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Problems

Problem 1. By a fold of a polygon-shaped paper, we mean drawing a
segment on the paper and folding the paper along that. Suppose that a paper
with the following figure is given. We cut the paper along the boundary of
the shaded region to get a polygon-shaped paper.
Start with this shaded polygon and make a rectangle-shaped paper from it
with at most 5 number of folds. Describe your solution by introducing the
folding lines and drawing the shape after each fold on your solution sheet.
(Note that the folding lines do not have to coincide with the grid lines of the
shape.)

(→ p.5)

Problem 2. A parallelogram ABCD is given (AB 6= BC). Points E and
G are chosen on the line CD such that AC is the angle bisector of both
angles ∠EAD and ∠BAG. The line BC intersects AE and AG at F and H,
respectively. Prove that the line FG passes through the midpoint of HE.

(→ p.8)

Problem 3. According to the figure, three equilateral triangles with side

3



4 Elementary Level

lengths a, b, c have one common vertex and do not have any other common
point. The lengths x, y and z are defined as in the figure. Prove that
3(x+ y + z) > 2(a+ b+ c).

c b

a

x

y z

(→ p.9)

Problem 4. Let P be an arbitrary point in the interior of triangle ABC.
Lines BP and CP intersect AC and AB at E and F , respectively. Let K
and L be the midpoints of the segments BF and CE, respectively. Let the
lines through L and K parallel to CF and BE intersect BC at S and T ,
respectively; moreover, denote by M and N the reflection of S and T over
the points L and K, respectively. Prove that as P moves in the interior of
triangle ABC, line MN passes through a fixed point.

(→ p.10)

Problem 5. We say two vertices of a simple polygon are visible from each
other if either they are adjacent, or the segment joining them is completely
inside the polygon (except two endpoints that lie on the boundary). Find all
positive integers n such that there exists a simple polygon with n vertices in
which every vertex is visible from exactly 4 other vertices.
(A simple polygon is a polygon without hole that does not intersect itself.)

(→ p.11)



Solutions

Problem 1. By a fold of a polygon-shaped paper, we mean drawing a
segment on the paper and folding the paper along that. Suppose that a paper
with the following figure is given. We cut the paper along the boundary of
the shaded region to get a polygon-shaped paper.
Start with this shaded polygon and make a rectangle-shaped paper from it
with at most 5 number of folds. Describe your solution by introducing the
folding lines and drawing the shape after each fold on your solution sheet.
(Note that the folding lines do not have to coincide with the grid lines of the
shape.)

Proposed by Mahdi Etesamifard
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. There are different ways of folding to get a rectangle. For instance,
a solution can be given with only 4 number of folds, as following

First fold:

5



6 Elementary Level

Second fold:

Third fold:

Fourth fold:



Solutions 7

Comment. that by moving the folding lines slightly in 3rd and 4th folds (to
down and up respectively), all the folding segments will be internal.

�



8 Elementary Level

Problem 2. A parallelogram ABCD is given (AB 6= BC). Points E and
G are chosen on the line CD such that AC is the angle bisector of both
angles ∠EAD and ∠BAG. The line BC intersects AE and AG at F and H,
respectively. Prove that the line FG passes through the midpoint of HE.

Proposed by Mahdi Etesamifard
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Since AD and BC are parallel, we deduce that ∠FCA = ∠DAC =
∠FAC. So FA = FC. Similarly, GA = GC. So triangles 4GAF and
4GCF have a common side and two equal sides and are congruent. Result-
ing ∠GAF = ∠GCF which leads to ∠HAF = ∠ECF and ∠AFH = ∠CFE.
Therefore triangles 4AFH and 4CFE are congruent as well and we get
FE = FH. Similarly, GE = GH. So both points F and G lie on perpendicu-
lar bisector of segment HE. Resulting that FG is the perpendicular bisector
of segment HE.

�



Solutions 9

Problem 3. According to the figure, three equilateral triangles with side
lengths a, b, c have one common vertex and do not have any other common
point. The lengths x, y and z are defined as in the figure. Prove that
3(x+ y + z) > 2(a+ b+ c).

c b

a

x

y z

Proposed by Mahdi Etesamifard
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Consider the three white triangles in the picture, rotating each
triangle 60◦ degrees, clock-wise, will make a side of it coincide with another
side of another triangle. So we can rotate one of them and glue it to the next,
then rotating the glued figure a broken path will be formed between two
points with distances like 2a which has length x+ y+ z. Thus x+ y+ z > 2a
summing up all three possible inequalities proves the desired. �



10 Elementary Level

Problem 4. Let P be an arbitrary point in the interior of triangle ABC.
Lines BP and CP intersect AC and AB at E and F , respectively. Let K
and L be the midpoints of the segments BF and CE, respectively. Let the
lines through L and K parallel to CF and BE intersect BC at S and T ,
respectively; moreover, denote by M and N the reflection of S and T over
the points L and K, respectively. Prove that as P moves in the interior of
triangle ABC, line MN passes through a fixed point.

