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3. EXTENSION OF A 2-SKEW-SYMMETRIC LINEAR FORM

Theorem. Let A:M —>R be a 2-skew-symmetric form such that
A(x,y) < p(x,y) for every (x,y)eM, p:X* —>R be a 2-semi norm and M is a
branch 2 -subspace of the 2 -space X°. Let M' be an extension of M as in sub
case 1 of case 2. Then there exists a 2 -skew-symmetric linear form A':M'— R
such that

AIM=A

—p(=x, 1) SA, ) < plx, ) - (*)

Proof. In this thecorem, as before we will choose two arbitrary elements from the
2-subspace M , which at the same time belong also in the loop «. Let that be the
elements (a,x, +a,x,,u) and (B,x,+pB,x,,u). For 2-skew-symmetric form A,
according to the conditions of the theorem we have that
Ala,x, + a,x,,u)+ A(Box, + B,x,.u) = Aa,x, +a,x, + Box, + f,x,,u) <

< playx, +ayx, + Box, + X, u) = p(,X, +a,x, —v+ Box, + fix, +v,u) <In
< playx, + a,x, —v,u)+ p(Byx, + B,x, +v,u)
other words, the incquality holds

A, x, +ayxy,u) = payx, + a,x, —v,u) < p(Box, + Byx, +vou) = A(Bpx, + Bx,.u) .

Since a,,a, €R and g,,8, R are arbitrary, we get that

sup A(a,x, +a,x,,u)— p(a,x, +a,x, —v,u) =d < p(fB,x, + f,x, +v,u)— A(f,x, + f,x,,u)

According to that, for arbitrary «,,e,,f,,f, € R, the inequalities hold
Ala,x, +a,x,,u)— p(a,x, +a,x, —v,u)<d
d < p(Byx, + Bix, +v,u)— N(fox, + B,x,,u)

ie.
Alayx, +a,x,,u)—d < p(a,x, + @,x, —v,u) (1)
A(Box, + Poxyu)+d < p(Byx, + f,x, +v,u) 2
Now, we will determine A': M'— R with
A'TA(a,x, +a,x, + yv,u)] = (det DA[A(a,x, +a,x,,u)+yd], yeR,
AN ]=AXxY), (x,y)eM.

According to this AY/M =A.

On the other hand, if in (1) instead «, and ¢, we choose % and % , t>0 and

if we usc the propertics of A and p respectively, we get that

A(ayx, + a,x,,u)—td < p(a,x, + a,x, —tv,u). 3)
Completely analogous, if in (2) instead B, and B, we choose %and % , t>0
respectively, and again if we use the properties of A and p, we get that

Ao Xy + X

Now, from (3) and (4) we see that
N'(Box, + Byxy +yv,u) < p(Box, + Bix, +yv,u)

w)+td < plo,_x_, +a,,x

i

+tv,u) . “)

i+l
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where from it is clear that in general case A'<p on M'. In other words the
inequality (*) holds.
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SOME RECENT FIXED POINT RESULTS OF F-CONTRACTIVE
MAPPINGS IN METRIC SPACES

UDC: 517.983:[515.124:515.126.4
Jelena Z. Vujakovi¢', Liiljana R. Paunovi¢?, Olga V. Tasciko®

Abstract. The opinion is that the most important result in the metrical theory
of fixed points is the famous Banach contraction principle from 1922. It has
been generalized and extended in several directions. One of the most
interesting extensions was provided by Wardowski in 2012. He described a
new contraction, so—called F-contraction and proved that every F-contraction
has a unique fixed point, where F: (0, +o0) — (—, +00) satisfies conditions
(F1), (F2) and (F3). Several authors generalized his results by introducing the
various types of F-contractions in other general metric spaces. In this paper we
cstablished some new fixed point results of F, Suzuki F and (¢,F ) -
contractive mappings in complete metric spaces. The goal was to improve the
alrcady published results but using only property (F1) of strictly increasing
mapping F. We believe that our approach significantly improves,
complements, generalizes and enriches several known results in current
literature.

1. INTRODUCTION AND PRELIMINARIES

In 2012., Wardowski [1] described a new contraction, so-called F -
contraction and proved some new fixed point results that make a proper
generalization of Banach contraction principle [2]. Wardowski’s theorem play a
significant role in the further research in the metrical fixed point theory. Several
autors (for example [3]-[15]) generalized it by introducing the various types of
F -contractions in other general metric spaces. Others have considered
Wardowski's aproach in a multi-valued case for metric spaces and its
generalizations.

In this section we provide some basic definitions and statements that will be
used in sequel.

