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A. Aaropurmbl

[Iycth y Hac B pacropsizKeHUM UMeeTcCsl KHUTA U3 n crpanur. Ha kaxkmoit crpanuiie
KHUT'U HAIIMCAHO KaKoe-HuOy/Ib CJ10BO. Kpome Toro, y Hac eCTh KapTodKa, Ha KOTOPOH TaK-
JK€ HaIlMCaHO OJTHO CJIOBO. 3a OJIHY OIEPAIldi0 Pa3PeIaeTcss OTKPBITh JIIOOYIO CTPAHUILY B
KHATE W IPOYUTATH CJIOBO, KOTOPOE TaM HAIUCAHO. 3a KaKOe UMUCJIO OIeparuii MOKHO ra-
PaHTUPOBAHHO BBISICHUTD, €CTh JIM CJIOBO Ha KapTodke B KHure? fcHo, 9To 3a n onepariuit
9TO MOXKHO CJIeJIaTh, IPOUNTAB BCe CTPAHUIILI B KHUTE.

[IycTh Temepb M3BECTHO, YTO CJIOBA B KHHUIE PACIIOJIOXKEHBI 110 ajadaBuTy. Temepb BbI-
SICHUTD, 3aIIMCAHO JIM CJIOBO B KHUTE MOXKHO 3a [log, n| oneparuii. CHauaa Mbl OTKPBIBAEM
KHATY Ha cepejuHe. Eciim cj10BO, HallMCaHHOE Ha CTPAHUIE COBIIAIAET C MCKOMBIM, TO Ha
9TOM MPOIIEAYPY ITONCKA MOXKHO 3aBepIINTh. KC/i CJIOBO OKa3bIBaeTCs 110 aJihaBUTy 0OJIb-
11e€ HAIEro, TO BTOPYIO TOJIOBUHY KHHUT'M MOYKHO BBIKHHYTH. EC/IM CJIOBO OKa3bIBAETCs I10
ajiaBUTy MeHBIIIe HAIEro, TO MEPBYIO MOJOBUHY KHUTU MOXKHO BBIKUHYTH. TakuMm obpa-
30M MbI COKPATUJIM KHUATY B JiBa pa3a. /lajgee Mbl Oy/ieM MOBTOPSATH OIEPAIUIO JIO TEX II0P,
II0Ka HE OCTAHETCsl OJHa CTpaHuIa. Takoil ajJropuT™M HU3BECTEH II0J HAa3BAHUEM OUHADPHVLT
NOUCK.

Takum obOpa3om, Ha CIEUAJHLHO MOJATIOTOBIEHHOM MAaCCHBE JAHHBIX MOXKHO IIPOU3-
BOJIUTH TOMCK ropas3iao ObicTpee. B COBpeMEHHBIX KOMITBIOTEPHBIX 0a3ax JAHHBIX MOXKET
XpaHUTCA 10 MULIAApa PasHbIX 3ammceil. OObIYHBIA ITOUCK BBIHYKJIAJI ObIl KOMIIBIOTED
npocMarpuBarh uxX Bce. C MOMOIBIO OMHAPHOTO TOUCKA MbI MOYXKEM HANWTU HEOOXOIMMYIO
nHdopMaIuio Bcero 3a 30 omeparuii.

[IycTs uMeeTcst KOMITBIOTED € TAMSITBHIO, COCTOAIIEH 13 sideeK. KaxKaas siaeiika nMeer
ajgpec. Aapeca HYMepyIOTCsl TOCJIe0BATEIbHO, HAYUHAsSI ¢ Hy/Isd. Kakgast staeiika MOXKeT
XPAHUTH IeJIble YUC/Ia, OIPAaHNYEHHbBIE 110 MOJLY/II0 HEKOTOPBIM ITOJIOKUTETbHBIM IUCIOM L.
Suavenne L 3aBUCUT OT BXOIHBIX JIAHHBIX PelIaeMoil Ha KOMITbIoTepe 3aja4qu. Kpome Toro,
KOMIIBIOTED MMeeT KOHEYHOE UHCJIO PErUCTPOB IS MPOBEJIEHUsT apuMeTUIeCKUX OIepa-
1. AJITOPUTMOM HA3BIBAETCSI IIPOHYMEpPOBaHHAasI IIOC/IE0BATE/THHOCTD PAa3pENIeHHBIX OlTe-
panmii. Pazperiennr omepauyn 9TeHUsT 9UCET U3 TAMATA B PETUCTP U 3aIUCH U3 PETUCTPA
B aMsATh, aprudMeTHIeCKIe Olepanun (CJI0KeHe, YMHOXKEHIEe, BEIUUTAHUE, [[eJIOUNCICH-
HOE JIeJIeHne, B3siTHe OCTATKA). 3a OJIHY OIEPAINIO TaKyKe MOYKHO CDABHUTDH 3HAYEHUE JIBYX
qucesI, W, B 3aBUCUMOCTHA OT pe3yJbrara, HepeiTu K J00OMYy Imary ajropurma. Bpeme-
HeM pabOThl aJITOPUTMa HA3BIBAETCS UNCJIO OIEPAIlii, KOTOPbhIE aJTOPUTM BBIIOIHAET /I
perenns 3aa9u. OObEMOM TaMATH, HEOOXOIUMBIM JIJIsT PAOOTHI aJrOPUTMa, HA3bIBAETCS
MaKCUMAJbHBII aJpec sTIeiiki, KOTopas ObLIa 3a1eiiCTBOBAHA.