Proposed by Ali Zamani
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Since in quadrilateral EMCS, diagonals bisect each other, this
quadrilateral is a parallelogram. So, EM ‖ BC. Let X be the intersection of
EM and CF . Note that ML ‖ CX and L is the midpoint of CE, resulting
that M is the midpoint of EX as well. Since EX ‖ BC, using parallel lines,
one can find that MP passes through the midpoint of BC. Similarly, NP
passes through the midpoint of BC. Hence proved.

�



Solutions 11

Problem 5. We say two vertices of a simple polygon are visible from each
other if either they are adjacent, or the segment joining them is completely
inside the polygon (except two endpoints that lie on the boundary). Find all
positive integers n such that there exists a simple polygon with n vertices in
which every vertex is visible from exactly 4 other vertices.
(A simple polygon is a polygon without hole that does not intersect itself.)

Proposed by Morteza Saghafian
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution.
First we prove there is no such polygon for n > 6. Let A1, A2, . . . , An be the
vertices.

Lemma 1. Let Ai be visible from Ai−1, Aj , Ak, Ai+1 in clockwise order (note
that the first and the last one are the edge-neighbors). Then Ai−1, Aj can see
each other, Aj , Ak can see each other and Ak, Ai+1 can see each other.

Proof. One can consider the triangulation of the three parts of polygon sep-
arated by AiAj and AiAk.

Lemma 2. Using the same naming as Lemma 1, AjAk is a side.

Proof. Assume that AjAk is an internal diagonal. By Lemma 1, Aj can see
Aj−1. But AjAi and AjAk are internal diagonals. So AjAi−1 is a side. So
there is only one vertex between Ai, Aj on the perimeter of polygon. Similarly,
there is only one vertex between Aj , Ak and only one vertex between Ak, Ai
on the perimeter of polygon. This contradicts n > 6. So AjAk is a side and
k = j − 1.

Now let i be such that Ai−1, Ai+1 are visible from each other. We know that
such i exists, for instance you cam take an ear triangle in the triangulation of
the polygon. By Lemma 2, Ai−1 can see Ai+2, Ai+1 can see Ai−2 and Ai−2
can see Ai+2. So we found the four vertices visible from Ai−1, Ai+1. If Ai
can see a vertex, then it is visible by either Ai−1 or Ai+1 (by Lemma 1). So
Ai should see Ai−2, Ai+2 and this means Ai−2Ai+2 is a side (by Lemma 2).
Any convex pentagon is an example.
The only remaining case is n = 6 which means in Lemma 2 there are vertices
Ai, Aj , Ak such that AiAj , AjAk, AkAi are internal diagonals. Let them be
A2, A4, A6 in the hexagon. So A3 is not visible from A6, meaning that one
of the angles A2, A4 is larger that 180◦. But then A3 cannot see either A1 or
A5. Which contradicts the fact that A3 is visible from 4 other vertices. So
n = 6 is also not possible and the only possible n is 5.

�
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Problems

Problem 1. A trapezoid ABCD is given where AB and CD are parallel.
Let M be the midpoint of the segment AB. Point N is located on the segment

CD such that ∠ADN =
1

2
∠MNC and ∠BCN =

1

2
∠MND. Prove that N

is the midpoint of the segment CD.

(→ p.17)

Problem 2. Let ABC be an isosceles triangle (AB = AC) with its circum-
center O. Point N is the midpoint of the segment BC and point M is the
reflection of the point N with respect to the side AC. Suppose that T is a

point so that ANBT is a rectangle. Prove that ∠OMT =
1

2
∠BAC.

(→ p.18)

Problem 3. In acute-angled triangle ABC (AC > AB), point H is the
orthocenter and point M is the midpoint of the segment BC . The median
AM intersects the circumcircle of triangle ABC at X. The line CH intersects
the perpendicular bisector of BC at E and the circumcircle of the triangle
ABC again at F . Point J lies on circle ω, passing through X, E, and F , such
that BCHJ is a trapezoid (CB ‖ HJ). Prove that JB and EM meet on ω.

(→ p.19)

Problem 4. Triangle ABC is given. An arbitrary circle with center J ,
passing through B and C, intersects the sides AC and AB at E and F ,
respectively. Let X be a point such that triangle FXB is similar to triangle
EJC (with the same order) and the points X and C lie on the same side of
the line AB. Similarly, let Y be a point such that triangle EY C is similar to
triangle FJB (with the same order) and the points Y and B lie on the same
side of the line AC. Prove that the line XY passes through the orthocenter
of the triangle ABC.

15



16 Intermediate Level

(→ p.21)

Problem 5. Find all numbers n ≥ 4 such that there exists a convex polyhe-
dron with exactly n faces, whose all faces are right-angled triangles.
(Note that the angle between any pair of adjacent faces in a convex polyhe-
dron is less than 180◦.)

(→ p.23)



Solutions

Problem 1. A trapezoid ABCD is given where AB and CD are parallel.
Let M be the midpoint of the segment AB. Point N is located on the segment

CD such that ∠ADN =
1

2
∠MNC and ∠BCN =

1

2
∠MND. Prove that N

is the midpoint of the segment CD.

Proposed by Alireza Dadgarnia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. We have

∠BCN + ∠ADN =
1

2
(∠MND + ∠BDN) = 90◦.

