

The random process is a chain when the state space is discrete. The name Markov
refers to Andrei. A. Markov, a Russian mathematician, who works described the
Markov chains.

:xn+1|Xn :xn’Xn—l =X

n—-12"

n+1

Definition 2.3 The one step transition probability, denoted as p,-(j") is defined
by the condition probability:

(n) _ s .
pij _P{Xn_.]|Xn—l_l}-
This is the probability that process is in state j at the moment n , given that the
process was in state 7 at the moment n—1. The probability p,g-") are called

transition probability from state [ to state J at the moment 77 . These

probabilities form matrix of transition probabilities P ") = |: )4 ,g-n) :| .
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3. APPLICATION OF DISCRETE MARKOV CHAINS IN BIOLOGY

The discrete Markov chains have wide application in biology.

With Markov chain the general process of birth and death in discrete time can be
modelled. In this model is assumed that the size of the population is maximal.
The theory developed from the random walk can be used for analysing the birth
and death process. This theory is used to analyse, the probability of population
extinction, the expected time of population extinction, and the distribution
conditioned on nonextinction, known as the quasistationary distribution [12].
The other application of Markov chains in discrete time are the epidemiology
models. Discrete Markov chains can be used for modelling of some chain based
as SI, SIS and SIR models in epidemiology. The Susceptible-Infected-
Susceptible (SIS) model describes the transmission of disease when recovered
individual from the population do not have permanent immunity. Recovered
individual can immediately become infectious again. The results for SIS model
in [13] show normal distribution nature of the quasi-stationary distribution in the
case when the population is large, and the reproduction number is greater than 1.
With the SIR model population is divided into three subgroups: susceptible,
infected, and recovered individuals. In this model a susceptible individual gets
infected with disease and recovers from it and have a permanent immunity. The
main aim of this model is to predict the trajectory of epidemic transmission. The
transitions are made from one to another population [14-16].

The other application of discrete Markov chains in epidemiology is known as the
binomial chain model.

Epidemiological models of binomials chains were first developed in 1920 and
1930 by Reed, Frost and Greenwood, so according to them is the model named.
For these models, the duration and extent of the epidemic are calculated [17].
Also, discrete Markov chain is used to proliferating epithelial cells.

In this paper, two classical biological applications of Markov chains in discrete
time will be considered [17].

3.1 The genetic problem of interbreeding animals in close relatives

Genetics is an important area in the biology which studies genes, genetic
variation, and heredity. It studies how living organisms receive common
characteristic from previous generation. Heredity depends on the information
that are contained in chromosomes. Every cell of a human being contains 46
chromosomes (23 from the mother and another 23 from the father), or 23 pairs
named as ‘diploid’: 22 pairs of autosomes, and one pair of sex chromosomes,
called X and Y.

Genes are arranged, one after another, at specific locations on chromosomes
in the nucleus of cells. The genes are made of sequence of DNA. A location on
the chromosome where the gene is found are called locus. The gene is located
within a determined region on the chromosome and is composed of the different
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base pairs (GATC). Alleles are variants of the same gene that occur on the same
place on a chromosome [18,19].

Assume that there are only two types of alleles for a given gene, denoted as a
and A . A diploid individual can have one of three different allele combinations:
AA,Aaor aa, known as locus genotypes. As aa and AAhave the same

homogenous composition, they are called homozygotes, while Aa is called
heterozygotes. [20]:

In [21] the problem of genetic pairing of animals in close relatives is regarded.
This process form Markov chain. Suppose that two individuals are randomly
paired. Process of pairing between siblings and close relatives continues every
year. This process can be formulated as a finite Markov chain in discrete time,
whose states consist of 6 types of mating:

AAx AA
AAx Aa
Aax Aa
Aaxaa
AAxaa
aaxaa

Sk W=

It is assumed that the parents are type 1, AAXx AA. Then the next generation
descendants of these parents will be AAindividual, and then the pairing of
siblings will be only type 1, p,, =1. Analogously for parents type 6, aaxaa,

where p =1.

Now, it is assumed that the parents are type 2, 44x Aa . Let X represents their
randomly chosen descendant. Let ¥, € {A, A} is allele that will be transmitted on
to descendant from parents with genotype AA, and Y, € {A, a} represents the
allele that will be transmitted to descendants from parents with genotype Aa.

Then the following holds:
P{X = A4} =P[¥ = AY,= A} = P{¥, = 4} P[¥, = 4} =1

1
2’

N | —

P{X =4da}=P{Y =AY, =a} = P{Y, =a} P{Y, = 4} =

— Y =1} P =a} = P{Y,=a} P{¥, =4} =124 0=

P{X =aa}=P{Y,=a,Y,=a}=P{Y,=a} P{Y,=a}=0
From this generations there are two genotypes. If X, and X, are two randomly
chosen generations. Then:
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P{X xX,=AAx AA} = P{X, = AA} P{X, = AA} 1
P{X xX,=AAx Aa} =P{X, = AA} P{X, = Aa}+ P{X, =ad} P{X, = AA} =

P{X,xX,=AaxAa}=P{X, = Aa} P{X, = Aa} =

The probabilities are:

Po="7>Pn="7>Pn="-
1
If the parents are type 3, Aax Aa the descendant is in proportions 2 AA,EAa

1 1 1 1
and Z aa , then the pairing between siblings give Etype 1, Z type 2, Z type 3,

1
4

1
2

1
4

1 1 1
—type 4, —type 5 and —type 6.
4YP 8YP 16 yp

The transition matrix P is:

S O O o o =

1/4

1/2

1/4
0
0
0

1/4

1/2
1/4

1/16
1/4
1/4
1/4
1/8

1/16

1/16

1/4
1/4
1/4
1/8

1/16

0
0
1/4
1/2
0
1/4

1/4
1/2

1/4

- o O O O O
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The Markov chain is reducible and there are three classes of communication,
{1} , {6} and {2, 3,4, 5} . The first two classes are positive recurrent, and the third

class is transient. The states 1 and 6 are absorbing states, p, =1,i=1and i =6.

Let notice
1 4 0
p'=l0 T" 0],
0 B, 1

Where A and B are functions of 7', 4 and B, 4 = AZ:OI T' and

B = Bz:; T'. First T" need to be found. Because of T belongs to the

transient class, it holds that im 7" = 0.

n—o0

Also,
limB,=B(I-T) ,limd, = A(I-T) .

3.2 Restricted random walk and its application in carcinogenesis

The random walk is one of the most fundamental models in probability theory,
demonstrating power of mathematical properties.

A one-dimensional random walk is a Markov chain with finite or infinite state
space. In the simple one-dimension random walk, two movement are allowed.
The movement to the right for one position, i.e. from the position x to the
position x+1 and movement from the position x to the position x—1 i.e.
movement to left for one position. Let p is a probability of moving to the right

and ¢ is a probability of moving to the left, [22].
A restricted random walk corresponds to a random walk in the presence of a
boundary. If the state space is finite, {0, 1,2,....N } then 0 and N are boundary.

If the state space s, {0,1,2,...} then boundary is in 0.

There are three types of boundary behaviour: absorbed, reflected and elastic.
Absorbed boundary in the x = 0 assumes that transition probabilities for one step

Poo = 1. Reflected boundary in the x = 0 assumes that transition probabilities
for one step are: p,, =1-p, p,, = p, 0 < p <1. And the elastic boundary in the
x=0 assumes that one-step transition  probabilities are:
P =P D1 =54, Py =(1-5)q, p+q=1,p, =1 for0<p,s<l.

Cancer is a human genetic disease. It is caused by mutations that occurred in a
more number of genes that controlling growth. Cancer is multi-stage process. The

genes that caused cancer can exist from birth, increasing a chance of getting
cancer. The transition of a normal cell into a cancerous cell are happened in more
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steps (stages). The number of stages is a number of mutations that are required
to creating a cancerous cell.

The number of stages can be regarded as the number the state in the random walk.
For this reason, we will study a simple random walk model. Let

S = {0,1,2,...,N } is a number of states. One movement in the random walk

(when the process transits from one to other state) corresponds on the transition
from one to other stage of the one cancerous cell.

The state 0 represents the stage (state) of total recovery.
This model requires several successive mutations, each of which produces a clone
of mutated cells. State NV indicates completion of the mutation process in which
malignant cells are created. [17]

Let {X n}, n > Orepresents random walk, that corresponds to the mutation

process. A step forward implies transition in the next stage(state). This transition

is occurred with following probability: P {x —>x+ 1} =p. = % . A step back

X

implies transition in the previous stage (this is a move toward recovery) and this
o : o N—x
transition is occurred with probability: P {x —>Xx- 1} =q = N

The state 0 and state N are absorbing states. If the process come in this state stay
here:

P{N > N}=P{0—>0}=1.

The other states different from state 0 and state NV are reflecting states.
Probability the process to stay in these states is equal to zero: P {x - x} =0,
for x=0,1,2,...,N—1.

Let 7, is a stationary probability of complete recovery (the process is in state 0),
7\ 1s a stationary probability in cancerous state and 7 is a stationary

probability in state x, I<x<N—1. For these probabilities following
differential equation is obtained:

T =%7zx+1 +(1—%j7zx_l,lﬁx£N—l

X

with initial conditions
7, =0, r, =1.

Let A (t) = Z 7 t* is a probability generating function for {7Z'x} . By using of

simple mathematical operations, we write the differential equation in the
following way:
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ﬁx:x+lﬂx+l_iﬂx+1+(l_x__l]7[' _iﬂ- ISXSN_l
N N N

_ S 1 xfl_i x—1 _L x+1_i x+1
A(t)—Z{Nﬂxt 7l +(1 N]ﬂxt 7 }

x=0
are obtained that

(4(2)) — = +(1-2)" +(N=1)(1-2) "

With solving of the differential equation, the following equation is obtained:

~ . B N1 (N =1
(4(1)) =ce(1+0)™" (1-0) 1=C{ZC( jz"}z“ﬁ,
x=0 X >0

where C is a constant.
With using the limit conditions,

N (N-1
1= ZC[ jczN-‘,
x=0 y

is obtained that

& (N-1
nx=ZC( Jz“”,os)cszv.
x=0 Yy

After the initial process of the carcinogenesis, it is assumed the state is 1. From

there:
N-1
Ty =7r1( 0 jZNl =2V,

Because of the random walk is simple, we obtain that:
my=1-m, =1-2""

4.CONCLUSION

Markov chains are useful tools in statistics modeling in all fields of applied
mathematics. They have great application in the modeling of natural phenomena
and sciences. In this paper, we consider application of Markov chains in biology.
By help, of two applications of Markov chain in biology, we can conclude that
they are powerful tool for modeling of many problems in real life. In this paper,
we have considered application of Markov chain in the genetic problem of
interbreeding animals in close relatives and application in carcinogenesis which
is very important for their analysis.
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COMMON FIXED POINTS OF TWO T f REICH-TYPE CONTRACTIONS
IN COMPLETE METRIC SPACE

Samoil Malcheski

Abstract. In this work, it considered theorems about common fixed points of
two 7', Reich-type contractions in complete metric space (X,d) . In doing so,

it is used that the mapping 7 is continuous, injection and sequentially
convergent, and function f is from the class @ continuous monotonically

nondecreasing functions f :[0,+o) —[0,+) such that f _1(0) = {0}, where

it is additionally taken the function to be subadditive, i.e.
fp+q)< f(p)+f(q), foreach p,q €[0,+0).

1. INTRODUCTION

In literature there are well known Banach's fixed point principle and its
generalizations given by R. Kannan ([4]), S. K. Chatterjea ([7]), P.V. Koparde,
B. B. Waghmode ([3]) and Reich ([10]).

In [9] S. Moradi and D. Alimohammadi generalize the result of R. Kannan,
using the sequentially convergent mappings.

Then, in [1] several generalizations of the theorems of R. Kannan, S. K.
Chatterjea and P. V. Koparde, B. B. Waghmode were proved, using the
sequentially convergent mappings, and in 2016 in [5] with the help of
sequentially convergent mappings are proven more common fixed point results
for two type mappings by R. Kannan, S. K. Chatterjea and P.V. Koparde, B.B.
Waghmode.

In 2010 in [8] S. Moradi and A. Beiranvand introduce the concept of Ty contractive

mapping, using the @ class of continuous monotonically nondecreasing functions
f:[0,+00) —[0,40) such that f_l(O):{O}. Note here that, if f €@, then from
£71(0)= {0} follows that f(r)> 0, for each #>0.

S. Moradi and A. Beiranvand prove that if S is T s contractive mapping, and then

S has a unique fixed point.

Then, in 2014 M. Kir and H. Kiziltunc generalize the result of S. Moradi and
A. Beiranvand to mappings of type R. Kannan and S. K. Chatterjea.
In 2021 in [11], [12] and [13] are proven more generalizations for common
fixed points of two 7, contractions of the type of R. Kannan, S. K. Chatterjea

and P. V. Koparde, B. B. Waghmode on a complete metric space, while for the

2010 Mathematics Subject Classification. Primary: Functional Analysis. Key
words and phrases. Keywords should be put here
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function f from the class @ it is further assumed that it is subadditive, i.e. that
fp+q9)< f(p)+ f(q), for each p,q<[0,+0). In further considerations under

the same assumptions we will give some results for common fixed points of two
contractions of the Reich type.

2. MAIN RESULT

Definition 1 ([8]). Let (X,d) be a metric space. A mapping 7: X -> X is
sequentially convergent if we have, for every sequence {y,}, if {Ty,} is
convergence then {y,} also is convergence.

Definition 2 ([8]). Let (X,d) be a metric space, S,7: X - X and fe®. A
mapping S is 7, —contraction if there exist A  (0,1) such that

S(d(TSx,TSy)) < M (d(Tx,Ty))
forall x,ye X .

Theorem 1. Let (X,d) is a complete metric space, S),5,: X > X, f€@ is
such that f(p+q)< f(p)+ f(q), for each p,q €[0,+0) and mapping 7T:X - X
is continuous, injection and sequentially convergent. If there are any a,b>0
and ¢ >0 such that a+b+c<(0,1) and

F(d(TS)x,TS,y)) < af (d(Tx,TS,x)) + bf (d(Ty,TS,0)) + ¢f (d (T, Ty)) (1)
for each x,y € X, then S| and S, have a single common fixed point.

Proof. Let xq is an arbitrary point from X and let the sequence {x,} is defined
by

Xon+1 = S1X2p > X2p12 = S2Xop41> 7 =0,1,2,3,....

If it exists n=0, such that x, =x,,; =x,,,, then it is easily proved that u =x, is a
common fixed point of S| and §,. Let us therefore assume that there are no three
consecutive equal members of the sequence {x,} . Then, using inequality (1), it is easy
to prove that the following inequalities are true:

S d(Txz41,T0,)) < 22 f(d (T, Tp1)
and

S@d(Txy,y, Ty 1)) <5 f(d(Txgy 1, Ty 1)) -
From the last two inequalities it follows that for each n =0,1,2,... and for

) =min{4EC 2iCs ¢ (0,1)

18 true:
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Sd(Txy 40, Tx,)) S M (A (T, Ty ) - 2
Furthermore, from inequality (2) it follows
S d(Txy 41, Tx,)) S A" £(d(T1, Txp)) 3)

for each n=0,1,2,.... Now from the metric properties, the function properties f and
the inequality (3) follows that for each m,ne R, n > m 1is true

n-1 n-1

S@d(Tx,, Ty ) < f( 3 d(Txgeyys Top)) < X f(d (T, Ty )
k=m k=m

n-1 .
< ¥ M (d(Tn. Tx) < 2 £(d(T.Txy ).
k=m

It follows from the last inequality that
lim f(d(Tx,,Tx,,))=0,

m,n—>0

and because f €® we have lim d(Tx,,Tx,) =0 . Therefore, the sequence {Tx,} is
m,n—»>0

Cauchy and because (X,d) is a complete metric space it is convergent. Further, the
mapping 7 :X — X e sequentially convergent, so therefore the sequence {x,} is

convergent, i.e. exists ¥ € X such that lim x,, =u . Now, from the continuity of 7 it
n—»0

follows lim Tx, =Tu .
k—o0

We will prove that u € X is a fixed point for the mapping S;. We have:
Sd(Tu, TSu)) < f(d(Tu,Txy0))+ £ (d(Tx12. TS 1))

= f(d(Tu,Tx12)) + f(d(TSyx2,,11, TS 4))

< f(d(Tu,Ixpp42)) + af (d (T, TSyu)) + bf (d (Tx,,4.1, TS2X0,041)) + ¢f (d (T, Txpp11))

= f(d(Tu,Txp, 1))+ af (d(Tu,TSu)) + bf (d(Txy 41, Txp012)) + ¢f (d(Tu, Ty 1))
The mappings f and T are continuous, therefore, from the properties of the metric,
works follows if in the last inequality we take n — oo , we will have

(1-a)f(dTu,TSiu)) < (1+b+c) f(0)

But, 1-¢>0 and f _1(0) ={0}, so from so from the last inequality we have
d(Tu,TSju)=0, i.e. TSju=Tu . Finally, T is an injection, therefore Sju =u , which
means that u is a fixed point for the mapping S; . Analogously it is proved that u is a
fixed point for the mapping S,, i.e. u is a common fixed point for the mappings S;
and S,.

We will prove that S| and S, have a single common fixed point. Let ve X is a

fixed point for S, ,i.e. Spv=v.Then
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(d(Tu, Tv)) = f(d(TSyu, TSyv) ) < af (d (Tu, TSyu)) + bf (d (T, TSpv))) + cf (d (Tu, T)
=af (d(Tu,Tu))+bf (d(Tv,Tv))) + cf (d(Tu,Tv)
=(a+b)f(0)+cf(d(Tu,Tv).
Now, 1-¢ >0 and f_l(O) = {0}, so from the last inequality we have d(Tu,Tv)=0, i.e.
holds that 7u =Tv. But, T is an injection, so u = v, which means that S; and S, have

a single common fixed point. m
Corollary 1. Let (X,d) is a complete metric space, 1,5, : X > X, f€0 is

such that f(p+q)< f(p)+ f(q), for each p,q€[0,+0) and mapping 7: X > X
is continuous, injection and sequentially convergent. If A € (0,1) exists such that
[ATS)x,TS, ) < W f(d(Tx, TS\ x))- f(d(T, TS ) f (d(Tx, Ty)

for each x,y € X, thenS; and S, have a single common fixed point.

Proof. It follows from the inequality between the arithmetic mean and the

geometric mean and Theorem 1 for a=b=c =% .

Corollary 2. Let (X,d) is a complete metric space, 1,5, : X > X, f€0 is
such that f(p+q)< f(p)+ f(q), for each p,q€[0,+0) and mapping 7: X > X
is continuous, injection and sequentially convergent. If a,b>0 and ¢>0 exits
such that a+b+c<(0,1) and

af * (d(Tx,TS,x))+bf > (d (Ty,TS,))
F(d(Tx.TS,x)+ £ (d(T,TS,»))

for each x,y € X, then S| and S, have a single common fixed point.

Sd(TSx,TSy)) < +cf (d(Tx,Ty),

Proof. It folloes from the inequality given in the condition, the inequality

(). m
Corollary 3. Let (X,d) is a complete metric space, 51,5, : X > X, fe€® is

such that f(p+q)< f(p)+ f(q), for each p,q €[0,+0) and mapping 7T: X - X
is continuous, injection and sequentially convergent. If a,b > 0 exits such that
a+be(0,1) and

Sd(TSx, 1Sy y)) < af (d(Ix,T8x)) +bf (d(Iy, TS, y)) ,
for each x,y e X, then S| and S, have a single common fixed point.

Proof. The corollary follows from Theorem 1, for ¢=0.m
Corollary 4. Let (X,d) is a complete metric space, S;,S,:X —>X and

fe® issuchthat f(p+q)< f(p)+ f(q), for each p,qe[0,40).If a,b>0 exits

and ¢ >0 such that a+b+c<(0,1) and
S(d(S81x,5,)) < af (d(x,51x)) +bf (d(y,5,9) +cf (d(x, y))
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for each x,ye€ X, then S| and S, have a single common fixed point.

Proof. Mapping 7: X — X defined with 7x = x is an uninterrupted injection
and is sequentially convergent. So, the corollary follows from Theorem 1 for
Ix=x.m

Corollary 5. Let (X,d) is a complete metric space, S,5,:X —X and
fe® issuchthat f(p+q)<f(p)+f(q), for each p,qe[0,+0).If a,b>0 exits

such thata+b € (0,1) and
f(d(81x,8,y)) < af (d(x,8x)) +bf (d(1,5,9)) ,
for each x,y € X, then S| and S, have a single common fixed point.

Proof. The corollary follows from corollary 3 for 7x =x or from corollary 4
for c=0.m
Corollary 6. Let (X,d) is a complete metric space, S|,5,: X > X, f€® is

such that f(p+¢)< f(p)+ f(q), for each p,q €[0,40) and mapping 7: X > X
is continuous, injection and sequentially convergent. If p,gqe N exits and
a,b>0 and ¢ >0 such that a+b+c<(0,1) and

f(d(TSlpx,TSgy)) < af(d(Tx,TSlpx))+bf(d(Ty,TSgy))+cf(d(Tx,Ty))

for eachx,y e X, then S; and S, have a single common fixed point. m
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GENERALIZATION OF A REICH-TYPE CONTRACTIVE MAPPING
IN A COMPLETE METRIC SPACE

Risto Malcheski!, Samoil Malcheski?

Abstract. In this work, is given a generalization of the fixed point theorem of
the Reich-type mapping on a complete metric space (X,d). Continuous,

injective and sequentially convergent mapping 7" was used, as well as function
f is from the class @ continuous monotonically nondecreasing functions

f:[0,+00) — [0,4w0) such that f _I(O) = {0}, where it is additionally taken the
function to be subadditive, i.e. f(x+y)< f(x)+ f(y), for each x,y €[0,+00).

1. INTRODUCTION

Banach's principle for a fixed point is well known in the literature, namely:
Let (X,d) is a metric space. Mapping S: X —» X we will call it a

contraction if there exits A € (0,1) such that for each x,y € X is true
d(Sx,Sy) < Ad(x,y). (D)
If metric space (X,d) is complete, then the mapping 7 for which condition (1)
is satisfied has a unique fixed point. In 1968, R. Kannan ([4]) generalized
Banach's fixed point principle as follows:
Theorem 1. If mapping S: X — X where (X,d) is complete metric space,
satisfies the inequality
d(Sx,Sy) < A(d(x,Sx)+d(»,5Y)), 2)
where 4¢€(0,1) and x,y € X, then S has a single fixed point. B

If S satisfies the condition (2), then for § we say it is a Kannan-type
mapping.

In 1972, similar contraction conditions were introduced by S. K. Chatterjea
([7]), as follows:

Theorem 2. If mapping S: X — X where (X,d) is a complete metric space
satisfies the inequality

d(Sx,Sy) < A(d(x,Sy)+d(y,5%)), 2)

where 1€ (0,1) and x,y € X, thenS has a single fixed point. B

If § satisfies condition (2), then we say that is a Chatterjea-type mapping.
In 1971, S. Reich ([3]), gave a new generalization of Banach's fixed point
principle as follows:
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Theorem 3. If mapping S: X — X where (X,d) is a complete metric space
satisfies the inequality

d(Sx,Sy) < ad(x,Sx)+bd(y,Sy)+cd(x,y), 3)

where a>0,b>0 and ¢>0 are such that a+b+c<1 and x,y e X, thenS uma

has a single fixed point. B

If it satisfies condition (3), then we say that is a Reich-type mapping.

In [9] S. Moradi and D. Alimohammadi generalize R. Kannan's result, using
the sequentially convergent mappings, and in [1] several generalizations of
Kannan and Chatterjea's theorems are proved, using the sequentially convergent
mappings and , which are defined as follows:

Definition 1 ([8]). Let (X,d) be a metric space. A mapping 7:X — X is said

sequentially convergent if we have, for every sequence {y,}, if {Iy,} is convergence
then {y,} also is convergence.

In [8] S. Moradi and A. Beiranvand introduce the concept of 7 contractive
mapping, whereby they use the class @ of continuous monotonically nondecreasing
functions f :[0,+0) —[0,+) such that f _1(0) = {0}, which is defined as follows.

Definition 2 ([8]). Let (X,d) be a metric space, S,7:X > X and fe®. A
mapping S is said T # —contraction if there exist A € (0,1) such that

S(d(TSx,TSy)) < M (d(Tx,Ty)) ,
forall x,yeX.

Let us note here that, if f €@, then from f _1(0) ={0} follows that f(¢)>0, for
each 7>0. S. Moradi and A. Beiranvand prove that if S is T, contractive mapping,

then S has a single fixed point. Then, in [2] M. Kir and H. Kiziltunc generalize the
result of S. Moradi and A. Beiranvand for the mappings of the type of Kannan and
Chatterjea. In [10] are generalized the results of Kir and Kiziltunc and is given their
application.

In the following considerations we will give an analogous generalization for the
Reich-type mapping.

2. MAINS RESULTS

Theorem 4. Let (X,d) is a complete metric space S: X — X, f €@ is such that
f(p+) < f(p)+f(q), for each p,qe[0,4+0) and mapping T:X > X is
continuous, injection and sequentially convergent. If exits a>0,6>0 and ¢ >0 such

that a+b+c¢ <1 and
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S(d(TSx,TSy)) < af (d(Tx, TSx)) + bf (d(Ty,TSy)) +¢f (d (Tx,Ty)) “4)

for each x,y e X, then § has a single fixed point and for each x; € X the sequence

{S"xy} converges to fixed point.
Proof. Let x is an arbitrary point from X and let the array {x,} is determined by
X, =S, , n=0,1,2,3,.... It follows from the inequality (4).
F(d(Tx,1.Txy)) = £(d (TS, TS, 1)
<af(d(Ix,,TSx,))+bf (d(Ix,_,,TSx,_1)) +cf (d(Tx,,Tx,_;))
= af (d(Tx,. T, ) + (b +€) f (d(Tx, . Tx, ),
ie.
S(d(Tx, 40, Tx,) < B2 £ (d (T, T, ) -
Therefore, for A = ll’_L; <1 the following holds true

Sd(Txy 41, Tx,)) <M (d(Tx,,, T, 1))
)
for each n=1,2,3,.... From the inequality (5) it follows that
S(d(Tx,1.T,) ) < A" £(d(T1, Tig))
(6)
for each n=1,2,3,.... Now from inequality (6) the properties of the metric and the
monotonicity and subadditivity of the function f it follows that for each m,ne R

n>m the following holds true

n—1 n—1
S d(Tx,, Txp ) < fCX d(Txpsy, Txp)) < X f(d Ty T )
k=m

k=m

n—1 m
< ¥ W f(d(Tx.Txp)) < 25 f(d (T, Txg).
k=m
It follows from the last inequality
lim f(d(Tx,,Tx,,))=0,

m,n—>0

and because fe® we have lim d(Tx,,Tx,)=0. According to that, {Tx,} is

m,n—>0
Cauchy sequence. But, X is a complete metric space, so the sequence {TXx,} is
convergent. Further, the mapping 7:X — X e sequentially convergent, so therefore

the sequence {x,}is convergent i.e. exists ¥ € X such that lim x, =u. From the
n—>o0

continuity of 7 it follows lim Tx, =Tu .
n—>0

We will prove that u € X is a fixed point for the mapping S . We have
£ (d(TSu, T, ) = £ (d(TSu,TSx,))
<af (d(TSu,Tu))+ bf (d(TSx,,,Tx,)) +cf (d(Tu,Tx,))
= af (d(TSu,Tu)) + bf (d(Tx,,1,Tx,)) +cf (d(Tu,Tx,)).
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If in the last inequality we take n — o, then form lim 7x, =7u and the continuity of
n—»0

metric and function f* follows the inequality

S(d(TSu,Tu)) <2< 7 (0).

But, 0< ll’_L; <1 and f_l(O) ={0}, so it follows from inequality d(TSu,Tu)=0, i.e.

TSu=Tu. Finally, T is injection and therefore Su =u, i.e. mapping S has a fixed
point.

Let u,ve X are two fixed points for S, i.e. Su=u and Sv=v. From the
inequality, (4) it follows that

f(d(Tu,Tv)) = f(d(TSu,TSv)) < af (d(Tu,TSu)) + bf (d(Tv,TSV)) + cf (d(Tu,Tv))
ie.

S(d(Tu,Tv)) <4*L 1(0)

so similarly as above we conclude that d(7u,7v) = 0. Therefore, Tu =Tv. But, T is an

injection, and therefore u = v, i.e. S has a single fixed point.
Finally, from the arbitrariness of the point x, it follows that for each x; € X the

sequence {S"xy} converges to the fixed point. B

Corollary 1. Let (X,d) is a complete metric space, S: X > X and fe€® is
such that f(p+q)< f(p)+ f(q), for each p,qe[0,+0).If a>0,b>0,c>0 exits
such that a+b5+c <1 and

S(d(Sx,8y)) < af (d(x,5x)) +bf (d(y,5)) + ¢f (d(x, ),
for each x,ye X, then S has a single fixed point and for each x; e X the

sequence {S"x,} converges to the fixed point.

Proof. The mapping 7x=x, for each xe X is continuous, injection and
sequentially convergent. Therefore the corollary follows directly from Theorem
4for Tx=x.m

Corollary 2. Let (X,d) is a complete metric space, S: X — X and mapping

T:X — X is continuous and sequentially convergent. If a>0,6>0,c>0 exits
such thata+b+c<1 and
d(TSx,TSy) < ad (Tx,TSx)+ bd(Ty,TSy) + cd (Tx,Ty)

for each x,ye X, then S has a single fixed point and for each x, € X the
sequence {S"x,} converges to the fixed point.

Proof. The function f(f)=¢, ¢>0 1is monotonically nondecreasing,
f_l(O) ={0} and is such that f(p+q)< f(p)+ f(q), for each p,q<[0,+0).
Therefore the corollary follows directly from Theorem 4 for f(1)=¢.m

Comment. If we consider that the mapping 7x=x, for each xeX is
continuous, injection and sequentially convergent, from corollary 2 follows
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theorem 3, [3], ie. follows that if for the mapping S:X —> X exits
a>0,b>0,c>0 suchthat a+b+c<1 and

d(Sx,Sy) < ad(x,Sx)+bd(y,Sy)+cd(x,y)

for each x,y € X, then S has a single fixed point.

(1]

(2]

(4]

(3]

[10]
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SEVERAL LOCI GENERATED BY A MOVING TRIANGLE

BETWEEN TWO FIXED CIRCLES

Prof. Sava Grozdev, Prof. Veselin Nenkov, Assoc. Prof. Tatiana Madjarova

Abstract. According to a famous theorem belonging to the French mathematician Poncelet, if two
conics are located in the plane in such a way that a polygon exists which is inscribed in one of the
curves and circumscribed with respect to the other one, then each point on any of the two conics
generates an inscribed-circumscribed polygon with respect to them. Particularly, two circles could be
located in the plane in such a way that one of them is circumscribed with respect to a triangle and the
other one is inscribed in it. In connection with this configuration when the triangle moves between the
two circles, several loci are considered which are determined by some notable points in the plane of the
triangle. It turns out that the loci are circles and ellipses with centers on the central line of the two fixed
circles.

Keywords: inscribed circle, circumscribed circle, center of gravity, orthocenter, Euler line, Euler
circle, Nagel point, GSP (Geometer’s sketchpad)

1. Introduction

It is well-known a remarkable theorem of Poncelet in the Euclidean geometry, a
particular case of which is the following assertion:

Theorem. If the circles I and @ are positioned in the plane in such a way that
a triangle exists which is inscribed and circumscribed with respect to I and @,
respectively, then:

1) each point on I is a vertex of a unique triangle, which is inscribed in I and
circumscribed with respect to @ ;

2) each point on @ is a tangent point on a side of a unique triangle, which is
inscribed in I and circumscribed with respect to @ .

¢,




Let /7 and @ be two non-concentric circles satisfying the theorem. It follows
from the first item that if A is an arbitrary point on the circle /7, then there exist
such points B and C on the circle in question, that the triangle ABC is
circumscribed with respect to @ (Fig. 1). If the point 4 moves on /7~ (the point A
occupies consecutive positions A4, 4,, ... on [), the triangle ABC will move

(ABC occupies consecutive positions 4 B,C,, 4,B,C,, ...) between the circles

I and o in such a way that it is inscribed in [/~ always and also circumscribed
with respect to @ (Fig. 1). Along this motion an arbitrary point P connected with
AABC in some way will move together with the triangle (P occupies consecutive
positions B, P,, ... together with the corresponding triangles 4,B,C,, 4,B,C,,
...) (Fig. 1) and at the same time it will describe a determined trajectory in the plane
of the circles. Thus, a problem appears to determine the trajectories which some
notable points of the triangle describe when the triangle moves between the circles
[ and w in the mentioned way.

Let O and R be the center and the radius of the circle /7, respectively, while J
and 7 be the center and the radius of the circle @, respectively. Loci will be

presented that are described by some classic notable points of the triangle. They are
noticed by means of the program software Geometer's sketchpad (GSP).

Figure 2
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2. Some notable circles in the plane of the triangle

Some notable points of the triangle ABC' describe circles along the motion of the
triangle between the circles /° and @. The following assertions are satisfied for
three points which are characteristic for the Euler line:

Theorem 1. The orthocenter H of AABC describes a circle k, with center
H, on the line OJ and radius R —2r (Fig. 2).
Theorem 2. The center of gravity G of AABC describes a circle k. with

R-2
center G, on the line OJ and radius r (Fig. 2).
Theorem 3. The center E of the Euler circle describes a circle k, with center
R-2
J and radius d (Fig. 2).

Proofs and generalizations of these assertions are included in [2].
Other notable points of AABC are the points of Nagel and Gergonne. If 7, 7,

and 7, are the radii of the ex-circles of A4BC, which are tangent to the sides BC,

CA and AB, respectively, then the Nagel point N and the Gergonne one G could
be determined with the following vector equalities, respectively:

rr.OA+rr,OB+r,1,0C aé_raOAJrrbOB+rCOC
, = .
nr.+rr +rr r,+r+r,
The points in question satisfy the following two assertions:
Theorem 4. The Nagel point N describes a circle k,, with center O and radius

R-2r (Fig. 3).

ON =

Figure
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A proof and a generalization of this assertion are included in [2].

Theorem 5. If G is the Gergonne point of a moving triangle ABC between the
circles I and @, then it describes a circle k(G) with center P on the line OJ ,
4(R+r).0J (R=2r)r

where OP = ———  and a radius p = ————— (Fig. 4).
AR+r P= 4R+ 8V

Two different proofs of this assertion are included in [3] and [4]. The circle
k(G) will be called Poncelet-Gergonne circle.

The points on the Euler circle of AABC describe a special set of circles. More
precisely, it is satisfied the following:

Theorem 6. If M is a point on the Euler circle of the triangle ABC, moving
between the circles I’ and @, then it describes a circle k(M) with radius

1
p= E(R —2r), which is tangent to @ exteriorly (Fig. 5).

The proof of this theorem will be published in Mathematics Plus journal later.
The circles k(M) will be called Poncelet-Euler circles.

Figure 4
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Figure 5

3. Two notable ellipses in the plane of the triangle

The points L, L, L, and L,, determined with the vector equalities
O — aé@+b§0—3+c§@ , O—La _ —aé@—iz-bgOz—B—i-zch'
—a, +b; +¢;
B aé@+b§@—c§&’
- a, +b; —c;
where BC =a,, CA=b, and AB =c,, are called Lemoine points of AABC.

It turns out that the Lemoine points of AABC describe ellipses with interesting

properties. The characteristic properties of these ellipses are described in the
following assertions.

2 2 2
a, +by +c,

2’ 4 2 p 2 A
oL - @04=b0B+¢,0C &

c

b

2 2 2
a, —by +c,

Theorem 7. If L is the Lemoine point of the triangle ABC, moving between the
circles I’ and w, then it describes an ellipse k(L) with center T on the line
3R?

OJ, where OT =—————-0J . The value of the small semiaxis & of
3R”-2Rr+r
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Rr(R—-2r)
3R*—2Rr+r*’
r
(4R+7)(3R* = 2Rr +1*

k(L) on OJ is equal to o = while the value of the big one is

equalto 3=R(R —2}’)\/ ) (Fig. 6).

A

Figure 6

The ellipse will be called Poncelet-Lemoine ellipse.

Theorem 8. If L,, L, and L. are the outer Lemoine points of the triangle ABC
moving between the circles I'(O,R) and @(J,r), then they describe a curve

k(L) of second degree with a focus O and a focal axis OJ . The curve k (L) has
the following properties:

1) If 2r£R<(\/§+l)r, then the curve k(L) is an ellipse with a small

R’ R’
semiaxis =2—r2,big semiaxis f = and a center T,
r"+2Rr—R Nr? +2Rr - R’
R*.0J

satisfying the equality OT = ———————;
fying 7 7 > +2Rr—R?
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2)If R> (\/5 +1)r, then the curve k (L) is a hyperbola with a small semiaxis

R? R?
:—R2 > Rr 5 big semiaxis [f = - - and a center T, satisfying
—elr—r NR* =2Rr—r
R*.0J

the equality OT = —————
quatty R*>—2Rr—r*

3)IfR= (\/5 +1)r, then the curve k (L) is a parabola with a focal parameter

(\/§+1)2r.

2
p= (\/E + 1) r and a vertex V , satisfying the equality OV = 2

The ellipse k (L) will be called outer Poncelet-Lemoine ellipse.

Detailed proofs of these theorems will be published in the Mathematics Plus
journal.