Definition 1.1. [1] Let (X ,d ) be a metric space, and let @ denote the family
of mappings F: (0,+00) - (—OO,+00) satisfying the following condition:

(F1) F is strictly increasing, that is for all x,ye(0,4+%), x<y implies
F (x) <F ( y) ;

(F2) for every sequence {x,}c(0,+%), neN, limx,=0 if and only if

n—0

i ()=

2010 Mathematics Subject Classification. Primary: 47TH100 Secondary: 54H25.
Key words and phrases. metric space, fixed point, F -contraction, Suzuki F -
contraction, (¢, F) -contraction
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(F3) thereis k€(0,1) such that lim x*F(x)=0.
x—0"

A mapping 7:X — X is said to be an F -contraction on metric space (X ,d )
if there exists Fed® and 6>0 such that for all x,y,zeX
d(Tx,Ty)>0< 0+ F(d(Tx,Ty)) < F (d(x,)). (L.1)

From conditions (F1) and (F2) it is easy to conclude that every F -contraction
is a contraction. Based on condition (F1) and (1.1) one can obviously conclude
that 7" is continuous.

Theorem 1.1 /1] Let T be a self-mapping on a complete metric space (X ,d )
If T is an F -contraction then it has a unique fixed point, say x" € X, and for
every x € X iterative sequence { T"x} ,neN converges to x".

Recently, Proinov [13] proved that fixed point Theorem 1.1 is equivalent
to a special case of the Skof’s fixed point results from 1977, [16]. However, our
approach to Wardowki’s generalization differs from his.

In 2013, two interesting results appeared as generalizations of Theorem
1.1. Secelean [3] shown that condition (F2) in Definition 1.1 can be replaced by
an equivalent condition
(S1)  inf F=—o0, 0r

(S2)  there exists a sequence {x,} < (0,+%),neN such that 1§2F(xn) =—x

while Turinci [5] observed that condition (F2) can be weakened as follows
F(t)=—0 when t >0, i.e. F(0+)=—oo.

Considering Theorem 1.1, with conditions (S1), (S2) and a new condition

(PK) F is continuouns on (0,+)

Piri and Kumam [6], in 2014, introduced a new type of F -contraction, a so-
called Suzuki F -contraction, by which they generalized and extended results of
Wardowski and Secelean.

Theorem 1.2. [6] Let T: X — X be a given mapping in a complete metric

space(X,d). Suppose that F:(0,+oo)—>(—00,+oo) satisfies conditions (Fl),
(S1) and (PK) and let there exist 0 >0 such that for all x,y € X
d(Tx,7v)>0= 0+ F(d(Tx,Ty)) < F (d(x, ).

Then, T has a unique fixed point x* € X and for every xe X iterative

sequence {T ”x} ,neN converges to x".

Definition 1.2. [6] A mapping 7: X — X is said to be a Suzuki F -contraction
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in metric space (X ,d ) if there exists @ >0 such that for all x,y e X

d(Tx,Ty) >0, %d(x,Tx) <d(x,y)= 9+F(d(Tx,Ty)) < F(d(x,y))
where F satisfies conditions (F1), (S1), (PK).

Theorem 1.3. /6] Let (X,d) be a complete metric space and T: X — X be an

F -Suzuki contraction. Then T has a unique fixed point x* € X and for every

x € X the iterative sequence {T"x} ,neN converges to x".

In 2018, Wardowski [11] introduced a concept of ((p,F ) -contraction (or
nonlinear F -contraction) and also genuinely generalized his Theorem 1.1

Definition 1.3. [11] A self-mapping 7 on metric space (X ,d), for some
functions Fe® and ¢:(0,+%0)—(0,+%), is said to be (¢, F)-contraction if

the following conditions hold:
(W1) F satisfies (F1) and (S1);
(W2) liminf ¢(s) >0 forall 720;

(W3) go(d(x,y))JrF(d(Tx,Ty))SF(d(x,y)) forall x,ye X with Tx#Ty.

Theorem 1.4. [11] Let (X,d)be a complete metric space and let T: X —> X
be (go,F ) -contraction. Then T has a unique fixed point.

In this article, we will prove Theorem 1.2, Theorem 1.3 and Theorem1.4 in the
easier way: using only condition (F1) and the following two Lemmas.
Lemma 1.1 [17] Let {xn}, neN be a sequence in the metric space (X,d)

such that lim d(x,,x

n—+x

)=0. If sequence {x,} is not a Cauchy one in (X,d),

n+l

then there exists ¢~ and two sequences {nk} and {mk} of positive integers

such that n, >m, >k and the sequences

{d(xnk 3 X, )} , {d (xn‘ X, )} , {d(xnk - )} ,{d(x”m 2 X i )} , {d (xnﬂ 19X 11 )} y e

tendto ¢ as k — +o.

Notice, that if the condition of Lemma 1.1 is satisfied, then the sequences

{d (X,wg,xmk )} and {d(x,u H,xmkﬂ)} also converge to ¢* when k — +oo, where
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seN.
Lemma 12. [18] Let {x,,}={Tx,} ={T"x,},neNU{0}, T°x,=x, be a

Picard sequence in metric space (X ,d ) induced by a mapping T: X — X and

an initial point Xy € X . If d(x,,,xn+1)< d(xn_l,xn ) Jorall neN then x,#x,

whenever n# m .

2. MAIN RESULTS

We begin this section with the theorem that generalizes and improves
Theorem 1.2. In our result, the function F :(0,+oo) —)(—oc,+oo) satisfies only
condition (F1).