Hence, AD and BC intersect in point P such that ∠DPC = 90◦. Since M is
the midpoint of AB,

∠PMA = 2∠PBA = 2∠PCD = ∠MND.

Note that AB and CD are parallel, therefore, PM and MN are parallel to
and M,N and P lie on a straight line, hence N is the midpoint of segment
CD.

A BM

N

P

CD

�
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18 Intermediate Level

Problem 2. Let ABC be an isosceles triangle (AB = AC) with its circum-
center O. Point N is the midpoint of the segment BC and point M is the
reflection of the point N with respect to the side AC. Suppose that T is a

point so that ANBT is a rectangle. Prove that ∠OMT =
1

2
∠BAC.

Proposed by Ali Zamani
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Since 4ABC is an isosceles triangle, we have ∠ANC = 90◦. Therefore,

∠OCM = ∠OCA+ ∠MCA = ∠OAC + ∠NCA = 90◦ = ∠TAO.

Also we have CM = CN = BN = AT and OC = OA; So triangles 4OCM
and 4OAT are congruent. Which leads to OT = OM and

∠AOT = ∠MOC =⇒ ∠TOM = ∠AOC.

Thus, 4AOC ∼ 4MOT and ∠OMT = ∠OAC = 1
2∠A.

B C

A

N

M

T

O

�



Solutions 19

Problem 3. In acute-angled triangle ABC (AC > AB), point H is the
orthocenter and point M is the midpoint of the segment BC . The median
AM intersects the circumcircle of triangle ABC at X. The line CH intersects
the perpendicular bisector of BC at E and the circumcircle of the triangle
ABC again at F . Point J lies on circle ω, passing through X, E, and F , such
that BCHJ is a trapezoid (CB ‖ HJ). Prove that JB and EM meet on ω.

Proposed by Alireza Dadgarnia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let D be the foot of altitude passing through A and P,K be the
intersection of lines EM,AC and JH,AM , respectively.

A

B CM

HH

X

F

E

J

P

K

D

Q

From parallel lines, we have

ME

EP
=
DH

HA
=
MK

KA
=⇒ EK ‖ AC. (1)

Note that ∠XKE = ∠XAC = ∠XFE. So K lies on ω. Let Q be the second
intersection point of line EM and circle ω. We have

∠KJQ = ∠KEP
(1)
= ∠EPC = ∠QPC.

Note that it suffices to prove that ∠KJQ = ∠CBQ or prove that CPBQ is
a cyclic quadrilateral. Which is equivalent to MP ·MQ = MB ·MC. Also,
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noting the parallel lines we can write MA = MK·MP
ME . Using this equation

and power of the point M with respect to the circumcircle of triangle 4ABC,
we have

MB ·MC = MA ·MX =
MK ·MX

ME
·MP = MQ ·MP.

Where the last equation comes from power of the point M with respect to
circle ω. Hence proved. �

Comment. The same proof can be used to obtain the following generalised
result:
In triangle ABC point P is an arbitrary point and point D lies on the line
BC. The line AD intersects the circumcircle of triangle ABC at X. The line
CP intersects the line parallel to AP through D at E and the circumcircle
of triangle ABC again at F . Suppose that P lies inside of circle ω, passing
through X, E, and F . Point J lies on ω such that BCPJ is a trapezoid
(CB ‖ PJ). Then JB and ED meet on ω.



Solutions 21

Problem 4. Triangle ABC is given. An arbitrary circle with center J ,
passing through B and C, intersects the sides AC and AB at E and F ,
respectively. Let X be a point such that triangle FXB is similar to triangle
EJC (with the same order) and the points X and C lie on the same side of
the line AB. Similarly, let Y be a point such that triangle EY C is similar to
triangle FJB (with the same order) and the points Y and B lie on the same
side of the line AC. Prove that the line XY passes through the orthocenter
of the triangle ABC.

Proposed by Nguyen Van Linh - Vietnam
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let H be the orthocenter of triangle 4ABC, P be the intersection
of BE and CF . PH cuts the perpendicular bisector of BC at Z.

A

B C

HH

J

E

F

X

Y

PP

Z

C ′C ′

B′B′

We have

∠HBP = ∠ABH−∠ABP = 90◦−∠BAC−∠ABP = 90◦−∠BEC = ∠JBC.

Then BH and BJ are isogonal lines with respect to angle ∠PBC. Similarly,
CH and CJ are isogonal lines with respect to angle ∠PCB. From this, we
deduce that H and J are isogonal conjugate with respect to triangle 4BPC.
Then ∠HPB = ∠JPC. But ZB = ZC, JF = JE and 4PFE ∼ 4PBC.
Therefore 4PFE ∪ {J} ∼ 4PBC ∪ {Z}. Which follows that 4JEF ∼
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4ZCB.
Let B′, C ′ be the intersections of BH and AC, CH and AB, repectively. We
have

PH(BE) = HB ·HB′ = HC ·HC ′ = PH(CF ),

PP(BE) = PB · PE = PC · PF = PP(CF ).