Paccmorpum cienyroriyto 3ajiauy. Tpedyercs BBISICHUTh, €CTh JII B MAcCCUBE pa3Mepa
N JIBa OJIMHAKOBBIX YUC/IA. DTY 3aJa9y MOXKHO permuTh 3a n(n — 1)/2 cpaBHeHU JJIs KazK-
noit mapsl uncesi. Ho kpome oneparuit cpaBHeHUsI, TOTPEOYETCss OPraHn30BaTh JIBa ITUKJIA,
B KOTOPOM OJIMH BJIOXKEH B JIpyroil. JlJist KaxK0ro muKJ/ia Hy>KHa IepeMeHHas-CIéTInK, KO-
TOpasi Ha KayKIOi UTepaIui YBEJIUINBACTCS HA €IUHUILY. DTU JOIMOJHUTEIbHBIE OIEePAIIIN
IIPOU3BOSATCS KOMIIBIOTEPOM, ITO3TOMY, UYTOOBI OIEHUTH 00IIee BpeMsi pabOThl aJrOPUTMAa,
HEOOXOJIMMO WX TAaKXKe YIUTHIBATH. KOJIMIeCTBO BCIOMOTATE/BHBIX OIEpAIdil I JIBYX
IIMKJIOB He Oyjer npesbimaTh C1n? g HeKOTopoil KoHCTanThl O, a, 3HAYHUT, YNCJIO0 BCEX
ollepanuii, BKJIIOUas CpaBHEHHe, He npesbimaer Cyn’ 11 HeKoTopoil kKoHcTaHThl Ch. Ya-



CTO TIPU aHAaJIM3e BPEMEHU PabOTHI AJTOPUTMOB KOHCTAHTBHI HE YUUTBHIBAIOT, TOBOPSI, UTO
anroput™ pabotaer 3a O(n?) (nmpousnocurcss O-6obioe ot n?).

Bosee dopmasbHO, mycTh mMeeTcsT 3ajada, B KOTOPOH MO HAOOPY BXOJHBIX JTaHHBIX
HY?KHO BBIYUC/IATH HEKOTOPBIH 0TBeT. OOBITHO, €M CJIOYKHEe BXOJIHBIE JIAHHBIE, T€M J0JIb-
e paboraer ajaroputm. IlycTh ¢ BXOJHBIMU JIAHHBIMEU CBSI3aH HEKOTOPBIN I1€JIOUHCIIEH-
HBIIl MapamMeTp n, HAIpUMEp, KOJUYeCTBO YNCEJ B MacCHBe, YHCJIO BepIWH B rpade u
T.II. DTOT MMapamMeTp n 9acTo Ha3bIBalOT yHKIueil aauHbl Bxoa. g kaxkmoro dpukcn-
POBAHHOI'O 3HAYEHUsI 7 BXOJ| AJITOPUTMa MOYKET ObITh PA3JUIHBIM. Byaem roBoputb, 9TO
aiaroputm BeinoJHsiercs 3a O(f(n)), ecam cymecrBytor Takue KoHCTaHTbl C' U g, 9TO st
BCEX M > Mg YUCIO OMEPAIyii, KOTOpPbIE BBITOJHSIET AJTOPUTM Ha JIFOOOM BXOJ€ JJINHBI
n, He npessbimaer Cf(n). Takum 0O6pa3oM, BBISICHATD, €CTh JI B MacCHBE pa3Mepa 7. J1Ba
OJTMHAKOBLIX YHuCyIa, MozKHO 3a O(n?) onepanuii. EcTh aaropur, KOTOPBIil 103BOJIAET 3TO
crenath 3a O(nlogn) oneparuitl. Bpemsa paGoThl aaropuTMa TaKyKe MOYKET 3aBHCETH OT
pasmepa siaeiiku L. Eciu cymecTByeT MHOTOYJIEH OT JABYX IepeMeHHbIX p(n,log, L) Takoit
9TO BpeMst pabOThI aJropuT™Ma u 00bEM HCIOJIB3YEMOil TTAMsITH JJTsi JTF000TO BXOJIA JIJINHBI
n u pasmepa sueiiku L He npeBocxout p(n,log, L), TO Takoil ajaropuTM Ha3bIBAIOT NOAU-
HOMUaALHbLM. Feau cymecTByer MHOrOWIeH p(n) Takoil, 9To BpeMsi paboThl aaroOpuT™Ma 1
00BEM UCIIOIB3yEeMOll TAMSITH JIJIs JII0O0T0 BXOJ[a, JTHHBI 1 HE IPEBOCXOUT P(Nn), TO TAKOM
AJITOPUTM HA3BIBAIOT CUALHO NOAUHOMUAALHbLM. Hampumep, ajaropurmel, paboTaiomiue 3a
O(n*) wmm O(nlogn) — cUIBLHO MOJUHOMHUAILHBIE.