Theorem 2.1 Let (X,d) be a complete metric space and T:X — X be an

F —contraction mapping with property (F1), that is, let there exist >0 such
that

0+F(d(Tx,Ty))< F(d(x.y)), (2.1)
forall x,ye X with Tx#Ty.
Then T has a unique fixed point, say, x and for all xe X the sequence

{T”x}, neN converges to x".
Proof. Considering condition (F1), there are both lim # (c) =F (t - 0) and
col-

lim F(c)=F(t+0) for all #€(0,+00), because it is known from mathematical

s
analysis that the following is true
F(t—0)<F(t)<F(t+0), t€(0,+). (2.2)
Further, from the assumption that 7" is an F —contraction, it follows that
T is contractive (x=y implies d(7x,T7y)<d(x,y)). This means that the

mapping 7" is continuous. Besides, F'—contractive condition (F1) implies the
uniqueness of the fixed point if it exists.
We will show that 7 has a fixed point. Let x, be an arbitrary point in X .

Consider the sequence {xn } ,neNu {0} with x

n+l

=Tx,.If x, =x,,, for some
ke NU{O} then x, is a unique fixed point of 7" and the conclusion of the

for all neNuU {0} . Based

on F —contractive condition (2.1) of the mapping 7", we get

Theorem follows. Therefore, suppose that x, # x

n+l1
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F(d(x,.x,,))<0+F(d(x,.x,.,))<F(d(x,.x,)), (23)

n’ n-1°>"n
for all n €N, and then, in accordance with property (F1), it follows
d(x,,x,,)<d(x,,,x,) forall neN.

The following result is related to generalization and the improvement of
Theorem 1.3.

Theorem 2.2. Let (X,d) be a complete metric space and let T:X — X is a

Suzuki F — contraction mapping where F satisfies condition (F1), that is, there

exists @ >0 such that %d(x,Tx) <d(x,y) implies

0+F(d(Tx,Tv)) < F(d(x.)), (2.4)
forall x,ye X with d(Tx,Ty) >0.
Then T has a unique fixed point x* € X and for each x € X the iterative
sequence {T ”x} ,neN converges to x".
Proof. It is easily seen that relation (2.4) implies the uniqueness of the fixed

point if it exists. Indeed, if we suppose that there are two distinct fixed points

x" and y® of T, then it is clear that from %d(x*,Tx*)<d(x*,y*) follows
49+F(d(Tx*,Ty*)) < F(d(x*,y*)), ie.

9+F(d(x*,y*))ﬁ F(d(x*,y*)),
which is contradiction.

Now we show the existence of the fixed point. Let x, € X be an arbitrary
point and {xn}, neNuU {0} is the corresponding Picard’s sequence, i.e.
x, =T"x, with initial value x, =T"x,.If x, =x,,, for some ke NU{0}, then
x, is an unique fixed point and the proof is complete.

Therefore, suppose x, #x for all neN U{O}. In this case

n+l

%d(x”,x"“ )<d(x,.x,,,) hold true for all e NU{0}, so from (2.4) we have

n?

9+F(d(x,”,,xm2)) < F(d(x”,xml)),
that is, according to condition (F1) we get

d(x,,,%,,)<d(x,,x,,), forall ne NU{0}.

n?
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As in the proof of Theorem 2.1, we obtain that d (xn,xw,)—)O as

n— 4o, Since d(xn,x

ny +1

) —0 and d (xnk 3%, ) —&" as k— +oo it follows

xmk +1

that there is some k, €N such that %d (xnk, )< d(x”k,

x, ), for all keN
with k >k, . Then, for k > k, , we have

0+F(d(x, 0%, . )) < F(d(%, .5, )
that is 0+ F(&* +0) < F(&" +0), which is a contradiction because &>0.

Hence we conclude that {x”},n eNu {0} is a Cauchy sequence. The
completeness of the metric space (X ,d) guarantees the existence of some point

x" e X such that lim d(x x" ) =0. The rest of proof is analogous to the proof

no
n—>+x

of Theorem 1.3 from [6, page 7]. One can find that following inequalities hold

n?

1 . s
Ed(x”,Txn)<d(x x ) or %d(Txﬂ,sz")<d(Txn,x ),
for all neNu{O}.
Further, from relation (2.4) it follows
0+ F(d(Tx,,7x")) < F(d(x,.x")), or 0+ F(d(Tx,,Tx")) < F(d(Tx,.x)),
ie.,

9+F(d(x Tx*))SF(d(x x*)),or

n+12 n?

6’+F(d(xn_2,Tx*))SF(d(xM,x*)). (2.5)

Finally, using condition (F1) inequalities (2.5) can be written in the form
d(x Tx*)Sd(x x*) or d(x Tx*)Sd(xM,x*). (2.6)

n+l2 n n+22

This proves that x" is a unique fixed point of T, i.e., Tx" =x".

In the following we present our second result. We assumed that the function
F € ® satisfies condition (F1) only while the function ¢: (0,+OC) — (0,+00) has
the (W2) property.