We get Z lies on HP , which is the radical axis of circles with diameters BE
and CF . Analogously, X,Y also lie on HP . Therefore XY passes through
the orthocenter of triangle 4ABC. �
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Problem 5. Find all numbers n ≥ 4 such that there exists a convex polyhe-
dron with exactly n faces, whose all faces are right-angled triangles.
(Note that the angle between any pair of adjacent faces in a convex polyhe-
dron is less than 180◦.)

Proposed by Hesam Rajabzadeh
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. If such a polyhedron exists for some n, the total number of sides
of faces is from one hand equal to 3n , and on the other is twice the number
of edges. So 3n is divisible by 2 and n must be even. We will give an example
of such a polyhedron for any even number n ≥ 4.

To this purpose, we need the following lemma.

Lemma 1. Let O be the origin in the 3-dimensional space and suppose X,Y
are two distinct points (different from O) in the xy-plane so that ∠OXY =
90◦. Then for any point O′ on the z-axis, the triangle O′XY is right-angled
(with ∠O′XY = 90◦).

Proof. The proof is based on the Pythagorean Theorem. If O′ = O, there
is nothing to prove. If O′ 6= O, the line OO′ (the z-axis) is perpendicular
to the xy-plane and so is perpendicular to every line in this plane passing
through O. In particular two triangles, O′OX and O′OY are right-angled.
According to the Pythagorean Theorem in these two triangles together with
triangle OXY , we have

O′Y 2 = O′O2 +OY 2 = O′O2 +OX2 +XY 2 = O′X2 +XY 2.

which implies ∠O′XY = 90◦.
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Now we return to the main problem. If n = 4, the tetrahedron with vertices
O′, O,X, Y as in the lemma works (above figure). So we can assume n ≥ 6.
Take m = n−2

2 ≥ 2. First, we construct a convex (m+ 2)-gon OA0A1 · · ·Am
in the xy-plane (take O to be the origin) so that

• OA0 = OAm.

• All the triangles of the form OAiAi+1 (for 0 ≤ i ≤ m − 1) are right-
angled.

Consider m different rays with initial point O (denote them by l1, . . . , lm
respectively in clockwise order) so that for a sufficiently small value of α,

∠l1Ol2 = ∠l2Ol3 = · · · = ∠lm−1Olm = α. (1)

Take an arbitrary point on the ray l1 and call it A1. Start from A1 and induc-
tively by drawing perpendiculars fromAi to li+1 define the pointsA2, A3, . . . , Am
so that

∠OA2A1 = ∠OA3A2 = · · · = OAmAm−1 = 90◦. (2)

By (1) and (2) all the triangles OA1A2, OA2A3, . . . , OAm−1OAm are similar.
Therefore OAm

OAm−1
= · · · = OA3

OA2
= OA2

OA1
. We denote this common value by

r < 1. Note that r can be arbitrarily close to 1 by taking α small. Now we
have

OAm =
OAm
OAm−1

. · · · .OA3

OA2
.
OA2

OA1
.OA1 = rmOA1.

Note that since α is small all the points A2, A3, . . . , Am are on the same side
of the line OA1. Take the point A0 on the other side of this line so that
∠OA0A1 = 90◦ and OA0 = rm.OA1 (A0 is one of the intersection points
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of the circle with diameter OA1 and the circle with center O and radius
rm.OA1). If r is sufficiently close to 1 (equivalently α sufficiently close to
zero), rm will be close to one and we can ensure that ∠A0OA1 is small and
so the polygon satisfies all desired properties.
After construction of the polygon, consider two points O′, O′′ on the z-axis (on
different sides of the xy-plane) with OO′ = OO′′ = OA0 = OAm. Then the
polyhedron with vertices O′, O′′, A0, A1, . . . , Am (convex hull of these points)
have exactly n = 2m + 2 faces, and all are right-angled triangles. Indeed, it
has 2m faces of the form O′AiAi+1 and O′′AiAi+1 which are all right-angled
according to the lemma and two faces O′A0O

′′ and O′AmO
′′ that are isosceles

right triangles.

�
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Problems

Problem 1. Let M , N , and P be the midpoints of sides BC, AC, and AB
of triangle ABC, respectively. E and F are two points on the segment BC

so that ∠NEC =
1

2
∠AMB and ∠PFB =

1

2
∠AMC. Prove that AE = AF .

(→ p.31)

Problem 2. Let ABC be an acute-angled triangle with its incenter I. Sup-
pose that N is the midpoint of the arc BAC of the circumcircle of triangle
ABC, and P is a point such that ABPC is a parallelogram. Let Q be the
reflection of A over N , and R the projection of A on QI. Show that the line
AI is tangent to the circumcircle of triangle PQR.

(→ p.33)

Problem 3. Assume three circles mutually outside each other with the
property that every line separating two of them have intersection with the
interior of the third one. Prove that the sum of pairwise distances between
their centers is at most 2

√
2 times the sum of their radii.

(A line separates two circles, whenever the circles do not have intersection
with the line and are on different sides of it.)

Note. Weaker results with 2
√

2 replaced by some other c may be awarded
points depending on the value of c > 2

√
2.