Figure 7

Concluding we could state that the described circles and ellipses in the listed
theorems are noticed by means of the Poncelet theorem and the geometric
capabilities of the program software GSP. They are located in the plane of a scalene
triangle moving between two fixed circles. The curves themselves exist for any
triangle, no matter it is regarded as moving or stationary one. For this reason they
could be called notable circles and ellipses of the triangle.
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SOLVING TASKS FROM LINEAR PROGRAMMING USING
GEOGEBRA

Elena Karamazova Gelova !, Mirjana Kocaleva Vitanova 2, Sonja Man&evska

Abstract. Each student from every new generation, soon or latter, encounters
difficulties when solving mathematical problems, even the best ones. Some
students have problems with mastering the material, others with solving
homework assignments, others have problems with quickly forgetting what
they have learned, others think that they would lose a lot of time for solving the
task and, in the end, they might get an incorrect result, which reduces their
motivation for finding a solution and so on. Mathematical content that is
presented graphically and mathematical problems whose solution may be
obtained graphically remains best in the student’s memory. Moreover, if an
appropriate software is used during the solving of a given mathematical
problem, if its graphical representation is precise enough and the final solution
can be clearly seen from it, then most of the stumbling blocks for students will
be surmounted. In this paper we will present the graphical solution method for
linear programming problems using GeoGebra. The software allows graphic
editing to be done in a quick and simple way which is very important for
students.

1. INTRODUCTION

Whenever possible, a graphical representation that can be done in the fastest
and most accurate way and its use to obtain a solution of a given mathematical
problem enables a permanent memorization of what has been learned. Using an
appropriate software for graphical solving will enable obtaining a solution in a
much shorter time and perceiving the solution from the drawing itself. The
graphic of the solved problem usually gives a complete picture of the solution
which, for most of the students, is crucial for permanent memorization of what
was perceived and learned. The best way to perform the graphical solution is
with the use of an appropriate educational software. The software which we are
going to use in this paper is GeoGebra. It is a free, open source, simple to use
mathematical program that connects geometry, algebra, calculus, and statistics.
The possibilities of GeoGebra as an educational software for mathematics are
enormous. It can be used at all levels of education, from primary schools to
universities, for drawing basic geometrical shapes to three dimensional objects,
for performing basic analysis of functions with one variable to determining a
conditional extremity of a function with two variables and visually presenting
the conditional extremum (see for example [13]).

2010 Mathematics Subject Classification: 90C05.
Key words and phrases. GeoGebra, Linear Programming, LP problems,
graphical solution method, questionnaire
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One of the main features of GeoGebra is that it is a dynamic software. Unlike
a sketch on paper, which is a static model, in GeoGebra it is possible to change
certain parameters in the Graphics window simply by making changes in the
Algebra window. GeoGebra's user interface is flexible and customizable as
needed.

All about the main features of GeoGebra, along with its usage for solving
mathematical problems from different mathematical topics, can be found in [2]
and [6].

Several studies show that the use of educational software as well as other
information technologies increases students’ motivation, desire, and interest in
solving problems. The main goal of the research in paper [12] is the question
“Does the technical equipment of the classrooms bring better results in
mastering the teaching program by the students?”. The authors determine the
quality of knowledge that the students get when learning the topic “Construction
of triangle and quadrangle” with use of GeoGebra and informatics/mathematics
approach, by comparing the achieved results on the diagnostic and the final test,
of the experimental and the control group. The experimental group of students is
learning the topic with use of software and constructions are made on computer,
while the control group is learming by the traditional method of constructions
made in notebook with ruler and compass.

In [1] authors analyze the perceptions and attitudes about the use of ICT tools
for visualization as a "modern" approach for solving geometry problems in
primary schools in Macedonia. In [15] the concept of a discrete random variable
is introduced following the standard definitions, but by use of information
technology, with emphasis on modeling probability situations with only two
outcomes. Also, examples of discrete random variable with a geometric
distribution are given, which are visually represented with GeoGebra.

The number of countries worldwide that have the development of the
Information Society as one of their highest priorities has increased in the last
decades. One of the key segments for the promotion and development of the
Information Society is the education. The quality of the educational process is
closely related to the application of the information and its communication
technologies. In [16], the authors have presented the results of their research that
has been conducted to investigate the factors that affect the motivation of
teachers to use ICT in their classroom. There is more research in which the main
goal is to see the importance of ICT in the teaching process in mathematical
subjects. In [14] are given the results of the research which was conducted with
students from two Universities: Mother Teresa, Skopje and Goce Delcev, Stip.
Students were split into two groups. With one group, the mathematical content
(algebra, geometry, analysis) was processed by using GeoGebra and on a
computer, while with the other group the same material was processed without
any kind of visualization. After that the testing was done. The comparison of the
results led to the conclusion that the visualization of problems, the inclusion of
visualization software in the curriculum, introducing students to the importance
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of mathematics and its extensive application is very important to do during the
educational process.

For increasing the motivation for learning mathematics and increasing the
level of knowledge, a web application http://mathlabyrinth.azurewebsites.net is
presented in [11]. This application is for students in the secondary education and
contains mathematical problems that are related to real-life problems the
students may encounter.

Many high school teachers face questions from their students about the
applicability of the mathematical contents. In [3], the authors address students’
questions related to linear programming problems and solved them using
GeoGebra. The article [9] describes the observations of the experimental
teaching conducted in the high school in Kosice, where GeoGebra was used.
GeoGebra was used for the first time in students’ lives for solving a linear
optimization word problem. The findings in [5] show that the use of GeoGebra
enhanced the students’ performance in learning linear programming, hence it
was recommended that teachers employ GeoGebra software in teaching and
learning Linear Programming and any other mathematics topics. The study [10]
aims to determine the increase in students’ critical thinking skills in linear
programming learning through the Problem Based Learning (PBL) model
assisted by GeoGebra Software. This research is a semi-experimental study with
one group pre-test post-test design. The group in this study involved 24
students. The instrument used was the pre-test and post-test questions on critical
thinking skills. The data were analyzed using SPSS software. The results
showed that the use of the PBL model assisted by GeoGebra software can
improve students’ critical thinking skills on linear programming material.

2. INITIAL RESULTS

In this section we will graphically solve a few linear programming problems
(LP problems) using GeoGebra. Then we will look at the results of the survey
carried out with a group of 20 students from the Faculty of computer science at
University Goce Delcev Stip, which consists of answering a questionnaire
whose questions are related to the advantages and disadvantages of using
educational software when graphically solving linear programming problems.

Through the solved examples, we will show few ways to reach the solution
with the help of GeoGebra. The examples are given below.

Problem 1. Find graphically the maximum and the minimum of the function
L =x+ y, with the following constraints:
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—x+y=>-3

x<4
x+2y<10
—x+y<2

x>0

y=0

Solution: First step is to draw the bounding lines of the constraints. In the

Input bar of GeoGebra we write, one by one, the following equations:

—-Xx+y=-3,
x=4,

x+2y=10,

-x+y=2, (1)
x=0,
y=0.

As we enter each equation, it will automatically appear in the Algebra window
and the corresponding line will be drawn in the Graphics window. Each line can
be represented by a different colour. The colour of the equation in the Algebra
window will be the same as the colour of the corresponding line in the Graphics
window.

The lines in (1) divide the plane into few regions, only one of which is the
feasible region. We can discard the regions that are left from the y axis (any
point, in any of these regions, does not satisfy the constrain x>0), those right
from the line x =4 and those below the x axis. Then, using the one-point-test,
we check which one of the remaining regions (five in total) satisfies all the
given constrains. This is the polygon with the vertices in the intersection points
of the lines with equations:

e x=0 and y=0 (i.e., the origin),
e y=0and —x+y=-3,

o —x+y=-3and x=4,

e x=4and x+2y=10,

e x+2y=10 and —x+y=2, and
e —x+y=2and x=0.

We find these points using the Intersect tool of two objects >'( and then we
L

connect them with the Polygon tool .-. ®. The result is given in Figure 1.

If we equate the objective function to 0 we’ll get x+y =0, i.e,, y=—x, we
may perceive the objective function as the line y=-x "moving" from left to
right as its value increases (Really?).
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' Figure 1: The feasible region for Problem 1 (polygon ABCDEF)

So, the objective function will reach its maximum when the line y=-x

“passes” through the “last” vertex of the feasible region while increasing its
distance from the origin. In this case that will be the point D(4,3). Hence

maxL=7.
Similarly, if we are looking for the minimum, it will be reached when the line

passes through the origin (0,0) and hence, min L =0. u

Remark 2. If the objective function is of form
L=ax+yb,

most of the teachers and textbooks, suggest that direction in which the objective
function increases should be represented by two or more lines obtained by
assigning increasing values to the objective function. These lines are usually
refered as isoprofit lines (for maximization LP problems), isocost lines (for
minimization LP problems), or as “objective function lines”. Usually they are
also drawn on the graph, as shown on Figure 2. This can be quite helpful. From
Figure 2, we can easily conclude that the objective function has a maximum at
point D(4,3) and that max L =7.
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Figure 2: Objective function lines from Problem 1

Problem 3. Find graphically the smallest and largest value of the function
L=x+y on the area:

3x+2y=>6

x—2y<2
-3x+2y<6.

x>0

y20

Solution: As in the previous problem, in the Input bar we write the equations
of the bounding lines, one by one,

3x+2y=6, x-2y=2, 3x+2y=6, x=0 and y=0.

For this problem we will obtain the feasible region with GeoGebra in a different
way. GeoGebra supports graphical representation of a single inequality with two
variables and a system of inequalities with two variables as well. For the system
of inequalities given in the problem, in the Input bar we write:

3x+2y26Ax—-2y<2A-3x+2y<6Ax=20Ay20.

o

The symbols <, >, A are contained in the palette available by clicking on at

the end of the Input bar.
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The result obtained with GeoGebra is given in Figure 3. The graphic suggests
that the feasible region may be unbounded (but not necessarily!). If, after few
clicks with the Zoom out tool we don’t get a bounded region, chances are that
the region is indeed unbounded. But we need to verify this algebraically. By
Figure 3, the feasible region may contain every point of the line y=x which
satisfies x>2 i.e., the whole ray R={(x,y):x>2,y=x}. It can be easily
verified that this is indeed true: all the constrains in the problem are satisfied for
every point in R . Since the ray is unbounded, the feasibility region will also be
unbounded.

As in the solution of Problem 1, from Figure 3 we can see that the objective
function reaches its smallest value L =2 for x=2, y =0. But the largest value

does not exist (there is no “last” point in the feasible region through which the
line y =—x “passes” while “moving” from left to right). [ ]

[+]

File Edit View Options Tools Window Help

DRERScEHNER

» Algebra % | » Graphics X
® eql:3x+2y=6
® eq2x-2y=2

® eqd: 3x+2y=6

@ a:3x+2y>6Ax—2y-

< >

Input

Figure 3: The bounding lines and the feasible region from Problem 3

Problem 4. Find graphically the minimum of the function L =2x+3y with
constraints:
x+y=2
x+3y<12
3x+y<12.
x>0
y20
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Solution: In the Input bar, one by one, we enter the equations of the
bounding lines
x+y=2, x+3y=12,3x+y=12, x=0 and y=0,
and then
X+y22Ax+3y<12A3x+y<12Ax20A»20.
Once the feasibility region is visible in the graphics view, using the intersection
tool we find its vertices. The result in GeoGebra is given in Figure 4.

[+

File Edit View Options Tools Window Help
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Figure 4: The feasible region from Problem 4

We check the value of the function L =2x+3y at each of the points A4(2,0),
B(4,0), C(3,3), D(0,4) and E(0,2) by entering in the Input bar, one by one,
the following expressions:

2x(A)+3y(A),
2x(B)+3y(B),
2x(C)+3y(C),
2x(D)+3y(D),
2x(E)+3y(E).
The values will be displayed in the Algebra window. So, we get:
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2x(A)+3y(A)=4,
2x(B)+3y(B)=8,
2x(C)+3y(C)=15,
2x(D)+3y(D)=12,
2x(E)+3y(E)=6.
Hence, the minimum value is L =4 which is obtained when x=2, y=0. 1

Next, we will give an example of a word problem.

Problem 5. Products of a same kind are manufactured in two production
plants A and B. 250 units are produced in plant A and 350 units in plant B.
Three stores I, II and III have a demand of 150, 240 and 210 units, respectively.
The transportation costs per unit from the production plants to the stores are
given in the following table:

Table 1: Transportation costs per unit

Store
o I 11 1
A 4 3 5
B 5 6 4

Find a transportation plan so that the total transportation expenses will be the
lowest.

Solution: Since the given problem is a balanced transportation problem (i.e.,
the total amount of units produced in both plants A and B equals the total
amount of demanded units by all three stores) we may proceed as follows. Let
x denote the number of products transported from plant A to store [ and y the
number of products transported from plant A to store II. Since the needs of store
I are 150 units, it is necessary to bring (150 — x) units from B to 1. Also, from
plant B to store II it is necessary to bring (240— y) units. Further, plant A

produces 250 units and we have already allocated ( x + y ) units. This means that
from A to III will be transported (250 —x—y) units. To ensure that the demand

of store III is met, the number of units that we need to transport from B to III is
210-(250-x-y) = x+y—40. Thus, we have the following transportation

plan:
Table 2: Transportation plan
Store
Plant I II I
A X y 250-x—-y
B 150 —x 240-y x+y—40
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By Table 1, the total transportation expenses will be:
L=4x+3y+5(250—x—y)+5(150—x)+6(240 — y)+4(x + y —40)

= —2x—4y+3280. @

According to the condition of the problem, it is necessary to find the minimum
of the function in (2). But in this example x and y cannot take arbitrary values.

The quantity of products cannot be a negative number. Therefore, all the
numbers in table 3 are nonnegative, that is:
x20Ay20A250-x—y20A150-x20An

240—y2>20Ax+y—40>0 )

which means we need to find a minimum of the function in the area given by
the system of inequalities (3). That area is shown in Figure 5.

o

File Edit View Options Tools Window Help
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P Algebra x| | » Graphics ) ) X
® a: 250 —x —y > 0AL150 - N 4 il
® A-(40,0)
® B=(150,0)
® C=(150,100) 250D
@ D=(10,240)
® E=(0,240)
® F=(0,40)

F
a B
-100 50 o A 100 1ko 200 25)3\
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Figure 5: The feasible region from Problem 5

The area is obtained by entering the inequalities in the input field in the
GeoGebra window that is in the input field we enter:

x20Ay20A250-x—y20A150-x>20A240-y=>20AXx+y—-402>0.
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The vertices of the polygon are the points:
A(40,0), B(150,0), C(150,100), D(10,240), £E(0,240), F(0,40),
The function will take the smallest value at one of the vertices of the polygon
ABCDEF. We check the value of the function in each of the points 4, B, C, D,
E, F by entering in the Input bar, one by one the following expressions:
—2x(A)—-4y(A4)+3280,
—2x(B)—-4y(B)+3280,
—2x(C)—-4y(C)+3280,
—2x(D)—4y(D)+3280,
—2x(E)—4y(E)+3280,
—2x(F)—4y(F)+3280.
In the Algebra window we obtain:
—2x(A)—4y(A4)+3280=3200,
—2x(B)—4y(B)+3280=2980,
—2x(C)—-4y(C)+3280=2580,
—2x(D)—-4y(D)+3280=2300,
—2x(E)—4y(F)+3280=2320,
=2x(F)—4y(F)+3280=3120.
The minimum value is obtained at point D(10,240). Hence, for the
transportation plan we get the following table:

Table 3: Transportation plan

Store
P I 11 N
A 10 240 0
B 140 0 210

which means that:

e 10 units of product should be transported from plant A to store I,
e 240 units of product should be transported from point A to point II, etc.

For this transportation plan the value of the total expenses will be 2300. H

In order to confirm our opinion and firm belief for the benefits of the use of
software for learning mathematics, as well solving mathematical problems,
especially when applying the graphical solution method, we created a group of
20 students from the Faculty of computer science who voluntarily attended
classes where they learned how to use the GeoGebra software while learning
different mathematical topics. In these classes, in addition to other mathematical
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topics, Linear programming was also covered. After the classes, at the next
meeting, the students received a questionnaire that they had to answer in a short
time. Questionnaire and the results are given on the next page.

Students completed the questionnaire in a very short time. All 20 students
answered “yes” to five from ten questions. For the rest five questions most of
the students also answered “yes”, and just few with “no” or “maybe”. The
responses could only confirm our opinion that students benefit greatly from
using the software. The results from a questionnaire are given in Table 4 and
Figure 6.

QUESTIONNAIRE

Question Answer

1.With help of GeoGebra software solving tasks | Yes/ no / maybe
of linear programming is taking less time than
manually?

2. Did the GeoGebra software help you to Yes/ no / maybe
permanently remember the solved tasks in your
memory?

3. When solving linear programming tasks Yes/ no / maybe
graphically at home, would you use GeoGebra
software?

4. Does the quick and accurate solution of Yes/ no / maybe
problems from linear programming graphically
with the help of GeoGebra software increase the
motivation of students for learning problems
from this topic and for learning mathematical
problems in general?

5. Does GeoGebra educational software is a Yes/ no / maybe
good choice for solving graphical linear
programming tasks?

6. Would you continue to follow additional Yes/ no / maybe
classes in which tasks from various
mathematical topics would be solved with the
help of GeoGebra software?

7. Do you think that your success in math Yes/ no / maybe
subjects will be higher after using GeoGebra
software for problems solving?

8. Is it interesting for you solving problems of Yes/ no / maybe
linear programming graphically using
GeoGebra software?

9. Would you recommend to other students Yes/ no / maybe
using the software when learning any math

topic?

10. Do you think there should be books that Yes/ no / maybe

explain how to solve graphical problems from
linear programming using GeoGebra software?
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Answers:
Table 4: Results from a questionnaire
Question (#) yes no maybe
1 20 0 0
2 10 5 5
3 15 3 2
4 20 0 0
5 18 2 0
6 12 4 4
7 20 0 0
8 16 3 1
9 20 0 0
10 20 0 0
Questions

25

20

15

10

5

0
2 3 4 5 6 7 8 9 10

Hyes Eno Mmaybe

Figure 6: Results from a questionnaire

3. FEW ADDITIONAL EXAMPLES

In this section, through few additional examples, we are going to give an
updated version of the instructions contained in [8] on how the use GeoGebra
for the graphical solution of a given LP problem. Our goal is to take advantage,
as much as possible, of GeoGebra’s powerful tools to obtain fast and accurate
graphical solution for a given LP problem with two decision variables.

The algebraic and the graphical method for solving LP problems with two
variables are usually performed simultaneously. Sometimes we can obtain the
solution only with one of the methods, but sometimes each method, if
performed alone may lead to an incorrect answer. So, we always encourage
students to do some blend of these methods.

In general, the algebraic method consists of finding the coordinates of the
intersecting points of the bounding lines as solutions of systems of two linear
equations with two variables. We have to consider all the systems that we can
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form from the equations of the bounding lines. Then, we check which of the
points that are a unique solution to some of these systems are extreme points
(i-e., satisfy all the given constrains — for the LP problem we can immediately
discard all points for which we get at least one negative coordinate). Finally, we
calculate the values of the objective function at the extreme points and
determine which of these values is the smallest and which is largest. But this
method can be employed only when the feasible region is bounded. To verify
algebraically (only) that the feasible region is indeed bounded usually takes
much more time then, for example, drawing a quick sketch on paper or use
GeoGebra to draw a convex polygon with vertices at the extreme points.
Otherwise, we may obtain an incorrect answer. For example, if we use only the
algebraic method to get the solution of Problem 3, then we will have to find the

solution of C %z 2,5—'3, =

Each of these systems will have a unique solution. Three of the systems will
have the same solution x=2, y=0, i.e., the point A(2,0), which is an extreme

10 systems of two linear equations with two variables.

point, another three will have the same solution x=0, y=3, i.e., the point
B(0,3), which is also an extreme point, while the solutions of the other four

systems are not extreme points. Since it is not unusual to obtain that the feasible
region is a segment in the plane, which is a bounded convex set, some students
proceed with calculating the values of the objective function and conclude that
L=x+y hasaminimum L =2 at A(2,0) and maximum L =3 at B(0,3).

On the other hand, the accuracy of the solution obtained with the graphical
method mainly depends on:

o the accuracy of the graphical representation of the feasibility region,

e the accurate determination of the points at which the objective function
has a minimum and/or maximum (usually done by drawing two or more
objective function lines).

So, most of the time, if we what to get a correct answer or verify our
conclusions from the graphics, we usually calculate the coordinates of the points
at which the minimum or/and maximum is attained by solving systems of
equations, and after that we calculate the value of the objective function at those
points.

The general steps of the graphical method, regardless of whether it is
performed on paper or with the help of some software, were covered with the
examples in the previous section. The way GeoGebra is used in the solution of
Problem 1, is the one that most closely resembles the way we usually perform
the graphical solution on paper. We deliberately left one of the most common
misconceptions that is found both among teachers and students, and in some
textbooks as well. Is about the geometrical interpretation of the objective
function. Although this misconception rarely affects the accuracy of the final
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solution, since it is one of the crucial elements for building a more effective
GeoGebra file, we will address this first.

In the solution of Problem 1 we’ve placed the question “Really?” in small
brackets. The question is not about the interpretation of the objective function as
a movable line across the plane, but the direction in which it moves.

The objective function of a given LP problem with two variables is a linear
function (with two variables) of form:

f=f(xy)=ax+by,

where a,b e R\{0} are given numbers. When we draw the objective function

lines (the isoprofit lines or the isocost lines) on the graph, we are actually trying
to determine which of the elements from the one parameter family of parallel
lines:

lax+by=f:feR}, 4)
intersects the feasible region (see for example Ch. 23, Example 5.1 in [7]).
Since the lines in (4) may be regarded as different positions of a line that moves
across the plane, the geometrical interpretation of the objective function as a
movable line on the plane is perfectly fine and quite useful when we perform a
graphical solution of a given LP problem. But, as the values of objective
function increase, we would get the same set of dashed lines on Figure 2 if we
perceive the movement of the line from top to bottom, or from southwest to
northeast, or in the direction of any vector v =(x,y) whose coordinates satisfy
x+y2>0. This would indicate that the movement of the line can be interpreted
as the “sliding across the plane”. However, the direction in which the line
moves is not always form left to right, or from bottom to top etc. Hence, the
movement is not sliding. The direction in which the line moves is not arbitrary
as we usually think or say. It moves:

e in the direction of the vector 7 = (a,b),as f increases,
e in the opposite direction of the vector 7 = (a,b),as f decreases.
The vector 7y =(a,b) is perpendicular to every line in (4) and is called the

direction (or the gradient) of the objective function (see for example Ch. 3,
Section 3.1 in [4]). So, the line x+y =0 (or y =—x) in Problem 1 and Problem
2, actually does not move from left to right as the value of the objective function
increases, it moves in the direction of the vector 7i; =(1,1).

Instead of “sliding across the plane”, a more accurate analogy would be a
“rolling line” (like the rolling of a cylindrical straight pencil which is initially
placed parallel to the objective function lines, the pencil may slide in any
direction, and still remain parallel to the objective function lines, but it can roll
in only two directions to remain parallel to these lines). Thus, instead of
drawing a net of objective function lines, we may simply draw the vector
niy =(a,b) and, if necessary, lines that are perpendicular to this vector trough
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the extreme points that may be the points at which the objective function has
minimum and/or maximum.

Now let’s see some additional examples.

Problem 6. Find the minimum and the maximum of the function f =2x+y
over X if,
—2x+y<1
x+2y<9
x<5
y<3
x20
y20
Solution: Step 1: Determining the feasibility region. In the Input bar we enter
the following expressions (commands), one line at a time:

bl:= -2x+y=1
b2:= x+2y=9
b3:= x=5
bd:= y=3
b5:= x=0
b6:= y=0
nl:= -2x+y<=1
n2:= X+2y<=9
n3:= x<=5
nd:= y<=3
n5:= x>=0
n6:= y>=0

X:=nl & n2 & & n3 && n4 && n5 && n6

In this way we will assign more meaningful names for the objects instead of the
letting GeoGebra to do the naming. After entering these expressions, the
Graphic window will be quite cluttered, so we need to turn of the visibility of
the individual inequalities n1, n2, n3, n4, n5 and n6. The commands for the
symbols <,>, A which were used in the previous section are <=, >=, &&

respectively. After completing this, from the graphic obtained in the Graphics
window, we can see that the feasible region (obtained with the last command) is
bounded and determine which pairs of the lines b1, b2, b3, b4, b5 and b6 have
an intersection at a vertex of the feasible region. Then, either by using the
Intersect tool, or entering in the Input bar the following commands, one line at a
time:

:=Intersect(b5,b6)

:=Intersect(b6,b3)

:=Intersect(b3,b2)

:=Intersect(b2,b4)

:=Intersect(b4,bl)

:=Intersect(bl,b5)

mMmoOoN W >
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we determine the coordinates of vertices of the feasible region.

Step 2: Representing the objective function as a movable line. First, with the

Slider tool ** we create a slider in the Graphics window. A window as in Figure
8 will appear. We’ll change the default name from “a” to, let’s say “s_f*, which
will give the name s¢ to the slider in the Algebra window. We’ll replace the
values -5 and 5 with “larger” ones. Although the coefficients of the objective
function and the constrains are relatively small (by absolute values), for cases
like this, in our experience the interval for the slider may go from -50 to 50 (and
even wider). If this doesn’t work well, we can adjust these values later. At this
moment will leave the Increment empty (i.e., at its default value 0.1).

Name

(® Number
() Angle
H O Integer [ Random r

s f

Interval - Slider Animation

Min: |-50 Max: |50 Increment:

OK Cancel

= = = T—F—u¥ T =

Figure 7. Initial settings for the slider

Next, in the Input bar we enter the following expressions, one line at a time:
n_f:= (2,1)
m_f:= x(n_f)*x+y(n_f)*y=s_f
X, y)= x(n_f)*x+y(n_f)*y
The first expression is the direction of the objective function. Sometimes, to
ensure that the direction is visible in the Graphics window (not to small, not to
large) we need add to another vector, like

p_f:= g*n_f

for an appropriate choice of a positive value for q (see the Problem 8.b). The
second expression is the line that will visualize the “movement” of the objective
function line in the Graphics window. This line will move:

¢ in the direction of the objective function, as the value the slider increase,

e opposite of the direction of the objective function, as the value the slider

decrease,

while the third expression is the actual objective function. We could’ve entered
m_f:= 2*x+y=s_f and f(x,y)= 2*x+y, but we want to use the dynamic
property of GeoGebra as much as possible (see Remark 7).

Before we proceed, we need to test the slider. For a bounded feasible region,
the line m¢ should move so that it can pass through and exit the feasible region as
we drag the dot on the slider in both directions, and yet, remain visible in the
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Graphics window (assuming that its visibility is not turned off in the Algebra
window). If the movable line ms is still intersecting the feasible region or not
visible at all, ether when the slider is at its minimum or at its maximum value,
then we should replace the values -50 to 50. For this problem, we may adjust the
slider from -5 to 20.

After Step 1 and Step 2, by changing the colour of the vector ny, the slider s¢
and the movable line m¢, we’ll get something like Figure 8.

[+

File Edit View Options Tools Window Help

DS N = ENEER

» Algebra X | » Graphics
@' bt B ey b3 b5 bt b3
® bzx+2y=-9
® b3ix=5 pt
® bay=3
® b5x=0
® bpey=0 p)
nl: —2x+y<1
n2:x+2y<0
[ £ D

n3ix <8

n:y<3

nE:x >0 ol ol
2

nb:y >0
® X: —2x+y<1Ax+2y 4
® 5°5
ey n
. ..f:‘:i] '
\1/ B
4 1 T

@ Mi2x+y=5 5

® flxy) =2x+1y
® A=(0,0)
® B=(50)

Figure 8: Initial elements for the graphical solution

Next, we need to slowly drag the dot on the slider and pay attention to the
values above the slider (or those of s¢ and on the right side of the equation in m¢
in the Algebra window). As we drag the dot from lowest to highest value of the
slider, the order of the vertices of X in which the movable line m¢ in Graphics
window will pass through are:

A(=0), F(=1), E(=5), D(=9), D(~10) and C(x12).

The values in the parenthesis are the approximate values that will appear above
the slider.
Note: Since the coordinates of these points and the coefficient of the objective
function are all integers, we may obtain the exact values while dragging the dot on
the slider if we set 1 as the Increment value of the slider.
At this point, having in mind that a linear function will attain is minimum and
maximum on a bounded convex polyhedral set at its extreme points, we already
have all the information that we need to give an answer to the problem. The

objective function attains its:
e minimum at 4(0,0) and miny /' =2-0+0=0,
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e maximumat C(5,2) and max y f=2-5+2=12.

But, let the GeoGebra confirm the results. In the Input bar we enter the
following expressions, one line at a time:

ValueAtA:=f(A)
ValueAtB:=f(B)
ValueAtC:=f(C)
ValueAtD:=f(D)
ValueAtE:=f(E)
ValueAtF:=f(F)

The Algebra window will be updated with the corresponding objects as shown
in Figure 9. u

=

(ey) = 2x+1y
=(0,0)

B 7\\

RN B

R
5
e
&

ValueAtA =0 L I Y R
ValueAtB = 10 I | »
ValueAtC =12

ValueAtD =9

ValueAtE =5

ValueAtF =1 v

Input

Figure 9: Values of the objective function at the extreme points

Remark 7: After entering the expressions for the bounding lines, the
inequalities for the constrains and the feasible region, we’ll get the same results
as in Section 2. The advantages of the approach described in the solution of
Problem 6 are, at least, two folded. First, we may easily encounter LP problems,
especially when working with real-life problems, without any feasible solution.
This will occur whenever two or more of half planes determined with the
constrains don’t intersect. For example, if:

x+y<4
Jx+y=8
x>0
y20
and if we directly enter in the Input bar
X+y<4 A x+y28 A x20 A y20,
then nothing will be displayed in this Graphics window, which will not be the
case if we first enter separately the inequalities of the constrains (and then the
appropriate command for their intersection like the one for the set X in the
solution of Problem 6).
Second, we what to use the dynamic feature of GeoGebra as much as

possible. We can easily make any changes or corrections if needed. Small
changes in the coefficients of the objective function, or the constrains, or
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replacing one or more of the inequality signs with the reverse ones, may have
huge impact on the solution of the problem. Let’s see how it works.

We are going to use the GeoGebra file created for Problem 6 without the
suggested modification of the Increment of the slider. We’ve saved this file
under the name Problem6.ggb, made two copies of it and renamed them as:

Problem6(modified for Problem8a).ggb, and

Problem6(modified for ForProblem8b).ggb.

Problem 8. a) Find the maximum of the objective function in Problem 6 over

the sets
- <
Zx+y<l —2x+y<l1
3x+y <17 <5
< <
Y: X3 , and Z: y<3.
y<3 >0
x>0 -
y=0
y20

b) Find the maximum of f =5x+10y over the set X given in Problem 6.

Solution: a) Each of the sets of constrains ¥ and Z can be derived from X :
Y by replacing the second constrain in X with 3x+y <17, Z by completely

removing the second constrain in X .

Now let’s open the file Problem6(modified for Problem8a).ggb and continue
were we left in the solution of Problem 6.

In the Algebra window, first by double clicking on the object b1 we will
adjust the coefficients of x+2y=9 to obtain 3x+y =17, then by double

clicking on the object n1, we will adjust the coefficients of x+2y <9 to obtain
Ix+y<17.

And that is all.

At least for now.

As we can see form Figure 10, everything is adjusted at once. But now we
have something different. From the changes in the last six objects in the Algebra
window, which are made automatically, we see that the maximum of the
function is no longer at C(5,2), but in D. Moreover, due to the rounding, the

first coordinate of D is not the exact one (from the information displayed in the
Algebra window the coordinates of this point are D(4.67,3)). The maximum

value of the objective function is also not the exact one, but an approximate
value of it (12.33). If we want to get the exact coordinates of D and the exact
value of the maximum, we need to solve the system of two linear equations
formed by the equalities b2 and b4. We can do this on paper or employ
GeoGebra do this for us. GeoGebra has two commands for solving systems of
linear equations, Solve and Solutions, but they are available only through the
CAS module. We will use the first command. So, let’s open the CAS window.
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Input:

Figure 10: The results after changing one constrain from Problem 6
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< >

Input

Figure 11: Use of the CAS module in GeoGebra for Problem 8.a). |

Since we already have all the equations of the bounding lines, and we’ve
obtained the point D as in intersection point of the lines b2 and b4, in the Input
bar in the CAS window (see Figure 11) we enter:

141



SOLVING TASKS FROM LINEAR PROGRAMMING USING GEOGEBRA
142

Solve({b2,b4},{x,y})

The result will be displayed bellow in form of two equations, {{x = %, y= 3}} .

No rounding of the first coordinate! Now that we have the exact coordinates of
D, since the Algebraic windows already contains an expression for calculating
the values of the objective function, in the next Input bar in the CAS window we

enter:
f(14/3,3)

The result displayed bellow will be 3?7 Hence, f =2x+y has a maximum

value 3?7 at point D(%,Z&j.

Now let’s find the maximum of f =2x+y over Z. We can save the above

changes, close the file, and work on a copy of it (if we what to preserve the
changes), or continue and lose all the results we’ve just obtained for the set Y .

For the set Z we must proceed cautiously. The best is to follow these steps in
exact order, except maybe interchanging step 3 and 4. All actions are on the
objects in the Algebra window.

@
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Figure 12: Result in GeoGebra after changes for the set Z in Problem 8.a)
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1. double click on X and in the new window delete: A n2(x,y),
2. delete the inequality n2,
3. double click on C, and the new window replace b2 with b4,
4. double click on D, and the new window replace b2 with b3,
5. delete one of the points C or D,
6. delete b2.

The result should look the image in Figure 12. This time we have: the maximum
of f=2x+y over Z is 13, and it’s attained at point C(5,3).

b) Now we’ll work on file Problem6(modified for ForProblem8b).ggb. We
need to find the maximum value of the function f =5x+10y over the set X
defined in Problem 6. For this, the only change that we have to make is on
direction of the objective function n¢ and observe how everything adjusts, both
in Algebraic and in Graphics windows after that. By double clicking on the
vector n¢ in the Algebra window we repalce its coordinates (2,1) with (5,10).
This vector is quite large in “size” relative to the other objects, but we must not
make any further changes, since this will have effects on the values of the
objective function. Instead, we’ll turn off the visibility of the vector n¢ and, to
keep the direction of the movement of the line m¢ in the Graphical windows, we
enter in the Input bar:

p_f:= 0.5%n_f

and then, if necessary, change its colour and line style.

That’s all.
At least for now.
The result should look like the image in Figure 13.

Now look at the results we obtained. There are two different points at which
we have largest value of 45 of the objective function: C(5,2) and D(3,3) Both

points lie on a same objective function line:
S5x+10y=45.
For every point on this line, hence for every point of the segment with end

points at C and D (which is included in the feasible region), the value of the
objective function is 45.

So, the maximum of f =5x+10y over X is attained at infinitely many points,
each point on the segment with end points at C and D. ]
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Figure 13: Result after changes for Problem 8.b).
Some additional remarks before we finish this section.

Remark 9. In the solution of the part a) in the Problem 8 we briefly
described how we can use GeoGebra for calculation of the coordinates of one of
the extreme points. Since we had previously entered all the equations of the
bounding lines, we may repeat this procedure for every other possible

combination of bil, b2, b3, b4, b5 and b6 (in total C%z%zlS), and thus

finish the first step in the algebraic solution to the LP problem.

Remark 10. In the solution of the part b) in Problem 8, we gave an example
of a function that attains its maximum value at infinitely many points of the
feasible region. This situation, which is highly probable whenever one or more
of the bounding lines is also an isoprofit/isocost/objective-function-line, may
occur even in real life problems. Let’s look again at the Problem 5 from Section
2. Table 2 in the solution of this problem depends only on the number of units
produced at A and B, and the quantities demanded by the stores (i.e., with the
unknowns x and y it is totally independent from the transportation costs per

unit). Let’s change one of values in Table 1. We’ll increase the transportation
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cost per unit from A to II. Instead of 3 we’ll take 5. So, we will consider the

following table for the transportation costs per unit:

Table 5: Modified transportation costs per unit for Problem 5

Store
Plant 1 11 11T
A 4 5 5
B 5 6 4

In this case, the objective function will be L=-2x-2y+3280.
obtained with GeoGebra according to the instructions in this section is given in

Figure 14.

The result

@
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Figure 14: GeoGebra file for modified Problem 5

Note: If we create a GeoGebra file as described in this section, then we must add a
vector p_f:= 30*n_f (or some other value for q above 25 so the this vector is
visible in the Graphics view) and set the values for the slider around from about
=700 to 100 and set the Incrment value as 10. Observe the direction of the
movement of ms (it seems opposite of “from left to right” as we drag the dot on the
slider from left to right i.e., when the s increases). The equations in the Algebra
window are entered as described in this section, but GeoGebra sometimes
automatically overwrites the equalities. For example, the equation 250—x—y =0

is automatically overwritten as —x —y =-250.
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From Figure 14, we have that the minimum of L =-2x-2y+3280 is 2780,
and is attained both at point C(150,100) and point D(10,240). This means that

the minimum is attained on the segment with end points at C and D i.e., at
infinitely many points. But this time we have a special case of LP problem, an
integer programming problem, which adds another constrain upon the solution.

The values of x and y must also be integers (we don’t transport 3 12 , 2.8 or

0.3 units).

Hence, we don’t have infinitely many solutions for the problem. But we’ve
still end up with “too many”. How many? Exactly 141 (140 plus Table 3). This
means that, in addition to Table 3, we can create another 140 different tables,
for which the total cost of transportation will be the same (2780). Enough to fill
approximately another 18 pages of this paper. So, we end up here.

