XXIII MMC 2020

Problem 1

Let a, b, c be positive real numbers such that a + b + c = 4. Prove that

$$\frac{ab}{\sqrt[4]{3c^2 + 16}} + \frac{bc}{\sqrt[4]{3a^2 + 16}} + \frac{ca}{\sqrt[4]{3b^2 + 16}} \le \frac{4}{3}\sqrt[4]{12}.$$

Solution. Squaring both terms, we get

$$\left(\frac{ab}{\sqrt[4]{3c^2+1}} + \frac{bc}{\sqrt[4]{3a^2+1}} + \frac{ca}{\sqrt[4]{3b^2+1}}\right)^2 \le \frac{32}{9}\sqrt{3}.$$

Applying CBS to vectors $\vec{u} = (\sqrt{ab}, \sqrt{bc}, \sqrt{ca})$ and

$$ec{v} = \left(\sqrt{rac{ab}{\sqrt{3c^2 + 16}}}, \sqrt{rac{bc}{\sqrt{3a^2 + 16}}}, \sqrt{rac{ca}{\sqrt{3b^2 + 16}}}
ight)$$

we obtain

$$\left(\frac{ab}{\sqrt[4]{3c^2 + 16}} + \frac{bc}{\sqrt[4]{3a^2 + 16}} + \frac{ca}{\sqrt[4]{3b^2 + 16}}\right)^2 \le (ab + bc + ca) \left(\frac{ab}{\sqrt{3c^2 + 16}} + \frac{bc}{\sqrt{3a^2 + 16}} + \frac{ca}{\sqrt{3b^2 + 16}}\right)$$

From a+b+c=4 and the well-known inequality $(a+b+c)^2 \ge 3(ab+bc+ca)$ immediately follows that $ab+bc+ca \le 16/3$. Equality holds when a=b=c=4/3.

On the other hand,

$$\sqrt{3} \left(\frac{bc}{\sqrt{3a^2 + 16}} \right) = \frac{bc}{\sqrt{a^2 + 16/3}} \le \frac{bc}{\sqrt{a^2 + ab + bc + ca}}$$
$$= \frac{bc}{\sqrt{(a+b)(a+c)}} \le \frac{1}{2} \left(\frac{bc}{a+b} + \frac{bc}{a+c} \right)$$

The last inequality holds on account of AM-GM inequality. Likewise,

$$\sqrt{3} \left(\frac{ca}{\sqrt{3b^2 + 16}} \right) \le \frac{1}{2} \left(\frac{ca}{b+c} + \frac{ca}{b+a} \right)$$

and

$$\sqrt{3}\left(\frac{ab}{\sqrt{3c^2+16}}\right) \le \frac{1}{2}\left(\frac{ab}{c+a} + \frac{ab}{c+b}\right)$$

Adding the preceding inequalities, we obtain

$$\sqrt{3}\left(\frac{ab}{\sqrt{3c^2+16}} + \frac{bc}{\sqrt{3a^2+16}} + \frac{ca}{\sqrt{3b^2+16}}\right)$$

$$\leq \frac{1}{2}\left(\frac{ca}{b+c} + \frac{ca}{b+a} + \frac{bc}{a+b} + \frac{bc}{a+c} + \frac{ab}{c+a} + \frac{ab}{c+b}\right) = \frac{1}{2}\left(a+b+c\right) = 2.$$

Therefore,

$$\frac{ab}{\sqrt{3c^2+16}} + \frac{bc}{\sqrt{3a^2+16}} + \frac{ca}{\sqrt{3b^2+16}} \le \frac{2\sqrt{3}}{3}.$$

Equality holds when a = b = c = 4/3. From the preceding, we have

$$\left(\frac{ab}{\sqrt[4]{3c^2+16}} + \frac{bc}{\sqrt[4]{3a^2+16}} + \frac{ca}{\sqrt[4]{3b^2+16}}\right)^2 \le \frac{16}{3} \cdot \frac{2\sqrt{3}}{3} = \frac{32}{9}\sqrt{3}.$$

from which

$$\frac{bc}{\sqrt[4]{3a^2+16}} + \frac{ca}{\sqrt[4]{3b^2+16}} + \frac{ab}{\sqrt[4]{3c^2+16}} \le \frac{4}{3}\sqrt[4]{12}$$

follows. Equality holds when a=b=c=4/3, and we are done.