(→ p.35)

Problem 4. Convex circumscribed quadrilateral ABCD with incenter I
is given such that its incircle is tangent to AD, DC, CB, and BA at K,
L, M , and N . Lines AD and BC meet at E and lines AB and CD meet
at F . Let KM intersects AB and CD at X and Y , respectively. Let LN
intersects AD and BC at Z and T , respectively. Prove that the circumcircle
of triangle XFY and the circle with diameter EI are tangent if and only if

29



30 Advanced Level

the circumcircle of triangle TEZ and the circle with diameter FI are tangent.

(→ p.37)

Problem 5. Consider an acute-angled triangle ABC (AC > AB) with its
orthocenter H and circumcircle Γ. Points M and P are the midpoints of the
segments BC and AH, respectively. The line AM meets Γ again at X and
point N lies on the line BC so that NX is tangent to Γ. Points J and K
lie on the circle with diameter MP such that ∠AJP = ∠HNM (B and J
lie on the same side of AH) and circle ω1, passing through K, H, and J ,
and circle ω2, passing through K, M , and N , are externally tangent to each
other. Prove that the common external tangents of ω1 and ω2 meet on the
line NH.

(→ p.43)



Solutions

Problem 1. Let M , N , and P be the midpoints of sides BC, AC, and AB
of triangle ABC, respectively. E and F are two points on the segment BC

so that ∠NEC =
1

2
∠AMB and ∠PFB =

1

2
∠AMC. Prove that AE = AF .

Proposed by Alireza Dadgarnia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let H be the foot of the altitude passing through Q, A be the
midpoint of NP and K be the intersection point of NE and PF .

A

B CM

NP

E H F

Q

KK

If we prove that points K,H and Q are collinear, using parallel lines ,we get
thatH is the midpoint of EF which is equivalent to the problem. Clearly, AM
passes through Q and H is the reflection of A with respect to NP . Therefore,
∠PQH = ∠AQP = ∠AMB. So it suffices to show that ∠PQK = ∠AMB.
Note that

∠NEC + ∠PFB =
1

2
(∠AMB + ∠AMC) = 90◦ =⇒ ∠EKF = 90◦.

31
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So KQ is a median on the hypotenuse in triangle 4PKN and we’ll get

∠PQK = 2∠PNK = 2∠NEC = ∠AMB

which completes the proof. �
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Problem 2. Let ABC be an acute-angled triangle with its incenter I. Sup-
pose that N is the midpoint of the arc BAC of the circumcircle of triangle
ABC, and P is a point such that ABPC is a parallelogram. Let Q be the
reflection of A over N , and R the projection of A on QI. Show that the line
AI is tangent to the circumcircle of triangle PQR.

Proposed by Patrik Bak - Slovakia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let M,S be the midpoint of segments BC,AI, respectively. By
a homothety with center A and ratio 1

2 , P goes to M , Q to N and R to
T ; Where T is the projection of A on SN . So it suffices to show that the
circumcircle of triangle 4MNT is tangent to AI.

A

B CMM

I

N

S

TT

D

We claim that this circle is tangent to AI at point I. We know that ∠NAS =
90◦, So by the similarity of two triangles 4ASN , 4TSA, we’ll get

ST · SN = SA2 = SI2.

Therefore, SI is tangent to the circumcircle of triangle 4ITN . Now if we
show that SI is tangent to the circumcircle of triangle 4NIM as well, our
proof is completed; Because the circle passing through I and N and tangent
to SI is unique. Let D be the second intersection point of AI and circumcircle
of triangle 4ABC. Note that ∠DBM = ∠DCB = ∠DNB. Therefore,

DM ·DN = DB2 = DI2.
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Thus, DI is tangent to the circumcircle of triangle 4NIM and we’re done.
�
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Problem 3. Assume three circles mutually outside each other with the
property that every line separating two of them have intersection with the
interior of the third one. Prove that the sum of pairwise distances between
their centers is at most 2

√
2 times the sum of their radii.

(A line separates two circles, whenever the circles do not have intersection
with the line and are on different sides of it.)

Note. Weaker results with 2
√

2 replaced by some other c may be awarded
points depending on the value of c > 2

√
2.

Proposed by Morteza Saghafian
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. According to the figure, we denote the radii of the circles by
r1, r2, r3 and the distance OiOj by dij . Moreover, let l, l′ be two interior
common tangents of circles ω1 and ω2. We denote the tangency points of l
and l′ as in the figure. Obviously d12 = r1+r2

sinα (α is defined in the figure).
Withour loss of generality we assume that r1 ≤ r2.

l

l′

A

B

A′

B′

r1

r2

α

By assumption we can deduce that both lines l and l′ must intersect the third
circle (ω3). If the intersection point of l and ω3 lies outside between A and
B, we can find a line separating ω1 and ω2 so which does not intersect ω3 and
this is a contradiction with the assumptions. We have similar arguments for
l′. So we can assume that the intersection of ω3 with l and l′ is below B and
A′ respectively. Therefore, r3 is at least the radius of the circle tangent to l
at B and also is tangent to l′ (why?). The radius of this circle is r2 cot2 α.
Hence

r3 ≥ r2 cot2 α = r2

(
1− sin2 α

sin2 α

)
≥ r1 + r2

2

(
d212

(r1 + r2)2
− 1

)
.
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Consequently,
d212 ≤ (r1 + r2)2 + 2r3(r1 + r2), (∗)

We have similar equations for d13 and d23. Summing these three together
with Cauchy-Shwarz Inequality gives the assertion. Indeed,(∑

dij

)2
≤ 3

∑
d2ij ≤ 6

∑
r2i + 18

∑
rirj ≤ 8

(∑
ri

)2
Here the first and third inequality are coming from Cauchy-Shwarz Inequality
and the second inequality is the consequence of summing (∗) and two other
similar inequlities.