4. CONCLUSION

Graphically solving problems in any mathematics topic on a sheet of paper
often ends up with an incorrect solution. The result is usually incorrect because
students make mistakes when drawing, the drawing can by unprecise (and
precision is often very important), manual drawing takes a lot of time, to create
an accurate drawing students need to prepare appropriate tools, etc. In this paper
we offer a method to increase the interest in mathematics with using learning
software which will help for greater curiosity and increased motivation to work
and solve problems. For graphical solution of linear programming problems,
we’ve used GeoGebra. With this software students can check if their solution is
correct, to get a solution in advance which will guide them to correctly solve the
problem on paper, to get solution in short time, etc. Thus, students will be
motivated to study mathematics and to achieve better results. This is confirmed
by the results of the previously mentioned questionnaire, which was answered
by group of 20 students. We encourage, both teachers and students, to use free
software, as GeoGebra, while solving the math problems. It is a software that
has been used for a long time in education around the world and research shows
that its use gives better results.
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PA3BOJ HA EJIACTHYHOCT HA MUCJIEIBETO KAJ
YYEHUIIUTE BO IIOYETHOTO OBPA30BAHHUE

Metoau I'maBue"), Pucto Mamuecku?

Abstract. [Ipenqmer Ha pa3paboTka Ha 0BOj TPYJ € 3HAYCHETO HA HaOlamke Ha
IOBEKEe HAYMHU 3a pEIIABake Ha €JHa MHCTa 3aJada 3a pas3BojoT Ha
€JIaCTUYHOCTA Ha MUCIICEETO Kaj yYEHUIIUTE BO MOYETHOTO oOpa3zoBaHue. Bo
TPYZOT € [aJeH KpaToK IIperjiefi Ha KBAJUTETUTE HAa MUCICHETO U Ce
pa3paboTeHH TpU TMpPHMEPU TOrOAHM 3a pa3BOj Ha elaaTHYHOCTa Ha
MHCIIEHETO.

Knyunu 3060poeu. Mucieme, KBaTUTETH Ha MUCIICHETO, MaTEMaTUUKa 3a/1ada
1. Bosen

HacraBata mo maTeMaTHKa TPETIIOUMTA pEaTH3Hpame Ha TOBEKE OIIITH U
MoceOHM Ie, Mel'y KoM Kako moceOHa Ien € MoJo0pyBamke Ha KBAUTCTUTE HA
MUCIICEETO, KaKO Ha TPUMEp elacmuy-HOCmA HaA Mucielbemo Koja ce
KapaKTepH3Hpa CO YMECHETO JIECHO Jla ce MPEMHHE OJ €JIeH KOH JPYyr HauyWH Ha
peliaBambe Ha TPOOJEMOT, Jla Ce HaoraaT HOBM HAayWMHH 32 pellaBame Ha
npoOJjeMuTe MpH MPOMEHA Ha YCIOBHTE, Jla C€ MPECTPYKTYHpa CHUCTEMOT O]l
CONCTBEHU 3HacHa, IITO K& OBO3MOXH YCBOjyBak€ HOBH 3Hacwa. I[lokpaj
€aCTUYHOCTA, Of TOCe0Ha BAXKHOCT € Kaj YUCHHUIUTE J1a Ce pa3BU-Ba diabouuHama
Ha Mucieremo Koja ce KapakTepu3upa CO YMECHETO Jla ce MPOHHKHYBAa BO CYIII-
THHATa Ha U3y4yyBaHWUTE (aKTH, Jla CE COrjie/la HUBHATA BPCKa CO APYrH (PakTH, Aa
ce MOJISIUPAaT Pa3IUYHU CUTYAIlUH, Ja CE COTJIe/Ia KaKo THE MOJEIH MOXAT Jia ce
MPUMEHAT BO MPAKTHKATA UTH.

[IpeTxomHO CHOMEHATHTE KBAJIUTETH HA MHCICHETO HE € MOXKHO Ja ce
yHampemyBaaT 0e3 pa3BH-Balkbe HA yelecoodOpasHocma HA Mucieremo, Koja
MPEeTCTaByBa CTPEMEXK Jla CE OCTBApH pasyMEH M300p Ha METOAM M CPEJCTBA 3a
peraBame Ha HEKOj TpoOJieM, TPH INTO TOCTOjaHO C€ OpPHUEHTHUpaMe KOH IIeNTa
MMOCTaBEHa BO MPOOJIEMOT M KOH HAOTam-eTO HAjKPATKH IMATHINTA 32 OCTBAPYBAHE Ha
Taa 1ein. JJokaxxyBameTO TEOPEMHU U BOOIIITO PEIIaBAmHETO 33Ja4u BO HacTaBara €
HE3aMCHJIMBO CPEIICTBO 3a pa3BUBakC HA YMECHETO 3a H300p Ha cpeicTsa
(medbuHMIIUM, akCHOMH, TEOpPEMH) 3a TOCTHTHYBaWme Ha naacHa 1ien. [loHatamy,
enecoo0pa3HoCcTa Ha MUCIICHETO OBO3MOXKYBA I0jaByBakbe HA YIITE €THO HETOBO
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CBOjCTBO, a Toa € payuonarnocma. OBa CBOjCTBO Ce KapaKTEPH3UpPa CO CKOHOMHIY-
HOCT BO OJHOC Ha BPEMETO M Ha CPEJICTBATa 3a peEllaBame Ha NajcH IpoOJeM.
ParnmonanHocTa Ha MHUCIIEHETO € TECHO TIOBP3aHa CO WUabIoHU3ayujama Ha UCTOTO.
NmeHo, 3a 1a ce MOCTHTHE PallMOHATHOCT BO MUCIICKHETO €€ KOPUCTAT aITOPUTMH H
TEOPEMH, KOU KaKO TOTOBH IIAOJIOHH Ce MPUMEHyBaaT BO mpakTtukara. OCBeH Toa,
paIMOHAIHOCTA Ce JIOJDKH Ha (PaKTOT Jieka aTOPUTMHUTE U TEOPEMUTE CE OJTHECYBA-
aT Ha IeJIH KJIacH 00jeKTH.

Ilonatamy, pemaBambeTO Ha 3aJadyd € Hajmobap HAaYWH 3a pa3Boj Ha
wupoyuHama Ha mMucierpemo, Koja ce KapakTepusrpa co CIiocoOHOCTa n1a ce omda-
TaT TMPOOJIEMUTE BO LEJOCT, J1a C€ MPOIIMPU NpUMEHATa Ha TOOMEHUTE pe3yNITaTH
UTH. 3aToa, palioHATHOCTa Ha MHCJICHETO € BO TECHa BPCKA CO IIMPOYMHATA HA
Muciemero. CeTo oBa € HEMOCPEAHO MOBP3aHO CO KPUTHYHOCTA HA MHUCICHETO,
KOja c€ KapakTepH3upa CO Toa IITO Pa3IudIHHTE MHCICHa He ce mpudakaar 6e3
JIOBOJIHO apryMEHTH, TYKy THE Jia MOJUIe)KAT Ha TPOICHKA. JacHO, KpUTUYHOCTA Ha
MUCJICHETO € €JICH O] KBAIMTETHTE, KOM YOBEIITBOTO T'O JIOBENE J0 HEOIXOIHOCTA
011 yOeayBame BO TOYHOCTA HA TBPACHETO W HAOTame 00jCKTUBHU KPUTCPUYMH 3a
OIICHKA Ha HUBHATA BUCTHHHUTOCT.

2. Pa3BojoT Ha eJ1aCTHYHOCTA HA MHUCJIEHETO BO (PYHKIHja HA
Pa3B0j Ha OCTAHA-THTE KBAJMTETH HA MHCJICHETO Kaj yYeHUIUTe
BO IO4YETHOTO 00pa3oBaHue

IIpeTX0gHO W3HECEHOTO HEMOCPEIHO YKaXyBa JeKa KBAJIUTETHTE Ha
MUCIICEHETO C€ 3a€MHO IMOBP3aHHM, Ia 3aT0A Pa3BHBAETO HAa €/IEH KBaJIHMTETE HE €
MOXXHO 0€3 IpuTOoa Ja Ce pa3BMBAaT M OCTAaHATHTE KBAJIMTETH HA MHUCICHETO.
Mefytoa, corienyBajku ja CyIITHHaTa Ha €IACTHYHOCTA, LIMPOYHHATA,
ulabounHara, — [maOnoHM3alMjaTta,  palMOHANHOCTa,  LeliecooOpasHocTa U
KPUTHYHOCTA Ha MHUCIICHETO, JIECHO MOXE Jla CE 3aKIydH JeKa Kaj yYCHHUIUTE BO
MOYETHOTO OOpa30BaHME HAJJIECHO MOXEME [a ja pa3BHBaMe EJIAacCTHYHOCTAa Ha
MHCIIemheT0. TOKMy 3aToa BO CIETHHTE pasliiefyBama Ke Ipe3eHTHpaMe Tpu
NpUMepH 3a KOU Ke OuIar AaJeHHu NOBeke HAYMHU 33 HUBHO PELIaBam-e, MITO KaKO
IITO PEKOBME € OCHOBEH METO/] 3a Pa3BUBAE HA EIACTUYHOCTA HA MUCIICHETO.

[pumep 1. I'opjan xako mudpa 3a 3aKIydyBame Ha CBOjOT MOOHIICH TenedoH
MMOCTAaBMII MapeH yetupuimdpeH 6poj. 3a ga He To 3a060paBu OPOjOT, TO] 3ATTHIIIAT:

- cure nudpu ce pa3nudHHU, a 30upoT Ha cute 1udpu e 15,

- mudparta Ha eAUHULKTE € TPH MATH IoMaa of LUudpaTa Ha WIjaJUuTUTe,

- mmdpara Ha JECETKUTE € ImoMaja oj mudpara Ha CAMHUIIATE.

Omnpenenu ja mmdpara xoja ['opjan ja mocTaBUII 3a OTKIyYyBamke Ha CBOjOT
MOOMJICH.
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Pewenue. /lps nauun. Axo a,b,c,d ce mocinenoBaTeIHO PA3IUYHH MUGPH HA

WIjaIUTUTE, CTOTKUTE, JECETKUTE W CIUHUINTE Ha OapaHuOT dYeTUpUiudper Opoj

abcd , Toram

a+b+c+d=15.
bunejku Gaparmnor 6poj e mapeH, mudpara d Ha eguHuIMTe MOXxe ma € 0, 2, 4, 6
win 8. lludparta He equHUIMTE € TPU MATH MOMaia oj] nudpaTa Ha WIjaIUTUTE, 1A
3aroa a =3d <10, mrTo 3HaYHu JieKa MOXKHH CE JIBa ClIy4aja U Toa:

- axko d=0, toram a=3-0=0, mro He € MOXKHO Oumejku UAPUTE Cce

pa3nu4yHU ¥ OpOjOT € YeTHpULIH(PEH,

- ako d=2,T1oram a=3-2=6.
bunejku d=2 u a=6, a nudpara Ha AECETKHTE € MoMaia on Hudpata Ha
enuHMIMTe, T.e. ¢<d, 3akmydyBame jgeka c¢=0 wmm c=1. Cera umame nBa
ciydaja:

- ako ¢=0,Toram b=15-6—-0-2="7, ma 6apanuor 6poj e 6702,

- axo c¢=1, Toram h=15-6—-1-2=06 u Toa HE ¢ MOKHO OUEjKHU TTMDPHUTE

Ha 6apaHHOT Opoj ce pa3IuvHU.

Bmop nauun. On BTOPHOT yCIIOB clieAyBa JAeka HUpHUTE Ha EAWHHULIUTE H
WIjaIuTUTe MOXKe 1a Ounar mapoeute 3 1 9, 2 u 6, 1 u 3, coonserHo. [lonaramy,
Oouaejku OapaHWoOT Opoj € mapeH moOwBame Aeka mudpara Ha eTUHUALIATE € 2, a
mudparta Ha wijagutute € 6. Cera, 3apagu TPETHOT YCIIOB IUdpaTa Ha JECETKUTE
moxe aa e 0 wn 1. buaejku nudpurte Mopa Aa ce pa3nmuuHu 6apaHuTe Opoj € HEeKOj
o1 OpoeBwHTeE:

6102, 6302, 6402, 6502, 6702, 6802, 6902,

6012, 6312, 6412, 6512, 6712, 6812, 6912.
Ho, mery oBue 6poeBu camo kaj Opojot 6702 36upot Ha 1udpuTe € emHaKkoB Ha 15,
na 3aToa 6apaHuoT Opoj e 6702.

Tpem nauun. Onx BTOPUOT YCJIOB CleqyBa OeKa IU(PpPUTE HA EAWHUIIUTE H
WIjaIuTUTe MOXKe 1a Ounar maposute 3 1 9, 2 u 6, 1 u 3, coonserHo. [lonaramy,
Oounejku OapaHnotr Opoj € mapeH JoOuBame Jeka mudpara Ha eIUHUIKTE € 2, a
mudparta Ha wijagutute € 6. Cera, 3apagu TPETHOT YCIIOB IUdpaTa Ha JECETKUTE
Moxe nma ¢ 0 wiu 1. Axo mudpara Ha enuaurmre ¢ 0, Toram 3apaju yCIOBOT 3a
30upoT Ha 1UdpuTe J0OMBaMe JcKa Mudpara Ha CTOTKUATE € 7, T1a eHO peIIcHUe €
6702. Ako mudpara Ha meceTkute € 1, TOram 3apaid ycJIOBOT 3a 30MpOT Ha
mudpure foduBame Aeka nudpara Ha CTOTKUTE € 6, U ce Ao0uBa OpojoT 6612, KOj
HE ¢ pernieHue oumejkn nma ase eaHaksu nudpu. Koneuno, mudpara Ha TeaedoHOT
Ha ['opjan e 6702.

IMpumep 2. Tpojua npujatenu Panxe, Jlacte m Mapko TpeHnpaaTt mapaToH. Tue
“Maar 3eJIeHO, CHHO M IPBEHO Kamde, a HocaT maTtuku 0poj 43, 44 u 45. Ueto matu
HemTo 3abopaBaaT BO COOJIEKyBaJHaTa, a JICHEC BO IIKABUETO 3a 3a00paBeHU
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paboTu UMaso 3eJeHo Kamde u natuku 0poj 43. Koj nerecka 3abopaBmit paboTu ako
ce 3Hae JeKa:

- JlacTe HEMa CHHO KaIrde,

- OHOj WITO UMa MaTHKu Opoj 44 nma 3eneHo Kammye,

- Pane nema matuku 0poj 43,

- Jlacte Hema matuku Opoj 44,

- OHOj WITO UMa MaTuku O0poj 43 HeMa LPBEHO KaIrie.

Pemenue. /lps nauun. 3naeme neka Jlacte Hema cuHO Kamue. bunejku Jlacte
HEMa HHUTY MMAaTHKU Opoj 44, 3aKiIydyBaMe JeKa TOj HeMa 3eJeHO Kairde. 3Hauw,
Jlacte nMma 1pBeHO Kam4e. JIMIeTo mTo uMa MpBEHO Karmye HeMa MaTHuku 0poj 43, ma
3aTtoa Jlacte Hema matuku 0poj 43. Ho, Jlacte Hema u matuku 6poj 44, ma 3atoa T0j
uma natuku 0poj 45. Criopen toa, Pane Hema matuku 0poj 43 u 45, na 3akirydyBame
neka Pane mva matuku 6poj 44. Ho, nuietro co matuku Opoj 44 mMa 3eJIeHO Karde,
ma 3aKirydyBame neka Pame mma 3eneHo kamde. Koneuno, Mapko nMa maTuku 0poj
43 ¥ cHUHO Karye.

On mperxomHuTe pasriemyBarma ciieyBa neka Page m Mapko 3abopasuiie
pabotu Bo coblieKy-BayiHara.

Bmop nauun. Co 3 na ro o3HauuMe 3eJ1eHOTO Kamue, co I npBeHoTo Kamie u co
C cunoto kamye. [lonaramy, co 43, 44 u 45 na ru o3HAYMME HaTHKUTE Opoj 43, Opoj
44 u 6poj 45, coomerno. Ke ja momommmMe Tabemara co 3HAUMTE + M — Ha
CJIETHUOB HAYMH: aKO JHMIIETO IMOCENyBa HEKO] MpeJAMET Ha COOIBETHOOT MECTO BO
Tabenara ke CTaBUMeE 3HaK +, a aKO HE IO MMOCeAyBa TOj MPeAMET K& CTaBUME 3HaK
—. OBaa mocTamka TO MpaTd 3aKIy4yBamkeTO KAaKO W BO MPBHOT HAYMH Ha
pelraBame.

43 | 44 | 45 | 3 | C | IO
Pane _

JlacTe — - - +

Mapko -

43 | 44 | 45 | 3 | C | IO

Pane - _
Jlacte - - + |- | - | +
Mapko - -
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43 | 44 | 45 | 3 | C | IO
Pane - + - -
Jlacte - - + - - | +
Mapko + - - -

3 _

C _

I - - +
43 | 44 | 45 | 3 | C | IO
Pane - + - |+ | - -
Jlacte - - + - - | +
Mapko + - - | - -

3 - + -

C _ _

I - - +
43 | 44 | 45 | 3 | C | IO
Pane - + - |+ | - -
Jlacte - - + - - | +
Mapko + - - | =+ | -

3 - + -

C + - -

I - - +

bunejku nenec ce 3a00paBeHU 3€JICHO Kammde W MaTuku Opoj 43, 3akirydyBame
nexa Page u Mapko 3abopaBuiie paboTu Bo coOsieKyBaiHaTA.

Tpem nauun. Co 3 1a ro 03HaUNMeE 3€JIE€HOTO Karde, co L] npBeHoTo kamye u co
C cunoto xanue. [lonaramy, co 43, 44 u 45 na ru o3HaunMe natukuTe 6poj 43, 6poj
44 u 6poj 45, coomerno. Ke ja momommmMe Tabemara co 3HAIMTE + M — Ha
CJICZIHMOB HAYMH: aKO JIMIETO MOCEeIyBa HEKOj MPEAMET Ha COOIBETHOOT MECTO BO
Tabenara ke CTaBUME 3HaK +, a aKO HE IO MMOCeAyBa TOj MPEAMET Ke CTaBUME 3HAK

[IpBara TabmuIa € MOMOJIHETA CIIOPE YCIOBUTE KOU Ce€ IaJICHU BO 3a/1a4ara.

43 | 44 | 45 | 3 | C | IO
Pane -
JlacTe - -
Mapko
3 - + -
C _
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o [ -1-1 ]

Opn TabenmaTa ce riena Jieka CHHO Kalde MMa JIMIIETO KO€ HOCH MaTku Opoj 43 u
IPBEHO KaIlke MMa JIMIETO KOe HOCH MmaTtuku Opoj 45. Taka ja mobuBame ciieqHaBa
Tabena.

43 | 44 | 45 | 3 | C | 10
Pane -

JlacTe - -

Mapko
3 - + -
C + - -
I - - +

Cera, CHHO KaITde HOCH JIUIIETO KO€ HOCH MaTuku 0poj 43, a Pajge He HOcH maTuku
0poj 43, ma 3aToa Pame Hema cuHO Karrde. 3Ha4H, CHHO Kamde nMa Mapko. 3eeHo
Kare ¥Ma JINIETO KOe HOCU MaTuku O0poj 44. Mapko uma CHHO, a He 3eJIeHO KamJe,
mma 3aroa Mapko He HOCH IMaTuku 6poj 44.

43 | 44 | 45 | 3 | C | 1O
Pane - -
Jlacte - -
Mapko - - |+ | -
3 - + -

C + - -

I - - +

Pane Hocu matuku 6poj 44 1 ©UMa 3eJICHO KaITJe.

43 | 44 | 45 | 3 | C | IO
Pagne - + -+ -] -
Jlacte - - | -
Mapko - - |+ | -
3 - + -
C + - -
I - - +

Cera ymitTe MOXe J1a ce BUIU Aeka JlacTe nMa IpBEeHO Kamue U HOCH MaTuKu 0poj 45,
Mapxko HocH TTaTHKH Opoj 43.
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43 | 44 | 45 | 3 | C | 1O
Pane - + - |+ | - -
Jlacte - - + |- | - | +
Mapko + - - - |+ | -
3 - + -
C + - -
I - - +

bunejkn nenec ce 3a0opaBeHU 3€JICHO Kammde W MaTuku Opoj 43, 3akirydyBame
nexa Page u Mapko 3abopaBuiie paboTu Bo coOJIeKyBatHaTA.

Yemepm Hayun. [IpBo ke TM capuMe KarrdeTo U NaTUKUTE Ha UCT COTICTBEHHUK.
ITo3naro e meka Toj mTOo MMa maTuku Opoj 44 mMa 3ereHo kamde. Mcro Taka e
MO3HATO JeKa Toj WTO KMMa NaTuKd Opoj 43 Hema HpBeHO Kamye. 3HAYH,
COTICTBEHHKOT Ha MAaTUKUTE Opoj 43 HemMa HUTY 3€JCHO HHUTY IPBEHO Karrde, Ia
3aroa TOj MMa CHMHO Kamde. KoHe4yHo, Toj mTo MMa maTwku Opoj 45 uMa IpBEHO
Karue.

Cera, 6unejku JlacTte HeMa cHHO Karmde W HeMa matuku Opoj 44, Toj Mopa ma
uMa IPBEHO Kamie U naTuku 0poj 45. Pane Hema natuku Opoj 43, ma 3atoa Toj MMa
nmaTuku 0poj 44 u 3ejeHo Kamde, a Mapko To WMa MPeoCTaHaTHOT Tap MaTUK| Opoj
43 u cHHO KamJe.

Bunejku neHec ce 3a0opaBeHM 3€JICHO Kamde W NaTWku Opoj 43, 3akiydyBame
neka Pame u Mapko 3abopaBuie paboTu Bo COOJICKyBaTHATA.

[pumep 3. Ha maxoscku TypHup ydectByBajie 10 maxuctu. Cekoj maxuct
UTPAJI CO CEKOj OJT MPEOCTAHATUTE IIAXKUCTH IO €THA TTapTHja.

a) Konky mapTum u3urpai cexoj urpad?

0) Konky maptuu ce BKYITHO OJIMTPaHU Ha TYPHUPOT?

Pemenue. a) Ilps nauun. Urpaunte na ru o3Haunme co opoesute ox 1 mo 10.
Bunejkn n300poT Ha UrpavdoT HE BIWjac Ha OPOjOT HA MAPTUUTE KOM T'M UTpa eAeH
urpad, ke Td UCIHIIEME MOKHOCTHUTE 32 €ICH OJ UrpaduTe, Ha MPUMEP 3a UTPadoT
1. Umame

lu2,1u3, 1u4, 1us5 1u6,1u7,1u8, 1u9,1ulo.
bunejku e ceemHo Koj o WrpadnTe CME T'O pasrieayBalie, 3aKiIydyBaMe JCKa CEKOj
Urpav oAurpai mno 9 napTuM max.

Bmop nauun. bunejku cexoj urpad Mopa Aa Urpa co CeKOj OJ MPeocTaHATUTE
Wrpayd, Ja pasrienMae eleH Wrpad, Ha mpumep npBuoT. IIpBuOT mrpay mopa ma
urpa co cexoj ox npeocranarure 10—1=9 urpauwm, 1.e. T0j Urpa 9 naruu. bunejku
€ CeelIHO KOj OIl MIpavyMTe CME IO pasrienyBaje, 3aKiIydyBaMe JIeKa CEKOj urpad
ourpan mno 9 mapTuM max.
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Tpem nauun. Cexoj o 1eceTTe Urpadu aa ro
O3HAaYMMeE CO TOYKa U rpadUuKy, CO OTCEUKH, /2
T'H IpUKaXeMe CUTE MApTUH KOW TOj T'M OJHUIpaj
(up-texx nmecHo). Bxymamor Opoj maptum e
€IHAaKOB Ha OpOjOT Ha OTCEYKHUTE CO KOM CMe
MOBp3ajic €IHa TOYKa (Mrpadv) CO MPEeOCTaHATHUTE
TOYKM (MTpayd), IITO 3HAYM JeKa CEKOj urpad

OJIMTPaJT TOYHO 9 TapTHH IaxX.

0) /lps nauun. Jla TM 3anuineMe CUTE MOXKHH TapTUH KOW K€ ce M3UTpaaTr Ha
TPHHUPOT, NIPH ITO K& BHUMaBaMe MapTUUTE KOU TH UTPaaT UCTU WUTPAYH Ja HE TH
OpoeBH 1B MATH.

Iu2 |1u3 | 1u4 |1us5 |1u6 |[1u7 |[1u8 |1u9 | 1ul0 |9 naprun
2u3 |2u4 |2uS5 |2u6 |(2u7 |2u8 |{2u9 |2 wu 8 maptun
10
3ud4 |3us5 |3u6 |3u7 |3u8 [3u9 |3 u 7 mapTun
10
4us5 |4u6 |(4u7 [4u8 |4u9 |4 mu 6 maptuu
10
5u6 | 5u7 |5u8 |5u9 |5 =n 5 maptun
10
6u7 |6u8 [ 69 |6 mn 4 mapTun
10
Tu8 | 7Tu9 |7 wu 3 maptuu
10
8u9 |8 m 2 mapTuu
10
9 mu 1 mapTtuja
10
Koneuno, ako ru coOepeme OpoeBHUTE Ha MapTUUTE BO IIOCJIEAHATa KOJIOHA
nobuBame JeKa Ha TYpHHPOT ce W3UTPaHu BKYITHO

94+8+7+6+5+4+3+2+1=45 naptun max.

Bmop nauun. Jla ru cobepemMe TOCIIENOBATETHO CUTE MTAPTUN KOU T'M U3UTpale
UTPAYUTE TTOYHYBAjKH O IPBHOT A0 IMOCIECIHUOT urpad. [IpBuoT urpad m3urpar 9
napTud. BTopHOT urpad mcTo Taka wm3urpan 9 mapTUM, HO Beke ja OpoeBMe
mapTjaTa Koja ja M3Wrpayl co NMPBUOT Wrpad, Na Taka moOwBaMe 8 HOBH TApTHU.
Tpetuot urpay usurpan 9 napTuu, HO Beke T OPOEBU MAPTUUTE KOU TH U3UTPAT CO
NPBUTE JIBajlla UTpavd, Na Taka qoouBaMe 7 HOBH naptuu. [loHaTamy, 3aKirydyBaMme
JIeKa YEeTBPTUOT UTpad WU3Urpall 6 HOBU MApTHH, NETTHHOT Wrpady M3Wrpai 5 HOBU
MapTUH, IIECTUOT U3NUTPaT 6 HOBH MAPTHUH, CEIMUOT 3 HOBU MAPTUH, OCMUOT 2 HOBU
MapTHH W IEBETTHOT |1 HOBa MapTHja M TOAa Taa CO JACCETTHOT WUTpad. 3a ACCETTHOT
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urpad ce OpOeHM CHTEe MapTHH KOM TI'M H3UTpal. 3Haud, BKYIHO C€ HM3WUTPaHU
9+8+7+6+5+4+3+2+1=45 napruu max.

Tpem nauun. Jla ru npukaxeme rpapuuKu
CHUTE MapTUH KOU TH U3UTpalie Urpaymre. 3a mo-
IPETJIEHO HEeKa CEKOj Urpady ro O3HauYhuMe CO
eHa TOYKa , a TOYKUTE TH O3HAYUME CO
opoesure om 1 mo 10. Toram Opojor Ha
NapTHHUTE € €IHAKOB Ha OpOjoT Ha HaLpTaHHUTE

OTCEYKH YMH KPajHH TOYKU CE€ TOYKUTE CO KOU
CE 03HAUEHU UTPAYUTE.
[IpBuoT urpau msurpan 9 mapTum Kou ce

NPUKaXXaHU Ha LPTEKOT JIECHO.

Bropuot urpay uzurpan 9 naptuy, HO Taa co IPBUOT Urpad Beke € IpUKakaHa,

ma 3aroa UMame 8 HOBM MapTuUH (LPTEX N0y JeBo). TpeTnor urpau usurpai 9

[apTHH, HO OHUE CO IIPBHUOT U BTOPUOT UIpau ce Beke MPUKaXaHH, I1a 3aToa UMaMe
7 HOBM MapTHH (LPTEX JOTY JECHO).
3 4 5 6

[

3
Co aHajoOrHM TIOCTamlKU J00MBaMe JeKa 3a YeT-BPTHOT wWrpad Tpeba 1a
JnojaneMe 6 HOBHM MapTHH, 3a NETTHOT Wrpady 5 HOBH MApTHH, 3a MIECTHOT Urpad 4
HOBH MAPTHH, 32 CEIMHUOT WUTPAIl 3 HOBH MAPTHH, 32 OCMHOT 2 HOBU MAapTHU U 32
neBeTTroT 1 HoBa maprtrja. KoHedHO, BKYITHO C€ H3UTPaHU
9+8+7+6+5+4+3+2+1=45

MapTUH IIaX.
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Yemepm nauun. AKO UTpadnTe
TH  TPEeTCTaBUME  CO  TOYKH
pacropeieH Ha KPY)XKHHUIIA, TOTall
OpojoT Ha MapTUUTE IIaX KOW Ce
W3WTPaHU HA TYPHHPOT MOXKEME Ja
ro mgobueme co TpeOpojyBame Ha
OTCEU-KHUTE MPUKAKAHU HA IPTEIKOT
JIECHO.

3. 3akaydox

Pa3BuBameTO Ha KBAJIUTETHTE
Ha MUCIICHETO € BaKHa 3a/la4a Ha
HAacTaBarta 1o mMaremaruka. [lpuroa, 3apajayu HETOCTATOKOT HA TCOPUCKUTE 3HACHA U
BOOTIIIITO MAJIMOT Opoj Mpea3Haema ce JOOMBa BIIEYATOK JIeKa Kaj YUCHHUITUTE Off
MOYETHOTO O0pa30BaHUE CKOPO U Ja € HEBO3MOXHO Jla C€ Pa3BUBaaT OMNpPEACICHU
KBAJIMTETH HA MHCICHETO, KAaKO INTO C€ JIa0o4MHAaTa, IelecooOpa3sHocTa H
palMoHANHOCTA Ha MHCICHETO. Mefyroa ako ce 3emMe MpeJBHI JeKa OCHOBHATA
ajaTka 3a paBUBamkE Ha €JAaCTUYHOCTAa HA MUCIICHETO € HAOramkeTO Ha IOBEKe
HAYMHH 32 pellaBare Ha eJIHAa UCTa 3aJa4a, MPETXOJHO pasrieJaHuTe U MHOTY
JIPyTH TPUMEPH YKa)KyBaaT Jieka HE II0CTOjaT HHKAaKBH NPEUYKH 3a pa3Boj Ha
€IacTUYHOCTA HA MHCICHETO Kaj YUYCHUIIMTE O] TOYETHOTO OOpa3oBaHUE.
[Monatamy, ako ce 3eMe MPEIBUJI JcKa MPHU Pa3BUBAKETO HA €CH O] KBAITUTETUTE
HA MUCICKHETO HUE BO ONpEJCICHA MepKa T'M pa3BUBAME M TIPEOCTAHATHTE
KBaJIUTETH HAa MUCICHETO, MOKEMe CIIO0OHO J1a KaXKeMe JIeKa CO Pa3BHBamkE Ha
eIaCTMYHOCTa Ha MUCICHETO HHE BCYIIHOCT TH pa3BUBAME CHTE KBAJUTETH Ha
Muciemero. OBa MoceOHO ce 0JHECYBa Ha IEJIeCO00pa3HOCTa U PAIlHOHAIIHOCTA Ha
MHUCJICEETO, OWJIEjKM HAOrarhbeTO Ha TOBEKE HAYMHHU 3a pellaBamke Ha €IHA HCTa
3a/laya OBO3MOXKYBa CTEKHYBamhe yMeCHa 3a PasyMeH H300p Ha METOIH U CPEICTBA
3a pelllaBame Ha CIIMYHU 33/1a49H U HAOI'akhe Ha HajKpaTKU MATHIITA 32 OCTBAPYBAbE
Ha [OCTaBeHaTa IIeJ, MITO € TECHO MOBP3aHO CO EKOHOMHUYHOCTA BO OJHOC Ha
BPEMETO U CPEJICTBATA 32 PelllaBamk-e Ha JaJICH MpoOIeM.

158



References

[1] Tanues, U.: AHaANTUTUKO-CUHTETUUHUAT METO Ha MucieHe B YKM,
OO0yuennero no MmaremaTuka, 2/1986

[2] Tmemenxo, b. B.: BepXy pa3BUTHETO Ha MUCIICHETO U PEUTa B yPOITUTE TIO
MaremaTuka, MaTeMaTrKa B 11Koje, 3/1976, Mocksa

[3] Mamgecku, P. (2019). Meronuka Ha HacTaBata Imo MaTeMaTHKa (TPETO
uznanue), Apmaranka, Ckorje

[4] Mamueckw, P., I'maBue, M., AneBcka, K. (2022). MatemaTnuky HalapeHUTE
YYCHHIIN BO TTOYETHOTO 0OpaszoBanwme, [lemaromku dhakynret, Cromje

Y Tlenaromku dakynrer, Yuus. C. Kupun u Meroauj, Cromje
mglavche@gmail.com

2 TIpodecop Bo nensuja, Crornje, Makenonuja
risto.malceski@gmail.com

Corresponding author: mglavche@gmail.com

159



160



ISBN 978-608-4904-04-5(eneKTpOHCKO n3gaHue)
ISBN 978-608-4904-03-8(nevaTeHo nsgaHve)
UDC: 373.5.091.275:51(497.7:100)

INUCA TECTUPAILETO BO CPEJHUTE CTPYUYHH YUUJIUILITA

Amna JlumoBcka, Tomu IumoBcku

A6crpakt. Bo oBaa cratuja mpaBume neranna aHanusa Ha [IMCA tectupama
BO JIpYTH 3eMju U npaBume kommapanuja co [IMCA Tectupame cripoBeIeHO BO
CpPeIHO CTPYYHO YUYWIMINTE BO Hammara 3eMja. JloOmBame pesynTaTd 3a
KBAJIMTETOT Ha 0OpPa30BHUOT MPOIEC CO U 0e3 cooJBETHA TOJATOTOBKA 32 OBOj
BUJI TECTHPAIbE, KAaKO U pa30uparme Ha MaTeMaTHKaTa BOOIIIITO.

1. BoBex

IIporpamata 3a MeryHapomHo oreHyBambe Ha ydeHurute ([IMCA) e
HajTOJIEMOTO HCTPaXXyBarmke BO CBETOT BO OOPa30BAaHMETO, KOE € 3a IMPB MaT
cnposeneHo o Opranu3anujara 3a eKOHOMCKa copaborka u pa3soj (OELLI)
KOH Kkpajor Ha 1990-tmte. Heroma 1men e coOupame Ha MeryHApOITHO
CTIOPEITUBY TIOJATOIH 32 3HAEH-aTa M KOMITETCHIINATE HA YUYEHHUIIUTE Ha KPajoT
Ha OCHOBHOTO 00pa3oBaHME Ha BO3pacT o 15 romuHM, BO TpH Mojpayja:
ja3WyHa MHCMEHOCT, MaTeMaTH4Ka MUCMEHOCT U MPUPOAHU Hayku. OCHOBHATa
uneja Ha tectupamero [IMCA e uernmryBame Ha MMOATOTBEHOCTA HA MITATUTE 32
LEJIOCHO U aKTHBHO YYECTBO BO OIIITECTBOTO. Bo monpayjero mMaTeMaTHUKa
MHCMEHOCT OCHOBHU KPUTEPHYMH 32 OLICHYBAIbE CE: UHTahE, HHTEPIPETHPAbHE
W pelraBame Ha JajJeH MPoOJIeM, CO OpraHU3Wpame, TOJNKYBamke Ha OaJeHU
nHOpMAITIH 1 H30Hpamke Ha METO/T 32 PEIlaBambe.

Co pesynrature ox IIMCA tectupamero ce aoOuBaar OAroBOpPH Ha
CJIETHUBE TIpallama;

- Konky no6po y4uaumreTo v MOATOTBYBa YISHHUIUTE 33 KUBOT?

- Jlamu ydYeHWUIMTE CE€ CHOCOOHW Jla aHAJIM3Wpaar, JIOTUYHO Ja

pacyayBaar u epeKTHBHO Jia TH [IPeHecaT CBOUTE UicH?

- Jlanmum yyeHHWNHTE C€ CTIOCOOHU /1a y4aT M J1a CTeKHyBaaT HOBU BEIITHHU

BO TEKOT Ha HUBHUOT >KUBOT?
- Jlamu ke 3HAaT YYCHUIMTE KaKO Ja T'M peuiaT NpoOJeMHTe CO KOU
HUKOTAI He ce cpeTHaje?
- Jlamm ke MOXaT yYEHHWIIUTE Ja Ce CIpaBaT cO Op3WTe MPOMEHH, Ja TO
MPEro3HaaT U UCKOPUCTAT MOTEHIU]AJIOT HA HOBUTE TEXHOJIOTHUH?
3eMjuTe YYeCHHUUYKU T'M KOPHCTAT PE3yJNTaTuTe U MOJAATOLUTE COOpaHH OX
tectupambeTo [IMCA mpm noHecyBame OIJTyKH CO Iell Ja Tro Imomodopar
KBJIUTETOT M €()UKACHOCTA HA HUBHUTE OOPA30BHU CHCTEMHU.