Ob6o3nauenuss ¢ O-60JIbIIOE MOXKHO JIETKO O0OOIUTH Ha CJydail ¢ HECKOJbKUMU IIe-
pemennbiMu. Hanpumep, s rpada ¢ V' Bepmunamu u E pebpamMu paboTa ajaropurma 3a
O(EV?1ogV) osmagaer, uro cymecTByioT Takue KoHctanthl C, Vo u Ey, 910 aas Beex
V> Vyu E > Ey gucjo omneparuii, KOTOpbIe BBIIOJJHSIET aJrOPUTM Ha JIIOOOM BXOJIE C
V Bepmunayu n E pebpamu, ne npessimaer CEV?2]1og V. O6erano B rpadax V u E 06o-
3HAYAIOT MHOXKECTBA BEPIINH U PEOED, a JJIsi KOJTUIECTBa BEPIIUH U pedep U3CIOJIb3YIOTCS
obosnadenus |V | u |E|. Buyrpu 3amucu ¢ O-60sbimum Mbl OyjieM mucarh npocto V u F| tak
KaK 3TO He BBOJUT B 3abmyxenue. 3amuch O(V2E) osnauaer To xe, uro u O(|V|?|E|).

» Al. Ilpemioxkure aJgropuT™, KOTOPBIA BBISICHSIET €CTh JIX B MacCHBE pa3Mepa 7. JIBa
OJIMHAKOBBIX uncyia u paboraer 3a O(nlogn) omeparwuii.

B anropurmax pasperraercss UCIOJIb30BATDH JOTOJHUTEIHHYIO TMAMATD JJIsi XPAHEHUS
IIPOMEXKYTOUYHBIX JaHHBIX. OObEM HEOOXOIUMOI TTAMSITH MOXKHO TaK>Ke OIeHUBATH, UCITOJIb-
3yst HoTaruio ¢ O-6osbIioe. CyImecTBYIOT aJITOPUTMBbI, OBICTPBIE, HO UCIIOJIB3YIOINee MHOTO
aMsITH, a TaKXKe aJI'OPUTMBbI, KOTOPbIe TPEOYIOT MaJIO JIOMOJTHUATEILHON TaMSITH, HO pabo-
TaloT JI0JIr0. B 3aBuCHMOCTH OT 3a/1a490, TPUMEHSIIOTCS PAa3HbIe TUIIHI aJroputMos. Eciu e
OrOBOPEHO MHOE, MBI CIYMTAEM, UTO JJIsT aJIrOpUTMa JOCTYITHO O(n) JOMOJHUTEIBHOI aMsi-
tu (st rpados O(FE + V). D10 03Hagaer, 9To Jijisk AJIFOPUTMa CyIecTByeT Koncranta C
Takasi, YTO JIOTIOJTHUTEJIbHOI mamsaTh Tpedyercst MenbIte, uem Cn (C'V + CE mjis rpados).

» A2. IlpeamosoxuMm, 9TO HET OIPAHUIEHU HA UCIIOIb30BaHme maMsTh. [IpemoxuTe aj-
TOPHUTM, KOTOPBI BBISICHIET €CTh JII B MacCCHBE pasMepa 1 JBa OJWHAKOBBIX UHUCJIa U pPa-
6oraer 3a O(n) onepanuii.