Theorem 2.3 Let (X,d) be a complete metric space and let T: X — X be a
((p,F ) -contraction satisfying

(o(d(x,y)) +F(d(Tx,7:v)) < F(d(x,y)),
forall x,ye X with Tx#Ty. Then T has a unique fixed point.
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Proof. First of all, condition (F1) implies that there exists both
}Lr}}F(c) =F(t-0) and }LIHF(C) =F(t+0) for all re(0,4+x), and
F(t—0)<F(¢)<F(1+0) holds true for cach ¢ € (0,+). Further, considering
the definition (¢, F) -contraction and assuming ¢ :(0,+00) — (0,+0), it follows
that 7 is contractive mapping (x = y implies d(7x,7y)<d(x,y)). This means

that the mapping 7 is continuous. Also, ((p,F ) -contraction gives the
uniqueness of the fixed point if it exists.

In order to show that 7' has a fixed point, let x, be arbitrary point in X . Now,
we define a sequence {x,},neNU{0}, with x,, =7x,. If x, =x,,, for some
keNu{O} then x, is a unique fixed point and the proof of Theorem is

completed. Therefore, suppose now that x, = x,,, for every ne NU{O}. By

n+l

the definition (¢, F') -contraction it follows that

F(d(xn,xn+1 )) < (p(d(xn_l,xn )) JrF(d()cn,xn+1 )) < F(d(xn_l,xn )) , 2.7
for all neN, that is, according to (F1) we have a’(x”,xw1 ) < a’(x”_1 ,x") for all
neN. This, further, means that d(x”,xﬂﬂ)—)d* 20, as n—>+o as well as

d(x,,x,,,)>d for all ne NU{0}. Suppose that d” >0. Based on (W2) there

exist”s 7>0 and an » eN such that for all »>n, we have

T+ F(d(x” X )) < (p(a’(xn_1 , X, )) + F(a’(xn,x,Hl )) < F(d (x”_1 X, ))

that is,

t+F(d(x,.x,,))<F(d(x,.x,)) (2.8)
for all n = n,. Hence we obtain

r+F(d"+0)<F(d"+0), (2.9)

which is a contradiction. Therefore, lim d(x,,x,,)=0 .

n—>+00

Now, we will prove that {x,},7eNU{0} is a Cauchy sequence by assuming
the opposite. If we take x=x, and y=x, in (¢,F)-contraction (it is possible

by Lemma 1.2), we get
(0<d(x”k 3 X )) + F(d(xnk+l - )) < F(d(xﬂk s X )) . (2.10)
Since, according to Lemma 1.1, both d (xnkﬂ,xmﬁl) and d (xnk 3 X ) tend to &*

as k — 4o, we obtain
lim  inf go(d(xnk,x ))+1im inf F(d(xwl,xmkﬂ))

m
" + k . +
d(x,, X, | € A\ X1 X1 | €
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<tim, il F(d(x,.x,, ).
ie.,
lim inf  g(d(x, %, )+ F(s" +0)<F(s +0). 2.11)

+
d Xy Xy, )€

This is in contradiction to lim  inf (p(d (xnk X, )) >0. We conclude that

A\ Xy Xy | €™
{x,},neNU{0} is a Cauchy sequence. Since (X,d) is a complete metric
space, it follows that the sequence {xn},neNu{O} converges to a point

x" € X . On the other hand, the continuity of the mapping 7 implies 7x" =x",
i.c. x* is a unique fixed point of 7 and we have proved the theorem.

Remark 1. Taking go(t): 6 >0 in Theorem 2.3, as a corollary we obtain the
Theorem 1.2 from [1].

It is worth to mention that method we described in the proof of Theorem 2.3
improve, generalize, complement, unify and enrich the corresponding ones from
Wardowski [11].
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OSTROWSKI-GRUSS TYPE INEQUALITY OF CHEBYSHEV
FUNCTIONAL WITH APPLICATION TO THE WEIGHT
THREEPOINT INTEGRAL FORMULA

UDC: 517.587.512,13U

S. KOVAC

ABSTRACT. Recently there have been proven many results about error bounds
for Chebyshev functional. The aim of our paper is to extend those results and
give some new error estimation of the Chebyshev functional and applications
to the threepoint weighted integral formulas.

1. INTRODUCTION

For two Lebesque integrable functions f, g : [a, b)) — R Ict us consider the Cheby-
shev functional:

b b b
T(1.9)i= 5 [ F0gat— = [ g = [owar )

1< ‘ . . .
Lyla,b], 1 < p < oo stands for the space of the functions [ : [a,b] — R which are
p—integrable, i.e. they are equipped by p—norm

; :
wm:vawﬁ

which is finite. L a,b] stands for space of the functions f : [a,b] — R which are
essentially bounded and co—norm defined by

[/llse = esssupyerq g/ (D]
isi finite.
P. Cerone and S.S. Dragomir have delivered in [1] the following bounds for Cheby-
shev functional (¢, ¢):

Lemma 1. If ¢ :[a,b] = R is an absolutely continuous function with
(-—a)(b—")(¢")? € Lia,b],

then we have the inequality

1 b 2
¢ < - - — Uom . .
Tlo.9) < gy | (6= @o— ) [P @) e (12)
The constant é is the best possible.