2. [INCA TECTUPAKETO U PE3YJITATUTE HA HAIIIATA 3EMJA

Perryonuka CeBepna MakeoHuja IO 4YETBPTH IaT YYeCTBYBa Ha
Mel'yHapOIHTOTO Tectupame [Ilmca co 7850 cpemHOmIKOMIM, a OBaa TOJHMHA
NPBIIAT K& C€ MEPU M KPEATUBHOTO Pa3MHUCITyBah¢ HA YICHUIIHTE.
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IIMCA TECTUPAILETO BO CPEJJHUTE CTPYYHHU YUNJIINIITA

Bo mepuomor om 20.2.2022 mo 10.4.2022 e peamusmpaHa oOyka co
npod)ecopuTe Mo MaTeMaTuka Kou Bo yueOHaTa 2022/2023 roavHa u3BeayBaaT
HACTaBa BO TMpBa TOAWHA cpenHo oOpaszoBanue. llenra Ha oOykata e
HH)OPMUPAKHE B OCITOCOOYBamkE Ha MPOoQecopuTe 3a MOATOTOBKA HA YUCHUIINTE
3a [IMCA Tectupamero. OOykaTa € CIpoBeIeHa OJ COBETHHIM Ol buporto 3a
pa3Boj Ha 0O0pa3zoBaHUETO U J{PKABHUOT UCIIUTEH IICHTAP.

Mogenor Ha 3amaun ox I[IMCA Tpeba ma  0BO3MOXH HacTaBaTa IO
MaTeMaThka Ja ce IUIaHupa Bp3 ocHoBa Ha IlmjakeoBata Teopwja Ha
KOTHUTUBHUOT Pa3Boj, Koja Oapa Ha Jenara Ja UM ce OBO3MOXKHU Jla y4aT CaMHu.
HacraBata mno maremaruka He TpeOa na Ouje HacOYEHA KOH NMPEHECYBamke U
YCBOjyBamk€ Ha TOTOBM 3HAaeHa, TYKy KOH aKTHBHO CTEKHYBalk€ Ha HOBHU
3Haewa. [Ipu pemasame Ha 3anaunte mo mojaenotr Ha [IMCA norpeOHO e na ce
MPUCYTHU CJICTHUTE MTPUHIIUTIN.

-  Kopucreme Ha pa3indHN TEXHUKW/CTpATETHH Ha TOY4YyBame BO
HacTaBaTa M0 MaTeMaTHKa BO KOW yYEHHIINTE CaMOCTOjHO TO YHUTaar,
WHTEPIPETUPAAT W peliaBaar NajcHUOT MPOOJIeM CO OpPraHU3Hpame U
TOJIKYBak€ Ha JajeHH HWHPOpMAalMh M W30Upame Ha METOa 3a
pelraBame.

- bapame ydueHunure na rU 00pa3NoKyBaaT CBOWTE MaTEMAaTUYKU
pa3MuCIyBama.

- llpudakame m oxpabpyBame Ha pa3IUYHA TIOCTAIKH, METOIH U
TEXHUKH Ha PellaBame, KOU I'M KOPUCTAT YICHHIIUTE.

On odwummjamaata crpana Ha OELJ] MoxemMe nma TH TIpeB3eMeMe
MOJIATONINTE OJ pe3yATaTWTe 3a Hamara JAp)kaBa W BTOpOpaHTHpaHaTta
Cunramyp.

CeBepna Makenonuja (IIMCA 2018)
* Bo mpocek, 15-rogmmauiute go6wBaar 394 moeHW MO MaTeMaTHKa BO
criopeba co mpoceynure 489 moenu Bo 3emjure Ha OEIL/]. JleBojummara
uMaaT MoJ00pU pe3ysTaTH OJf MOMYHIbATa CO CTATHCTUYKK 3HAYajHA pa3jinKa
onx 7 moenu (mpocek Ha OEL/]: 5 moeHn moBeke 3a MOMUYNIHATA).

Cunranyp (ITUCA 2018)
* Bo mpocek, 15-rogumnaunuTte poduBaar 569 MOeHW MO MaTeMaTHKa BO
cropenda co nmpoceurnte 489 moenn Bo 3emjute Ha OEL[Jl. MomunmaTa nMaat
oI00pH pe3yATaTH OJ IeBOjUYN-ATA CO HECTATUCTHUIKH 3HAUAjHA pa3iinka on 4
noenu (npocek Ha OEL/]: 5 moeHn OBUCOK 32 MOMYHEATA).

3HauuTeNHO MOA00pUTe pesyntaTd Ha CUHramyp BO OJHOC Ha Halara
npkaBa Bo 2018 rommHa ce mODKaT Ha TMOBeKe (akTopu. BomemayBameTo Ha
KemOpuyr mporpamara Bo OOpa30BHHOT TPOILEC IO MPEIMETOT MaTeMaTHKa
OuUWrIeIHO He JaBa pesynrtatd. CHHPATHOTO YYC€HE HAa MaTepUjaIoT U
MEMOpHpameTo Ha (aKTHTE HE ja pa3BHBaaT MHTYHWIIMjaTa HA YYCHHUKOT IPHU
pemaBame  Ha  TpakTWYHA ~ npobOnemu.  HesamHTepecmpaHocta  u
HEMOTHUBUPAHOCTa Ha mpodecopure 3a CIPOBEIyBakE KM MCHYBamke Ha
HAaCTaBHUTE TIPOTPaMH Kako OW ce IPHOIIKIIIE KOH TPSHIOBUTE M OapameTo Ha
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IIMCA TECTUPAILETO BO CPEJJHUTE CTPYYHHU YUNJIINIITA

MPaKTUIHU  peIleHWja Ha  CEKOjAHEBHUTE MPOOJeMH  JOBeAyBa 10O
HEKOMIIATHUOWIIHOCT HAa 3HACHAaTa KOM T'M I0CEIyBaaT HAIIUTE YYCHHUIU U
npaktuaHuTe 3anaun ox [IMCA tectupamara.

3. UICTPAXKKYBAIGE

Kako mpodecop BO cpelHO CTPydHO YUYHWIMINTE, PEIIUB Jia CIpPOBEIaM
UCTPaXKyBame, KOJKYy Ke ce MoaoOpu 3aeHTEPHUCUPAHOCTa HA YUYCHUIIUTE,
JIOKOJIKY Ha YacOBHTE C€ MPOMEHHM KOHIICNTOT HAa 3aJa4uTe U CE BMETHAT
npuMerHymBH  3amadn on TumoT Ha IIMCA Ttectmpamero. CekojIHEBHHUTE
NOTEIIKOTHA HAa MOWTE 4YacoBM 3a Ja IO TNpUBIeYaM BHUMAHUETO Ha
HE3aCHTCPUCUPAHUTE YUCHUIIM 33 NMPEIMETOT MaTeMaThka MU Oea MOTHBAIIH]a,
a M KaKo IJIaBeH KOOPJWHATOP OJ] MOETO YUMIIMIITE OEB IMPEKTHO WHBOJIBUPAHA
Bo [IMICA TectupameTo.

HcrpaxyBameTo TO CIPOBEIOB 3a Temara [IporopluoHaTHOCT Ha
BennunHUTe. Kako mocienHa Tema Koja ce M3ydyBa BO IIpBa rOJMHA CPEIHO
cTpy4dHO oOpazoBanue. OBaa TeMa € €IHA O] HAJTIOTPECOHUTE 3a HATAMOIITHOTO
oOpa3oBaHHe Ha MOWTE yYCHUIH. VICTpakyBameTo TO CIIPOBEIOB BO CTpyKarta
JIUYHU YCIIYTH, CEKTOP (pu3ep, BO JiBa Kiaca.

TEMATCKO IIJTAHUPAIBE
HacnoB Ha Tematcka neiauna: [TPOINOPIIMOHAJIHOCT HA
BEJIMYUHU. MTPOUHEHTHA CMETKA

Penen Bpewme Ha
. HacraBHa equnuia .
0poj peanm3anyja
83. Pa3mepu u nmponopiun IV-3u
84. Bex06un. 3amaum o pa3mep 1 IpOIMOPIIAN IV-3u
85. [IpaBa u 0OpaTHa IPOTOPIIMOHAIHOCT IV-3m
86. Bex06un. 3amaum o mpaBa u 06paTHa IPOIIOPIIHOHATTHOCT IV-4n
87. [IpocTo TpojHO IpaBwIIO IV-4n
88. Bex6wn. 3amaun o IpocTo TPOjJHO TIPABHIIO IV-4n
89. [IpouenTHa cMeTKa V-ln
90. Bex6Ou. 3anaun o1 mpoIeHTHA CMETKa V-1u
91. IIpoMuina cMeTka V-lu
92. Bex6u. 3amaun o1 npoMIITHA CMETKa V-2u
93. Bex6u. 3amaun o mpoleHTHA U IPOMIITHA CMETKa V-2u
94. [ToBTOpYBame Ha TeMaTa V-3
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95. [ToaroroBka 3a mucmeHa padora V-3n
96. YerBpra nicMeHa pabora V-3u
97. AHanu3a Ha mucMeHa padora V-4n
98. IToBTOpYBamkE 32 MPONOPITHNOHAITHOCT V-4n
99. IToBTOpYBame Ha TeMaTa V-4u
100. lNoguiHO nMoBTOpYBamke VI-1a
101. lNogumrHO TOBTOpYBakHE VI-1n
102. IN'ogumHo noBTOpYBame VI-1a

Bo I kmac Temarta ja mpenazoB CIOpe] HACTaBHATa IporpaMa Io
MaTeMaThKa BO CPEIHO CTPYYHO O0Opa3oBaHHE, HO HAa CEKOj 4ac BMETHAaB U
mpuMeHHBH 3afaun 1mo mpumepoT o IIMCA. Bo I, kmac tremara ja npemamos
CriopeJl HACTaBHATa TNporpamMa II0 MaTeMaTHKa BO CPEJAHO CTPYYHO
oOpa3oBanue. Ha kpajoT o1 TeMaTa Ha CUTE YYCHUIIM UM OeIllle JaJeH HCT TECT
BO KOj OCBEH BOOOWYACHHWTE 3a/a4yu O] IporpamaTa Oea MajgeHu W 3aJadd 10
npumepot ox [TMCA.

IIpumep 3a gac co 3amaun ox [IMCA
Be:xkou: [IponopunoHaTHOCT HA BeJIUYMHUTE

3agaya 1. Oppean 1o HEMO3HATHOT YWICH X BO MPOIIOPIIMHTE
a) 3:2=x:4; 0) (5-x):(5+x)=1:2.

3apaua 2. Enna pabora moxke nma ce 3aBpmm o 20 pabotHui 3a 288 daca.
Konky pabotHumum ce motpeOHM 3a McTaTa paboTa Ja ce 3aBpiuu 3a 16 geHa?

3apaua 3. Cyma ox 18 000 memapm Tpeba ma ce pa3gend Ha TpH Jejia BO
onHoc 4:3:2. Konky n3HecyBa cekoj nen?

3agaua 4. IlpBata ¢a3za 3a ga ce nzbenu Kocata CO BOJIOPOJ HEPOKCUI €
MOJITOTOBKA HA PAacTBOPOT. 3a Taa IeJ HU Ce MOTPEOHM MEepPXUAPOT U BOJA.
KoHuenTpanujara 3aBucH 0J] CTpyKTypara Ha Kocara Ha MYLITEPHUTE, aUCTO
TONKY BakHA € W I[I0caKyBaHaTa HHjaHca. 3a MOpO3HA TEHKa Koca,
KOHIICHTpaIfjaTa ke oume monucka (3-6%-TeH pacTBop), a 3a MOTrycTa U CHITHA
Koca MaJiKy noBucoka (8-12%-ten pactBop). 3a oOnyHa ynorpebda MelaBuHa
o1 6-12%-1eH pacTBop.

Bo Tabenata ce majgeHu omHOCUTE Ha TIEPXUAPOI U Bozda 3a 3,6,9 u 12%-ten
pacTBop.

%-TeH paTBoOp HEPXUIPOJI : BOAA
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1:9
2:8
3:7
2 4:6

[TocakyBaHaTa KOJMYMHA HA CMecaTa 3aBUCH O JIOJDKMHATa Ha Kocata. [lo
npasmio 50 ml pacTBop emoBoneH 3a cpeaHa kKoca, a 100 ml 3a monra xoca. 3a
noJo0pyBame Ha eprKacHOCTa Ha IPOU3BOJOT, 5 KallKi aMOHHjaK ce J0AaBaaT

Ha 50 ml pactBop. 3a aa ro 3amedenuTe CocTaBOT, MOXETE Ja Jojanere 6 ml
aJIKaJICH IIIaMITOH WJIM TEUCH CallyH BO HETO.

O |\ |W

—

Mpamame 1/4

Konky ml Boga tpeba ['opuan na m3merna co 250 ml nepxumpon 3a ga nodue
3%-teH pacTBOp?

Mpamame 2/4

Bo enHo dpusepcko cTyauo mMma 3 MyIITEPHKH KOW cakaaT Jia ja OCBeTJaT
cBojara kKoca. /IBe o1 HMB MMaaT CpejiHa KOca, a Tperara MyNITepHKa hMa
nmonra koca. Konky ml Boga u nepxunpon ce morpedHu 3a na ce Harpasu 9%-
TEH PacTBOP 3a JIa CE OCBETIN KOCaTa Ha OBUE MYIITCPUKHU?

Mpamame 3/4

Enno ctynmo mecedno ymorpebysa 151 om 6%-TeH pacTBOp Ha MEPXUAPOT U
BOJIa 3a MOTpeOMTEe Ha HUBHUTE MymTepuu. Koiaky ml mepxuapos cTyauoTo
Tpo MeceuyHo? Koiky Kamnku aMOHHWjak ce MOTpeOHH 3a Ja ce Mmomodpu
euracHocta Ha pactBopoT? Konky ml amkameH mammoH ce moTpeOHH 3a aa
ce 3aae0enn coctaBoT?

ITpumep 3a Tect

IIpamama
1. ITo e pa3zmep?
2. IITo e mpomopumja?
3. Koe e 0CHOBHOTO CBOjCTBO Ha IIpoIopmrjaTa?
4. ITo e mpomoipKeHa mporopitja?

3agaun
3agava 1. 3a0KpyKM TM KOJIMYHHUIIMUTE KOU HE CE pPa3Mepu U OOpPa3lIokKU TO
CBOjOT OJITOBOP.
a) 7:21
0) 35:5kg
B) m:/2
r) 3l:3cm
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3amauya 2. Bo mapanenmkara Iz ce oapkam u30op 3a mpercemaTes Ha
napanenkara. Bo Hajrecen n30op Oune m3dpanu yuyenuuute lamjan u JoBaw.
Co ocBoenu 25 rnacosu Jlamjan ro modeann Joan Bo oxHoc 5:3.

Mpamame 1/3

Koy rmacosu mo6wmt JoBan?

Oxarosop
[Mpukaxcu ja mocTamkaTa 3a pelaBambe

Mpamame 2/3
Konky BkymHO ydeHunu Opoena napanenkara?
Oxarosop
Mpamame 3/3

Konky rmacoBu Tpeba na msryoum Jlamjan Ha cMeTka Ha JoBaH 3a na mobean
JoBaH co 4 natu noseke riacosu?

Oxarosop
[Ipukaxu ja mocramnkara 3a pelaBame

3agaua 3. Xpanara xoja ja jageme ro cHaOAyBa HAIIETO TEJIO CO eHepruja. 3a aa
Ouzmat 3apaBu M BO J0Opa opma Ha JIiyfeTo UM € MOoTpeOHa u3baslaHCupaHa
XpaHa CO 3IpaBH XPAaHIWBHA COCTOjKH. Bo Tabemata momony ce OaJcHH
HYTPUTHBHHUTE BPEJIHOCTH Ha €/{HA 3€JICHIYKOBA CYIIa OJ1 JOMATH.

Konnuuna/ cepBupame
Hytputuau dakTtu PBHP

Mactu 0 g

Xonecrepon 0 g

Cepsupame Y2 yama (120ml) | Coguym 710 mg

Kanopuu 90 Jarnexunparu 20 g
Kanopuu ox mactu 0

Hekepn 15 g

[Iporennu 2 g

Mpamame 1/4
Konky ml mma Bo 3 % garmw cyma?

Oxarosop
[Mpukaxu ja mocrankara 3a peliaBame

IMpamame 2/4
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KonzepBata uma 2,5 cepBupama O] MOJOBHHA Hamia. AKO 3a CEKOE JIHIE €
norpeOHO 1 wama 3a OOpPOKOT OJ] cyma, KOJKY KOH3EpBU cyna ke Ounar
notTpeOHu 3a 8 mma’?

Oxarosop
O06pa3I0kKu TO CBOjOT OATOBOP

IIpamame 3/4
3a 3apaB OOpPOK HMAEATHO € MOTPEOHO OMHOCOT Ha jarJieXHIpaTHTE CIpeMa
mekepute Ja € 3:2, NPOTEUHHUTE CIpeMa COJIUYMOT 5:4, a Ha jarJIeXuJpaTuTe
cupema comuymoT 30:1. Koj e wumeanHMOT OJHOC Ha NPOTCHHH, COIUYM,
jarnexupaT U MeKepr BO €1eH 00pOK o 31paBa cyma?

Oxarosop
[Ipukaxwu ja mocTankara 3a pelaBame

IIpamame 4/4
Jlanu oBaa cyma e ueatHuoT 00poK - cyna?
Onarosop
[Mpukaxcu ja mocrankara 3a peliaBame

3anaua 4. Bo egno yamnmumre uma 750 ydeHUIH 1 225 yUSHHUITH ce CO Ci1abu
orieHkH. KoJiky yueHuIm ce co ciabu OleHKH N3pa3eHu BO TPOLICHTH?

3agaua 5. I1pu nmpesos Ha 400 000 kg jabonka, 20%o 011 HUB ce HEYTTOTPEOIUBH.
Konky Tonm jabonika ce HEynoTpeOIHBH?

3agaua 6. Cyma ox 8 000 genapu Tpeba Ja ce MoAenr Ha TPH Jiela BO OJHOC
5:1:3. Konky n3HeCyBa cekoj nen?

4. 3AKJIYUYOK

Ha kpajoT oJ1 cipoBeIeHOTO HCTpaXKyBarme JOOUEHH Ce CISTHIOTE PEe3yJITaTH.

Knac | mpocek npen IIMCA tect [Ipocek o [TMCA Tect
I 2,28 2,73
I 2,46 1,83

MosxkeMe 1a 3aKiydyuMe JieKa YYCHHIIUTE JOKOJIKY BO IporpaMara Hemaat
BMmeTHaTO 3ana4du o [IMCA TecTupameTo uMaat 1mocinadu pe3ynTaTd, BO OJHOC
Ha OHHME KOHM C€ cpeTHaie co 3amaum of Toj Tur. Cmeram nexa [IMCA
TECTUPAHETO € HECOOABETHO 3a HAIIETO 00pa3oBaHUe, OWICjKH KOHIICIITOT Ha
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KemOpun nporpaMaTa He TH NMpHIIpeMa 3a pelliaBambe Ha BAKOB TUII Ha 3aj1adH.
HajmpBo 3a 1a Moxe Ja ce crpoBejie BaKBO TeCTHpame Tpeda Ja ce MPOMEHHU
KOHIIETITOT Ha paboTa Ha YacoBuTe. [la ce BMETHAT COOJBETHH MPOTPAMH 3a Ja
MOYKEMe Jia TO CIIPOBEJIEeME U J]a MOKEMeE Jla OHMJIeMe OIIEHETH I10 TOj KOHIICTIT.

Cmabuor pesynrart Ha [IMCA TecToT MOke BO rojieMa Mepa J1a ce JOJDKHU Ha
TOa KaKo MpejaBaMe MaTeMaTuka. 3eMjute kako CHHramyp KO ce UCTaKHyBaaT
BO MaTeMaTHKaTa IMpejaBaaT MoOMaJKy MaTeMaTH4Kh TEMH, HO T'M y4aT CeKoja
Mo171a00K0. 3eMjUTE CO BUCOKHU TIepPOpMaHCH, UCTO Taka, UMaaT TCHACHIIN]ja a
npejaBaaT TEMHU IOCJIEOBATEIIHO, HAMECTO Jla C€ BpakaaT Ha HMCTUTE TEMHU
cekoja romuHa. Ha mpumep, Bo CuHramyp, KOpUCTAT HPHHIMUI HA YUYCHE
MaTeMaTHKa CIIMYeH Ha HAIIMOT CTap KOHIENT Ha padora. Tue 3amouHyBaar co
OCHOBHUTE OIepallii, Kako pa3dupame Ha CBOjCTBaTa Ha OpOCBH, JOICKA
YYCHUIIUTE HE ja pa3depaT Taa Tema JIaboKO M TEeMEIHO, a M0TOa Ke MPEeMUHAT
Ha TIOCJIOKEHHM KOHIENTH. THe peTKo ce BpakaaT Ha NPETXOJHHTE TEMH BO
CJICTHUTE TOAWHM, OHAaKa Kako INTO Kaj Hac ce paborm cera mo KemOpuu
nporpamara.

CrposenyBamero Ha [IMCA TectupemeTo, koe ce 0azupa Ha pelaBame Ha
MPaKTUIHU MPOOIEMH MOKE Ja T'0 IMOAO0PH HAmIMOT 0OpPa30BEH CHUCTEM, J1a TO
HanpaBu MOQYHKIIMOHAJICH, IONMPAKTHYCH M TIOMHTEPECEH 3a YUYCHHIIHTE.
AnantupameTo Ha mporpamara u 00y4yBameTo Ha MPo(ecopuTe U YUYCHHIIUTE
3a pelraBame MPaKTUIHU MPOo0IeMH, HECOMHEHO K€ To TTOI00pH pe3yITaToT Ha
HaIaTa 3eMja.

CyauP HA UHTEPECH
ABTOpHUTE M3jaBHja icka HEMa CyIUp Ha HHTEPECH.
BJATOJAPHOCT

ABTOpHTE HUCKPEHO WM ce 3a0iarojapyBaaT Ha PElCH3CHTUTE 3a BPEIHUTE
MIPEITIO31 CO KOU ce TToI00pH Ipe3eHTaIfjaTa Ha TPYIOT.
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COSINE AND COTANGENT THEOREMS FOR A
QUADRILATERAL, TWO NEW FORMULAS FOR ITS AREA AND THEIR
APPLICATIONS

V. Nenkov!, St. Stefanov?, H. Haimov?, A. Velchev*

Abstract. Here we show new relationships between elements of a convex quadrilateral, which
generalize the cosine and the so-called cotangent theorems for a triangle. We named the new
ones cosine and cotangent theorems for a quadrilateral. We derive by them new formulae for
the area of any quadrilateral, which help to find various relationships in a triangle and a
quadrilateral (a Carnot theorem for a triangle and the Brahmagupta’s theorem for the area of
an inscribed quadrilateral are generalized, as examples). The newly discovered formulas and
dependencies find application in deriving various properties and regularities of the triangle and
the quadrilateral.

1. INTRODUCTION

In the last time there were discovered many noticeable points in an arbitrary convex
quadrilateral (see the reference list at the end of this work). Part of them were defined
analogously to some noticeable points of a triangle. It became clear, as we will see,
that besides the properties of remarkable points, some popular theorems for a triangle
can be transferred to a quadrilateral (as the so-called cosine and cotangent theorems).
Via the obtained cosine and cotangent theorems for a quadrilateral we proved
unknown till now formulas for it’s area. As two applications of derived here formulas
and dependencies, we generalize Carnot theorem for a triangle and Brahmagupta’s
theorem for calculating the area of an inscribed quadrilateral.

2. COSINE AND COTANGENT THEOREMS FOR A QUADRILATERAL.
Before we formulate and prove the cosine and the cotangent theorems for a
quadrilateral, let us remind and prove the cotangent theorem for triangle, as it is less
popular, and then use it.
Theorem 1 (Cotangent theorem for a triangle). The side lengths of AABC are AB =
a, BC=band CA =c, XACB =y and S is the triangle’s area. This relationship is
valid ~ =a'+b'—4S.coty (1)
Proof 1. According to the cosine theorem for A4BC we have (Fig. 1):
c’=a’*+b*~2ab.cosy .

C

A . B A a B
Figure 1. Shows objects from Theorem 1. Figure 2. Shows objects from
Theorem 2, 3 and 4.
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From the other side, there holds the equation § = %ab.sin y . From here we derive:

c’= a2+b2—4%b-sin;/.cot7 =a’+b*—4S.coty.

Thus the equation (1) is proved.
Now we are able formulate and prove the cosine and cotangent theorems for a
quadrilateral:
Theorem 2. (Cosine theorem for a quadrilateral). Denote the side lengths AB, BC,
CD and DA in a quadrilateral ABCD with a, b, ¢ and d, m and n — the lengths of the
diagonals AC and BD, and ¢ — the measure of the angle between the diagonals,
opposite to BC (Fig. 2). Then:

b +d’=a"+c—2mn.cosp (2)
Proof 2. Let the diagonals AC, BD intersect at point " and AT =m,, BT =n,,
CT = p,, DT =q,. Applying the cosine theorem to A4BT, ABCT, ACDT and ADAT,

we get respectively:

azzmz+nf—2mln1.cos(180° —(p)

b'=n +p~21p,.005¢ o)
&=+ —2pg-c0s(180 )

d*=q+nf—-2gm.cosp

We add the first with the third equations of (3), and the second with the forth, and get:
@+ =m’+n’+pl+q; +2mn,.cosp+2p,q,.cosp
b*+d*=n’+p+q. +m] —2np,.cosp—2qm,.cosp

From the last two ones there follows the equation:

a’+c*=2mn,.cosp—2p,q,.cosp=b>+d’+2n,p,.cosp+2q,m,.cosp,
which can be transformed this way:
b*+d*=a’+c*=2(mn+np+ pg+qm).cosg.

As mn+np+ pg+qm=(m+p)(n+q)=mn, it leads to (2), which we

wanted to prove.

Note I: It’s easy to guess, that in the boundary case, when the quadrilateral ABCD

distorts in a AABC, i.e. when D—> A4, then d =0, c=m, ¢ =<CAB, n=a and

(2) gives then the relationship b° = a* + m” —2am.cos < CAB , which is the cosine

theorem for A4BC. This fact legitimates the usage of the term “cosine theorem” for
this dependency.

The cotangent theorem for a quadrilateral is derived by the cosine theorem for it in
the same way, as in the triangle.
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Theorem 3 (Cotangent theorem for a quadrilateral). Let ABCD be a quadrilateral
of side lengths AB =a, BC = b, CD = c and DA = d, and area S. If the angle between
the diagonals, which is opposite to the side BC, is ¢, then:
P +d*=d’+c —4S.cotg (4)
Proof 3. Let the lengths of the diagonals AC and BD, be m and n resp. (Fig. 2).
According to the proved cosine theorem for a quadrilateral, we have:
b’ +d*=a’+c’ —2mn.cosg.

Therefore, having in mind the formula S = %mn. sing for a quadrilateral’s area, we
get:
b’+d*=a"+c —4%-sin(p.cot¢) =a’+c’ —4S.cotg.

Thus the equation (4) is proved.
Note 2. It’s easy to guess, that in the boundary case, when the quadrilateral ABCD
becomes A4BC, i.e.if D— A,then d =0, c=m, ¢ =<CAB and the dependency

(4) transforms to the dependency b= a’+m’—4S.cot xCAB, i.e. in the cotangent

theorem for the A4BC. This legitimates the term “cotangent theorem”, which we give
to this relationship.

2. NEW FORMULAS FOR THE AREA OF AN ARBITRARY
QUADRILATERAL.

From the proven relationship (4), which we’ve called cotangent theorem for a

quadrilateral, in the case if @ # 90", the quadrilateral’s area S can be expressed

through the lengths of the sides and the tangent of the angle between the diagonals of

the quadrilateral. We thus get the following unknown up to now formula for the area

of an arbitrary quadrilateral:

S=i(a2+cz—b2—d2).tango, where 790 (3)

Let us underline, that in this formula ¢ is those angle between the diagonals 4C and
BD, which lies opposite to the side of length b. With the help of the cosine theorem
for a quadrilateral, a second new formula for its face is derived, by which it is
expressed by the lengths of the sides and the diagonals of the quadrilateral.
Theorem 4. ABCD is a convex quadrilateral with side lengths AB =a, BC=b, CD =
¢, DA = d and diagonals’ lengths AC = m and BD = n (Fig. 2). The area S of the
quadrilateral is expressed by these magnitudes through the formula:

1 2 2 12 2\
S=Z\/4mzn @+ -r-d) (6)

Proof 4. Via the cosine theorem for the quadrilateral ABCD we have:
b*+d*=a’+c*—2mn.cosg.
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- a+c-b-d’ sin? 4m2n2—(a2+c2—b2—d2)2
R 2mn ’ 4 Am’n’
from the last equation we get (6), which we had to prove.
The just obtained formulas for area of a convex quadrilateral, and the cosine and the
cotangent theorems for it, have important applications. With their help, for example,
a series of inequalities connecting the lengths of the sides and the diagonals of any
convex quadrilateral, as well as other important relationships between the lengths of
the sides and the diagonals of the quadrilateral, are derived (see [1], [2] for more).
Here we will apply the derived cotangent theorem for the quadrilateral and the second
derived formula for its area to generalize two classical theorems of geometry.

and as S =%mn.singo ,

3. A GENERALIZATION OF THE ABOVE CARNOT THEOREM.
The French engineer Lasar Carnot (1753 — 1823) has proved the following:
Theorem 5 (of Carnot). AABC is an arbitrary one and /, /, and [, are the

perpendiculars from arbitrary points 4, B, and C, on BC, CA and 4B, to the same
sides (Fig. 3). The lines /,, /, and [, meet at a single point if and only if there holds

the equation:

OB+ A ~CR+BG-AG=0)

A

Figure 3. Shows objects in Theorem 5. Figure 4. Shows objects in Theorem
6.

We will generalize the Theorem 5 by cancelling the condition the points 4, B, and
C, to lie either on the sides BC, CA and AB of AABC, or on the lines BC, C4 and 4B,
and by replacing the perpendiculars /,, /, and /; to these sides with lines, sloped to

BC, CA and AB at the same angle ¢:
Theorem 6 (Generalization of the Carnot theorem). a4BC is a positively oriented

one (Fig. 4). 4, is an arbitrary point either on the semi plane along the line BC, which
do not include the triangle, or on the line BC. The points B, and C, satisfy the same

conditions with respect to the lines C4 and 4B. The sloped lines /", /,” and [,”,
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respective to the sides BC, CA and AB of the a ABC, pass through the points 4,, B,
and C, and form angles of equal measure ¢ with the positive directions. If S is the
area of the hexagon 4C,BA4,CB,, which is not necessarily convex, then the lines /,,
[, and [, meet at a single point if and only if:

Cf —Bf +AB —(B +BC ~AG =4S.cotg (8
Proof 6. 1) Let firs assume that the /,”, /,” u [, meet at a single point P (Fig. 4).
Denote S,, S,, S, the areas of the covering quadrilaterals BACP, CB AP,

AC,BP of the hexagon BA,CB AC,. Via the cotangent theorem we get from these
quadrilaterals resp.:

BA} +CP* = CA} + BP* —4S,.cot g,

CB’ + AP’ = AB} + CP* —4S,.cotp,

AC} +BP* = BC] + AP* —4S,.cot .
We add the last equalities term-by-term; as S, + 5, + S, =S, therefore:
BA} +CP* + CB} + AP* + AC + BP* = CA} + BP* + AB} + CP* + BC] + AP’ —4S.cot ¢
The last equation is easily simplified to (8). Thus we proved, that if the lines [, 1,
and /,”, sloped at angle ¢, meet at one point, then (8) holds.
2) Now we’ll prove the inverse implication, i.e. that if (8) is true, then the lines [,
,” and [, sloped at angle ¢, meet at one point. Denote P the common point of /,~
and [, . It’s sufficient to prove that the ray C,P~ coincides with /,, which passes
through the point C, under angle ¢, i.e. that it forms angle ¢ with the positive direction
of the side 4B. Otherwise, we have to prove, that the angle in the quadrilateral AC,BP
, which form the diagonals C,P and 4B, which lies opposing the side BP, equals ¢.
Denote this angle ¢, . According to the cotangent theorem, from the quadrilaterals
BACP, CB,AP and AC,BP, we get respectively:

BA’ +CP? = CA} + BP* - 4S,.cot g,

CB} + AP’ = AB} + CP* - 45, .cot ¢,

AC} + BP?> = BC} + AP’ —4S,.cot ¢, .
Adding these equations term by term, we get:

(B4 +CP*)+(CB} + AP*)+( AC} + BP*) =
=(CA4?+BP?)+( 4B} +CP*)+(BC] + AP*)—4(S, + 5, ).cot - 4S;.cot
and after simplification:
CA} — BA} + AB} —CB} + BC; — AC} = 4( 5, +5,).cot p+4S,.cot .

From the other side, we assume that (8) holds, which can be represented thus:
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CA'—BA'+ AB'—CB}+ BC/— AC!=4(S,+5,).cot p+4S,.cotp .
From the last two equations 4S,.cotp,=4S;.cote, i.e. ¢ =¢,, and the theorem is
proved.

4. A GENERALIZATION OF BRAHMAGUPTA’S THEOREM.
From the new formula for area of a convex quadrilateral (formula (6)) we get in
particular the famous Brahmagupta’s formula (7 century AD) for area of an inscribed
quadrilateral. As for such quadrilateral we have mn=ac+bd (according to the
Ptolemy theorem), after replacing in (6) we get (fig. 2):

2

1 2
S=Z\/4(ac+bd) —(aercz—b2 —dz) =

=%\/(2ac+2bd+a2+cz_bz—dz)(2a0+2bd+b2+d2_a2_C2) _

—yl(a+ey ~(b-ay [ (b+ay ~(a=c)' ] -

:%\/(a+c+b—d)(a+c—b+d)(b+d+a—c)(b+d—a+c)

By setting p =W, we get S:\/(p—a)(p—b)(p—c)(p—d) , which is

the Brahmagupta’s formula for the area of an inscribed quadrilateral.
We see, that formula (8) for the area of a convex quadrilateral generalizes the
Brahmagupta’s formula for the area of an inscribed quadrilateral.

5. CONCLUSIONS.

The above-proven dependencies in an arbitrary quadrilateral and the formulas for its
area serve to derive various other relationships in it. We will consider them in further
articles.
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TO 19
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Abstract. The aims and objectives of all educational systems state that working with
gifted students is of special social interest. At the same time, the care for these students
comes down to organizing competitions and preparing the students for several days
before the competitions. We believe that this approach does not even remotely meet the
needs of gifted students, therefore, in this paper we have made an attempt to develop a
curriculum for working with mathematically gifted students aged 18-19.

1. INTRODUCTION

Papers [1], [2] and [3] provide the curricula for working with mathematically gifted
students from first, second and third year in the secondary education. This paper is
actually a continuation of the abovementioned papers and it will provide an integral
program for working with mathematically gifted students aged 18-19 years, that is,
for students in the fourth year of secondary education. We deem that the preparation
of such a curriculum that should necessarily be accompanied by appropriate books
and collections of problems complementary to the curriculum will complete the work
with mathematically gifted students in secondary education thus filling the existing
gap in this field. In particular, such an approach will contribute to turn the declarative
support of these students into real support, since the organization of competitions and
the selective awarding of scholarships (scholarships are awarded to only a few of the
best placed students in the competitions) is not enough to say that there is a serious
social interest in the development of these children.

As we have already stated, this paper is in a way a continuation of the
abovementioned papers. In addition, based on the experience of the authors, but also
the experience of the countries in the immediate and wider surrounding, an attempt
was made for part of the topic Generating functions to give an example of a system of
problems that would determine the level that students should reach at this age.

2. CURRICULUM FOR WORKING WITH MATHEMATICALLY
GIFTED STUDENTS AGED 18-19

In this section, we will present a curriculum for working with mathematically
gifted students aged 18-19, that is, for students in the fourth year of secondary
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education. The offered curriculum actually builds on the respective teaching
curriculum that was previously prepared for students in secondary education and is
presented in papers [1], [2] and [3]. During the preparation of the curriculum, the
method of concentric circles was used, which means that part of the contents that were
adopted in the previous years at a certain level are expanded and extended. This
curriculum should be implemented continuously, and not only in periods when
students are preparing for certain math competitions.

The knowledge obtained while working with mathematically gifted students given
in papers [4] and [6] was used during the development of this curriculum. The aims
of the curriculum for students aged 18-19 are the following:

- To develop students' qualities of thinking such as: flexibility, stereotyping,

width, rationality, depth and criticality,

2010 Mathematics Subject Classification. Primary: 97-XX

Key Words: gifted students, curricula, aims and objectives of the curriculum

- The student to apply the scientific methods: observation, comparison,
experiment, analysis, synthesis, classification, systematization and the
axiomatic method,

- The student to apply the types of conclusions: induction, deduction and
analogy, whereby it is of particular importance to present suitable examples
from which the student will realize that the analogy conclusion is not always
true,

- The student to adopt the prescribed contents in the field of functions of one real
variable and to enable them to apply the same when solving appropriate
problems,

- The student to adopt the prescribed contents in the field of differential and
integral calculus of a function of one real variable and to be able to apply the
acquired knowledge in problem solving,

- The student to adopt the prescribed contents in the field of inequalities and to
be able to apply the acquired knowledge in problem solving,

- The student to adopt the prescribed contents in the field of combinatorics and
to be able to apply the acquired knowledge in problem solving,

- The student to adopt the prescribed contents in the field of generating functions
and to be able to apply the acquired knowledge in problem solving,

- The student to adopt the prescribed contents in the field of graph theory and to
be able to apply the acquired knowledge in problem solving.

In order to achieve the aforementioned aims, it is necessary to adopt the following

contents:

Analysis (4 classes per week — 144 classes per year). Functions of one real

variable: basic properties of real functions, even, odd, periodic, monotone and
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bounded functions, elementary real functions (graphs), classification of real functions,

parametrically defined functions and functions defined in polar coordinates, limit of

a function at a point, the limits: lim SINX apd lim (1+1)*, continuous function at a
x—=0 ¥ X—>0 x

point and of a set, elementary properties of continuous functions, properties of

continuous functions on closed intervals.