Remark. Using upper bound (r1 + r2 + r3)2 for the right-hand side of (∗)
gives d12 ≤ r1 +r2 +r3. Summing these, gives a weaker result with 3 replaced
by 2
√

2. �
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Problem 4. Convex circumscribed quadrilateral ABCD with incenter I
is given such that its incircle is tangent to AD, DC, CB, and BA at K,
L, M , and N . Lines AD and BC meet at E and lines AB and CD meet
at F . Let KM intersects AB and CD at X and Y , respectively. Let LN
intersects AD and BC at Z and T , respectively. Prove that the circumcircle
of triangle XFY and the circle with diameter EI are tangent if and only if
the circumcircle of triangle TEZ and the circle with diameter FI are tangent.

Proposed by Mahdi Etesamifard
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. First, let us prove these lemmas:

Lemma 1. Lines AC, BD, KM and LN are concurrent.

Proof. Using Brianchon’s Theorem in quadrilateral ABCD, one can simply
conclude the fact that AC, BD, KM and LN are concurrent.

Lemma 2. Let P be the point of concurrency of lines in Lemma 1. Therefore,
P is also the intersection point of quadrilateral ABCD’s diagonals and we
have IP⊥EF .

Proof. We know that polar of point P is in fact line EF . Therefore, we’ll get
IP⊥EF .

Lemma 3. A circle with diameter EI and the circumcircle of triangle4XY J
are tangent.

A B

C

E

FF

II
Y

X

KK

M

JJ

DD
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Proof. For the proof of tangency of circumcircle of triangle 4XY J to the
circle with diameter EI (circle ω2), it suffices that the equation of Casey’s
Theorem hold for points X,Y, J and circle ω2.

±XY · P Jω2
±XJ · PYω2

± Y J · PXω2
= 0.

Since P Jω2
= 0, Therefore,

XJ
√
Y K · YM = Y J

√
XK ·XM (1)

Since X,Y lie on the radical axis of two circles ω and ω2, We have:

Y K · YM = Y L2 , XK ·XM = XN2 (1)
=⇒ XJ · Y L = Y J ·XN (2)

So, we have to prove equation (2). Using Menelaus’s Theorem for triangle
4XFY and line LNP , We have:

XN

FN
· FL
Y L
· Y P
XP

FN=FL
=⇒ XN

Y L
=
XP

Y P
.

From equation (2), we get:

XJ

Y J
=
XN

Y L
=
XP

Y P
.

Therefore we need to prove that JP is the exterior angle bisector of angle
∠XJY . Since JQ⊥JP , we need to prove that (XY,QP ) = −1.

(XY,PQ) = F (XY,PQ)
NL
= (NL,PU) = −1.

And since point U lies on EF (polar of P ), the last equation holds and we’re
done.

Lemma 4. AK is tangent to the circumcircle of triangle 4ABC if and only
if

BK

KC
=

(
AB

AC

)2

.

Proof. Using The Law of Sines and Ratio Lemma, one can simply get the
desired results.

Lemma 5. If angle bisectors of angles ∠E and ∠F are perpendicular, then
ABCD is a cyclic quadrilateral.
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Proof. It’s trivial.

A B

C

D

E

F

II

Y

X

J

KK

L

M

N

S

Now, Let’s get back to the problem. First, we assume that two circles ω1 and
ω2 are tangent to each other. Let S be the foot of the perpendicular line to
FI passing through E. Using Casey’s Theorem for points X,F, Y and circle
ω2, we have:

±XF
√
PYω2
± Y F

√
PXω2
±XY

√
PFω2

= 0

=⇒±XF
√
Y K · YM ± Y F

√
XK ·XM ±XY

√
FS · FI = 0. (3)

Points X and Y lie on the radical axis of circles ω and ω2. Therefore we have:

Y K · YM = Y L2 , XK ·XM = XN2.

So equation (1) can be written as:

±XF · Y L± Y F.XN ±XY
√
FS · FI = 0. (4)

According to the figure, We have: ∠F1 = ∠F2 = α+β
2 .