The following results of Griiss type have been obtained in [1]:

2000 Mathematics Subject Classification. 26D15,26D20, 26D99.
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Theorem 1. Let f,g: [a,b] — R be two absolutely continuous functions on |a, b
with
(—a)b— )" (—a)b—)(¢)* € La,b].

Then we have the inequality

ol

N b
(0 < 0070 ﬁ( / <mfa><bfav>[g’(xn2dx> (13
1 ’ ()12 dae :
< W-a (/ﬂ (x—a)(b— ) [f'(v)] dJ,)

1
2

b
x ( / (z— a)(b—x) [g’(x)ﬁdm)

The constant % and & are best possible in (1.3).

Theorem 2. Assume that g : [a.b] — R is monotonic nondecreasing on |a,b]
and f: [a,b] = R is absolutely continuous with f' € Loola,b]. Then we have the
inequality

b
790 < gyl [ (o= @)= ). (14)

The constant % is the best possible.

In this paper we shall give the notion and new bounds for general open weighted
threepoint formula by using upper results for Chebyshev functional.

2. GENERAL OPEN WEIGHT THREEPOINT INTEGRAL FORMULA

Let us recall the general integral formula obtained in [2]. Consider subdivision

c={a=1zy<z1 <...<xpy = b} of the segment |[a,b],lor some m € N. Let
w : [a,b] — R be an arbitrary integrable function.On each interval [zx_1, k], k =
1,...,m we consider different w—harmonic sequences of functions {wy;};=1,...n,

i.e. we have

wiy (8) = w(t) for ¢ € [zp1, 2k
(wij) (t) = wij—1(t)  for ¢ € [wp_y,2x), forall j =2,3,... n. (2.1)

Further, let us define
wip(t)  for t € [a, 2],

Ww(t o) ={ wall)  fort € (21,22, 22)

Winn () for t € (Tym—1,b].

In order to obtain the weight threepoint integral formula, we shall use the following
results about the general integral formula ([2]):



CHEBYSHEV THREEPOINT 363

Theorem 3. If g : [a,b] — R is such that g™ is a piecewise continuous on [a,b],
then the following identity holds

b n
[ utatd = S0 i, 000 00) (23)
a =1
m—1
Y [y en) = wirn ()]0 @) - wiy(@)g ) (@)
k=1

+ (—1)"'/anvw(t.g)g(”)(t)dt.

Theorem 4. Let us suppose w : [a,b] — R is an integrable function and {wy;}j—1,... n
w—harmonic sequences of functions on [xx_1,2x], fork=1,....m. Ifg: [a,b] > R
is a function such that ¢g\"=") is absolutely continuous and g™ & L, for some
1 < p < o0, then the following inequality holds

n

b
| [ waod = 17 w01 00) (24)
a j=1
m—1
3 T @) — v (@]9 @) - w (@YY@ |
k=1
< Clnp,w) - 19" lg,
where
s praw) = [f: \w,w(f,,g)\adt] Y, l<p<oo, L4l=i 25)

SUDseap) [Whw(t o), p=1.
The inequality is the best possible for p =1 and sharp for 1 < p < oc. Equality is
attained for every function g such that
g(t) = M - g.(t) + pn-s(t),

where M € R, pn—1 is an arbitrary polynomial of degree at most n —1 and g.(t) is
function on [a,b] defined by

top eynel R
g.(t) = / % W (6,0) - (Wi (€.0) | 7T dE, 2.6)

for1l<p< oo, and

t o eyn—l
0.0 = [ CZ s, (e 1)
forp=oo.

We shall deliver now the general threepoint integral fomula with nodes z, a2

2
and a+b—z, for some z € [a, “T“’) Let n € Nand {L;};—0.1,....n be some sequence
of harmonic polynomials such that degL; < j — 1 and Lo = 0. Let us consider
subdivision of the segment [a, b]:

O’::{.Z‘0<I1<!E2<ﬂ?3<14}
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where g = a, ©1 = x, v3 =

(3)

S. KOVAC

+

,r3=a+b—xand x4 =b. For k =1,.

define functions wy)’ : [azj,l.,acj] — R, for j =1,2,3,4, in the following way:
(3) . 1 ! k—1
wyy (t) = (= (t— )" lw(s)ds,
- a
®) Lo ket
wy (t) = ITEA (t = )" w(s)ds + Ly (t),
(3) L erbre k—1 k
w@() = 7@/, (t— ) w(s)ds + (~1)* Lu(a+ b 1),
®) (Y AP
W) =~y [ =9 s,
and wj(vg)(t) = w(t). Further, let us define
wﬁ)(t), for t € [a, x],
(3) atb
ws, (1), fort € (x, ¢£2],
WOt = O (a. 5] 8
wy,, (t), forte€ (92, a+b— 1]
wﬁ)(t), fort € (a+b—x,b].