Differential calculus of a function of one real variable: notion of derivative, basic
properties and derivatives of elementary functions, derivative of inverse, composite
and implicit function, higher order derivatives, calculating sums using derivatives,
basic theorems of differential calculus (Fermat, Rolle, Lagrange and Cauchy),
L’Hopital’s rule, equation of a tangent, angle between two curves, Maclaurin and
Taylor formula, monotonicity and local extrema of a function, application, convexity
and concavity of a function, points of inflection, asymptotes of a curve, construction
of a function graph.

Integral calculus of a function of one variable: notion of primitive function and
indefinite integral, change of variables, partial integration, integration of rational
functions, the notion of definite integral, basic properties of a definite integral,
connection between definite and indefinite integral, change of variables and partial
integration for a definite integral, area of a plane figure, arc length of a plane curve.

Inequalities: proving inequalities using monotonicity of a function, proving
inequalities using extrema of a function, the inequalities of Popoviciu, Jensen,
Bernoulli, Young, Jordan, Holder, Minkowski, Karamata, Schur, Muirhead, Petrovic,
Nesbitt, Hadwiger-Finsler, weighted inequalities of the means, inequalities of the
means of order s and order r, notion of symmetric inequality, symmetric
inequalities with three variables, normalization procedure and application of
differential calculus in proving symmetric inequalities.

Selected contents from discrete mathematics (3 classes per week — 108 classes
per year). Combinatorics: partition of a number, ordered partition of a number,
partition of a set, derangements, games and strategies, problems with coloring,
covering and dissecting, weight and acquaintance problems, double counting and
Hall's theorem.

Generating functions: concept of generating function, operations with generating
functions, generating functions and differential equations, Hadamard product for
rational generating functions, application of generating functions in the theory of
enumeration, generating functions and partitions, exponential generating functions,
harmonic numbers, sums of powers of natural numbers, Bernoulli polynomials and
Bernoulli numbers, Catalan numbers, the snake oil method.

Graph theory: notion of graph, isomorphic graphs, matrix representation of
graphs, types of graphs, subgraphs, degree of a vertex, regular graph, graph
operations, trails and cycles, connectivity, trees, cyclomatic number of a graph, cut-
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set, cuts, properties of adjacency and incidence matrices, Eulerian and Hamiltonian
graphs, planar graphs and characterization of planar graphs. Matching in graphs. The
notion of matching. System of distinct representatives. Perfect matching theorem.
Coloring graphs. Chromatic number of a graph. Graphs with large chromatic number.

3. EXAMPLE OF SYSTEM OF PROBLEMS FOR SECTION “GENERATING
FUNCTIONS”

In order to realize the suggested curriculum for working with gifted 18-19 years
old students, it is necessary to make appropriate teaching aids, that is to say, textbooks
that must be accompanies by appropriate books with collections of problems.
Hereinafter, we will present a system of problems that we deem is suitable for
studying the section Generating functions and which tasks are selected from the books
[5], [7] and [8].

1. Determine the generating function of:

a) binomial coefficient of n=th order (}), k=0,1,2,...,n,
b) sequence a; = (—l)k, k=0,1,2,3,...

2. Let gy(x) be the generating function of the sequence {ai}?io and g,(x) be the
generating function of the sequence {b;}~ . Prove that g(x) = g;(x)+g,(x) is a
generating function of the sequence {c;}7~ , where ¢; =a; +b;, i =0,1,2,3,....

3. Let g(x) be the generating function of the sequence {@;};-, and ¢ be a constant.
Prove that f(x)=cg(x) is the generating function of the sequence {ca;}ry.

4. Let g/(x) be the generating function of the sequence {a;}i—y, g(x) be the
generating function of the sequence {b}y and a,peR. Prove that

g(x)=ag(x)+Pgy(x) is a generating function of the sequence {¢; }(f;o , Where
¢, =oa; +Pb;, i=0,1,2,3,....

5. Let g(x) be the generating function of the sequence {a;};~, . Prove that x"g(x)
is a generating function of the sequence {; };-20 , where b, =0,k=0,1,2,....,n—1
and b, =a;_,,k=n.

6. Determine the generating function of the sequence a;, =1, £=0,1,2,3,....

7. Let g(x) be the generating function of the sequence {ai}?io . Prove that

g(x¥)—ag—-ayx—arx>—.~a, X"

x?‘l
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is the generating function of the sequence a,,,a,,1,4,.7,....

8. Let g(x) be the generating function of the sequence {ai}?io . Prove that g(cx) id
the generating function of the sequence {cia,- [

9. a)Let g;(x) be the generating function of the sequence {a;};— and g,(x) be the
generating function of the sequence {b;}7~,. Prove that g(x) = g(x)g,(x) is the

generating function of the sequence {c;};~, where
n
C, = Z akbn_k = aobn + albn_l + azbn_z +...+ an_lbl + anbo ,
k=0
b) Let X)=ag +a;x +a,x> +ax> +... be the generating function such that
81 0 1 2 3 g g
g1(0)=ag # 0. Prove that there exists a generating function
g (xX) = by +byx +byx? +byx +

such that gy(x)g,(x)=1. Hence we write g, (x) = m

10. For the sequence {a, }20:0 determine the generating function of the partial sums
o0
of the series D q; .
i=0
11. If g(x) is a generating function for the sequence {a,}, o, then g'(x) is the

generating function for the sequence {na, }flozl . Prove it!

X
12. If g(x) is a generating function for the sequence {an}:lozo , then J g(t)dt is the
0

generating function for the sequence 0, ao, .. Prove it!

2 3 >
13. Determine the generating functions of the sequences {n+1},-, and
11 1
0,1, Ty

14. The numbers Hy =0 and H; =1 + +. + , for k=1,2,.... are called harmonic

o0
numbers and they are equal to the partial sums of the harmonic series ﬁ .
k=0

a) Prove that for each natural number m , the following is valid A om 21+ % .

b) Determine the generating function for the harmonic series.
15. Prove that for each natural number m the following is valid H_,, <1+m.
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n
s vali 1 oy _Hpn 1
16. Prove that for n>2 the following is valid kz_:zmH p=2-—
17. Determine the generating function of the sequence «a,, = m , n=0,12,....

18. Prove that for every m>1 the following is valid

(lf;x)’” =1+()ax + (mzl)azx2 + (”’43’2)613x3 .t (m+',l[1 ax" + ..

19. Determine the generating function for the sequence:
a) a :+ n=0,1,2,...,

2
b) @, =" 1 =0,1,2,...,

20. Determine the generating function for the number b, of integers in the interval

from 0 to 10™ —1 whose sum of digits is equal to 7.
21. Solve the differential equation ay =5, a; =a;_;+3, 3ak>1.

22. Using generating functions derive the formula for the general term of the

Fibonacci sequence: f( =0, fi =1, f,42= /s + [y, for n20.

23. Let the sequence {a,},q satisfy the linear differential equation

a, =ca,_1+ca, »+..tc,a, .,

from m—th order with constant coefficients ¢;,c,,...,c,, and starting conditions

ag, Ay ,.... Ay, .

Prove that the generating function g(x) of this sequence is of the kind

Pm—l (x)

g(x)= 0’ where O,,(x) is a polynomial of m—th degree, and the degree of

the polynomial P,_;(x) is smaller or equal to m—1.

24. Let the generating function

g(x)=ag+ax+ a2x2 ..+ am_lxm_l +a,x" + ...
be rational, that is, if g(x)= % , where P(x) and Q(x) are coprime

polynomials. Prove that, starting from a number 7 the sequence {a,}, satisfies

the linear differential equation

Apem = Cem—1 T C2Apipy—2 T+ Cpay ,

where m is the degree of the polynomial Q(x), and ¢,cy,...,c,, are some

constants.
25. Solve the differential equation ay =1, a1 =4, a; =a;_1 +6a;_,, k>2.
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26. The sequence {a,},.o 1is given with a recurrence relation

ay=2,a1 =17, a,,5 =4a,,1 —4a, +3", n>0. Determine the explicit formula for
a, .
27. Solve the differential equation ay =1, a; =3a;_; + 4k, k>1
28. Solve the differential equation ay =3, a; =2a;_;+k, k>1.
29. For every natural number 7, let

S, =1+%+...+%,

T,=8+S,+..+S,,

_hL. 5L L
Un —7+T+...+m.

For every n determine the constants a,,,b,,c,,d, such that
1,=a,S,,1+b, and U, =c,S,,,1 +4d,.

30. Prove that the generating function for the sequence {a;};- is rational if and only
if there exist numbers g;,¢5,...,g; and polynomials p (), p (¢),..., py (¢) such that
starting from some # the following is valid

a, =pi(Og] +P2(93 +...+ P (Day, - (1)

The expression on the right-hand side from (1) is called quasipolynomial from the
variable 7.

31. Hadamard product for the generating functions
gx)=ay+ax+ a2x2 + a3x3 +...and A(x)=by+bx+ b2x2 + b3x3 +...
is called the generating function
f(x)=apby + ajbyx + a2b2x2 + a3b3x3 +....
Prove that the Hadamard product for two rational generating functions is a rational
generating function.

32. Let g(s)= gl((ss)) and A(s)= 522((?) be rational generating functions, given with

coprime fractions and let (g *h)(s)= % be their Hadamard product, written as

a fraction in simplest form. What can be said about the polynomial Q(s), if we
know the polynomials Q,(s) and O,(s)?
33. Determine the number of solutions of the equation e, + ¢, +e. +e; =7, where

0<r<6, e,,e,e.,e5€Z and 0<e, <1,0<¢,<1,0<e.<2,0<e;<2.
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34. Let A be a set that contains 1 object of type a, 1 object of type b, 2 objects of
type ¢ and 2 objects of type d . Determine the number of ways in which we can
choose 4 objects from the given 4 types in the set 4.

35. A box contains 4 red, 5 blue and 2 green balls.

a) In how many different ways can 7 balls be chosen from the box?
b) In how many different ways can 7 balls be chosen but there must be 1 red and
2 blue balls?

36. Let us assume that there are 3 red, 8 green, 9 orange and 2 white balls in a box. In

how many ways can we choose 12 balls if we have to choose at least one red ball,

an even number of green balls and an odd number of orange balls?

37. Determine the coefficient in front of x%* in the series (x3 +xt 40 420 +...)4.

38. In how many ways can 12 objects be chosen from 5 types of objects, if there are
at most 2 objects from the first three types, and unlimited number of objects from
the remaining two types?

39. In how many ways can 20 objects be selected, if objects from the first type can
only be selected in packages of 5, of the second type only in packages of 3 objects
each, of the third type can only be selected 4 at most, of the fourth type at least 3
objects and at most 2 objects from the fifth type?

40. Find the generating function whose 7 —th coefficient gives the number of non-
negative solutions of the equation e +4e, +5e;3 +3e4 =n.

1

(1=x)(1-x>)(1=x)...(A=x5)...

n—th coefficient gives the number of ways of placing of n same objects into 7

41. Prove that the function is a generating function whose

same boxes, so that some boxes can remain empty, that is, gives the number of
partitions of the number n to n or less partitions (non-negative integer
summands).

42. Using generating functions determine the number of ways to partition the number
n as the sum of n or fewer distinct numbers.

43. Prove that the number of ways to partition the natural number 7, as the sum of n
or fewer distinct natural numbers is equal to the number of ways to partition the
natural number 7 as the sum of #n or fewer odd natural numbers.

44.a) For the natural number n let f, be the number of subsets of the set {l,2,...,n}
which do not contain a pair of consecutive numbers. Determine the recurrence
(differential) equation that these numbers satisfy, and then find the numbers.

b) For the natural numbers 7 and k let f, ; be the number of k —subsets of the

set {1,2,...,n} that do not contain a pair of consecutive numbers. Determine the

recurrence equation that these number satisfy, and then determine the appropriate
generating function and the numbers.
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o0
45. The function A(x)= Y, %xk is called exponential generating function for the
k=0 "

sequence {ak}fzo. Prove that if f and g are exponential generating function for

the sequences {a; };—o and {b; }7—o, then

a) the function f(x)+ g(x) is exponential generating function for the sequence

{ay + b Y=o
b) the function f(x)g(x) is exponential generating function for the sequence

n
c}’l = Z (Z)akbn—k: n= 051a2739~-- 9
k=0

which is called binomial convulsion of the sequences {a; }5—o and {b; }r_o-

46. Determine  the exponential generating function of the sequence

!
ag Zﬁ, k= 0,1,2,...,}’1 .

47. Let us assume that we have unlimited number of white, black, green and blue
balls. Determine the number of ways in which we can choose and rearrange 2
white, 4 black, 3 green and 3 blue balls.

48. Determine the exponential generating function that can be used to find the number
of ways in which 7 persons can be accommodated into 3 rooms with at least 2 but
not more than 9 persons.

49. Determine the exponential generating function for the sequence of variations with
repetition from n elements from £ -th class.

50. Determine the number of accommodating # guests in three halls, so that in the
first hall there must be at least one guest, in the second hall there must be an odd
number of guests, and in the third hall there must be an even number of guests.

51. Using the exponential generating functions prove that the number of ways in
which n distinct objects can be putin & different boxes and no box remains empty

k .
andu 1<k<nis A" =3 (1Y )k -i)" .
i=0
52. Prove that the number of ways in which #n distinct objects can be put in & same
boxes so that no box remains empty and 1<k <n is

k :
S =1 2 D' k="

where S/(cn) , 0<k <n are Stirling numbers of the second kind.
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53. 2n points are given on a circle. In how many ways can these points be partitioned
into n pairs so that between these n — chords determined by these pairs of points
there are no two that intersect?

54. For the string of zeros and ones with length 2n (2n -string over alphabet {0,1} ) we
shall say it is balanced if it contains n zeros and n ones. For the balanced 27 -
string over alphabet {0,1} we shall say it is good if none of its initial parts have

more zeros than ones. Otherwise we will say that 2 -string is bad.
Prove that the number of good 27 -strings over alphabet {0,1} is C, zﬁ(z,? ).

55. There are 2n persons standing in queue in front of the ticket office. Each of them
wants to buy a ticket that costs 50 denars. Among the people in the queue, exactly
n persons have 50 denars, whereas the rest have one banknote of 100 denars. At
the beginning, the cash desk is empty. What is the number of customer
arrangements so that the salesperson can return the change to every person buying
a ticket?

56. Find the number of sequences with length 2n: a,a,,...,a;, with elements from

2n m
the set {—1,1} suchthat > a; =0 and ) a; >0 for I<Sm<2n.
k=1 k=1

57. Find the number of sequences with length n whose elements are integers
ay,a,...,a, suchthat 1<qg <a, <..<q, and q; <l,a, <2,...,a,<n.

58. The rook has to pass from the lower left to the upper right corner square of a
chessboard with dimensions z x n . The rook can only move from left to right and
from bottom to top. How many different paths are there to achieve the goal if at no
time can the rook be placed above the diagonal that connects the starting and
ending square?

59. An anti-Pascal triangle is an equilateral triangular array of numbers such that,
except for the numbers in the bottom row, each number is the absolute value of the
difference of the two numbers immediately below it. For example, the following
is an anti-Pascal triangle with four rows which contains every integer from 1 to 10.

8 3 10 9
Is there an anti-Pascal triangle with 2018 rows which contains every integer from

1to1+2+...+2018?
60. Using the Snake oil method, prove that:

a) X )(I; )k = ¢ )x/ (1+x)"~/, for each n>0,
k
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6) X HH(MEy =t
k

B) ¥ G222k = dn)
k=0

4. CONCLUSION

Previously, we provided a curriculum for working with gifted students aged 18-19
and for one of the topics contained in it we presented a system of problems that we
believe is sufficient to achieve the aims of the curriculum from the given topic. Among
other things, we believe that the acquisition of the theoretical knowledge envisaged
by this curriculum, supported by appropriate collections of problems, will enable:

e Formation of students’ qualities of thinking at an enviable level,

e Students to apply the types of inferences correctly: induction, deduction and

analogy,

e Students apply the scientific methods correctly: observation, comparison,
experiment, analysis, synthesis, classification, systematization and the
axiomatic method, and

e Students to acquire the necessary knowledge needed for their future
development, that is, for the successful continuation of their academic career at
the best universities.
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Abstract. The research deals with the analysis of students' achievements at the level of
complex numbers in a "traditional" way and teaching enriched with multimedia software.
The paper focuses on teaching complex numbers using the GeoGebra/HotPotatoes
multimedia software. This approach to teaching aims to increase student activity and
engagement, but also to raise the teaching process to a higher level of achievements and
motivate students to work and learn more independently.

1. Introduction

Today, the technology is used more and more, it is necessary to adapt the

teaching process accordingly. An important role has to be given to linkage
between images and certain conditions, in order for the students to develop their
knowledge [1], [2]. Multimedia approach in teaching of mathematics can be very
useful in explanation of mathematical ideas, abstract terms and evaluation of
knowledge.
In secondary schools of the Republika Srpska (Bosnia and Herzegovina), the
curriculum for mathematics deals with the subject of complex numbers.
Secondary school is the first time students are informed about complex numbers.
As the name suggests, this topic is quite complex and demanding, since these are
not the kind of numbers students face in their daily life. Through our extensive
experience, we have come to a conclusion that students have a hard time adopting
the lessons from this topic and, thus, lack motivation to further explore the
application of complex numbers. In order to make the term more familiar and
give a geometrical interpretation of a complex number, an idea was born to step
back from the classical approach to this topic and use mathematical software
called GeoGebra. This software is useful for visualisation of the term of a
complex number, as well as the presentation of all operations over the field of
complex numbers. Given that the software is simple to use, free and available in
Serbian language, it makes it much more advantageous compared to other similar
software. Therefore, GeoGebra software can be applied in different forms of
mathematics teaching [3].

Key words. Complex number, Gauss plane, imaginary unit, geometric
interpretation.
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2. Teaching complex numbers in a “traditional” manner

In order to cover the topic it is necessary to have 5 lessons during which
the students are informed about: the term of a complex number, set of complex
numbers, and presentation of complex numbers in a Gauss plane, arithmetic
operations and their application. The experience has shown that the emphasis in
teaching complex numbers is often put on mechanical adoption of the procedures
for solving problems from this topic. The biggest problem that occurs during the
traditional way of treating this subject is the lack of deeper understanding of the
geometrical interpretation of a complex number. This is the reason why such an
approach has to be changed with a new one, which requires the use of GeoGebra.

3. Teaching complex numbers in Geogebra software

Teaching mathematics in GeoGebra is interesting because it assesses the
level and method of application and the unique characteristics of teaching
mathematics and computer science courses with the aim of improving the general
context of learning and improving the digital competencies of students, that is, it
uses the advantages of this teaching system compared to the traditional system
[4]. GeoGebra is mathematical software that successfully links geometry, algebra,
analysis and other areas. GeoGebra software is often used in the teaching of
mathematics [5]-[9]. It is suitable for presentation and better understanding of
mathematical content. GeoGebra has three ways of representation of
mathematical objects: graphical, algebraic and table presentation. All three ways
of representation of an object are dynamically linked and are automatically
adjusted to each change that occurs in any of the representations, regardless of
the way the object was created. The power of visualisation can be used as a mean
for development of theoretical meaning of geometrical terms. GeoGebra can be
installed on a computer, or can be used in an on-line mode [10]. Using GeoGebra
software teaching and evaluation processes in addition to mathematical
knowledge, they also include students' ICT (Information and Communications
Technology) knowledge and skills [11].

3.1. The term of a complex number
During the first lesson, by solving an equation (1):

x2+a=0

(1
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The students are encouraged to conclude that given equations cannot always have
a solution in the set of real numbers. This is the reason for the introduction of an
imaginary unit and an algebraic form of a complex number (2).
z = a+ bi, a,beR
()

Each complex number has its geometrical interpretation. Just as all real
numbers can be represented by an infinite straight line, in the same way the area
of real and imaginary numbers can be represented by an infinite plane.

Number z = a + bi can be represented in the Gauss plane as a point with
coordinates (a,b) where the first coordinate of the ordered pair is the abscissa a
(real part of the number) and the second coordinate of the ordered pair is the
ordinate b (imaginary part of the number). It is possible to show this procedure in
GeoGebra (Figure 1).

%7 kompleksni_brojevi_2.ggb - [m] X
Datoteka Uredivanje Prikaz Opcije Alati Prozor Pomoé

DREN IS ERANCER

S| Im
7

Z, =0 [

Re

-3 -2 -1 0 1 2 3

-1

Figure 1. Display of complex number in the Gauss plane

By moving the sliders a and b the complex number in the Gauss plane is changed,
so the students can see many examples in a short period of time and, if the class
is held in a computer classroom, which is desirable in this case, they can explore
for themselves.

3.2. Complex conjugate of a number

As a complex number is represented by a point in the Gauss plane, the
distance between the observed point and the origin is defined as a modulus of the
complex number and is calculated by the formula (3).

|z| = Va? + b2
3)
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The following term is defined as a complex conjugate. If z = a + bi is denoted
as a complex number, then its complex conjugate is in formula (4):
zZ=a—bi
4)
Complex conjugate of a complex number is made when the sign of the imaginary
part of the complex number is changed [12]. GeoGebra is suitable software for
the representation of a complex number and it’s conjugate.
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Figure 2. Display of a complex conjugate
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Figure 3. Display of complex conjugate

This is a simple way to show students a conjugate of a complex number.
By showing students the geometric representation of a complex number and its
conjugate, they can clearly see that their moduli are the same. This means that
|lz| = |zl
The advantage of GeoGebra is that, by moving point z we automatically
get a newZ. This enables students to see many examples in a short time and notice
the properties of a complex number and its conjugate (Figure 2. and Figure 3.)

3.3. Operations with complex numbers

After the introduction of algebraic and geometric form of a complex
number, it is necessary to define binary operations over the field of complex
numbers C.

Letzy =a+biand z, =c+di a,b,c,d ER
be complex numbers. Arithmetic operations are defined in the following way:

z1+zy,=(a+c)+ (b+d)i
z1—2z;=(a—c)+ (b—4d)i
71z = (ac — bd) + (ad + bc)i
zy ac+bd bc—ad.
z, c2+d? +cz+d2 &

The field of complex numbers is closed under all these operations, which
means that the result of an operation between complex numbers is a complex
number [13].

Z2¢0
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GeoGebra has also proven to be suitable for the processing and
interpretation of the operations over the field of complex numbers. It is easy for
the student to see in a Gauss plane that the sum, difference, product and quotient
of complex numbers is a complex number (Figure 4.) It is important to stress that,
besides being able to see the geometric interpretation of the newly formed
complex number (including the modulus), by manipulating the points in the
plane, it is possible to present these operations for different values of complex
numbers. Also, it is important to mention that this software enables us to simplify
complicated algebraic expressions consisted of several arithmetic operations and
present their values geometrically.

€ kompleksni_brojevi.ggb - o x
Uredivanje Prikaz Opcije Alati Prozor Pomo¢

A . iyl 3 \ _ Pomeranje
RIS kes] -] omemnts aserto oooe

Sl e

Figure 4. Operations with complex numbers

This feature helps the users find the solution easier and see its
visualisation.

3.4. Power of the imaginary unit

Imaginary unit is the solution of the equation (5).
x2+1=0
6]
It is denoted by i and its value is i —1. Geometric representation of the
imaginary unit is point (0,1) [14]. Value of the imaginary unit can be checked in
the following way:

2:

i? =(0,1)(0,1) = (-1,0) = -1
It is obvious that:
i*t =1
i4k+1 =i
i4k+2 = -1

(4+3 = i k=0,1,2,...
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Figure 5. shows a graphical representation of the power of the imaginary
unit. Movement of the slider easily represents the link between the power of the
imaginary unit and the position of the corresponding point on the unit circle. By
changing the exponent, the point is rotated in a positive direction by the angle of

g, meaning that there are 4 different values of the power of the imaginary unit.

This interpretation in GeoGebra enables the students to understand cyclical
repetition of the imaginary unit power value.

3.5. Performance tasks

Example 1

The following complex numbers are given:

z17=3—4and z, =2 —i.

Find the modulus of the complex number le_'zz.
1
Solutions:
1. Zl'Z2=2_11i
3. %2 = 1,52 —1,64i
Zy
4. |22 =5~ 224
1
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Figure 6. Graphical representation of Example 1

Figure 6 shows the steps in solving the given example. Therefore, the
image shows complex numbers z;andz,. Their product, complex conjugate of z;
quotient of the product and conjugate. Finally, the modulus of the complex
number is clearly visible. Classical way of solving this task does not provide a
possibility of visual representation of each step. GeoGebra saves time and enables
us to check the solution itself.

Example 2

The following complex numbers are given:

2018
z; =1 —iand z, = —1 — i. Find the value of expressmn(i—l) .
2

Solution:

Zy

—— l

Z2

2018
z 12018 _ :4:504+2_

— =1

4 l
— (i4)504i2 =1- (_1) =—1

198



ANALYSIS OF STUDENT ACHIEVEMENTS IN TEACHING COMPLEX NUMBERS
USING GEOGEBRA SOFTWARE 199

@

1 i n n=2018
- : °
(5=5)

(0 2 i)2018 - i4<504A2 = i2

z,/z, =0+

=10, 1N

z,=-1-1( z, ==l
iz, , 1 Q

Figure 7. Graphical representation of Example 2

Figure 7. shows graphical solution of the example. Each solution step is
shown with its geometric and algebraic interpretation, which helps the user
understand the operations with complex numbers better. Besides the solution of
this example, it is possible to use the slider and change the value of the exponent
and get a number of similar examples.

3.6. GeoGebra CAS view

CAS (Computer Algebra System) view enables the users to work with
algebraic expressions, functions, equations, matrices, numbers and datasets. In a
simple way, this GeoGebra view enables solving equations, factoring of
polynomials, differential and integral calculus. Since we have already seen that
complex numbers can be represented in this software, all the above mentioned
problems can be solved over the field of complex numbers with the use of CAS
window.
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Figure 8. CAS view of Example 1
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This GeoGebra option enables the users to find the solution of a problem
in short time, or to check an existing solution. It is very important to highlight
that the use of CAS view for the complex numbers requires for the imaginary unit

to be defined.
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Figure 9. CAS view of Example 2

GeoGebra does not recognize i as the imaginary unit (Figure 8. and Figure 9.).

4. Results and discussion

The purpose of this research is to analyse the achievements of students

who use the GeoGebra/HotPotatoes multimedia software. Teaching mathematics
in this case is done by complex numbers. The research was conducted in the
Secondary School of Economics in Doboj, Republika Srpska (Bosnia and
Herzegovina), among the students of the second year, profile of economic
technician, 220 students participated in the research.

The survey was conducted in the following chronological order:

1.

Two classes were selected by the following criteria. The number of
students in both classes was equal; the average grade in mathematics was
approximately the same.

In Class A GeoGebra software was used during the elaboration of lesson
of complex numbers. Class B processed the topic in the traditional way.

Upon the completion of the topic elaboration, both classes were tested.
Students had 45 minutes to solve 10 performance tasks from the topic.
The tasks included both, theoretical and arithmetic problems. Both
classes did the test with the same problems, in the same period of time,
on the same day (Figure 10a and Figure 10b.).

The test was presented electronically, using HotPotatoes software.
Students solved the problems on a sheet of paper and then entered the
final answers and solutions into the on-line test.
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5. Upon entering their answers in HotPotatoes, the students had an
opportunity to see whether the answer was correct, which gave them an
opportunity to self-evaluate their test, prior to the evaluation made by
their teacher.

6. Upon the evaluation of the test, the students were presented with
automatically generated results of each task, as well as the final test score.

The advantage of this on-line test is that the students can compare their self-

evaluation with the teacher’s one.

KOMPLEKSNI EROJEVI

Quiz

1. lzrafunaj: (G) =
A 7 m
5 72
c 2|

2. Uredeni par {0.1) u standardnom obliku izgleda kso
A2
B2 |i
c 2|4

2. Kompleksni broj 2=-1-i me2ema zapisat kao uredeni par
A J -1.1)
B 7 |
c. 2 ey

e

Figure 10a. Review of the first page of the test to check knowledge of complex
numbers
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Figure 10b. Review of the second page of the test to check knowledge of complex
numbers

A detailed analysis of the tests made by the class that used GeoGebra and
the class that processed the topic in a traditional way produced the following
results, shown in Figure 11.

Correct solutions to
students tasks in
Class A and Class B

M Test score percentage (%) Class A

M Test score percentage (%) Class B

Figure 11. Test results for checking knowledge in the area of complex numbers
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Out of possible 220 correct answers, Class A produced 166 (75.45%), while Class
B produced 120 (54.54%) correct answers. We can conclude that Class A
produced 20. 91% better results than Class B. Also, if we have a look at the results
of individual tasks, we can see that in the majority of tasks Class A produced
better results. If we analyse the content of the test, the tasks that produce bigger
deviation are related to the determination of the real and imaginary part of a
complex number (TASK 4), complex conjugate of a complex number (TASK 5)
and division of complex numbers (TASK 10). Tasks that produced similar results
in both classes were related to the determination of the power of the imaginary
unit (TASK 1), different forms of the presentation of a complex number (TASK
2) and addition and subtraction of complex numbers (TASK 8). Also, Figure 11.
shows a graph with the results of on-line test made by Class A and Class B.
Results of the Class A are marked in blue and the results of the Class B in red.
Columns of the histogram are marked with the number of students who gave the
correct answer and they are shown for each task in the test

5. Conclusions

Analysis of the students' achievements at the level of complex numbers
in a "traditional" way and teaching enriched with multimedia software. The paper
focuses on learning complex numbers using the GeoGebra/HotPotatoes
multimedia software. This approach to teaching aims to increase student
achievement, raise the teaching process to a higher level of efficiency, and
motivate students to work and learn more. Students tested in Class A
("traditional" method) and Class B (GeoGebra/HotPotatoes multimedia software)
have the following results: out of a possible 220 correct answers, students in Class
A gave 166 (75.45%) and Class B 120 (54.54%) correct answers. We can
conclude that Class A had a 20.91% better result than Class B. Also, if we look
at the results of individual tasks, we see that in most tasks Class A achieved better
results. If we analyses the content of the test, the tasks that produce a greater
deviation refer to the determination of the real and imaginary part of a complex
number (TASK 4), the complex conjugate of a complex number (TASK 5) and
the division of complex numbers. (TASK 10). The tasks that obtained similar
results in both classes were related to determining the potential of an imaginary
unit (1st TASK), different forms of complex number representation (2nd TASK)
and addition and subtraction of complex numbers (8th TASK).

Finally, we can conclude that the use of multimedia in teaching
GeoGebra/HotPotatoes facilitates the process of knowledge transfer and enables
students to actively participate, present their proposals for solving problems,
research and gain self-confidence. With this approach to teaching, the teacher
overcomes the limitations of classical teaching. The teacher offers a creative and
interesting approach to teaching, and is obliged to design and adapt the teaching
material to suit the students as best as possible. It is necessary to use performance
tasks as much as possible, and to develop students' ability to apply different
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techniques in solving these tasks. GeoGebra is a powerful tool that enables the
fulfilment of all set goals in modern mathematics teaching, and is very easy to
use by both teachers and students.
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Abstract. The paper emphasizes various aspects of mathematical games usage
in mathematics instruction. Different mathematical games are discussed in
accordance to the Principles of educationally-rich mathematical games. Two of
them — Bingo and Tangram — are included in a primary school mathematics
instruction and their impact in the instruction was assessed. The feedback we
obtained indicates increased students’ interest in the subject areas and
motivation to learn mathematics. Guidelines for developing more effective
game variations and instruction techniques are given.

2010 Mathematics Subject Classification. Primary: 97D40 Secondary: 97U10.
Key words and phrases. Principles of educationally-rich mathematical games,
Bingo, Tangram, Motivation.

1. INTRODUCTION

Having in mind the age of primary school students and their needs,
introducing games in the instruction process comes as a very useful tool in
many different aspects: from encouraging and motivating students to improving
their understanding of the subject material and even academic achievements.
According to the current Serbian primary school mathematics curricula, there
are not specified ways of student motivation. Therefore, teachers have to use
other sources of ideas for improving the instruction process. One of them is
designing, modifying or simply just using pre-designed mathematical games.

Mathematical games are used to improve interest in mathematics in general
[1], as well as in some specific fields of mathematics: in algebra — [2], geometry
—[3], etc.

Furthermore, a well nuanced use of mathematical games can bring positive
effects in various aspects of the instruction process itself. For example, Prensky
in [4] records cognitive changes in student behaviour in a game-based learning.
Introducing games into mathematics instruction can encourage student-student
and student-teacher communication and collaboration [5], thus alleviating
development of students’ communicational skills [6]. This can be very helpful
both in developing a positive learning atmosphere and improving students’
mathematical skills and achievements, which is proven in some researches, for
example [7], [8]. Mathematical games help students overcome ambivalent
feelings they may have about mathematical concepts and subject areas [9],
which is, of course, a good starting point for motivating students.

On the other hand, if poorly planned, organized or implemented,
mathematical games can bring negative effects into mathematics instruction. If
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used in isolation, games are less effective at supporting learning retention
compared with other engaging, student centred, but more mathematically
explicit activities [10]. For that reason, special attention should be paid at the
entire process of preparation and implementation of mathematical games in the
instruction process. The games that teacher plans to use in the instruction should
be assessed in regard of their educational potential, which will be discussed in
the next chapter.

2. GAMES AS AN ADDITION TO MATHEMATICS INSTRUCTION

When assessing whether a game should be used in the instruction process,
several aspects should be discussed. Among them are:

- the level of integration and interconnections between the game and
mathematics,

- the level of effort students need to invest in learning the game and
interpreting it in the context of the subject material,

- the danger of developing unwanted patterns of behavior like competition
among students and neglecting the importance of the subject material,

- finding as many areas as possible where the game could be successfully
introduced and used.

In this regard, very useful guidelines are given by Russo et. al. In [11], they
introduce a set of criteria that can help a teacher in determining if a game is
appropriate for the subject material and the students he/she is working with. The
criteria are known as Principles of educationally-rich mathematical games [11]
and deal with five areas crucial for success of the game usage in the instruction:

1. Students are engaged. This can be easily recognized. The teacher can
notice if the students are engaged and connect tasks given within the
game with the ones concerning mathematics. Such a behavior indicates
that the game meets the first criterion. On the opposite, a poorly planned
introduction of a game, for example excessively repeating the game just
for the sake of playing it can lead to boredom [12].

2. Mathematical games should appropriately balance students’ skill and
luck. Activities based on luck only cannot be expected to help in
improving quality of the instruction process or any of its aspects [8], and
contrary — games that emphasize skills bring better students into the
focus, which can be demotivating for students that are less skilled.

3. Exploring important mathematical concepts and practicing important
skills should be central to the game strategy and gameplay. One should
have in mind that the very nature of most of the games — competitiveness
can distract students’ attention from mathematical content. This, further,
means that a mathematical game should have a clearly defined
mathematical purpose and align with the planned mathematical goals
[13].
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4. Flexibility for learning and teaching. Though the time invested in
learning rules and regulation of a game can in no circumstances be
regarded as wasted, it would be very important if an already introduced
game can be used for more different topics. If so, it can lead to building
students’ positive learning habits.

5. Mathematical games should provide opportunities for fostering home-
school connection. If a game has this quality, it helps students widen the
field of their mathematical thinking and activities to their homes.

Taking into consideration the Five principles of educationally-rich
mathematical games, one can easily assess the value of a game and decide
whether it is worthy to introduce it into the instruction process or not. Even if a
game does not meet all the principles the teacher can modify it in order to
enrich its pedagogical value. We assessed two mathematical games — Bingo and
Tangram.

Bingo — students are given 5x3 tables with “randomly” inscribed numbers
and a set of problems, their solutions being some of the numbers inscribed in
the tables. Students solve the problems and mark their solutions in the table,
Table 1. The winner is the one who marks all numbers in a column. Some
examples of the problems given to students are:

Solve the equation for x: g =35.

Calculate the value of the expression |a—b| —|c| fora=3,b=-2,c=-5.

Table 1: Some of the numbers are solutions of the problems
30 63 3
47 2 51
9 45 12
11 8 6
7 0 21

We evaluated the game’s compliance with the Principles as follows:

Students are easily engaged — mostly complies with the principle 1. Though
the game requires more skill than luck, it is obvious that the teacher can
“adjust” the luck using different layouts of numbers in the tables — partially
complies with the principle 2. Mathematics is in the core of the game, but
students’ focus can turn to competition — partially complies with the principle 3.
Flexible both in regard of concepts and learners, provides opportunity for
fostering home-school connection — complies with the principles 4 and 5.
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Tangram — seven boards of skill. The seven pieces can be assembled to form
a square: 2 large right triangles, 1 medium right triangle, 2 small right triangles,
1 square and 1 rhomboid, Figure 1.

2P

Figure 1: Tangram — seven boards of skill

Out of the pieces almost unlimited number of figures can be constructed.
However, we were interested in construction of basic geometric figures —
squares, rectangles, rhomboids, triangles, trapezoids. We also evaluated this
game’s compliance with the Principles as follows:

Students are easily engaged — complies with the principle 1. It requires more
skill than luck — complies with the principle 2. Mathematics is in the core of the
game — complies with the principle 3. Partially flexible in regard of concepts —
mostly complies with the principle 4. Provides opportunity for fostering home-
school connection — complies with the principle 5.

As a result of our assessment we came to a conclusion that these two games
are appropriate for the classroom usage.

3. STUDENTS’ ACTIVITIES WITH MATHEMATICAL GAMES

In May and June 2021. we organized mathematics instruction including
mathematical games in “DuSan Radovi¢” primary school in Pirot, Serbia. There
were 53 students in the fifth grade (11 years old) and 55 students in the sixth
grade (12 years old). Due to the limitations caused by the COVID-19 pandemics,
each of the classes was divided into two groups — one of them attending the
instruction in the school and the other one attending online classes. The groups
interchanged weekly and a group attended either 3 classes weekly in school and
one online, or vice versa.