Problem 2

Let S be a set of $n \geq 2$ positive integers. Prove that there exist at least n^2 integers that can be written in the form x + yz with $x, y, z \in S$.

Solution

Let m denote the largest number in S. We claim that for all pairs $(x_1, y_1), (x_2, y_2) \in S \times S$ with $(x_1, y_1) \neq (x_2, y_2)$ we have $x_1 + y_1 m \neq x_2 + y_2 m$. Indeed, suppose otherwise and rewrite the equation $x_1 + y_1 m = x_2 + y_2 m$ into

$$(y_1-y_2)m = x_2-x_1.$$

If $y_1 = y_2$, we get $x_2 - x_1 = 0$ and the contradiction $(x_1, y_1) = (x_2, y_2)$. If $y_1 \neq y_2$, we get $m = (x_2 - x_1)/(y_1 - y_2)$. Since $|y_1 - y_2| \geq 1$ and $|x_2 - x_1| \leq |m - 1|$, this inequality implies $m \leq m - 1$ which is ridiculous.

Consequently, the n^2 integers of the form x+ym with $(x,y)\in S\times S$ are pairwise distinct.

Problem 3

Determine all integers $m \geq 2$ for which there exists an integer $n \geq 1$ with

$$gcd(m, n) = 1$$
 and $gcd(m, 4n + 1) = 1$.

Solution

The answer is all integers $m \geq 2$. We first discuss the cases where m is a prime number.

• If m is a prime with $m \neq 3$, then any number n with $n \equiv -1 \mod m$ works: Indeed, let n = km - 1. Then $\gcd(m, n) = \gcd(m, km - 1) = 1$ holds and furthermore

$$gcd(m, 4n + 1) = gcd(m, 4km - 3) = gcd(m, 3) = 1.$$

• If m = 3, then any number n with $n \equiv 1 \mod m$ works: Let n = km + 1. Then $\gcd(m, n) = \gcd(m, km + 1) = 1$ and $\gcd(m, 4n + 1) = \gcd(m, 4km + 5) = \gcd(m, 5) = 1$.

Finally, let $m \ge 2$ be an arbitrary integer, and let $p_1 < p_2 < \cdots < p_s$ be an enumeration of the prime factors of m. We construct a system of congruences for n with $1 \le i \le s$: If $p_i = 3$, then we impose $n \equiv 1 \mod p_i$. If $p_i \ne 3$, then we impose $n \equiv -1 \mod p_i$. By the Chinese Remainder Theorem, there exists an integer n that simultaneously satisfies all these congruences and that by the above discussion satisfies $\gcd(m, n) = 1$ and $\gcd(m, 4n + 1) = 1$ as desired.

Problem 4

Let P, Q and R three points on a circle k_1 , such that PQ = PR and PQ>QR. Let k_2 be the circle with centre P that passes through Q and R. Suppose that the circle with centre Q and passing through R intersect k_1 again at X and k_2 again at Y.

The points X and R lie on different sides of the line PQ.

Prove that P, X and Y lie on a line.

Solution 1

All the angles to be directed. The result follows immediately from

$$\angle YPQ = \angle QPR = \angle XPQ$$
.

The first equality is due to QR = QY, and so these equal chords subtend equal angles in k_1 . The second is due to QR = QX, and so these equal chords subtend equal angles at the centre of k_2 .

Solution 2

We will need to prove that $\angle QPX = \angle QPY$.

- a) Since Q, Y, P, R are concyclic, $\angle OPY = \angle ORY$ and $\angle OPR = \angle OYR$.
- b) Since the triangle QRY is isosceles, $\angle QRY = \angle QYR$.
- c) Since the triangles QPR and QPX are congruent (3 equal sides), $\angle QPX = \angle QPR$.

From the 3 previous items, we obtain

$$\angle OPY = \angle ORY = OYR = \angle OPR = \angle OPX$$

and we are done. ■