Remark 1. Sequences {w;,c Fr=0,1
[zj—1.z;], for every j =1.2,3,4.

n are w—harmonic sequences of functions on

,,,,,

Remark 2. If, in addition, we have w(t) = w(a+b—t), for each t € [a,b], then
the following symmetry conditions hold for k =1,...,n
(3) k., (3)

wyy (8) = (1) wy (a+b—1t), fortcla,x|
and
w0 = (D @b, forie (@2

Theorem 5. Let f : [a,b] — R be a function with piecewise continuous n—th
derivative, for some n € N, w : [a,b] — R inlegrable funclion such that w(l)
w(a+b—t), for each t € [a,b] and x € [a, ”gl’). Further, let {Ly}x—0.1,...n be some
sequence of harmonic polynomials such that degL; < j — 1 and Lo(t) = 0, and
PV,(Li)U(t,;L') be defined by (2.8). Then the following identity holds:

b
[wtsoar — AL (50)+ - 0)+ B >f(“7“’) (29)
+ T@)( / W3 (L) S (1)d
where
78, (x) ZAk ( D(z) + (—1)k_lf(k_1)(a+b—m)) (2.10)
+ Z B(@) 1 (LTM)»
add k
—1<3) o (T) = k-1 [ﬁ/u (x —8)*tw(s)ds — Ly(x )} k>1,
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ath
B;f()‘(‘l) =2 {ﬁ/ ’ <aT+b — 5)F w(s)ds + Lk(a;rb) , foroddk>1
and
L+ b L+ b
B (x) = w2k(i) — wy (% i ) =0, forevenk>1.

2 2

Proof. We consider subdivision zg = a, 1 = 2, 2 = “T*b, z
x4 = b of the interval [a,b] and apply formula (2.3) with m =4

3 = a+b—x and

[

Theorem 6. Let f : [a,b] = R be a function with a piecewise continuous n—th
derivative and (™ € Lyla,b] for some n € N and some 1 < p < co. Then we have
the following inequality

b
| [ w0r0a - A% (@) + st b -2 - B (450) - T

< Cy(np,z,w) - [ 1™, (2.11)
where
a . 1/q
o1/q [fa# )W,Efﬁ,(f,x)“?dt] Colplo1 1<p<eo

Cs(n,p, z,w) = (2.12)
sup{‘I/V,({_%ﬁ,([,,ft)| e la, “T*b]}, p=1,

The inequality is best possible for p = 1 and sharp for 1 < p < co. Equality is
attained for the function f. : [a,b] — R defined by

1 ! n—1 |11-(3) 7 ~(3) .
felt) = W/H (t—s) ‘W”_w(s,z)‘ sgnW,7, (s, 2)ds (2.13)
Jor 1 < p < oo, while for p= oo
1 ¢ .
filt) = o / (t— s)”’%gn‘Vﬁﬂ(s,z)ds (2.14)
Proof. The proof follows from the Theorem 4 for m = 4 and subdivision zy = a,
azl::vq,12:“7“7,$3:a+b—mandm4:b. O

Remark 3. Using Theorem 5 and Theorem 6 for the uniform weight w(t) = ﬁ,
we get the results obtained in (3], so these results are the generalization of the non-

weight threepoint formula.

Let us consider the special harmonic polynomials L,, and uniform weight w(t) =
1.

b—a’
1 b—a)?
L, .(t) = m [n(ﬁ —a— 6(227751)71))2)“ R Tin>1}
b ()@= sy + ()= 0200 s

(Z) (r — a)i(t — )" 1{@4}] , teln? ; . (2.15)

+
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After some calculation from Theorem 5 we get

(3) - (b — a)? (3) L (b—a)?
Alvﬁ(m) T 6(2r —a—1b)2 B‘vﬁ(r) =1 32z —a—b)%’

AP (@) =40 (@)=AP, (@)=BP, @)=0.
*h—a 'b—a ‘b—a ‘b—a

Inserting polynomials {L,, ,} in Theorem 5 and Theorem 6 we get:

! ’ (3)
[ | =D 12, @)

—a

< Calmpag ) 11 (2.16)
where
0= = x » (b—a)? a+b
D(f.z)= m(f(-b>+f((l+bf.L))+ (1,m> P ' y
(2.17)
T, o (f2) = iAifgu) (0@ = (<) [N a4 5 )
k=5
3 - +b [
+ B W) (2.18)
odd
and
1 21/q[j;’# W, (tz))th]l/q’ i1 1epen
Cs(n,p, x, ) = —

(2.19)

sup{ ‘/’I/’q(ﬁl} (t, L)’ e a, “T'H’]}, p=1,

3. OSTROWSKI-GRUSS TYPE INEQUALITIES FOR THE REMAINDER OF THE
WEIGHT THREEPOINT FORMULA

Let us apply identity (1.1) for f <3 (—1)" Wy (,2) and g <> £ :

1

T WD) = e [ W e o (31)

1 v ; 1 b
[ Wi s [
—a /, ’ b—a J,

Theorem 7. Let f : [a,b] — R be such that £ s absolutely continuous function,
w: [a,b] = [0, 00) is weight function such that w(t) = w(a+b—t), for eacht € [a.b]
and x € [a, “;rl']. Then the following identity holds:

b ; : a+b 3
3 i . / Ft)w(t)dt — ﬁ {Aﬁ)ﬂ(m) [f(z)+ fla+b—2a)] + B® (I)f(%}) + TT(L‘%(I)]

Z1MA® (1) + B (a _
(1 +( 1) )("27:&;5)2) + Bn.w( ) (f(n—l)(b) _ f("'_l)(n,)) — T((—l)"W,ﬁfu)J(~,m),f(")). (32)
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Proof. Divide relation (2.9) by b — ¢ and add to both sides of new identity term
L ®) LIRS
—1)"Wo) (t, x)dt - —— mM(t)dt =
= | corwie o= [

MAD () 1 BD (o
R )(a;lw_.wa()z) I Buw () (f(n—l)(b)if(n—l)(ad)‘

Now the right side of the identity appears to be Chebyshev functional T'((—1)"W ,(L&,l (-, ), f("))
s0 the theorem is proved.