We introduced the Bingo game in the fifth grade in the instruction on
Fractions. After learning the rules of the game, students accepted it as an
appropriate means in learning other topics.
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In the sixth grade we used the Tangram game in the instruction on
Quadrilateral and Area of triangle and quadrilateral. The students were usually
given task to form a certain geometric object and explain possible
transformations that lead to a simpler calculation of its area. Although the game
seems to be applicable in a narrow subject area, we diversified it introducing
different restrictions on number of pieces allowed or requesting different
approaches.

After the games were introduced into the instruction process, we noticed
several changes in the students’ behaviour and learning. Students of the group
exposed to the games were more active and focused on the topic. They also used
to ask questions more frequently than their counterparts form the group that
attended online classes, which is in line with observations in [5] and [6]. Though
we noticed competitiveness among the students, it was easy to steer it in a
direction that ensured faster learning and better understanding of the topic.

We also noticed that students exposed to mathematical games showed better
understanding and faster learning of the topics, no matter how abstract they
appeared to the students. This was observed both for understanding concepts of
algebraic and geometric nature, which only confirms what was stated in [2] and
[3] respectively. Another aspect of this type of instruction was an evident
increase in students’ motivation for learning mathematics.

All these encouraged us to continue with game-based instruction even in
other areas. The fact that it was easier to imbed the Bingo game into different
mathematical subjects just confirms that assessing a game’s educational value
according to the Principles is a right way to design, organize and implement a
game-based mathematics instruction.

4. CONCLUSIONS

In order to determine if a game is worth to be introduced into the
instruction, the teacher has to assess its educational and mathematical value.

It is recommended that the game complies with the Principles of
educationally-rich mathematical games.

Our experience shows that such games are easily accepted among the
students and make a significant impact in improving several aspects of the
mathematics instruction — improves students’ concentration, communication
and cooperation skills, understanding subject material, etc.

On the other hand, teachers should be aware of the rise of competition
among students and turning their attention off the mathematical concepts
and procedures, which can altogether hinder students’ mathematical
development.
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AJITEBAPCKH PAIIMOHAJIHU U3PA3U BO OCHOBHO U CPEJJHO
OBPA30OBAHHE - IIPOBJIEMU U HEJJOCTATOIIA

Bunjana 3natanoscka', Mapuja Mutesa', Mupjana Konanesa Buranosa!

Ancrpakr. Anre0apcKuTe palMoOHAIHU H3pa3u ce IPUMEHYBAaT BO IPUPOJTHUTE
U TEXHUYKHTE HAyKH, KAKO U BO I'€OMETpHUjaTa, TEXHUKATa, HO U BO Pa3JINYHU
peaHU CHUTyaluu. 3aToa, BaXXHOCTA 3a HHUBHO JCTalHO H3Yy4yBambe U
COBIIAyBame ¢ OrpoMHa. HUBHOTO M3y4yBame 3all0YHYBa BO 7MO OIJICIICHHE
0J1 OCHOBHOTO 00pa30BaHUE U MPOJIOKYBA BO 8MO U 9TO Of/IeNIeHne COTIIacHO
KemOpuy mporpamara, 3a moToa J1a ce 3a0KPY)KH BO IpBa TOJMHA CPEIHO
obpazoBanue. [loHyIeHHOT MaTepHja 3a OCHOBHO M CPEHO 00pa3oBaHue Tpeda
JIa Ouje ycoryiaceH co Iell Jla He TpeIu3BHKa I0jaBa Ha MPOOIeMH Kaj
YUCHHUIMTE HPU YCBOjyBalbe Ha MMOWMHTE, MEMOPHPame M HHUBHA MPHUMEHA.
3aroa, BO OBOj TPy ke OuIie HallpaBeHa aHAJIM3a Ha yCOTJIACEHOCTa Ha TeMaTa
BO OBHE J[Ba CTENIEHN Ha 00pa3oBaHMe.

1. BOBE]

OO0Opa3oBaHMETO € OCHOBAa W BaXCH EJICMEHT BO MO3aUKOT HapedeH
OIIIITECTBO, HETOB ABUTATe]l W MOTOP 3a Pa3B0j, MPOCIEPHUTET U CI0007a.
“O0pa3oBaHUETO € HAJMOKHOTO OPYXKje IIITO MOXKETE JIa TO YIOTPEOUTE 3a J1a T'o
npomeHuTe cBeroT”’, pexon Hencom Manpena. 3aroa, oOBpcka € Ha CEKOj
MOEUHEI] U Ha CeKoja JpXKaBHA WHCTHUTYIHja Ja MPHIOHECE BO HETOBO
MEHYBame CO IIeJT IoJ00pyBame W pa3BUBame. MIcTo Taka € MHOTY BaXkHO U
O0COOCHO CCH3UTHBHO pPa3pabOTyBamEeTO, MCEHYBAKBETO, aJalTUPABETO H
YCOIJIaCYBakbETO HAa HACTABHUTE MPOTPAMH IO CUTEC HACTaBHH IPEIMETH
BKJIYIYBajKH{ ja 1 MaTeMaTHKaTa BO CHTE CTETICHH Ha 00pa30BaHHE BO PAMKHTE
Ha e/IHa JpKaBa.

Ceenmonin OeBME Ha MCHYBamke Ha HACTAaBHUTE IMPOrPaMU KaKO IO CHTE
HACTaBHH TIPEeIMETH, Taka M [0 NPEeIMETOT MaTeMaThka BO OCHOBHO
oOpa3zoBanne. Bo 0B0j mporiec UCKITyYHTETHO BaXKHO € Jla C€ BHUMaBa Ha HUBHO
yCOIJIaCyBame CO HACTABHUTE MPOrpaMU BO CpeiHO oOpa3oBaHue. HUBHOTO HE
yCOIJIaCyBamkbe MOXKE Ja TpeAn3BUKa OpOjHH MPOOJIIEMHU Ka] YYCHUIIUTE IMPH
YCBOjyBam€ Ha TMOWMHTE W HUBHA MPUMEHA MOJOIHA BO IMOHATAMOIITHOTO
oOpa3oBaHue.

Ceenorm cMe UCTO Taka Jieka nporpamara KemOpuu ([1], [2], [3]) e cnupaiHa
HaCTaBHA MporpamMa, KaJe YYCHWIUTE IOYHyBaaT CO H3ydyBame Ha €IHO
moJipadje BO MPBOTO IOJYTOANE, HO BO BTOPOTO IOJyTO/ME, KAaKO U BO JBETE
MIOJIYT0JI1ja OJ1 TIOHATAMOIITHUTE OJICJICHHU]ja CE HaBpaKaaT Ha MCTAaTa U3Y4yBajKu

2010 Mathematics Subject Classification. 97B70, 97B20.
Knyunu 36oposu u ¢pasu. ancebapcku payuonannu u3pasu, HOIUHOMU, MOHOMU,
aneebapcku Oponku.
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ja Ha TOBHCOKO HMBO. Taka € u co anre0apcKUTe palMOHAIHU U3pa3H, KOU
VUCHHIINTE 3aI0YHYBaar Ja TH M3ydyBaaT BO paMKH Ha TojapadjeTo Anrebpa u
peraBame Tpo0IeMH BO MPBOTO MOJIYTOIKME OA 7MO OJCICHHE W BO BTOPOTO
MOJIyTOJTUE, HO ¥ BO JIBETE MOJYTro/ija o1 8MO 1 9TO Oj/IeTICHHE Ce HaBpakaat Ha
2010 Mathematics Subject Classification. 97B70, 97B20.
Knyunu s36oposu u ¢paszu. ancebapcku payuoHannu uspasi, ROTUHOMU, MOHOMU,
aneebapcku Oponku.

HMCTUTE W3ydyBajKW TH Ha MOBHCOKO HHMBO. OBaa CIHUPATHOCT ITOBJIEKYBa
HEKOW pasMUCIyBamba, Mpaliama U JUIeMH, KO 0apaaT MOOICEXEH MPHUCTAIT U
nebara. HopmanHo, eHa 1ien e ejiHa rpyra Ha YYEHUIIM IITO HE TO COBIajaje
WM JISTyMHO T'0 COBJIaJialiec 0BOj MaTepHjal BO 7MO OJJICNICHHE, U TIOJI0I[HA UM
ce JlaBa MOXKHOCT JIa Ce HaBpaTarT | Jia F0 COBJIIaaT UCTHOT. 3aT0a ce HAMETHYBa
U CIIEHOTO TPAIlIambhe:

e IllTo e co OATMYHKUTE U TAICHTUPAHU YICHUIIN?

Ha HuB oBaa crnmpalHOCT BO TOBHCOKHTE OJJICIICHUjA MM MPEIU3BUKYBa
JI0cajia ¥ UM JieJyBa HEMOTHBUPAYKH 3a yueme. Tue rydar JparoreHo BpemMe u
HAMECTO J]a M3y4yBaaT HOBH pabOTH, HHBHOTO 3HACHE CTArHHPA HA HCTHOT
MaTepHjat, Koe OBJICKYBa N30CTaHyBakhe HA KOMIIOHEHTHUTE Pa3B0j U HAIIPEJIOK.

JacHo, Ha OBa TIpainame ce HAJI0BPa3yBaaT H CIICAHUTE Mpallama;

e [lITO € co MoATaOMHCKOTO U MOJIETATHO M3Y4YyBamke Ha TIOJPayjeTo U
BO KOJIKaBa Mepa M30CcTaHyBa?

e Jlaym mocToM YCOTIIACEHOCT MOMEry TOUMHTE W 00eMOT Ha HHBHO
U3y4dyBamke CO HapeIHUOT CTeleH Ha 00pa3oBaHHE-CPEIHOTO
oOpa3oBanue?

e OpeneHM HEIOCTATONIM M HEYCOTJIACCHOCTH Kako BIMjaaT Ha
CTEKHATOTO 3HACH¢ HAa YUCHHUIIUTE TIOAOIHA HU3 OCTAHATHOT IPOIIeC
Ha yueme 1 o0pazoBaHue?

e Kaxko pe3ynraT Ha Beke KaKaHOTO, CO KaKBH IPOOJIEMH ce cpekaBaaT
YYCHUIIUTE U KAaKO MOXKAT UCTHUTE Ja C€ OTCTpaHAT WiK yOmaxar?

Ha cute oBue mpamama W IUiIeMH K€ ce 00MIeMe Ja OITrOBOPUME IPEKY
aHaliM3a Ha OHA INTO ce M3ydyBa mo KemOpuu mporpamara 3a anre0apcKurte
palMoHaIHKA u3pa3u BO 7M0, 8MO M 9TO OJiIeNieHHEe M OHAa IITO CE M3y4YyBa H
320KpY’KyBa BO IPBa FOJIMHA CPETHO 00pa30BaHUE, HE3aBHCHO JIAIU ce paboTu
3a THMHA3MCKO WIJIM CTPYIHO oOpa3oBaHUe, 3HAC]KU JIeKa U Kaj JBETe HACTAaBHU
MPOrpaMu THE CE 3acTarieHa MOICTHAKBO.

2. AJITEBAPCKHU PAIIMOHAJIHU U3PA3U MO KEMBPUY MPOTPAMATA

Kako mro Beke cioMHaBMe, anrebapcKuTe paldoOHATHE M3Pa3d YUESHHULIUTE
3alI0YHyBaaT Jja T U3ydyBaaT BO CKJIOI Ha mojpadjero AnreOpa u pelaBame
npoOjeMu BO MPBO MOJIYTOAKE O]l 7MO OZJICJIEHHE U BO BTOPO MOJIYTOJUE, KAKO
Y BO JIBETE MTOJYroAMja 011 8MO 1 9TO 0J/IeJICHUE CE HaBpakaaT Ha HUB U3Y41yBajKu
I'M Ha IIOBUCOKO HMBO W Of ApYr acnekT. HacraBHuTe IIaHOBU 3a OBUE TpHU
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onneneHuja ce uspaborenu oj buporo 3a pasBoj Ha obOpasoBanue Bo 2016
TOJIMHA.

HacraBHata coapkuHa O 7MO OJIeIeHHE 3a MmoapadjeTo Asrebpa u
peiaBame mpobiieMr 3a IPBO W BTOPO MOJIYrojJue € JajeHa Ha ciuka 1, a) u
cnuka 1, 0) COOJBETHO.

2 i W l .
a) MPBO MOIYTroIue 0) BTOpO MmoJIyroaue

Cimka 1: ConpxuHa 3a AnreOpa u pemaBame mpo0ieMu BO 7MO 0.
HacraBHute 1enu o 7M0 oJyieiieHHe 3a mojpadjero AnreOpa W pellaBame

mpo0iemMHu 3a IPBO ¥ BTOPO MOJIYToAUe Ce AaJCHU Ha CIMKa 2, a) U cuKa 2, 0)
COOZIBETHO.

a) MPBO MOIYroue
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0) BTOPO TIOJTyTOHE
Cauxka 2: HactaBHu nienu 3a Anrebpa u pemaBame npo0ieMu BO 7MO O],

CornacHo coJpXMHATA W HACTABHHUTE IIEJIM HAa Iporpamara, Kako H
pasrienyBameTo Ha YICOHUKOT ce 3a0erexyBa CIeIHOTO:

e Bo mpBOTO MONYrojaue, BOBEIYBAHETO € IMPEKYy H3BEAyBambe Ha
GbopMyIIH CO KOpHCTEHE Ha PEANHH CUTYallMH M T€OMETPHCKU
(hurypu Bo paMHHHA;

e Ce mocBeTyBa BHHMaHHE Ha OCIIO00IyBame OJ 3arpaiul IPEKy
rpynypame Ha CIIMYHU YWICHOBH U MHOXKEH-E CO IIO3UTUBEH OPOj;

e Bo BTOpOTO TOJyroauWe MOBTOPHO HA KCTOTO TOApadje HMame
HaBpaKame coceMa KpaTko.

Henocraromure Kou T' BOOYHBME CE:

e lmenyBameTo € co Anrebapcku U3pas3u, HO HUKaJAe He ce TIpelu3upa
MOMMOT AJTeOapCKu paIlMOHAIHA H3pa3d, HMAKO IICNI0 BpeMe ce
paboTH CO HUB,;

e He mocrou BoBenyBame Ha MOMM MOHOM M TIOJHHOM, KOU C€ IIeIH
palMOHAIHU U3pPa3y, a [eJI0 BpeMe ce paboTH CO HUB;

e OcnoboayBameTo 0] 3arpaiu € caMo MHOXKEH-E CO ITO3UTUBEH Opoj;

HacraBHara compkmHa o7 8MO ojielieHWe 3a moapadjeTo Aumrebpa u
pelaBame nMpobjaeMu 3a MPBO M BTOPO IMOJIYTOJHe € JajieHa Ha CivKa 3, a) u
cinvka 3, 0) COOABETHO.

2 AnreGpa v pewaatse npobnemm 50 7 Anrepaw pewasare npo6nemi 229
2.1 Vasenysatbe dopmynn 51 7.1 PaseHku 230
22 Ocnobogysarbe of 3arpaan 57 7.2 Huzm 234
s Anrebapcku 13pasi 61 73 Oyhkumja 240
24 3aMeHa Bo u3pa3 65 7.4 TpaduK Ha ivHeapHa QyHKuvja 242
2.5 Pelwasatbe paBeHKN 66 7.5  PaBeHKa Ha Npasa Of Hej3uHmoT rpaduk 245
26 Apurmernyka 6pojHa Hu3a n 7.6  PaBeHKkn ofi BUR Y= mX +¢ 248
27 Oykunja 78 7.7 Anrebapcku uspasu 249
. 3apayn3anosTopyBarbe 81 3anayv 3a NOBTOpYBakbe 254
a) MPBO MOJYrojue 0) BTOPO TOJIyTOHE

Camnka 3: ConpxrHa 3a AnreOpa u penraBame IpodieMru BO 8MO O,
HacraBaure nenu ox 8Mo opjneneHue 3a monapadjeTto AlreOpa U pellaBame

po0JIeMH 3a TIPBO M BTOPO TOJYTOAME Ce MajeHu Ha cliuka 4, a) U ciuka 4, 6)
COOJIBETHO.
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a) MPBO MOJYroue

0) BTOpO MOITyTOANe
Cauka 4: Hactapau tienu 3a AnreOpa u pelaBaimbe npooieMu BO MO 0.

CormacHO COAp)KMHATA M HACTABHUTE I HA Mporpamara, Kako |
pasriieyBameTo Ha YYCOHUKOT ce 3a0eliexKyBa CIeIHOTO:

e Bo npBoTO mMoNyrojaue, BOBEAYBAKETO € IMPEKY H3BEIyBame Ha
GopMyaH CO KOPUCTEHE Ha PEaHU CHUTYallid U TCOMETPUCKH
(hurypu Bo paMHUHA H IIPOCTOP;

e Ce mocBeTyBa BHHUMaHHE Ha OCIO0O0MyBame OJf 3arpaigdl IMPEKy
IpynHpame Ha CIMYHH WICHOBH U MHOXCHE CO IO3UTUBCH H
HeraTHUBEH Opoj;

e lmenyBameTo € co Airebapcku u3pasu, KaJe ce HaBeICHH HEKOH
MpaBWiIa 32 HUBHO YIPOCTYBame, CE CIIOMHYBaaT IMPUMEpU Ha
JIMHEAPHH H3pa3u U ce 00jaCHyBa MHOXEH:-¢ YWICHOBH BO ajire0apcku
u3pasy;

e Ce mocBeTyBa Ilejla HACTaBHA €JMHMIA 32 3aMEHa Ha KOHKpETHA
BPEIHOCT 32 HEMIO3HATHTE BO W3pa3;

e AurebapckuTe W3pa3d I'M KOPHCTH 332 BOBEAYBAaE HAa PAaBEHKH,
HUBHO pelllaBamke CO TOMOII Ha (YHKIMOHAIHA MallhiHA U
pelaBame Ha PaBEHKU CO €/IHa HEMO3HaTa, KaKo U 32 apUTMETUYKA
OpojHa HM3a ¥ BOBEIyBambe Ha IOUMOT (PYHKIIH]a;

e Bo BrOpoTO momyromue, Kora MMame IOBTOPHO HaBpakame Ha
HCTOTO TOJIpavje, MPBO CE BOBEAYBAAT PABEHKH CO NMPUMEHA BO
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reoMeTpHja U eJIeMEHTAPHH PEallHd CHTYalliH, HU3HW W JIMHEeapHa
(hyHKIIHM]ja, 32 HAjTIOCTIE CO MIOBTOPYBAE HA OHA Off MPBO MOJIYTOIUE
Jla ce pasriefaar HAaKpaTKO €aMO CO €I€H 4Yac IOBTOPHO
anre0apCKUTE U3PasH.

Henocraromure Kou T'u BOOYHBME CE:

e lmenyBameTo € co Anrebapcku u3pasu, HO HUKAJIE He Ce peru3nupa
MOMMOT AJTebapCKHu pallMOHAIHA H3pa3d, HMAKO IICNI0 BpeMe ce
pabotu co HuB;

e He mocrou npenusupame aeka AnrebapcKuTe paruoHaliHA U3pa3H
MOJKAaT JIa OUaT 1eNn paluOHAIHA U IPOOHO-PAIIMOHAIHHA U3Pa3d —
anre0apCcKu APOTKH;

e He mocrou BoBenyBame Ha MOMM MOHOM H TIOJHHOM, KOU C€ IIeIH
palMoOHAIHM U3pa3y, a [eJI0 BpeMe ce paboTu CO HUB;

e Hema nedunupame Ha CTENICH HA MOHOM U MTOJTUHOM,;

e Ocio001yBamETO 0J1 3arPajik € CaMO CO MHOXKEHE CO TIO3UTHBEH U
HEeraTuBeH Opoj;

e l3ocranyBa neduHUpame Ha CIMYHA MHOHOMH, UAKO CE CIIOMHYBA
CJIMYHH WICHOBH, 0€3 HUKAKBU 00jaCHyBamba.

HacraBnata coapxuHa on 910 ozumeneHue 3a mnoapadjeto Anredpa u
pemaBame mpolieMu 3a IPBO M BTOPO TMONYTOJHE € JajJieHa Ha CIUKa 5, a) U
cimka 5, 0) COOIBETHO.
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2 Anre6pa v pelaBatse npobnemu 30 7 AnreGpa v pewasarbe npoGnemn
2.1 Ynpocrysatee creneHn 31 7.1 Wasepysarbe Gopmynu v 3ameHyBatbe i
2.2 Mpasuna 3a onepayum co cTeneHu Gpoes B gopmynn %5
7.2 Wspasysatbe npomeHnnea 1
€O UCTW OCHOBM 32
7.3 KoeduumweHT Ha npasel Ha rpaduk
2.3 Pa3noxyBatbe Ha MHOXUTENM 34 Ha dyHKUM 166
24 Cobuparse n ofsematbe anreGapckin Aponku 36 7.4 Tpaduk Ha nnHeapHa GyHKuuja 167
2.5 Pewasatbe NHeapHW paBeHKn 38 7.5 QyHKUWM WTO NPOU3NEryBaaT of
2.6 Cocrasysarbe anre6apcku v3pasu 40 CUTYaLK BO PEaNHNOT XUBOT 170
2.7 WHBepaHa dyHKUmja y) 7.6 [pasa nponopuuja 172
2.8 [pasuno 3a ofpenysatbe cregen 7.7 [paduukop cucTeM pi 174
UneH Ha Hu3a 45 7.8 Pewasarbe CMCTEM PAaBEHKN €O
2.9 lpaeuno 3ao, " METOZ Ha enM1HaLKja 175
H:Huaa APenyBarbe n-Th uneH - 7.9 MHoxetse fsa anreGapcku u3pasa 180
2.10 1-T1 UNeH Ha apUTMETMUKa Hu3a 52 ;:? gg:::e:;:emm 11::
3anayv 3a nosTopyBarse 55 3apnaun 3a noBTOpYBatbe 190
a) MpBO MOJIYrojue 0) BTOPO TOJIyTOHE

Canka 5: Conpkuna 3a AnreOpa u periaBame mpodiaeMu Bo 9to o,
Hacrapaure menu om 910 ommenenwe 3a mojapadjeTo Anredpa W pellaBame

po0JIeMH 3a TIPBO U BTOPO MOJIYTOJIME Ce JIAJCHU Ha CliuKa 6, a) U cimka 6, 0)
COOJBETHO.
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AJITEBAPCKI PAITMOHAJIHU NU3PA31 BO OCHOBHO 11 CPEJHO
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Hacraesuu yenmn

a) MPBO MOJIYToIHe

0) BTOPO ITOJTYTOTHE
Cauxka 6: HactaBau 1ienu 3a AsreOpa u pemaBambe npoosieMu Bo 9To o,

CornacHo CoApXMHaTa MW HACTAaBHUTC LE€JIM Ha IIporpaMara, Kako H
PasriIcAyBambEeTO HaA y‘le6HI/IKOT ce 336GJ'IC)KYB3 CJIICOAHOTO:

e Bo mpBoTto monyrozaue, ce paboTH co Olepupamke Ha CTENEHH CO UCTa
OCHOBa, 3a TI0TOA J]a Ce BOBEJE Pa3lioKyBamhe Ha MHOXKHUTEIU Kaj
anrebapcku U3pas3u, HO CaMoO CO M3BJICKYBamkE¢ HA MHOMKHUTEN Tpes
3arpaza;

e Jloroa ce cobupaaT u oazemMaaT aaredapcku APOIKY;

e (Ce mpomonKyBa CO pelllaBarbeé Ha JIMHEAPHU DPaBEHKH KOU Ce
BOBEJIyBaaT KaKo MOWM 3a MpPB MaT, HaKO YYCHUIIUTE BAKBH PaBEHKU
pemaBaat M BO 8MO OJIeJICHHUE;

e CocraByBameTO Ha aNrebapCKUTE U3Pa3H Ce BPIIU MPEKY KOPUCTEHHE
Ha TeOMETpHja U SJICMEHTapHU PeaTHi CUTYaIlUY;

e Bo BropoTo mojyroaue, Kora MMaMme IMOBTOPDHO HaBpakame Ha
HCTOTO TIOZIpadje Ha alnre0apcKUTE M3pa3d Cce MOCBETYBa MHOTY
MAaJIKy BHUMaHHE HAa MHOXKEHHE Ha JIBAa U3pa3H T.¢ 0e3 Mpeln3upame
JeKa ce paboTH 3a MHOKEHE Ha J1Ba ITOJTMHOMH.
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Henocraromnure KOu Tl BOOYUBME CE:

e Ce crmoMHyBa IOMMOT MOHOM CaMO BO HACTaBHHUTE IIENH, HO BO
HACTABHUTE €IWHHULN HUTY € AepUHHPaH, HUTY MaK BOOIIITO ce
CIIOMHYBQ;

e Ce BoBeayBa coOHpame 1 o/3eMame Ha anre0apcku Aponku 0e3 1a
ce ne(hMHNpAAT UCTHTE, a IIOTOA Ce MPOJIOIKYBA CO COCTABYBambhe Ha
anrebapcku u3pasu (ce coOupaar, og3eMaaT 1 MHOXKAT MOJIMHOMMU);

e Bo Bropo moiyroaue Mery Opyroto ce HaBpaka IMOBTOPHO Ha
MHOXXCHE Ha JBa anre0apCKy U3pa3u T.6 MHOKEH:E Ha JIBa OMHOMA,
0e3 1a ce mpenusupa UCToTo.

Bo omHoc Ha anrebapckuTe paliOHAJIHA W3pa3d BO CIIOMCHATHBE
OJIIIeTICHU]a MOJKE JIa TH JTaJieMe CIICTHHUTE TOOPH acleKTH, KaKO M TeHEPATHHOT
3aKITy4OK.

EnmacTtBen mobap acnext Bo KemOpud mporpama Bo 0JHOC Ha aire0apCKuTe
palMOHANHM W3pa3d € HHUBHATA TNONIMPOKA INPHUMEHa BO TeoMeTpHjarta u
€JIEMECHTAPHUTE PEAJTHU CUTYAaIlUH, CeTIaK TeHEPATHO MOKE JIa CE 3aKITy4H JCKa:

e AureGapckuTe palMOHATHH M3pa3d Ce JaJICHH BO CKION Ha
AnrebapckuTte n3pazu 0e3 HUBHO IPEIH3UPAHE;

e Anre0apckhTe pAlMOHAIHU W3pa3H Cce JQJICHH TPEMHOTY
€JIEMCHTAapHO 3a Taa BO3pacT HAa YYCHWIIUTE CO OrPOMHHU
HEJOCTATOIM BO JIeQUHUPAE U pa3rpaHUIyBakh¢ Ha BAXKHH [TOUMH,
KoM ce HeomxogHu 3a HuUB. OBa JenyBa JIEeMOTHBHPAadYKd 3a
TaJICHTUPAHUTE YYCHUIIM M YUYCHUIIUTE IITO CE 3aMHTEPECUPAHU 3a
MOCTUTHYBAKk-€ HA BUCOKU PE3YJITATH BO MAaTEMAaTHKATa;

e He ce 3acrareHu GpopMyaUTe 32 CKPATEHO MHOXKEHE, KOU CE BAXKHU
3a oBaa MpoOJIeMaTHKa U c€ TTOTPEOHM 3a IIOHATAMOIIIHUATE CTETICHH
Ha 00pa3oBaHHUE;

e  Op npeTxoaHO KaKaHOTO, MAaTEPH]ajIoT € N3JI0KEH MHOTY KOH(Y3HO
Y YYCHUIUTE BO CYIITHHA HE JOOMBAAT HUKAKBU MPEIM3HU 3HACHA
3a anre0apcKuTe palMOHANHM W3pa3d OJ OHa MITO Tpeda aa To
YCBOjaT KaKo KpajHU IPUMCHIINBH 3HACHA.

3. AITEBAPCKHU PAIIMOHAJIHU U3PA3HU BO IPBA I'OJUHA CPEJHO
OBPA30BAHHE

OBI[C Ke ja pasriegaMe 3aCTAallCHOCTa MW CJIOKCHOCTAa BO H3y4dyBailbC€ Ha

anrebapCKUTe pallMOHAIHN W3Pa3H BO NPBa TOJIMHA CPEJHO 00pa30BaHUE MPEKY
HACTAaBHUTE MPOTPaMH BO THIMHA3UCKO U CPEJTHO CTPYIHO 0Opa3oBaHHe.
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AJITEBAPCKI PAIIMOHAJIHU N3PA31 BO OCHOBHO U CPEJHO
OBPA3OBAHUE - ITPOBJEMHN 1 HEJOCTATOILHN

HacraBnara mporpama 3a TUMHA3HCKO cpenHo oOpa3oBaHne € m3paboTeHa
oxn bupoto 3a pa3Boj Ha oOpazoBanueto Bo 2001-Tta roguHa U ja uMa cieaHaTa
COApKUHA, CITUKA 7:

3. AITEBAPCKH
PALITMOHATHHA H3PA3H

- Crenen co noKasare, NpHpojIcH
Gpoj, ONCPAIEH CO CTEICHA

- e pannouaTig H3pazn; Mo-
HOMH, TOTHHOME; ONCPaiiH,
PATNOKYBALC Ha MIOKHT CJTH,
H3CuH3[

- Ipoiine pannoHATNH HIPA3H:
HOMM H ONCPAIHH

- Jla MOBTOPH ¥ [la YTEPJIH 3a CTENEHH cO MOKA3aTen
npHpOIeH Opoj;

- JId IH HOBTOPH K [la TH KOPHCTH ONEPAIATE MHOMKE-
e M JIefleihe Ha CTENEeHn CO e/IHAKBH OCHOBH H CTene-
HYBAILE HA CTENEH, IPOHIBOJ H KOMHIHAK;

- la 3aUANIyBa GPOCER BO O6IHKOT a . 10%;

- [la MOBTOPH 3a MOHOMH, GHHOMH..., TIONHHOMH H J1a TH
NpoTabouH SHACHATA 38 ONCPalUATE CO HAB:

- M3 KOPHCTH PavIOKYNAILE M NONMNOMH O THIOT
am+bm, a’-b’, a4 2ab+b’, o' +b";

- na oppeaysa H3C u H3JT 3a aea 1 nopeke NOMNHOMA;
- fla ce 3anosHae co anreGapeka JPONKa W fla OJPenysa
HEj3HH JoMen (00acT Ha ONpeeNeHocT);

- J1a MPONTHPYRa W CKPATYBA anreGapekH [IpONK;

- fia ce oenocolH JIa TH H3BPIIYBA  ONEPAIHATE €O All-
re0apcKH JIPOIKH H [1a TH IPHMEHYRA.

- OpraHWIApa JIHCKY-
CHja;

- [laBa HHCTPYKIHH;

- [IeMOHCTpHpA €O
objacHyBame;

- OpraHH3fpa paboTa
BO TPYINH H BO Napo-
BH;

- JlaBa [IOMANIM 18-
JIAYH A AjBHYa-
Ha paboTa;

- TH NpOBCpYBa H
OIEnYBa 3a][aunTe;

- NUpAaBH KOHTPOJIHA
zaflava’recT W TH
ONEHYBA Pe3yATaTH-

MaTemarnka:
cTeneHn, nenn
PAIHOHATHI
wpase (VD)
aponxa(V);

TE.

Camuka 7: HacraBau mporpama 3a I rognHa, THMHA3UCKO 00pa3oBaHHE.

3a oBaa HacTaBHa mporpama Bo ynotpeda ox 2002 — Ta roguHa € yueOHUKOT
[4].

Kaxo mto Moxe ma ce BUAM 0/ HacTaBHATa Iporpama, HO U O/ YIeOHUKOT,
anre0apcKuTe pallMOHAIIHUM HM3pa3d Ce MU3ydyyBaarT JIA0MHCKH CO MPEIHM3HO
neduHpanu nmonMu. [IpBo ce m3yuyBa omnepupame Ha CTETIIEHH CO IMOKa3aTel
npupoeH 0poj. Iloroa, ce pabotu co anredapcku e parlioHaTHN H3pa3H, KOU
ce JaJIcHU KaKo BEeKe M3y4YeHH, 3a TI0T0A JIa CE MPEMHHE Ha anre0apcKu JPOTKU
U OTIEPALIMU CO HUB.

CpemHoTo CTpy4YHO O0Opa3oBaHWE € TMIOACIICHO Ha TPUTOTUINHO |
YETUPUTOJMILIHO, a UYETUPUTOJMIIHOTO BO 3aBHUCHOCT OJ HACOKHTE,
MaTeMaTuKaTa € 3acTarneHa co 2 Wi co 3 HacTaBHU yaca. He3aBUCHO cO KOJIKY
YacOBM € 3acTalleHa, CEeMaKk OBaa MOAyJapHa eJWHHIa TH omndaka HUCTHTE
HacTaBHU enuHUIM. HacTaBauTe iporpamu ce n3paborenn ox bupoto 3a pasBoj
Ha obpasoBanueto 2013 roauna ogHocHO 2019 rogMHA ¥ HUBHATA COJP)KUHA ©
JTAJICHN Ha CcIuKa 8.

Tema 2: MOTMHOMMH (18 uaca)
Tenn C Monmu AKTHBHOCTH H MeToziH
YueHnrkor/yueHnuKara: - Crenenn co - Crenen Jla ce KOPHCTAT NPUMEDH CO MIOBERe
- Aaja nekakysa gedHHMLM]aTA 38 CTeNeH U JaBa ocxoBa - Crenenos OmepaLuH Co CTeNerH, CO e
NpMMepH Ha CTeeH CO 0CHOBA pauuoHaneH Gpoj u Paumonanen nokazare COTJIeflyBaH:e Ha HajeKOHOMUYHHOT
noxasaren uex 6poj; 6poju - OcoBa Ha CTeNeH | HAUMH 32 NPECMeTYBAMe Ha Heko] Bpoen
- Jia MHOYCH, /1@ CTeNeHM CO eJIHAKBY OCHOBH MITH nokasaren nen | - Mowom u3pas.
CTENeHH CO HCTH H Gpoju - Crenen na monom | Jla ce pemaBaat 3afiaus 3a CoBNafyBamke
crenenu; oneparpco | - Busom Ha MeMTe U TIOCTATIHT 38 WeHTHUHI
- ia ja uckakyBsa gehHEMLMjaTa 38 MOHOM, cobupa, HUB - Tpusom TpaHcOPMALHH Ha NOTHHOMH.
0a38Ma, MHOYKH, J1EJIH, CTENEHYBA MOHOMM H ofipeaysa | - Moxomn 1 - Momuom Aa ce KopuCTaT pazHoOBHANH IPHMEPH
CTeTleH Ha MOHOM; onepanum - Crenen na FIpH H3YUyBareTo Ha 0Baa Tema (Ha
- iiaja MCKakyBa AepHEULMjaTa 32 GUHOM, TPHHOM M -llonuaoMu ¥ | MoNHUHOM MPHMED, KOSHIHEHTHTE Ha
NOTHHOM; - hop 3a A8 bnAaT AponKn, KOHeuHH
- na cobiupa, 0/13eMa NOIMHOMH 1 OJIpe/lyBa CTeneH Ha - Pa: ¥ ckpaTeHo 6poesu, na u
Ha MoK - Pa: Ha | Bpoesi, a He caMo Hexn bpoesi).
- 712 MHOKH M Ie/IH [TOZIMHOM CO MOHOM M 13 MHOKH Ha MHOKHTEH | TIOTTHHOM Aa ce pemmrapaar 3agavu so Ko ce
MOJTMHOM CO NOTUHOM; - Muonarren KOPHETAT Pa3AHUHH OCTAITKH 38
- 1l Ik NCKaxKyBa op. Te 33 CKpaTeHo PAZIONKYBAHE HA ITOTHHOMH,
pazMKa ofl KBapaTy i bUHOM Ha KBajpaT M 1a TH Bexcbn 1 aKTHBHOCTH 38 OCIOCOLYBatse
KODHCTH BO 3apauu; Ha yUeHHLHTe B0 APHMEHa Ha
- Ala pa3zIoKyBa MOJTHHOMM HA MHOXKHUTEH CO POPMYAHTE 33 CKPATEHO MHOKEH:E BO
M3B/IeKyBae Ha JaelHHUKN MHOXKUTE] Ipe]l 3arpaja, ABeTe HACOKH.
€O rpynupae 1 co npuMeHa Ha opmMyIHTe 33 pa3nnKa Ipu pearnsaymjata na remara,
©f KBaapaTh 1 6MHOM Ha KBAApaT. Tpeba aa 1P
PAITHIHN METOIH HA SKTHBHA HACTABA.

a) HacraBeH 1utaH 3a [ roguHa TPUTOIUIITHO CPEHO CTPYYHO 00pa3oBaHue
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AJITEBAPCKI PAIIMOHAJIHU N3PA31 BO OCHOBHO U CPEJHO
OBPA3OBAHUE - ITPOBJIEMU 1 HEAOCTATOIIN

MopynapHa eguiuna 3: AITEBAPCKW PALIMOHAITHW M3PA3M (22 vaca)

Pen. | Pesyntatu oa yuerse CoapXuHK u NouMm AKTHBHOCTH M METOA Kpurepuymu Ha ouenysatoe

bpoj
Yuenukor/yuennuxara ke buae + Mowm 33 cTeneH co ocHoBa AxTHBHOCTH: YueHuKoT /yueHuuKaTa Moxe Ja:
cnocoben/a ga: peanew 6poj n crenenos « Hacrasmukor ro sosenyea

1 - MHOXH 1 f1enH CTeneHN o ucTH nokasaren uen 6poj. nowmor crenen co nokasaten uen | 11: flecHupa crenen co ocnosa
OCHOBI WAV HCTH CTENeHoBH + MHoMetbe CTenenm €o ucTn 6poj u onepauuu co crenenn. Og | npupogen 6po]. Mpeteopa crenexu co
NOKA3ATENH, A3 3HAE A3 CTENEHYBA | OCHOBW WNH WCTH CTENEHOBM YUEHHUuTe 6apa A3 4 OCHOBA W NOKAIATEN NPUPOAEH Bpoj,
cTene. nokasarenu M3BPWYBAAT ONEPALMMTE CO 80 NPOM3BOA.