Y L = FL± FY = FI · cos (F1)± FY = FI · cos

(
α+ β

2

)
± FY,

XN = FN ∓XF = FI · cos (F2)∓XF = FI · cos

(
α+ β

2

)
∓XF.
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Now, by putting them in equation (4), We’ll get:

±XF ·
(
FI · cos

(
α+ β

2

)
± FY

)
± Y F ·

(
FI · cos

(
α+ β

2

)
∓XF

)
±XY

√
FS · FI = 0

=⇒± FI
(
XF + Y F

)
cos

(
α+ β

2

)
= ±XY

√
FS · FI

=⇒FI
(
XF + Y F

XY

)
cos

(
α+ β

2

)
=
√
FS · FI

=⇒ cos

(
α+ β

2

)
·
(

sinα+ sinβ

sinα+ β

)
=

√
FS

FI

=⇒ cos2
(
α− β

2

)
=
FS

FI
. (5)

A B

C

D

E

FX

Y

K

L
M

N

I
S

QQVV

RR

αα

ββ

Also, we have:

∠FRS = 90◦ −
(
α+ β

2

)
⇒ ∠QV R = 90◦ −

(
α− β

2

)
⇒ ∠EIF = 90◦ −

(
α− β

2

)
.

So, by equation (5), we have:

sin2 (EIF ) =
FS

FI
. (6)
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We consider three cases for point S on line FI:

Case 1) ∠EIF = 90◦. Which gives us that S and I coincide.

sin2 (EIF ) =
FS

FI
= 1.

Now, by Lemma 5, ABCD is a cyclic quadrilateral. On the other
hand, ABCD is circumscribed and every equation resulted from Casey’s
Theorem for the circumcircle of triangle 4XFY and the circle with
diameter EI, can be written for the circumcircle of triangle 4TEZ and
the circle with diameter FI as well. So by Casey’s Theorem, these two
circles are tangent to each other.

Case 2) ∠EIF < 90◦.

sin2 (EIF ) =

(
ES

EI

)
=
FS

FI
.

Now by Lemma 4, we get that EF is tangent to the circumcircle of
triangle 4ESI and

∠FES = ∠FIF =⇒ ∠IEF = 90◦.

A B

CC

D

II

FF X

YT

Z

J ≡ EJ ≡ E

Now since ∠IEF = 90◦, the foot of perpendicular line to EF passing
through I, (Point J) coincides with point E. By Lemma 3, the cir-
cumcircle of triangle 4TJZ (which is also the circumcircle of triangle
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4TEZ), will be tangent to the circle with diameter FI. In this case,
tangency point of the circumcircle of triangle4TEZ and the circle with
diameter EI, will be point I and tangency point of the circumcircle of
triangle 4TEZ and the circle with diameter FI, will be point E.

Case 3) ∠EIF > 90◦. Since

sin2 (EIF ) =
FS

FI
> 1,

this case will never happen.

�
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Problem 5. Consider an acute-angled triangle ABC (AC > AB) with its
orthocenter H and circumcircle Γ. Points M and P are the midpoints of the
segments BC and AH, respectively. The line AM meets Γ again at X and
point N lies on the line BC so that NX is tangent to Γ. Points J and K
lie on the circle with diameter MP such that ∠AJP = ∠HNM (B and J
lie on the same side of AH) and circle ω1, passing through K, H, and J ,
and circle ω2, passing through K, M , and N , are externally tangent to each
other. Prove that the common external tangents of ω1 and ω2 meet on the
line NH.

Proposed by Alireza Dadgarnia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Solution 1. Let D be the intersection of AH and BC. Denote Ω by the
circle with diameter PM . It’s obvious that D lies on Ω. Also since ABC is
acute, H lies on the segment PD and so inside of Ω. N lies on the extension
of DM and so outside of Ω. We claim that there are at most two possible
cases for K. The following lemma proves our claim.

Lemma. Given a circle ω and four points A, B, C, and D, such that A and
B lie on the circle, C inside and D outside of the circle. There are exactly
two points like K on ω so that the circumcircles of triangles ACK and BDK
are tangent to each other.

Proof. Invert the whole diagram at center A with arbitrary radius, the images
of points and circle are denoted by primes. Since A lies on ω, ω′ is a line,
passes through B′ and K ′. Notice that C ′ and D′ lie on the different sides of
ω′. Since the circumcircles of triangles ACK and BDK are tangent to each
other, we have C ′K ′ is tangent to the circumcircle of triangle B′D′K ′. It
means ∠C ′K ′B′ = ∠B′D′K ′. Let X and Y be two arbitrary points, lie on
ω′ and the different sides of B′.

B′ K ′

C ′

D′

Y X

ω′

−→
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First assume thatK ′ ≡ B′ so ∠C ′B′Y = ∠C ′K ′B′ > 0 = ∠K ′D′B′ and when
K ′ moves along the ray

−−→
B′X, ∠C ′K ′B′ decreases and ∠K ′D′B′ increases. It

yields there is exactly one point K ′ on the ray
−−→
B′X so that ∠C ′K ′B′ =

∠B′D′K ′. In the same way we get there is only one possible case for K ′ on

the ray
−−→
B′Y and the result follows.

ΓΓ
AA

BB CC

XX

MM NN

JJ

HH

PP
LL

DD

A′A′

EE

ΩΩ

Denote ω1 and ω2 by the circumcircles of triangles AJP and HND. Let H
be the indirect homothety that sends ω1 to ω2. Notice that J and N lie on
the different sides of AH. Now since the arc AP of ω1 is equal to the arc
HD of ω2 and AP ‖ HD, H sends A to D and P to H therefore (A,H) and
(P,D) are anti-homologous pairs. Let L be the anti-homologous point of J
under H. It’s well-known that the pairs of anti-homologous points lie on a
circle so ALHJ and LPJD are cyclic quadrilaterals.