O

Now we establish error bounds for T((fl)”'W,(f'l)u(7 z), f)..
Theorem 8. Let f : [a,b] — R be such that ") is absolutely continuous function
with
2
(=a) =) (£m0) € Lfay],

w : [a,b] — [0,00) is weight function such that w(t) = w(a+b—t), for eacht € [a,b]

and x € [ “Z‘ ] Then we have

1/2
(14 ()" AD, @) + B, @)
"W ( (n) 2 2_(
[P0 W), )] < = |(Cy(m 20 w)) —
L 1/2
[5 / (t—a) (b—t)f(”“)(f)zdt} . (3.3)
Proof. The proof follows from Cauchy-Schwartz’s inequality
T (0,9) < T (p,0) - T (1,0)
applied to T((fl)"ﬂf,gf?uﬂ x), f(). So we have
T((—1 nw(3) (77 T((-1)" 17(33 2),(~1 "VVYS,SJI L 2)) A/ T(FO, Fm),
n,w 5
(3.4)
‘We compute
I .

T(=)" W (x), ()" W (a)) = — [ ()W), (1.2)"di

~al,

! ! 3) ’
- 1) W ;
T | 0w e
2
. n 3 3
[Cs (71,,2,.7:,11))]2 [(1""( 1) H)A(m)— 1wl z)+B£:-21 e )}

b—a b —a)?

On the other side, according to the Lemma 1. we have

1 b .
7 fmY < / _ gy £ ()24
(7 50) < s | 6= @ -0 7D @,
which finishes the proof. O
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Corollary 1. Let f : [a,b] — R be such that f' is absolutely continuous function
with (- —a) (b— ) (f")* € L[a,b] and z € [a, L], Then we have

. 1 e 2, @, @)
T(-W, o), ) £ — 1.2, - e =
( l’bla(,r)f) - b-a <03< z’bfu)> b—a
L 1/2
[5/ (t—a)(b—1t) f”(t)?dt:| . (3.5)
Proof. We apply Theorem 8 for w(t) = bia and n = 1. O

Remark 4. Inserting harmonic polynomials Ly, ., in (3.5) we gel:

W (). ) <

1 b—a (b—a)? 4(z — a)? (b—a)?
E\/ 12 (17 @r—a—h?  (@r—a-b? 73(2.77(1,4)3)
L 1/2
{5 / (t—a)(b—t) f"(t)zdt}

Specially, for x = a we have the unequality related to of the Simpson quadrature

formula:
T 1/2
s6[5 / (t—a)(bfwf"(t)zczt] .
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A CONTRIBUTION TO THE LINEARIZATION
OF THE VEKUA EQUATION

UDC: 517.968.7:517.55
Slagjana Brsakoska

Abstract. In the paper it is given a small contribution to the linearization of the
Vekua differential equation.

1. INTRODUCTION

The equation
dw _ w
=AW +BW+F )
where A= A(z),B=B(z) and F=F(z) are given complex functions from a
complex variable z e D < C is the well known Vekua equation [1] according to the
unknown function W =W(z)=u+iv. The derivative on the left side of this

equation has been introduced by G.V. Kolosov in 1909 [2]. During his work on a
problem from the theory of elasticity, he introduced the expressions

Lrdu , dv, ;(dv_ duyi_ dW.
5[@"‘@"'1(5—5)]— o (2
and
Lidu _ov, v duyy_dw
a5 tiGTa)I=F (3)

known as operator derivatives of a complex function W =W(z) =u(x,y)+ iv(x,y)
from a complex variable z=x+iy and z =x—iycorresponding. The operating

rules for this derivatives are completely given in the monograph of I'". H.ITonoxut
[3] (pagel8-31). In the mentioned monograph are defined so cold operator integrals

N N
If(z)dz and jf(z)dz‘ from z=x+iy and Z=x—iy corresponding (page 32-

41). As for the complex integration in the same monograph is emphasized that it is
assumed that all operator integrals can be solved in the area D.

In the Vekua equation (1) the unknown function W =W(z) is under the
sign of a complex conjugation which is equivalent to the fact that B = B(z) is not

identically equaled to zero in D. That is why for (1) the quadratures that we have for

2010 Mathematics Subject Classification. 34M45, 35Q74.
Key words and phrases. areolar derivative, areolar equation, analytic function, Vekua
equation, generalized homogeneous differential equation.
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the equations where the unknown function W =W(z) is not under the sign of a
complex conjugation, stop existing.