+ [lenetbe creney co uctn crenenw (ucture rvnposepysa | 1.2: [ u3spuwysa cute onepauum co
OCHOBH MM UCTU CTENEHORM MHAMBUAYANHO). CTENEHM CO OCHOBA M NOKA3aTen uen
noazarenu « Hua rpynia pabora yuennumre | 6poj.
+ Crenenysarbe crenen spuar TpaHedhopmaua Ha 13: T u3puiyBa cuTe onepauui co
« Mpupoper 6paj 80 06nUKOT M3Pa3u KOU COAPHAT onepauun co | crenenu. [o KOPUCTH 0BNHKOT Ha
aa,,.aa,= CTENEHN, a N0T0A BpWaT npupose 6poj
—10°4,+10%a,, +..+104 + 4, CcnopefyBatbe Ha HanpaseknTe m:
Tpancopuauum =10°a,+107 g, , +..+10a +a,
Meroau: auckycwja, aujanor,
P e 1WaBa NOCATKEHY 334340 CO
OTKpHBALbE, pelwaBarbe b
npobnemi,

Zz - AethHHWPA M NPEN03HaBa MOHOM, Aa | + MoHM 33 MOHOM AKTHBHOCTH: 2.1: flechunipa M NPEND3HABA MOHOM,
onpepenyea koeuumenT M rnagka |+ Cnnanm monomu, cobiuparen | » Hacrassukor ro soseaysa TNaBHA BPEAHOCT M CTENEH HA MOHOM,
BPEAHOCT BO MOHOM, /43 3H3€ 43 opzemale MOMMOT 33 MOHOM 1 e | 22:Tuusep P

¢ " CAMUHH M na co Maromm, Op yuennuute Gapa | coGMPaKe U 0A3EMAILE HA MOHOMH.
MOHOMM, 43 BPLIM ONEPaLMK CO = Crenexysatbe MOHOMM fa T u3Bp P re co | 2.3: Tuwsep uTe Onepaumm co
MoHoMH (coBuparbe, op3eMare, MOHOMM (HCTHTE M NPpoBepy8a MOHOMM,
MHOMEHSE, BNIEHbE U CTENeHyBarh Mommm: WHAKBMAYaNHO). 2.4: Pewasa nochOMeHH 334344 04
MOHOM, CIM4HH MOHOMM. + Co NOMOL Ha TEXHWKKHTE 33 MOHOMK,
axrviena wacrasafspreneu,
3CHY M cn.) yuenuumTe pewasaar
NOCIOXKEHN 33034H Of GNEPaUHIA
€0 MOHOMM, W Ce 0Cnocobysaar 3a
CaMONPOBEPYBAMSE HA CTRKHATMTE
IHaeHA.
Meroau: guckycuja, aujanor,
AEMOHCTpALM]A, yere Npeky
OTKpHBaHE, PewaBare
npobnema

3 - AethMHIAPA NONKHOM, A3 3HAe A3 « Mo 33 NOAMHOM ~HacrasuukoT ri gedmHupa 3.1: lepunupa nonunom. Mo
cobupa u of3ema nonuHomMK, fa suae |+ Cobuparse u p ca wbapa | oapesysa cTeneHor Ha nonkHom. M
0@ MHOMH NOMHOM CO MOHOM W MOAMHOMM Ofl YMEHMUMTE 43 1M MIBPWYBAAT | MCKadyBa HOPMYNMTE 3 CHPATEHO
NORHHOM €O NONKHOM, A3 T3 + MHo®ersE NORHHOM €0 MOHOM, | [1pasepyBa uHgMauayanHo). MHOKEHE.

p 3a cxparenn nonuom co nomuam u | « Mpexy rpynua pabora, 3.2: Cobupa u op3ema nankHoMH,
MHOKeHse (BUHOM Ha KB3APaT, Guom | ophyNM 33 CHp: y ™ r MUOMH NONMNHOM CO MOHOM
Wa ky6, paznnka of KeagpaTH, (Buwam na keagpar, Gukom Ha dhopmynnTe 32 ckpateno nonuHem co noanwom, [t npuMenysa
pasnnia u 36up oa kybosw), ga3rae | kyb, pasnika of KBAAPATH, MHOMEle, hopMynUTe 32 CKPATEHO MHOMEIE
B3 [eNH NOMHHOM CO MOHOM W pa3snuka w 36up on kybosu) + Hacrasnukot gemonHcTpupa [ KBAAPAT W PasnnKa of,
NONHHOM €0 NONKHOM; + [leneibe NONUHOM CO MOHOM, npuMenra Ha hopmyanTe 3a KBAAPATH) B0 KOHKPETHA 3A024H,
[Aenerbe MOAMHOM CO NOMHOM M | CKPATeHO Aenerse, a noToa 3.3: Tv naepuysa cuTe onepaunm co
opHynM 33 CKpaTeHO fenele | CIMYHA AKTMBHOCT Gapa 1 oa nonuHoMM. [ KopUCTH hopMynuTe 3
(6uHom Ha ksampar, GuHoMHa | yuenHUuTe (kou paBoTaT B0 CKpaTEHD MHOXEtbe.
Ky6, pasnuka o keappaTH, rpynu). 3.4: Tu KOpUCTH dhopmynuTe 3a
paznvka v 361p oA Kybosu) CKPATEHO MHOXEHE BO NOCIOKEHM
MeToau: auckycuja, aujanor, 3apaum.
[EMOHCTpaLMja, yuetbe npeky
Monmm: oTKpHBaNse, pewasarse
BUHOM, TPUHOM, NoMHOM, npoGnemn
DopHMyNy 33 CKPATEHO MHOMeH.,
AENEHE Ha MONUHOM CO NOMMHOM,
opMynm 3a expaTeHo fenetbe.

4 B NoNMHOM Ha . nonuHOM Ha « HacrasHukot ja objacrysa 41: Pa3noiyBa noMMHOMIA CO
o Ha 3aepy © Ha 3a Ha Ha MOHOM
MHOXHTEN NPeA 3arpasa, co noMoL npea 0 npea sarpaga.

Harpynuparee wn conpuMenana | 3arpaga 33€AHMIKM MHOXNTEN NPeR 4.2: Paanowysa nonunomn co
OpMYNM 33 CKPaTEHO MHOMerbe; | = PasnoyBatbe NonHHOM Ha 3arpapa npexy H3 Ha Buron
MHOMKMTENH CO NOMOW Ha Ha NONMHOMHN. npeg 3arpaga
rpynupatbe . U 4.3 y o
+ Pasnoxysarse nonuHom co Ha o T neo 3a
npHmMena Ha hopmynuTe 3a rpynupatse (patioTar Bo rpynu) CKpaTeHo MHOMetbe W onpeaysa H31
CKPATeHO MHOXEHHE 1 Aenetbe « HacTasHukoT neMoHcTpupa w H3C Ha nonuHomMu
+ H3/1w H3C va nonumomu pasnoxysare Ha MKoHTENA Ha | .4 Pasnoxysa Ha MHOXATENH
MOCNOMEHN NOMMHOMU HA TOCAGKEHN NONMHOMH,
Moumn: pasnuuky Hauukm, a notoa bapa
H31 u H3C Ha ony na
CAUUHK akTMBHOCT. Mpery
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TEXHUKVITE Ha AKTHBHA HACTABA
YUEHHUMTE PAIMEHYBAAT HAEH 1
copaborysaar.

MeTogu: auckycuja, ujanor,
AEMOHCTPaLM]a, yuerse npexy
OTKPUBAE, PEWaBaHE
npobnemn

- pecnupa anre6apcka APOnKa, aa
cobupa, oa3ema, MHOXH W Aenn
anrebapciu ponki.

< TowM 3a anrebapcka gponka u
necburmuvona obnacr

« Cobuparwe, opsemarse,
MHOMEILE W ASACILE Ha
anrebapc gponi

Mommu:
Anre6apcxa apanka

+ HacTasHuKoT ro AecpnHpa
NOMMOT 33 anrebapcka APONKka n
M BOBE/lYBa ONEPaUMMTE CO
anreGapck APONKH. YueHHumuTe
M WIBPILYBAAT ONEPALMUTE CO
anre6apcxm APONKM, @
HACTaBHWOT 1 NpoBepYaa
MHMBHAYANHD.

* Huz rpynua paGota yuewnuure
paseueaar guckycuja a obnacta

5.1: flechunupa anreGpacka aponka.
5.2: Tn n3pLiysa onepaupmre co
anrebapcxH ApaNKH €O METH
uMEHHTENN.

5.3: [ w3spuysa cure onepaumm co
anrebapckd AponKM,

5.4: Pewaga NOCNOMEHM 330341 01
ORepaLK C0 anreGpackn APONKM
ofipeyea 06nact Ha AethuHUpaHoCT
wa anre6apcmte gponku

Ha AEMHHPaHOCT Ha
anreGapoire gponk

+ HacTaBHUKOT AGMOHCTPHPA
BpueiLe Ha onEpaL co
anre6apcin Aponuw, npn
NPETX0AHO DAPeAYBatE HA
o6nacra va edpusupanoct u H3C
Ha MMEHWTENATE, 8 NOTOB CANINA
aKTHBHOCT WM 33884 Ha
yuenwaure. Hus rpynwa pabora

yuenHuuTe ce ocnocobyeaar 3a
CaMONPOBEPYBaILE H
CAMOOLEHYRAHE HA IHACHATA.
Meropm: ackycuja, gujanor,
AEMOHCTPAUM]D, yHetbe Npexy
OTKpHBaILE, pewaBatLe
npobnesu

0) HacraBen 1mian 3a [ ronuHa 9eTHPUTOIUTITHO CPETHO CTPYIHO 0Opa3oBaHNe
Camnka 8. HacraBam mmanoBu 3a I romyHa cpemHo oOpa3zoBaHue

CrapuoT yueOHUK, KOj ce KOpUCTELIe BO CPETHO CTPYYHO oOpa3oBaHue € [5].
Cropen HacTaBHaTa CONMpP)KMHA ja MMaMe MCTaTa KOHCTaTaIlja Kako M 3a
THMHA3MCKOTO 00pa30oBaHue, 1a/ieHa IOTope.

4. 3AKJIYUYOK

J10BOJIHO € 1a ce HanpaBU €jHa Crope0a CO HACTABHUOT MaTepHjall U3yueH
BO 7MO ojiesicHue 1o ctapara nporpama ([6], [7], [8]), kaae ce 3abenexyBa aeka
anrebapcKuTe el ParMoHAHU W3pa3u TEMENHO M MpEelu3HO ce u3ydeHu. U
MPEMUHOT BO CPEIHO 00pa30oBaHUE € MHOTY ITOCTHOCTABCH, OUJIC]KU YUCHUIIUTE
Bo | romuHa moOBTOpyBaaT 3a aire0apCKU IETH PAalMOHAIHU W3pa3d M Ce
HAJI0Bp3yBaaT Ha M3YIyBame Ha anre0apCKy APOTIKH.

Jenec, ona mro ce n3yuysa o KemOpun mporpamara € MHOTY elleMeHTapHO,
HEeNpenu3Ho U KoH(y3Ho. OBaa nmporpama ¥Ma MHOTY HEJJOCTATOLM KOHKPETHO
3a M3ydyBame Ha anre0apcKd palydoHATHU W3pa3d BO OIHOC HAa OHA IMITO €
moTpeOHO Ja ce mobme Kako 3Haeme 3a cpeaHo oOpazoBanue. Bo cpemHo
oOpa3oBaHue, JeHeC NPoPecOpoT HemMa OCHOBa HA Koja Ou TM BOBEN
anre0apcKuUTe palMoOHATHU W3pa3u, Kako IITO Oelle Mo cTaparta mporpama BO
OCHOBHOTO OOpa3oBaHre. 3a HUB, YYEHHKOT BO CpPEIHO IOYHYBa OJf caMaTa
OCHOBa, 0€3 HUKakBW Tpei3Hacwka. OBa 3a yYUYEHUKOT 3HAYM TEIIKOTUU BO
COBJIJIyBaK-E€TO HA MATEPHjaJIOT U IEMOTHBAIIY]a 3a TIPEJAMETOT MATEMaTHKA.

3aTtoa, Ou OWIO OUIMYHO OKOJIKY IIporpaMara BO OCHOBHO OOpa3oBaHUE
MIPETPHH OAPEACHN MPOMEHH BO OAHOC HA M3YYyBamke HA OBaa MpOOJIeMaTHKa.
JloOpo Ou GOm0 BO HEKOja UIHA IIporpama 3a anre0apcKuTe paluoHaIHA U3pa3u
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Jla ce 3aJpKH KOHLENTOT OJ CTapaTa IporpaMa co HEj3MHO 300raTyBame CO
NpUMeHa, Koja nak e 100po obpadoreHa Bo KemOpuy nporpamara.
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STEM APPROACH IN TEACHING MATHEMATICS

Marija Miteva, Limonka Koceva Lazarova, Biljana Zlatanovska, Natasa Stojkovik

Abstract. Mathematics appears as essential subject in many academic studies.
But students usually find math as difficult, and moreover consider its content
as useless, thus avoid such studies. This is a reason for changing traditional
approach in teaching mathematics and develop new one, which will emphasize
problem-based learning. We will consider in this paper STEM approach in
teaching mathematics and results of its implementation.

1. INTRODUCTION

The concept of STEM education is a concept which integrates Science,
Technology, Engineering and Mathematics in the process of everyday teaching
and learning. Education and teaching process should not only provide students
with pure knowledge, but it should answer the question why do students need
that knowledge and how to apply it in the future. During the process of learning,
especially in the classes, the attention of the students at each age is usually at
the highest level when they are considering a real life problem and are trying to
solve it. This approach, i.e. including problem-based situations, characterizes
STEM education. Thus, STEM approach means introducing certain concepts
and their relations in the process of teaching, as something necessary for
solving different problems that student will face up in the future, in their lives
or carriers.

Students usually find mathematics as difficult subject in their education and
are afraid of it, which is a reason for avoiding studying engineering, technology
and anything else where mathematics appears as essential. This situation can be
changed, as well as students’ attitude toward mathematics, if STEM approach is
implemented and real life problems are introduced in the classes. STEM
approach can seriously contribute in improving the perception about
mathematics among students. Moreover, project-based and problem-based
learning and collaboration while solving certain problems can increase
communication skills, creativity and critical thinking of students. It is important
a STEM approach to be implemented in the earlier education, but is very
important to become everyday practice in the higher education. About
importance of STEM education, one can read [1-4].

In order to implement STEM approach in the process of education, teachers
need an appropriate, well-developed curriculum for their lessons. Developing
STEM curriculum progressively became research interest to many teachers
nowadays. Some examples for real life problems can be found in [5]. In the
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frame of the Erasmus+ project Mathematics of the Future: Understanding and
Application of Mathematics with the help of Technology, FutureMath [6],
teachers who participate have developed STEM curriculum for different math
topics, together with variety of teaching materials and examples how to use
different digital tools, in order to easier implement STEM approach on math
classes. In this new approach teachers usually start lecture with real life
problems. We will present some results of implementing such approach in the
classes.

2. RESULTS OF APPLYING STEM APPROACH ON MATH LESSONS

Implementing STEM approach on math lessons, the students had an
opportunity to face up with the new trends of teaching and almost all of
the advantages of the STEM approach were achieved. By STEM as an
educational approach, the students has the best introduction to each
lecture via using a real problem. It is more interesting for students to
consider and try to solve real life situations, than listening math lectures.
The real problem motivates them to think about similar real problems,
which are already known to them, without having in mind their
connection with mathematics. Considering real life problems which need
math knowledge to be solved, students realize that they have to achieve
appropriate math knowledge first, in order to successfully solve the
problem. Thus, learning math formulas and expressions become
necessary, and students are not wondering anymore why they have to
learn it. Presenting the new material and using computer applications and
mathematical software, made the lesson more interesting and fun for the
students then the previous methods of lecturing. Implementing all of this
encourages the students to collaborate and discuss one with another, but
also with the teacher via creative questions. These questions are related to
requests for clarification of introduced new terms and curiosity to learn
more, which are the basis for deeper knowledge. The lessons generally
passed quickly, creatively, with fun, and with the mutual satisfaction of
both the students and the teacher. The students passed the pilot lecture as
the quality time spent because the new material was already introduced.
The biggest result is satisfied students. The smiling and satisfied students,
for the teacher mean successful organized lesson.

Gaining practical knowledge during the studies is also very
important in the educational process. The students move through the
educational process and they acquire knowledge from many different (but
connected) areas. Later, this knowledge they should apply in real
situations in life. The initial places where students can apply theoretical
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knowledge in order to solve practical problems close to the real situations
of their lives are the educational institutions. Educational institutions
should teach the students how to do it. Only in this way, the students will
be ready and successful for real life. Therefore, schools and universities
must look for new ways and methodologies for practicing knowledge as a
part of the process of teaching. Practical knowledge in teaching refers to
students’ knowledge of classroom situations and solving the practical
problems they face in carrying out actions. The connection between
Science, Technology, Engineering, and Mathematics guarantees the
acquisition of practical knowledge in teaching. That is the STEM
methodology. Having in mind that the new teaching methodology is
based on solving practical problems, there is no doubt that students will
gain practical knowledge simultaneously with the theoretical one. The
new teaching methodology for practical knowledge per STEM means:
connection of the real situations with the need for introducing new
mathematical terms, which are provided in educational teaching
programs; students should feel the need from introducing new
mathematical knowledge; obtaining new knowledge with applications for
solving a practical problem that is close to real problems of life;
obtaining new knowledge which can be implemented in real situations,
etc. The biggest benefit of gained practical knowledge is that the
knowledge can be implemented in certain real-life situations. Applying
different digital tools and software while solving certain problem-based
situation students also gain practical knowledge.

We have organized several math lessons, with small groups of
students (15-30), during which STEM approach was introduced. In order
to receive feedback of the new methodology implemented, we have
prepared short tests for checking the students’ knowledge achieved on the
lesson, and also a questionnaire as a survey about students’ viewpoint for
the new approach. It is interesting that almost all the students have
answered the questions in the survey, although the questionnaire was not
obligatory. In order to achieve objective answers, e-mail addresses of the
students who answered the questions were not saved. Separate
questionnaire was prepared for each piloting lesson, and the results are
visible for each lesson separately. We have 107 answers to the 6
questionnaires with the same questions, but for the different lecture.
There were 10 questions with the next offered answers: [ agree, I agree
partially, I don’t agree, I cannot say and the students can choose only
one of the offered answers. We will present in the next figures each
question together with the results of the answers.
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The class was good organized

M| agree

M | agree partially

Figure 1: Answers to the first question

The computer applications help me in
easier understanding of the mathematical
content

M | agree
M | agree partially

M | cannot say

Figure 2: Answers to the second question

Computer applications helped me in acquiring
knowledge more easily

M| agree
M | agree partially

M | cannot say

Figure 3: Answers to the third question
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The educational content is interesting

H | agree

M | agree partially

Figure 4: Answers to the fourth question

The teaching contents are applicable in
everyday life

M| agree
M | agree partially

M | cannot say

Figure 5: Answers to the fifth question

The indicated literature is adequate for
understanding the teaching content

M| agree
M | agree partially

M | cannot say

Figure 6: Answers to the sixth question
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Cooperation in the class with colleagues and
the teacher was successful

W | agree
M | agree partially

M | cannot say

Figure 7: Answers to the seventh question

Communication with the teacher helped me to
gain knowledge more easily

m | agree

M | agree partially

Figure 8: Answers to the eighth question

Learning with this approach helped me gain
knowledge more easily

W | agree
M | agree partially

| cannot say

Figure 9: Answers to the ninth question
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The teaching materials are available in the
digital form

M| agree

M | agree partially

Figure 10: Answers to the tenth question

We believe that the answers are objective, because as we have said above,
no email address was necessary to access the questionnaire, just the link of it
was enough.

We have also prepared short test for checking students’ knowledge
immediately after the lesson. Unfortunately, we cannot boast with the results of
the tests in this first phase of the implementation of the STEM approach,
because we have not noticed big difference between these results and the results
on the testing students’ had before. But we are very pleased with the other
results that we have notices with the implementation of the new method,
because we managed to keep students’ attention during the whole lesson and to
burn the curiosity among them. They have very carefully joined the activities in
the class; they were not boring and curiously have expected the solution of the
problem set at the beginning of the lesson.

3. BENEFITS AND WEAK SIDES OF THE APPROACH

Both students and teachers have realized benefits from the
implementation of the new methodology on the piloting lessons.
Mathematics is usually understood by students as a science for itself,
without any connection with reality. Using old methods during the math
lessons, where math concepts were introduced with classical lectures,
only with black board and chalk, full with mathematical theory, formulas
and expressions, students are usually passive listeners. They are usually
not involved in any activity on the classes, so their attention is decreasing
continuously till the end of the lessons and they are getting boring. Thus,
other method which will involve students in different activities during the
lecture, as problem-solving situation, collaboration with others, etc.
seems to be necessary to practice on everyday lessons. By connecting the
4 components of Science, Technology, Engineering and Mathematics,
STEM has interesting access for presenting and introducing new material
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for educational classes on each educational level. Implementing STEM
approach on lessons and using different digital tools in order to easily
achieve knowledge is big step towards to make lectures interesting, to
increase students’ attention on the lessons and contribute in reaching
positive attitude among students toward mathematics. Students will
become active problem solvers, they will develop creative thinking, and
the most important of all they will change the perception for the process
of math education, realizing that math knowledge is important for their
carrier and everyday life. Therefore, STEM finds wide application in
improving the educational process and general satisfaction of students
and teachers.

Changing the students’ perception about mathematics, as a result of
the new approach in teaching, will on a long time make students to not be
afraid anymore of mathematics and make students not to avoid study
programs where mathematics appears as essential. Furthermore,
implementing new teaching methodology in the education can attract
students to study STEM fields, which will be big achievement for the
universities.

There are many other findings emerging from the implementation of
the new teaching methodology. By STEM methodology, the students
think more broadly and more deeply than usual. The STEM methodology
determines the way for the students to research new and creative ways to
solve real-world problems and connect themselves to the fields that
interest them. Using STEM methodology contributes in producing
students who think critically with the integration of knowledge and skills
from multiple areas. The students get creative ideas to apply the acquired
knowledge in solving real problems. Later, these students will get up
innovators, leaders, and educators of society. They will be creative
people who will lead society forward in development and progress.

The newly developed teaching methodology based on the STEM
approach can essentially change the way of teaching science, technology,
engineering and mathematics, and more important of it, can essentially
improve students’ results of studying and their perception about
education, generally. Thus, this new approach in teaching mathematics
has to be preferred for the teachers to use.

According to all above described that characterizes the newly
developed teaching methodology, based on the STEM approach, no
doubly there are many strengths of it. This new teaching methodology
differs a lot from the classical methods of teaching. One of its major
strengths is that the students are in the centre of the attention. They are no
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more passive listeners, but they are actively involved in the activities
during the lessons. This new methodology and approach based on
problem solving is strengthening students’ creativity and problem-solving
skills, as well as skills for collaboration and team work. The process of
teaching with this new methodology has been changed from its roots.
Students have new challenges on each new lesson, instead of being afraid
from the material following. Teachers have also challenges to organize
interesting lessons.

Although too many advantages, there are even some weaknesses of
this new approach in teaching mathematics. Not each mathematical
educational class can be organized via practical problems from real life's
situations. In mathematics there exist terms with abstract nature which
cannot be connected to practical problems. The good organization of a
class with this methodology requires full dedication to the teacher and a
lot of spent time.

Also, very often students do not have available appropriate digital
tools and software which can help them in solving certain problems.
Even the software and digital tools are available, very often they do not
have an experience in working with it. This can be considered as a
weakness, but as an advantage at the same time, because students
simultaneously with the new lecture can practice digital tools and similar
resources.

4. CONCLUSIONS

According to all above, the concept of STEM education and STEM
principles can easily be implemented into STEM studies if teacher gives
to the students a problem situation at the beginning of each lecture, in
order students to realize that certain theoretical knowledge is necessary
for solving such problem. In the continuation of the lesson, teacher can
introduce theory of the subject, but students will realize it as something
that they have to achieve in order to solve problem, not something useless
and boring which is part of the subject’s curriculum and that they have to
memorize. In order to reach time on the lessons, teacher can give as
homework to the students a problem situation related to the material
which will be introduced on the next lesson. However, starting the lecture
with a problem to be solved is the essential thing that makes this new
approach, and changes the perception about mathematics and education
at all.
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APPLICATION OF SEMIVARIOGRAMS AND KRIGING IN
GEOTECHNICAL MODELLING

Marija Maneva, Igor Peshevski, Milorad Jovanovski, Zoran Misajleski, Daniel Velinov

Abstract. Semivariograms and kriging are very important tools for geotechnical
modelling. The application of the recent results on these techniques, aided with computer
software, yields new insights in different areas of science and engineering. In this paper,
we use spherical semivariograms and ordinary kriging, for modeling of the specific
geotechnical parameters in the coal deposit Brod-Gneotino. The obtained values for
distribution of these parameters are quite convenient and effective for realistic slope
analysis, exploration and long term planning of surface mines development. Although, in
this paper we have case study, to proposed technique can be applied in general, whether
it is an active open pit mine or design for a new one.

1. INTRODUCTION

The coal as an energetic mineral resource is from a fundamental importance
in Macedonia, since it is the dominant source for electricity production. In
Macedonia, coal deposits can be found in several so called sediment basins,
characterized with tertiary geological age. Nowadays, only the deposits located
in Pelagonical sediment basin are used for coal exploitation. More specifically,
the coal is exploited at two surface mines in the Pelagonia basin: The so called
open pits of “Podinska serija” in REK Bitola and the relatively recently activated
open pit Brod-Gneotino.

Have in mind its importance, the coal deposit Brod-Gneotino has been subject
of many geological, hydrogeological and geomechanical investigations and
explorations, so there is a plenty data for detailed definition of the geology,
hydrogeology and geomechanics of this deposit.

The application of the modern mathematical trends and computer software
facilitates the process of interpretation of obtained data from the performed
investigations, by creating of different types of geological and geotechnical
datasets and models. Using the tools of spatial analysis, developed in the second
half of the last century, aided by computer software, fast data processing can be
performed. In comparison, the manual processing is quite complicated and time
consuming.

2010 Mathematics Subject Classification. Primary: 62H10, Secondary: 62P30,
62J05, 60E99.
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The computer software Leapfrog™ (more precisely its module Leapfrog
Geo) is used for this study devoted on geotechnical modeling of the coal deposit
Brod-Gneotino. With this geological modeling, 3D representation of the spatial
structures of the deposit is performed. Likewise, with the geotechnical modeling,
the measured data of geotechnical parameters is presented in 3D, and related to
the defined geological structures.

3D modeling and spatial analysis of the collected data is being used in the
mining for a quite long time. Before using modern computer into mathematical
modeling, generating the 3D models, was made by using two dimensional
specialized charts, cross-sections and diagrams. In the last three decades, the
number of studies devoted on 3D modeling has rapidly increased, as a
consequence of using specialized computer software. In this software, the modern
3D representations (models) are created with high resolution, and by using
interpolating algorithms, [1].

The expansion and advancement of the 3D modeling in geology include
integration of large amount of geological data, as well as additional available
lithological, structural, geochemical, geophysical, geotechnical and other type of
data. The constructed 3D representations can be used as interactive tools for
exploring of mineral deposits, [6]. Three dimensional geological modeling
(3DGM) is helpful for the geologists in quantitative analysis of three dimensional
spatial structures, defining the spatial relations between geological objects.
3DGM technology gives us a technical support for drawing information and
conclusions for the geology, 3D modeling and quantitative calculation of mineral
resources in the deposits, [12].

Geotechnical modeling is fundamental in designing the mines with open pit
or underground excavation. Fully defined and representative geotechnical model
will provide information about the engineering and geological characteristics of
the rock structure, defining its behavior in the domains of the mining. The model
is composed of individual rock structures, showing similar geotechnical
properties. The definition of this individual domains and its comprehensive
approach is a keynote for the process of exploitation and related hazards, through
facilitating the optimal solutions for the projects of the mines, [2], [8].

The development of the software improves the modeling, allowing the
obtained models to be built in realistic 3D environment, by using implicit and
semi implicit ways of modeling. The ways of modeling depend on the choice of
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data, application of certain trends and defining the geology, and additionally the
obtained surfaces can be manually modified by the software’s user. These options
in the software are used for creating more complicated models, with renewing
ability, by adding new data or new geological rules, and presenting more
interpretations for large amount of data. The used mathematical models and
software allow better understanding of the complexity of the deposits. We must
be careful about the following things: the used data for modeling should be
appropriate, representative and their quality should be assessed before we start
with the mathematical modeling aided by computer software, [8].

The geotechnical model contributing to design of the mines should be based
on comprehensive approach in geology, structures, alterations and erosions, and
how they influence at engineering and geological characteristics of rock
structures. The geotechnical engineers must have excellent understanding for the
hazards and constraints of each separate model, as well as their influence of
creating geotechnical domains, [8].

The mathematical modeling used here will be based on the theory from spatial
analysis, or more precisely on semivariograms and ordinary kriging. Once a
theoretical semivariogram is fixed, we are ready for spatial prediction. For spatial
prediction, the geostatistics uses kriging. The term kriging is given in honor of
the South African mining engineer, Daniel Gerhardus Krige. The question of
expressing in a function the structure of spatial dependence or correlation, known
in the geostatistics literature as structural analysis, is a key issue in the subsequent
process of optimal prediction (kriging), as the success of the kriging methods is
based on the functions yielding information about the spatial dependence
detected. The functions referred to above are covariance functions (also called
covariograms) and semivariograms, but they must meet a series of requisites, for
example stationary and intrinsic hypothesis. As we only have the observed
realization, in practice, the semivariograms derived from it may not satisfy such
requisites. For this reason, one of the theoretical models (also called the valid
models) that do comply must be fitted to it. Kriging aims to predict the value of a
regularized function, Z(s), at one or more non-observed points or blocks from a
collection of data observed at n points (or blocks in the case of block prediction)
of a domain D, and provides the best linear unbiased predictor (BLUP) of the
regionalized variable under study at such non-observed points or blocks. Thus,
the predictor support can be a point or a block, [9].

The paper is organized as follows. After the introduction, in Section 2, the
theoretical foundations of this study is given, i.e. details on spherical
semivariograms and ordinary kriging is presented. Section 3 is central part in this
paper and is devoted on application of the methods of spatial analysis in
geostatistical modeling of parameters important for slope stability and designing
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of surface mines. Conclusions of the paper are based on the previously obtained
results of the case study Brod-Gneotino. The most important, the presented
methods, approach and conclusions can be applied in general case of planning
and designing of open pit and underground mining operations.

2. SEMIVARIOGRAMS AND KRIGING

In spatial analysis, the semivariogram is given by the following formula
1
7 (s, _Sj) :EV(Z(SI') _Z(Sj)) )

for all s,,5, €D, where D is continuous domain under study, and by V()

denotes the variance of -.
Under the second-order stationary hypothesis:
The random function {Z(s) : s € D} is said to be second-order stationary, if it

has finite second-order moments and following hold:

a) The mathematical expectation exists and is constant, so it does not depend on
the location s, E(Z(s))=u(s)=u,

b) The covariance exists for every pair Z(s) and Z(s+ /) depends only on the

vector /1 joining the locations s and s+ /4, but not specifically on them, i.e. it
holds
C(Z(s),Z(s+h))=C(h),forall s € D and vectors 4

and the intrinsic hypothesis (with no drift):
The random function {Z(s) : s € D} is said to be intrinsic if, for any given vector

h of translation, the first-order increments Z(s+h)—Z(s) are second-order
stationary, i.e. E(Z(s+h)—Z(s))= u(s), where p(s), the drift, is linear in A
, and

C((Z(s+h)=Z(s),(Z(s+h+h"Y=Z(s+h"))=C(h,h"),

which is equivalent to
1
EV(Z(S +h)=Z(s))=y(h),

which is only a function of %,
it can be written as:

P =2V (2 + )= Z() = E((Z(s+1) - Z6)7).

showing how the dissimilarity between Z(s+#h) and Z(s)develops with
distance /.
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The semivariogram is the instrument used par excellence to describe the
spatial dependence in the regionalized variable. The reason is that it covers a
broader spectrum of regionalized variables than the covariance function, which is
confined to second-order stationary random functions. This spectrum includes
intrinsically stationary random functions, in which the covariance cannot be
defined. In the second-order stationary framework, both the semivariogram and
the covariogram are theoretically equivalent, [9]. Indeed,

C(h)=C0)=y(h).

In practice, the mean is unknown and it must be estimated from the data,
which introduces a bias. The semivariogram of an intrinsically stationary random
function depends on the vector 4 that connecting the locations (both on the
distance between s and s+ £, and also on the direction, but not on the locations
themselves). Hence, in general terms, it is anisotropic. In the case when
semivariogram depends only on distance, it is called isotropic.

The semivariogram is a non-decreasing monotone function, so that the
variability of the first increments of the random function increases with distance.
The semivariograms that correspond to second-order stationary random functions
have a typical behavior at intermediate and large distances: They rise from the
origin and increase monotonically with distance until approaching its limiting
value, the a priori variance of the random function, C(0), either exactly or

asymptotically, [9].

The slope of the semivariogram indicates the change in the dissimilarity of
the values of the regionalized variable with distance. The above-mentioned
limiting value of the semivariogram is called the variance sill, or simply the sill
(m), and the distance at which the sill is reached is termed the range, which
defines the threshold of spatial dependence, i.e. the zone of influence of the
random function. This means that, the range is the distance beyond which the
values of the regionalized variable have no spatial dependence.

Sill y(h)
C(0) e
"~,‘ / Zore of influence Absence of spatial
X correlation
l"' \'
L —— (h
Range C(h)
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Figure 1: Example of Bounded semivariogram and its covariogram counterpart

Figure 1 illustrates that the larger the range, the larger is the zone of influence
of the random function. In the case when the sill is reached asymptotically there
is not a well-marked range, but a practical range (the distance at which the
semivariogram takes the value 0,95m ). This practical range is closely related to

the scale parameter, a , of the semivariogram (if the sill is reached exactly, i.e. in
the case of a flat sill, a coincides with the range). Semivariograms that do not
reach a sill are quite prevalent, and in particular this fact can occur when dealing
with non-stationary random functions, in example when we have existence of a
drift, intrinsically stationary random functions, or even second-order stationary
random functions, in the case when the range exceeds the largest distance for
which the semivariogram can be estimated.

Here we consider semivariogram that is associated with the second-order
stationary hypothesis. Thus, it has a covariogram counterpart. This type of
semivariograms also received the name of transition models because the distance
at which the sill is reached represents the transition from the state of existence of
spatial correlation to the state of absence of such spatial correlation, [9].

2.1. The spherical model
This model is valid on R', R* and R*. It is defined as

3
m I,SM—O,S(MJ , |hLa
y( D)= a a

m, |h|>a

b

where m = C(0) is the value of the semivariogram when it reaches the sill, and

a is the range. The spherical semivariogram have a linear behavior near the
origin, which indicates continuity, but a certain degree of irregularity in the
random function. Also, it can be easily checked,

ay(|h|>:m(g_ﬂJ

oh a a

hence the slope of the semivariogram at the origin is 1,5—. The tangent at the
a

origin intersects the sill at | 4 |= Ea . Considering behavior at large distances, we

have that it reaches the sill at | 42 |=a . This well-defined range, along with its

simple polynomial expression and its validity on R', R*and R’, are some of
the reasons for the wide use of the spherical semivariogram in practical
applications. But the main reason is that an almost linear behavior up to a certain
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distance (the range) and then stabilization matches a large variety of observed
regionalizations, [9].

Next, we will give the kriging equations, which give us a prediction

of the value of the random function Z(s) ata non-observed point (or block) as a

linear combination of the values of the random functions at the sampled points
(or blocks) or at a set of them that are close to the prediction point. Clearly, we
will also give the expression of the prediction error variance, or simply the kriging
variance, which indicates how accurate the kriging prediction is. These equations
are obtained by imposing on the predictor the classical conditions of unbiasedness
and minimum variance, i.e. by imposing on the prediction error zero expectation
and minimum variance (that is, minimizing the mean squared prediction error). It
is nevertheless necessary to make the following clarification: the minimization of
the mean-squared prediction error stems from the assumption that the
semivariogram is known. Usually, this is not the case in many practical situations,
since the kriging prediction is based on the empirical semivariogram (to which a
theoretical semivariogram is fitted to). Moreover, it is difficult to measure the
consequences of not using the true semivariogram. More precisely, in the case of

point observation support, the point kriging predictor Z*(s,) at the non-

observed point s, is given by

Z%(s) =Y AZ(s).

where Z(s;) are the values observed at the n points in the neighborhood of s,

the prediction point, and A, are the kriging weights obtained by imposing on the

prediction error the classical conditions above referred. In many occasions we are
interested in block prediction. That is, our aim is to predict the average value of

the random function being studied in a block V', given by Z,(s), which is
assigned to the point s € V'
1
Z,(s)=—|Z(s")ds",
il
where | V| is the area or the volume of V', s' sweeps throughout V' and s is a

point in V' to which the average value of the block is assigned.
In such cases, when the observations are based on points, the predictor of the
average value of the random function in V' is given by

¢ =3 42(s).

In the case of a block observation support, that is, the data available are the
average values in blocks v, , the block predictor in V' is
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Z*, =Y AZ,(s),
i=1

where Z, (s,) to be the average value in the block v, , which is assigned to the

point s, €V,
1
Z,(s)=—[2(s"ds",
‘ v ly

as s' sweeps all over v,, [9].