Let E be the reflection of A over the point M . We claim that HDEN is
cyclic. A′ lies on Γ so that AA′ ‖ BC. We know that (A′X,BC) = −1 hence
NA′ is tangent to Γ. Also by symmetry NE is tangent to the circumcircle
of triangle CEB. Now since HE is the diameter of this circle, we have
∠NEH = 90◦ = ∠NDH and our claim is proved. The line AM meets the
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circumcircle of triangle PDM again at L′. We have

AL′ ·AM = AP ·AD =⇒ AL′ ·AE = AH ·AD

it follows that L′HDEN is cyclic so L′ ≡ L. We have

∠PJH = ∠AJH − ∠AJP = ∠HLM − ∠HND
= ∠HLM − ∠HLD = ∠DLM = ∠DJM

therefore ∠HJD = 90◦. From this we can conclude that the cirucmcircles
of triangles DHJ and DMN are tangent to each other and the common
external tangents of them are concurrent at H since the tangent line to the
circumcircle of triangle DHJ through H is parallel to DMN . So the problem
is proved for K ≡ D, now suppose that K 6= D. Since ∠AHL = ∠LNM
the circumcircles of triangles LHJ and LMN are tangent to each other. So
L ≡ K. Denote O1 and O2 by the circumcenters of triangles LHJ and LMN .
It’s obvious that O1, L, and O2 are collinear so ∠O1LH +∠O2LN = 90◦. It
yields

∠HO1L = 180◦ − 2∠O1LH = 2∠O2LN = 180◦ − ∠LO2N =⇒ O1H ‖ O2N

therefore the direct homothety that sends (O1) to (O2), sends H to N and
the conclusion follows. �

Solution 2. Let D be the intersection of AH and BC. Denote Ω by the
circle with diameter PM . It’s obvious that D lies on Ω.

ΓΓ
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JJ

HH

PP
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DD

OO

X ′X ′
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Let F be the intersection of NH and MJ . Since J and B lie on the same
side of PD, J lies on the arc PD (the one that does not contain M) so J and
H lie on the same side of BC. Also

∠HNM = ∠AJP < ∠JPD = ∠JMD

therefore F and J lie on the same side of NM and we have 4FMN ∼
4APJ since ∠JPD = ∠JMD. It follows that A, F , H, and J are concylic.
Let J ′ and N ′ be the reflections of J and N over the points P and M ,
respectively. Since P is the midpoint of AH, AJ ′HJ is a parallelogram. The
A−symmedian meets Γ again at X ′. Since XX ′ ‖ BC, by symmetry N ′X ′

is tangent to Γ, too. Also we know that (AX ′, BC) = −1 so N ′A is tangent
to Γ. Now 4FMN ∼ 4APJ yields 4FMN ′ ∼ 4APJ ′. It follows that

∠N ′FM = ∠J ′AP = ∠AHJ = 180◦ − ∠AFJ

hence A, F , and N ′ are collinear. Again from 4FMN ′ ∼ 4APJ ′ we get

∠PJH = ∠AJ ′P = ∠FN ′M = 90◦ − ∠PMN ′ = ∠DPM = ∠DJM

In the third equality we used that MP ⊥ AN ′ (It’s a well-known property,
If we let O be the center of Γ then APMO is a parallelogram). It yields
∠HJD = ∠PJM = 90◦. Like the first solution we know that there are at
most two possible cases for K and we can conclude that D is one of them.
Now we suppose that K 6= D. Let AM meets Ω again at L. We have

∠LAH = 90◦ − ∠LMD = ∠LJD − 90◦ = ∠LJH

therefore ALHJ is cyclic. Since MP ⊥ AN ′ and AP ⊥ MN ′, P is the
orthocenter of triangle AN ′M and N ′P ⊥ AM . It follows that N ′, P and L
lie on a same line. Now since ∠ALP = ∠N ′LM = 90◦ and ∠APL = ∠N ′ML,
we have 4APL ∼ 4N ′ML. It yields 4LMN ∼ 4LPH. Hence

∠MLN = ∠PLH =⇒ ∠HLN = ∠PLM = 90◦

so LNDH is cyclic and ∠AHL = ∠LNM . It follows that the circumcircles
of triangles LHJ and LMN are tangent to each other. So L ≡ K. Denote
O1 and O2 by the circumcenters of triangles LHJ and LMN . It’s obvious
that O1, L, and O2 are collinear so ∠O1LH + ∠O2LN = 90◦. It yields

∠HO1L = 180◦ − 2∠O1LH = 2∠O2LN = 180◦ − ∠LO2N =⇒ O1H ‖ O2N

therefore the direct homothety that sends (O1) to (O2), sends H to N and
the conclusion follows. �
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Comment. We can also prove LHDN is cyclic by angle-chasing. We have

∠DLM = ∠DPM = 90◦ − ∠PMD = ∠PJD − 90◦ = ∠PJH

also ∠HLM = ∠AJH so ∠HLD = ∠AJP = ∠HND and it follows that
LHDN is cyclic.
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