This equation is important not only for the fact that it came from a practical
problem, but also because depending on the coefficients A, B and F the equation (1)
defines different classes of generalized analytic functions. For example, for
F =F(z)=0 in D the equation (1) i.e.

4 — 4w + B 4

which is called canonical Vekua equation, defines so cold generalized analytic
functions from fourth class; and for A=0 and F =0 in D, the equation (1) i.c. the
equation %’ =BW defines so cold generalized analytic functions from third class
or the (r+is)-analytic functions [3], [4].

Those are the cases when B # 0. But if we put B=0, we get the following
special cases. In the case 4=0, B=0 and F' =0 in the working area DcC the
equation (1) takes the following expression % =0 and this equation, in the class

of the functions W =u(x,y)+iv(x,y) whose real and imaginary parts have

’ !
y? y
Cauchy - Riemann conditions. In other words it defines the analytic functions in the

unbroken partial derivatives u,u’,,v, and V) in D, is a complex writing of the

sense of the classic theory of the analytic functions. In the case B=0 in D is the so
cold areolar linear differential equation [3] (page 39-40) and it can be solved with
quadratures.

2. MAIN RESULT

Let's consider the Vekua equation
dw _ 7
F =AW +BW + F (1)
where A= A(z),B=B(z) and F=F(z) are given analytic functions from a

complex variable z € D < Cand the arcolar linear differential equation

aw _
=AW +F. ®)
As mentioned above, the equation (5) can be solved and its solution is given with

the following formula:

}A(z)df A —?A(z)df
W=e [D(2)+ [ F(2)e az]. 6)

Here © =®(z) is an arbitrary analytic function in the role of an integral constant.
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If we have in mind that 4= A(z) and F = F(z) are analytic functions, then

they have the role of constants in the areolar integrals in (6) where the integration is
by z , we can write this solution in the following form

Auﬁﬁ A—aﬂﬂﬁ
W=e [®(2)+ F(2)[ e dz]

N
Now, jdz’ =Z,s0
p— N p—
W=eT[0(z)+ F(z)[ e dz]
Rz 1 =
and je dZ:—Ze , S0 we have

W:eAE[q)—%e_AE]

ie. W =de —g . (7

The function @ =®d(z)is an arbitrary analytic function in the role of an
integral constant for the areolar linear differential equation (5). Let's consider the
possibility the function (7) to be a solution of the Vekua equation (1) if we put
O =f(z)g(z), where f=f(z) is an analytic function and g=g(Z) is an
antianalytic function. In other words we would like to find the condition that will
make the function

W= f(2)g()e —g ®

a solution of the Vekua equation (1).
For that purpose, we have to find the arcolar derivative of this function and
substitute it in the equation (1). We have

L - (2 (s)e™ ) -0
because 4 and F are analytic functions and

%V - f(z)(%’e“ﬁ +g(E)AeA‘:j ie.

“%V = f(z)eAE [%’7 + Ag(E)) .

After substituting this derivative and the function (8) in (1), we get
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f(2)e® (j’ff + Ag(E)) - A[ f(2)g@)e® - gj + B( f(2)g@)e” —gj +F
f(z)e®? % +Af(2)g(2)e = Af (2)g(Z)e® —F + Bf(Dg(®)e’ - B% +F

F(2)e & BT e -

|

®

So, we can formulate the following

Theorem. The function (8) is a solution of the Vekua equation (1) if the
functions f = f(z) and g = g(z) are connected with the condition (9).

What does this theorem gives us? We have the following method: if we
have one Vekua equation (1), then, first we exclude the part with # and we solve
the remaining linear arcolar differential equation. Then, instead of the integral
constant, we put a product of an analytic and an antianalytic function. If we
consider this as a solution to the starting Vekua equation, then we can find the
connection between the analytic and the antianalytic function. It is worth
mentioning that if we put some concrete function or a class of functions in the place
of f=f(z), then for g=g(z) we will get a new Vekua equation, where the
unknown function is g = g(z) which is not practical, and if we put some concrete

function or a class of functions in the place of g =g(Z), then for f = f(z) we can
get an equation in which we have the functions / and f .

aw
dz

Example. Let us consider the Vekua equation <= =zIW +W . If we solve

first the equation dTV_V =zW , we get the solution W = D . Now, if we proceed as
described, we get f(z)%’ =f(2)g(z). One solution are the functions
[=& g=¢.

Note: If F=0, i.c. instead the Vckua cquation (1) we would like to
consider the canonical Vekua equation (4), than the condition (9) would be a
condition (10), where

f(2)e™ L - BF()g@e™ . (10)
It is interesting that in this case, the modulo of B depends only from the
antianalytic part of the integral constant, that is the function g and its areolar

derivative, i.e.

1

¥4

|B]=
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In [6] it is considered the case of accordance of the equation (1) and the
generalized linear differential equation. Here we consider the accordance with the
areolar linear differential equation, which at the same time is a process of
linearization of the Vekua equation. Since we take some restrictions, the result is
just a contribution in it.
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