Clearly, the quality of kriging predictions is built on the size of the sample

and the quality of the data, but it also confides in:

o the location of the realizations (if they are uniformly distributed in the
domain under study, there will be better coverage and more information
about what happens in that domain than if realizations are grouped);

e the distance between the points (or blocks) observed and the point or
block to be predicted (more trust should be placed in nearby realizations
than in distant realizations);

e the spatial continuity of the random function being studied (it is easier to
predict the value of a regular random function at a point or over a block
than of a random function that fluctuates markedly).

At the end of this section, let us make a remark that the main advantage of
kriging over other spatial interpolation techniques (inverse distance method,
splines, polynomial regression, among others) is that not only does it take into
account geometric characteristics and the number and organization of locations,
but also considers the structure of the spatial correlation that is deduced from the
information available through semivariogram structures, hence yielding more
reliable predictions. Therefore, the weights that kriging is using are not calculated
on the basis of an arbitrary rule that can be used in some cases but not others, but
rather on the behavior of the function that represents the structure of spatial
correlation. In this sense, it is a more flexible method than those mentioned above,
[9]. Additionally,

e Kriging makes it possible to measure how accurate are the predictions
using the prediction error variance (the kriging variance) and can yield a
map of the standard deviation of the prediction errors;

e kriging variance does not depend on the actual realization of the random
function, which acts as a probability shelter, meaning we can calculate it
before learning the values of the variables at those points, providing we
know the structure of the spatial dependence of that random function.
This is extremely useful when designing networks of optimum
observations, that is, for selecting locations to be observed that provide
the least kriging variance;
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o kriging is an exact interpolator, which means that at the points that make
up part of the sample, the kriging prediction corresponds with the value
observed, the kriging variance therefore being zero. In short, the
observation support can be points or blocks. In the first case the
prediction support can be also points or blocks; in the second case, it can
be only blocks, [9].

3. SEMIVARIOGRAMS AND KRIGING IN MODELING

In this section, we are going to use spherical semivariograms, in order to
obtain realistic 3D representation of the certain geotechnical parameters on sand
and coal in the coal deposit Brod-Gneotino. With these mathematical tools and
the module Leapfrog Geo from the software Leapfrog™, the collected data [3]-
[5] (see also [7], [10]-[11]), is analyzed and the following quasi-homogeneous
domains in the Brod-Gneotino deposit are obtained: quasi-homogeneous domains
of sand’s volume weight, quasi-homogeneous domains of internal friction of sand
determined by the direct shear, quasi-homogeneous domains of cohesion of sand
determined by direct shear, quasi-homogeneous domains of the angle of internal
friction of coal determined with triaxial tests and quasi-homogeneous domains of
the angle of internal friction of coal determined with triaxial tests.

In the sequel, we are going to give detailed survey of the upper mentioned
quasi-homogeneous domains.

3.1. Quasi-homogeneous domains of sand’s volume weight

The data used for mathematical modeling of quasi-homogeneous domains
belong to geological age of Quaternary, Pliocene and Miocene age, hence the
created quasi-homogeneous domains will correspond to the part of geological
model with Quaternary, Pliocene and Miocene age, without the part belonging on
trepel and coal layers.
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Figure 3: 3D representation of quasi-homogeneous domains of sand’s volume
weight

The obtained values for volume weight of the sand in the surface layer in
Brod-Gneotino are divided on two parts:

- Gravelly sand (SP,SW) with y=20,10 [KN/m?]
- Silty sand (SFc, SFs) ) with y=18,74 [kKN/m?].

By the 3D representation of the quasi-homogeneous domains of the volume
weight of the sand, we have the following:

v" Data used for mathematical modeling of these domains are in the range
from 13,95 to 21,21 [kN/m?], with median 18,78 [KN/m?],

v Domain with the highest values (19,50 — 21,21 [kN/m?]) is located in the
north part and in the part of east final slope of surface layer,

v" The domains with lower values are more represented i.e. 13,95 — 18,14
[kN/m?] and 18,14 — 18,78 [kN/m?]),

v Since the obtained values belong in the intervals with lower values, we
can consider the option, when analyzing the slope stability, to use lower
values for volume weight of sand, compared to the obtained values.

3.2. Quasi-homogeneous domains of internal friction of sand determined
by direct shear

Here, for mathematical modeling of quasi-homogeneous domains of the
angle of internal friction of the sand, determined with direct shear, we use data
belonging to geological layers with Pliocene and Miocene age, hence the created
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quasi-homogeneous domains will correspond to the part of geological model with
Pliocene and Miocene age, without the part belonging on trepel and coal layers.
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Figure 4: 3D representation of quasi-homogeneous domains of the angle of
internal friction of the sand determined with direct shear

The obtained values for the angle of internal friction obtained with the
direct shear of the sand in the surface layer in Brod-Gneotino are divided on two
parts:

- Gravelly sand (SP,SW) with ¢ =28° and

- Silty sand (SFc, SFs) ) with ¢ =17,65°.

By the 3D representation of the quasi-homogeneous domains of the angle
of internal friction obtained with direct shear of the sand, we have the following:
v" Data used for mathematical modeling of these domains are in the range
from @ =20° to @ =27°, with median ¢ =24°, located in the non-

fault domain,

v" Domain with the highest values (26°-27°) is almost in punctate
structure,

v" The domains with lower values are more represented i.e. 20°—24° and
24°—26°, and they are located in south-east part of the border of the
surface mine,

v It can be noticed that the obtained values for this geotechnical parameter
are located outside of the domains of separated quasi-homogeneous
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domains. Since the domains with the values 20°—24°, the mentioned
values can be used for analysis of slope stability of surface mine.

3.3. Quasi-homogeneous domains of cohesion of sand determined by
direct shear

The data used for the mathematical modeling of quasi-homogeneous domains
of the cohesion of sand determined by direct shear, belonging to geological layers
with Pliocene and Miocene age, hence the created quasi-homogeneous domains
will correspond to the part of geological model with Pliocene and Miocene age,
without the part belonging on trepel and coal layers.
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Figure 5: 3D representation of quasi-homogeneous domains of the cohesion of
the sand determined with the direct shear

The obtained values for cohesion by direct shear of the sand in the surface
mine in Brod-Gneotino are divided on two parts:

- Gravelly sand (SP,SW) with ¢ = 0,00[AN / m’] and
- Silty sand (SFc, SFs) ) with ¢ = 8,00[AN / m*].
By the 3D representation of the quasi-homogeneous domains of the

cohesion obtained with the direct shear of the sand, we derive the following
conclusions:

v" Data used for mathematical modeling of these domains are in the range
from c¢=0,00[kN/m’] to c¢=32,75[kN/m’], with median
¢ =0,00[kN / m’], located in the non-fault domain,
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v These quasi-homogeneous domains are formed by 13 numerical data,
from whose only three of them are not zeros, giving the reason why
modeling of the domains is not made like in the other geotechnical parts,

v' The most representative domain with median value ¢ = 0,00[kN / m’]
is with correlation with the regular value of the cohesion of the sands,

v Non-zero values of the cohesion are 14,25; 14,63 and

32,75[kN / m’]. They are located in the medium part of the surface

mine and they belong of the group of silty sands.
v" The final slopes in the frame of the whole border of the surface mine are

characterized with cohesion value ¢ = 0,00[AN / m’].

3.4. Quasi-homogeneous domains of the angle of internal friction of coal
determined with triaxial tests

The data used for modeling of the angle of the internal friction of the coal,
determined by the triaxial test belong in the geological sections of the five coal
layers with Miocene age, hence the created quasi-homogeneous domains will
refer to these parts from the geological model.
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Figure 6: 3D representation of quasi-homogeneous domains of the angle of
internal friction of the coal determined with the triaxial tests

249



APPLICATIONS OF SEMIVARIOGRAMS AND KRIGING...

The obtained value for the angle of the internal friction of the coal in the
surface mine Brod-Gneotino is ¢ =24°. From the 3D representation of the

quasi-homogeneous domains of the angle of the internal friction of the coal,
determined with triaxial tests, we can derive the following conclusions:
v' Data used for creating of these domains are in the range from
@ =14,20° to ¢ =34,00°, with median ¢ =28,50° and are located
in the non-fault domain,
v" The domains with higher values (28,50°-32,25° and

32,25°-34,00°) are the least spatially represented and they are located

mainly in the east final slopes, as well as in the line with the first fault
structure in the surface mine,
v' The domains with lower values (14,20°-26,75° and

26,75°—28,50°) are more spatially represented covering whole space

in non-fault domain form the surface mine, especially the domain with
the lowest values,

v’ It can be noticed that the obtained value for this geotechnical parameter
belongs in the quasi-homogeneous domain with the lowest values which
is spatially the most represented, but in stability analysis of the east final
slopes, as well as in the line with the first fault structure, can be used
higher values from the obtained ones.

3.5. Quasi-homogeneous domains of the angle of internal friction of coal
determined with triaxial tests

The data used for modeling of the cohesion of the coal, determined by the
triaxial tests belong in the geological parts of the five coal layers originated from
Miocene period, hence the created quasi-homogeneous domains will refer to
these parts from the geological model.

250



APPLICATIONS OF SEMIVARIOGRAMS AND KRIGING...

BT O 2]~ (83 Pject | @ Scenc view | 3= Shopeli X
F - W\ B RN\ B

sEf

" Full Acceleration 13§PS, $Z:5cale 0

Figure 6: 3D representation of quasi-homogeneous domains of the cohesion of
the coal determined with the triaxial tests

The obtained value for the cohesion of the coal in the surface mine Brod-
Gneotino is ¢ = 50,00 [kN /m’]. From the 3D representation of the quasi-

homogeneous domains of the cohesion of the coal, determined with triaxial tests,
we can derive the following conclusions:

v' Data used for creating of these domains are in the range from
c=118,52[kN/m’] to c¢=810,25[kN/m’], with median
c=681,38 [kN / m’] and are located in the non-fault domain,

v The domains with higher values (681,38—707,5[kN/m’] and
707,58 —810,25 [kN / m’]) are the least spatially represented and they

are located in the small part in the east final slopes, as well as in the
middle part in the surface mine,

v The domains with lower values (118,52—585,01[kN/m’] and
585,01—681,38 [kN / m’]) are more spatially represented covering

whole space in non-fault domain form the surface mine.

CONCLUSIONS

The used mathematical models, aided by computer techniques, allow
combination of geological model and numerical models for geotechnical
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parameters by geotechnical sections/domains, parts in combined models. These
models display the distribution of values of the geotechnical parameters in
different geological layers/mediums.

In the analysis of the stability of slopes in the excavation blocks at the surface
mine Brod-Gneotino, the obtained values for geotechnical parameters are of
primary importance. Considered quasi-homogeneous domains and their spatial
analysis in the different parts of the surface mine, can make a significant
contribution into adopting certain values for the geotechnical parameters, which
on the other side are used for slope analysis. The scope of this paper, alongside
with the theoretical approach of the theory of spatial analysis, especially
semivariograms and kriging, is the selection of the geotechnical values needed
for stability analysis of the final slopes of the surface mine. The studied domains
show that in certain parts of the deposit, the obtained laboratory values are
appropriate, while in other parts it can be used lower or higher values in order to
be obtained more realistic analysis of the slope stability, as process, highly
important for exploitation and long term planning and development of the open
pit mine. Same approach can be suggested also for the case of underground
mining.

All of this emphasize the importance of the spatial analysis aided with
computer programs in the geotechnical modeling. The application of these
methods is important for spatial and statistical processing of geotechnical data.
Using corresponding interpolations results in selection of realistic values of the
geotechnical parameters in all levels of project design is thus highly
recommended.

This mathematical approach is quite general, easy for application and is of
great benefit for geotechnical characterization of different types of mineral
deposits.

Finally, due to the nature of the geological materials, other mathematical
approaches can be suggested and are being used for geotechnical characterization
in geotechnics such as in kinematic stability analyses for hard rock masses,
calculations of bearing capacity, settlement, and others. All of these analysis find
benefit from the geostatistical tools. These aspects overcome the scope of this

paper.
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A GEOGRAPHICALLY WEIGHTED REGRESSION APPROACH IN
REGIONAL MODEL FOR REAL ESTATE MASS VALUATION

Natasha Malijanska, Sanja Atanasova, Gjorgji Gjorgjiev, Igor Peshevski, Daniel
Velinov

Abstract. Real estate mass valuation models of a market value have a tendency to
generate real estate property values as close as to the real market values. Property
valuation theory, as one of the primary factors influencing property value, considers
location. The main statistical tool used for modelling in this investigation is
geographically weighted regression. More precisely, the paper is striving to establish a
mass valuation real estate property model considering the implementation of spatial data
as a significant factor in determining the market value of condominiums in Skopje.

1. INTRODUCTION

The great importance of real estate, both in economic as well as in social

life creates a need for trustworthy data about its own value, which will be
helpful in making decisions during its management and usage.
The wvalue, in the publication Uniform standards of professional appraisal
practice by the Appraisal Foundation, is defined as “the monetary relationship
between properties and those who buy, sell, or use those properties”. Value
expresses an economic concept. As such, it is never a fact, that is, it is always an
opinion about the value of the property at a given time in accordance with a
certain definition of value. Real estate appraisal or property valuation is "the act
or process of developing an opinion of value of the property”, [1].

It is important to distinguish the term market value from the term market
price, which is the amount for which real estate is sold on a certain date. In
addition to the market, investment, liquidation value, value according to the
principle of continuity and many other types of real estate value can be also
estimated. The market value by the International Valuation Standards Council in
their publication International Valuation Standards is defined as "the estimated
amount for which an asset or liability should exchange on the valuation date
between a willing buyer and a willing seller in an arm’s length transaction,
after proper marketing and where the parties had each acted knowledgeably,
prudently and without compulsion”, [8].

Regarding the method of valuation, i.e., the number of real estates that are
apprised, there is an individual and mass valuation.
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62J05, 60E99.
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The individual valuation is an estimate of the value specifically intended for
individual real estate, taking into account its specific characteristics and
referring to a specific date. Unlike individual valuation, mass valuation is a
process of valuing a group of real estate, on a given date, using common data,
applying standardized methods and conducting statistical tests to ensure unity
and equality in valuation. When assessing a large number of real estates, it is
difficult to emphasize each of their qualities, so special attention is paid to
defining what is common to all real estate that is valued, i.e., significant factors
for their value. The mass valuation, by the Appraisal Foundation in their
publication Uniform Standards of Professional Appraisal Practices, is defined as
a "process of valuing a universe of properties as of a given date using standard
methodology, employing common data and allowing for statistical testing”, [1].

Mass valuation is based on the same basic principles as individual
valuation. However, mass valuation includes many real estates for a certain
date, which is why mass valuation techniques include equations, tables, and
plans, collectively called models.

Mass valuation models attempt to represent the market for a certain type of
real estate in a particular area. The structure of such models can be seen as a
two-step process:

e Model specification and
e Model calibration.

The model specification provides a framework for simulating supply forces
and real estate market demand. This step involves selecting the variables of
supply and demand, that need to be considered and defining their correlation
towards the value as well as their own correlation. Model calibration is the
process of adjusting the mathematical model for mass valuation, the tables, and
the estimates for the current market. The structure of the model can be valid for
several years, but it is usually calibrated or updated each year. For longer
periods, a complete market analysis is required, [3]. The purpose of the mass
valuation is to reflect the current conditions in the local market.

When specifying the mass valuation model, firstly the variables are
identified (supply and demand) that can impact the value of the real estate and
then they are defined as mathematical conversions such as logarithms, which are
often used to transform nonlinear data. At the same time, the mathematical form
of the model is defined. It can be used in linear (additive) and nonlinear
(including multiplier) forms. Next, the model is calibrated, i.e., the data are
analysed so we can determine the adjustments or the coefficients that represent
the contribution to the value of the real estate of the selected variables.

The construction of the models requires a good theoretical foundation, data
analysis, and research methods. The best valuation models are expected to be
accurate, rational, and explainable. Regression analysis is one of the most used
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methods in statistics, it is used for understanding, modelling, predicting, and
explaining complex phenomena. In regression analysis, the predicted variable is
called a dependent variable, and the variables used for prediction are called
independent variables. Regression analysis allows the creation of a model for
predicting the values of a dependent variable, based on the values of other
independent variables or only one independent variable.

Building a regression model is an iterative process that involves finding
effective independent variables to explain the dependent variable we are trying
to model or understand. By repeating the regression procedure, we determine
which variables are effective predictors, and then we constantly subtract and/or
add variables until we find the best possible regression model. The process of
building a model is a research process. It is necessary to identify explanatory
variables in consultation with theory, experts in the field, and based on common
sense. We need to be able to state and justify the expected relationship between
each explanatory variable and the dependent variable before the analysis, and
we need to question the models where these relationships do not match.

The first law of geography, given by Waldo Tobler, is that “everything is
related to everything else, but near things are more related than distant things”,
[12]. Foundations of many spatial statistical methods are based on this law.
Geographically weighted regression (GWR) is a method used in spatial
statistical analysis, discovering geographical variations in the relationship
between a response variable and a set of covariates. GWR has been applied in a
variety of disciplines and studies, aided by the increased availability of geo-
referenced data at finer scales, and by an appreciation that global regression
models can mask substantively important departures from average trends at
local levels.

Based on the established infrastructure related to the mass valuation of real
estate, the aim of this research paper is defined as the first attempt to establish a
model for mass valuation of real estate for parts of the city of Skopje, while
explicitly incorporating the spatial factor. The research also focuses on the
application of data that the Agency of Cadastre, registers as real estate
transactions that take place within the state, and which are the only official and
relevant data source. Considering that in the value of the real estate, and
consequently in the assessment of the value, the location has a great impact, the
intention is to base the research on Geolnformation systems with which the
spatial factor will be easily implemented in the model as well as the control of
this component will be more extensive.

The rest of the paper is arranged as follows. In Section 2, the basic
concerning geographically weighted regression are provided. Central part in this
paper is Section 3. In this section are given two different models of real estate
mass valuation, both using geographically weighted regression. The impacts of
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the age of the building and garage area are separately depicted and analysed.
At the end, certain comparison of mass valuation models performance is given.

2. GEOGRAPHICALLY WEIGHTED REGRESSION

The main objective of spatial analysis is to identify the nature of the
relationships that variables exhibit, [5-7]. Usually, this is made by calculating
statistics or estimating parameters with observations taken from different spatial
units across a study area, [9-12]. The obtained statistics or estimates of the
parameter are assumed to be constant across space although this might be a very
questionable assumption to make in many circumstances. In general, it is
reasonable to assume that there might be intrinsic differences in relationships
over space or that there might be some problem with the specification of the
model from which the relationships are being measured and which manifests
itself in terms of spatially varying parameter estimates. In either case it would
be useful to have a means of describing and mapping such spatial variations as
an exploratory tool for developing a better understanding of the relationships
being studied, [2].

The most used model in geographical analysis is the model of simple linear
regression. Using this technique, a particular variable (the dependent variable),
is modeled as a linear function of a set of independent or predictor variables.
The model states as follows:

Yi=4a, +Zakxik +& (1)

k=1
where y, is the ith observation of the dependent variable, x,is the ith

observation of the kth independent variable, ¢ are independent normally

distributed error terms with zero means, and each a, are determined from the
observations. The number of observations is# . Using the least squares method,
a., k=1,2,...,m are estimated. In context of matrices, the upper equation can
be written as

a=(x'x)"x'y (2)
where the independent observations are the columns of x and the dependent
observations are the single column vector y . The column vector @ contains the

coefficient estimates. Each of these estimates can be looked of as a “rate of
change” between one of the independent variables and the dependent variable.

For example, if y were agreed condominiums prices, and x contained several
variables related to the attributes of the condominiums and its surrounding
environment, coefficients could be used to estimate the change in
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condominiums price for an extra square meter of garage, an extra bedroom, or
the condominiums being located one kilometer closer to the nearest school.

Note that these rates of change are assumed to be universal. Wherever an
apartment is located, for example, the marginal price increase associated with an
additional bedroom is fixed. It might be more reasonable to assume that rates of
change are determined by local culture or local knowledge, rather than a global
utility assumed for each commodity. Returning to the example, the value added
for an additional bedroom might be greater in a neighborhood populated by
families with children where extra space is likely to be viewed highly beneficial
in a neighborhood populated by singles or elderly couples, in which case extra
space might be viewed as a negative feature. These variations in relationships
over space, such as those described above, are referred to as spatial
nonstationarity, [2].

Geographically weighted regression (GWR) addresses problems like the
one in the previous paragraph. It is a relatively simple technique, extending the
traditional regression framework of equation (1). Local variations in rates of
change are allowed, so that the coefficients in the model are specific to a
locationi , rather than being global estimates. The regression equation in this
case is given by

m
Yi=ay +Zaikxik +¢ 3)

k=1

where a, is the value of the k th parameter at location i. Note that (1) is a

special case of (3), by putting all of the functions are constants across space. As
will be shown below, the point i at which estimates of the parameters are
obtained is completely generalizable and need not only refer to points at which
data are collected. Using GWR, it is quite easy to compute parameter estimates.
For instance, for locations lying between data points, which makes it possible to
produce detailed maps of spatial variations in relationships. Although the model
in equation (3) appears to be a simple extension of (1), a problem with
calibrating (3) is that the unknown quantities are in fact functions mapping
geographical space onto the real line, rather than simple scalars as in (1). In a
typical data set, samples of the dependent and independent variables are taken at
a set of sample points and it is from these that the parameters must be estimated.
In the traditional model, these estimates are constant for all i but in equation (3)
this is clearly not the case. For model (3), it seems intuitively appealing to base

estimates of g, on observations taken at sample points close toi. If some

degree of smoothness of the a,, k=1,2,...,mis assumed, then reasonable

approximations may be made by considering the relationship between the
observed variables in a region geographically close to 7.
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By the use of a weighted least squares approach to calibrating regression
models, different emphases can be placed on different observations in
generating the estimated parameters. In ordinary least squares, the sum of the

squared differences of predicted and actual y,, is minimized by the coefficient

estimates. In weighted least squares a weighting factor w;, is applied to each
squared difference before minimizing, so that the inaccuracy of some
predictions carries more of a penalty than others. If w is the diagonal matrix
consisting of all w, , then the estimated coefficients satisfy

a=(x'wx)"x'wy. 4)

In Geographically weighted regression, weighting an observation in
accordance with its proximity to i would allow an estimation of g, to be made
that meets the criterion of “closeness of calibration points” set out above. Note
that usually in weighted regression models the values of w. are constant, so that
only one calibration has to be carried out to obtain a set of coefficient estimates.
In this case w varies withi, a different calibration exists for every point in the

study area. In this case, the parameter estimation formula could be written more
generally as

a(i) = (x'w(i)x) " x'w(i)y. )

Comparing this method and that of kernel regression and kernel density

estimation, we can say the following: In kernel regression, yis modeled as a

nonlinear function of xby weighted regression, with weights for the ith

observation depending on the proximity of xandx,, for each i with the
estimator being

a(x) = (x'w(x)x)" x'w(x)y. (6)

The main difference between the two methods is that in (6), kernel
regression, the weighting system depends on the location in “attribute space” of
the independent variables, whereas in geographically weighted regression (see
(5)) it depends on location in geographical space. The output in (5) is typically a
set of localized parameter estimates in xspace so that highly nonlinear and
nonmonotonic relationships between ) and x can be modeled. The typical

output in (6) is a set of parameter estimates that can be mapped in geographic
space to represent nonstationarity or parameter “drift”, [2].
From the above, w, is a weighting scheme established on the proximity of

i to the sampling locations around i, without an explicit relationship being
stated. The choice of such a relationship will be considered in continuation.
Firstly, consider the implicit weighting scheme of (2). Here
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w, =1, (7
for all i and j. Here jrepresents a specific point in space at which data are
observed and i represents any point in space for which parameters are
estimated. This means that, in the global model each observation has a weight
one. An initial step toward weighting based on locality might be to exclude
from the model calibration observations that are further than some distance d
from the locality. This is equivalent to putting their weights to be zero, giving a
weighting function by

w, =1, d,<d
{ iy y (8)

w, =0, otherwise’

The use of (8) allows efficient computation, since for every point for
which coefficients are to be computed; only a subset (often quite small) of the
sample points need to be included in the regression model. Hence, the spatial
weighting function in (8) suffers the problem of discontinuity. As I vanes
around the study area, the regression coefficients could vary drastically as one
sample point moves into or out of the circular buffer around i and which
defines the data to be included in the calibration for location i . Although instant
changes in the parameters over space might genuinely occur, in this case
changes in their estimates would be artifacts of the arrangement of sample
points, rather than any underlying process in the phenomena under

investigation. One way to address this problem is to makew, a continuous

function of d,
be seen from (5) that the coefficient estimates would then vary continuously

with i . A straightforward choice for the weight function w; might be

where d; is the distance between i and j. In this case, it can

w; =¢€ P d (9)

so that if 7 is a point in space at which data are observed, the weighting of that
data will be unity and the weighting of other data will decrease according to a
Gaussian curve as the distance between i and jincreases. In the latter case the

inclusion of data in the calibration procedure becomes “fractional.” For
example, in the calibration of a model for point i, if w; = 0,5, then data at
point j contribute only half the weight in the calibration procedure as data at

point i itself. For data far away from i the weighting will be asymptotically
zero, effectively excluding these observations from the estimation of parameters
for location i .

Adjustments of (8) and (9) may be made, having the computationally
desirable property of excluding all data points greater than some distance from
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i and also the desirable property of continuity. An example is the bisquare
function given by

1-d?/d*):?, d.
le:{( d’/d*y, d,<d (10

0, otherwise

This excludes points outside radius d, but tapers the weighting of points
inside the radius, so that W), is a continuous and once differentiable function for

all points less than d units from i .

Whatever the specific weighting function employed, the essential idea of
Geographically weighted regression is that for each point i there is a “bump of
influence” around i corresponding to the weighting function in a way that
sampled observations close to i have more influence in the estimation of i’s
parameters than do sampled observations farther away.

The following problem occurs when use GWR: The estimated parameters
are, in part, functions of the weighting function or kernel selected in the method.
In (8), for example, as d becomes larger, the closer will be the model solution
to that of OLS and when d is equal to the maximum distance between points in
the system, the two models will be equal. Equivalently, in (9) as f# tends to
zero, the weights tend to one for all pairs of points so that the estimated
parameters become uniform and GWR becomes equivalent to OLS. Conversely,
as the distance- decay becomes greater, the parameter estimates will
increasingly depend on observations in close proximity to i and hence will have
increased variance. The problem is therefore how to select an appropriate decay
function in GWR. Consider the selection of £ in (9), one possible solution is
[ to be chosen on a least squares criteria. If the error terms in (3) are assumed

to be Gaussian, then this also fulfills a maximum likelihood criterion. Hence,
the way to proceed would be to minimize the quantity

Zn:(yi_yi*(ﬂ))za (11)

where y, (f3) is the fitted value of y, using a distance-decay of /3. For the

sake of finding the fitted value of y, , it is necessary to estimate the a,, ’s at each

of the sample points and then combine these with the z -values at these points.
However, when minimizing the sum of squared errors suggested above, a
problem is encountered. Let  was made very large so that the weighting of all
points except for iitself become negligible. Hence the fitted values at the
sampled points will tend to the actual values, so that the value of (11) tends to
zero. This means that under such an optimizing criterion, the value of # tends

to infinity, but clearly this degenerate case is not useful. First, the parameters of
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such a model, are not defined in this limiting case. Second, the estimates will
fluctuate wildly throughout space in order to give locally good fitted values at
each 7.

The cross-validation (CV) approach suggested
for local regression by Cleveland (1979) and for kernel density estimation by
Bowman (1984), is a solution to this problem. Here, a score of the form

> (-2 (B

is used where yii* (B) is the fitted value of y, with the observations for point i

omitted from the calibration process. This approach has the desirable property
of countering the wrap-around effect, since when becomes very large, the model
is calibrated only on samples near to i and not at i itself. Plotting the CV score
against the required parameter of whatever weighting function is selected will
therefore provide guidance on selecting an appropriate value of that parameter.
If it is desired to automate this process, then the CV score could be maximized
using an optimization technique such as a Golden Section search, [2].

3. MODELLING WITH GEOGRAPHICALLY WEIGHTED
REGRESSION

According to the theoretical settings, experience, available research and data
made available from the Register of Leases and Real Estate Prices, a set of
proposed explanatory variables has been identified that are considered to
determine the market value of the real estate. Despite the good reasons for
including any available real estate data as variables in the model, it was found
that some of the explanatory variables were statistically significant and some
were statistically insignificant. For this reason, statistical tests have been
conducted to make a number of possible combinations of proposed input
explanatory variables, requiring models that best explain the dependent variable
and thus perform the model specification. The analysis of the proposed
explanatory variables gave the results shown in the table below. Also, through
the statistical analysis, multicollinearity is calculated between the explanatory
variables, i.e., VIF value. In which the value taken as a limit is the value 7.5,
1.e., if the VIF value is less than 7.5 there is no multicollinearity between the
explanatory variables.

The following table shows the result for significance and multicollinearity
based on the analysis of the explanatory variables.
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Table 1: Result of the analysis of variables

bus station

Summary of variable significance Multicollinearity

Variable Significant | Negative | Positive VIF
Area 100 0 100 1.69
Garage (area) 100 0 100 1.19
Distance to closet 100 100 0 417
mall
Age 98.07 100 0 1.67
Elevator 87.67 0 100 1.64
Distance to closest | ¢5 9 99.14 0.86 2.97
university
Distance to school 79.93 0 100 1.33
Balcon area 74.53 0.02 99.98 1.19
Floor number 73.79 0 100 1.21
High quality 69.43 0 100 1.03
interior
Distance to closest | 5 6299 | 37.01 3.71
park
Rooms 60.68 18.84 81.16 1.47
Own heating 60.21 8.77 91.23 1.93
system
Distance to closest | 5, g¢ 1658 | 83.42 1.90
hospital
Distance to closest |, 19 4245 | 5755 138
kinder garden
Distance to city 51 4820 | 51.80 2.56
centre
Basement area 39.99 77.79 22.21 1.30
Communal 33.04 24.30 75.70 2.32
heating system
Distance to closest |, 7218 | 27.82 133

The results obtained from the analysis of the explanatory variables show
that there is a high significance of certain structural, but also spatial
characteristics for the real estate that is subject to transaction. It can also be
noted that we do not have a redundant explanatory variable, i.e., there is no
multicollinearity between the explanatory variables. In the process of defining
an appropriate model, it is necessary to experiment with different variables to
explain the value of the real estate. It is important to be aware that the
coefficients of the explanatory variables (and their statistical importance) may
change radically depending on the combination of variables we include in the

model.

264




A GEOGRAPHICALLY WEIGHTED REGRESSION APPROACH...

For the purposes of the research, two models were created with GWR, while
for assessing the quality of the created models, the statistical parameters R?,
adjusted R?and Akanke’s Information Criterion (AICc) were used. R? and
adjusted R? are statistically derived from the regression equation to quantify
model performance. The value of R? ranges from 0 to 1. If the model explains
the dependent variable perfectly R*is 1.0. As an example, if you get a value of
R2 0of 0.49, it can be interpreted with the words: "the model explains 49 percent
of the variations in the dependent variable". Adjusted R?is always slightly lower
than the value for R? as it reflects the complexity of the model (number of
variables). Consequently, the adjusted R? is a more accurate measure of model
performance. The Akaike information criterion (AIC) isan estimator of
prediction error and thereby the relative quality of statistical models for a given
set of data. AIC estimates the relative amount of information lost by a given
model: the less information a model loses, the higher the quality of that model.

Model 1

Model 1 created with GWR is specified only with structural features of
residential property. As explanatory variables for which statistical tests showed
the greatest signification are as follows: Area, Garage (area), Balcony area and
Age. Using these explanatory variables, the first model for which the following
statistical indicators are obtained is formed in the table below, through which
we can see the success of the model.

Table 2: Results of the analysis — GWR for Model 1

oD VARNAME VARIABLE DEFINITION

F (} | Bandwidth 2137.8650152

1 |ResidualSquares 54169319433

2 |EffectiveMumber 21.807198

3| Sigma &063.135068

4|AICC 17821.981138

o|R2 0. 794736

& | RZAdjusted 0.78561

T |Dependent Field 0 |PRICE_EU

& |Explanatory Field 1|AREA

5 |Explanatory Field 2 |AREA_BALCO

10 |Explanatory Field 3 |AREA_GARAG

11 |Explanatory Field 4 | AGE
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Table 3: Correlation coefficient between the projected prices by Model 1 and
the actual purchase prices for the control group points

Correlations
price_eu | Predicted
price_eu  Pearson Correlation i FEEN
Sig. (2-tailed) ,oon
M 85 55
Predicted  Pearson Correlation ,899“ 1
Sig. (2-tailed) ,aon
M 85 95

** Caorrelation is significant atthe 0.01 level (2-tailed).

The correlation analysis between the appraised market value of the
residential property that has been sold, obtained with model 1 and the actual
purchase price performed in transactions for the control group of transactions,
calculated with Pearson the correlation coefficient in the SPSS software for this
model is 0.899, i.e., 89.9 %.

Model 2

Model 2 created with GWR uses the same structural and explanatory variables
as Model 1 and supplemented by three spatial explanatory variables that the
analysis showed were statistically significant: Distance to the closest mall,
Distance to the closest hospital and Distance to the closest university. By
applying all these explanatory variables, the following statistical indicators
shown in the following table are obtained:

Table 4: Results of the analysis -GWR for Model 2

[8]]] VARNAME VARIABLE DEFINITION

r (| Bandwidth 2137.860192

1 |ResidualSquares 47401929637.900002

2 |EffectiveMumber 3111344

3 | Sigma 7585.142586

4 |AlCc 17724 382795

5|R2 082033

5§ |R2Adjusted 0.813815

7 |Dependent Field 0 |PRICE_EU

2 |Explanatory Field 1 |AREA

5 |Explanatory Field 2 |AREA_BALCO

10 |Explanatory Field 3 |AREA_GARAG

11 |Explanatory Field 4| 8GE

12 |Explanatory Field 5 DIST_MAL

13 |Explanatory Field 6 |DIST_HOS

14 |Explanatory Field T |DIST_UNI
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The correlation analysis between the appraised market value of the
residential property that has been sold, obtained with model 2 and the actual
purchase price performed in the transactions for the control group points,
calculated with Pearson correlation coefficient in the SPSS software for this
model is 0.906, i.c., 90.6%.

Table 5: Correlation coefficient between the projected prices by Model 2 and
the actual purchase prices for the control group points

Correlations
price_eu | Predicted
price_eu  Pearson Correlation 1 a8
Sig. (2-tailed) 000
[+ a5 95
Predicted  Pearson Correlation 808" 1
Sig. (2-tailed) J0oo
I a5 95

** Correlation is significant atthe 0.01 level (2-tailed).

When calibrating mass valuation models where spatial regression models
are used, they have a variable value that varies depending on the location. In
order to register this variation, spatial data in raster data format is used. Hence, a
significant advantage in using the GWR model and applying GeolS is the ability
to create a series of raster layers of variable coefficients. This allows the
identification of spatial variations within the research area, which can help in
effective decision making. Such records can provide an excellent insight into the
key parameters that affect the value of the property in a particular area. For
example, the age of the property can have a significant negative impact on the
value of the property in newly developed areas where most of the properties are
completely new, and on the other hand it can have a positive impact in an old
part of the city where older buildings have architectural features and historical
significance. In order to emphasize the importance of these models, the results
of the age factor of the building will be presented. As expected, the age of the
building is inversely proportional to the value of the property, i.e., the older
construction reduces the value of the property due to obsolescence, deterioration
and depreciation. The analysis of the raster data model of the coefficient for the
age of the building showed that the impact of this factor varies through the field
of research and less impact (lower coefficients) this factor is observed in the
central area of the city, while the impact of the age of the building increases as
we move away from the central urban area, to the settlements of Karposh,
Aerodrom, where new buildings are being built and the demand for new
buildings is higher.
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Figlirel: Value of the coefficient before the variable ;g-e

The analysis of the raster data model of the coefficient for the impact of the
garage surface showed that this impact is greater in the municipalities of Centar
and Karposh, while in the municipalities of Aerodrom and Chair, that impact is
less, as gxpect_gd, due to the existence of

T A ; -

% vi‘E‘L} ik o i',f.'ﬁ-,- =5

Figure 2: Values of the coefficient in front of the variable area of the garage
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4. CONCLUSIONS

Based on the results obtained from quality control of the established models
for mass valuation we can conclude that both models meet the statistical checks
and have a satisfactory accuracy of market value prediction. However, although
they have satisfactory accuracy, it is necessary to emphasize the difference
between the number and type of explanatory variables that these models
incorporate and how they affect the end result.

Table 6: Comparison of mass valuation models performance

Model 1 - GWR Model 2 -

GWR
Coefficient of determination — R? 79.5% 82.0%
Akaike Information Criterion — AICc 17822 17724
Pearson correl. 89.9% 90.8%
Input data Non-spatial Spatial
Number of explanatory variables 4 7

Model 2 has higher R? coefficient, which means that the created model fits
much better in the data. A higher percentage shows that the dependent variable
(the value of the residential property) is better explained by the selected
independent variables, while this percentage is lower in Model 1. Also, the
AICc value of the first model is lower than the one of Model 2.

As for the accuracy of the prediction, which is calculated as the correlation
coefficient between the projected prices of the control transactions that were
omitted from the creation of the models and the actual prices of their purchase,
Model 2 has a higher Pearson correlation factor than Model 1.

The results show that the use of Geographically weighted regression (GWR)
in predicting market real estate values is a great basis for developing mass
valuation models. In doing so, the incorporation of spatial explanatory variables
can have a positive impact on real estate mass valuation models.
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