[Tycte G = (V, E,w) — HeKOTOpBIii B3BEIIEHHBII OPHEHTUPOBaHHbIN rpad, rae V —
MHOXKecTBO BepiiuH rpada, B = {(u,v)} (u,v € V) — muo)ecTBO pébep rpada, w: £ —
R — dyuakmms, conmocraBasionas KaxkKaIoMy pebpy Bec. B KoMIIbIoTepHO# TaMATH OTTUCAHNE
rpada MoxkeT 3aHuMaTh 3| F| + 2 siueek. B mepBoit sideiike 3ammcano 9ucsio BepiiuH rpada
|V'|, BO BTOpOIi stueiike 3anmucano uncyio pedep |F|, a qanee wiyT || Tpoek siueek, B KaxKI0ii

' B o6osmadenunx ¢ O-6oablioe Mbl GyJeM OIlyCKATH OCHOBaHHE JIOrapudMOB, TaAK Kak JorapudMbl ¢ pas-
HBIM OCHOBAaHHEM OTJIMYAIOTCs KOHCTAHTHBIM MHOxuteseM u O(log, n) o3HadaeT To Ke caMoe, 9YTO U, HAIlpUMep,
O(log.y m).



Tpoiike st Kaxjoro pebpa e = (i,7) rpada 3ammcaHbl HOMEP UCXOJANIEH BEPIIUHBI i,
HOMep BXOJIAINel BepIIuHbL j U Bec w(i, ).

Mapuwpym s~»1 MexKly BepIIMHAMU S U ¢ HA3BIBAETCS IIOCJIEI0BATEILHOCTL BEPITUH
S = V1, Vg, ..., Uy = t, THe muag goboro ¢ = 1,n — 1 cymecrByer pebpo (v, vi+1) € E,
HAIPAaBJIEHHOE U3 V; B Viji1. Jaunoti mapwpyma s~ t Ha3bIBAETCS CyMMa BECOB BCEX €T0
pébep. Kpamuatiuwum mMapupymom MexK Ly BepPIINHAMA S U T HA3BIBAETCS TAKOI MapIIPYT,
JUINHA KOTOPOI0 MUHUMAJILHA CPEIN BCeX BO3MOXKHBIX MAapIIPyTOB u3 s B t. KpaTuaiimmum
pPACCTOAHIEM MeXKJly BepIIMHAMHI OT $ K  OyJIeM CYATATh JINHY KpaTdailiero MapIiipyTa
MexK 1y HuMH. KpaTuaiimme MapimpyThl OIPEIeIeHbl TOTAa U TOJIBKO TOra, KOraa B rpade
HEeT OTPUIATEILHBIX 10 Becy IMKJIOB. 110 yMOJIMaHMIO MBI CUATAEM, YTO BCe Beca pebep B
rpade IMOJIOXKUTEIbHBI.

» A3. Ilycrs Bce Beca B rpade pasubl 1 (HeB3Bemennbiit rpad). Ilycrs s, t — HekoTOpBHIE
BepHbI rpada. [Ipemioxkure aaropuT™, KOTOPBIT HAXOAUT KpaTdaiilliee pacCTOSHUE OT
s 1o t 3a Bpems O(E).

» A4. Ilycrs Bce Beca B rpade pasubl 1 (HeB3Bemennsiit rpad). [lycrs s, t — HEKOTOPBIE
BepuHbI rpada. [IpemroknTe aaropuT™, KOTOPBII HAXOAUT KpaTJYaIuii IyTh OT S 70 T,

TO €CThb TOCJIE0BATEILHOCTH HOMEPOB BEPIIUH S, U1, Uz, - .., t 3a Bpems O(FE).
[Tycts s — mHekoropas Bepumna rpada G = (V, E,w). Jepesom kpamuatiwur nymet
Juist BepmuHbl § HaswbiBaercs noarpad Ts = (Vi, Es, w) ucxomuoro rpada G = (V, E,w)

Takoit, aro 1) Vs — MHOXKEeCTBO BepIIUH, JOCTUKUMBIX U3 S, 2) Ts — JIepeBoO ¢ KOPHEM B S,
3) Hnst Bcex BepmnH u € Vs IyTh U3 § B U B JIepeBe COBIAJAET C OJHUM U3 KpaTdaiimx
nyTeit B rpacde G U3 s B v.

» A5. Jlokasars, uro mis jroboit Bepumabl s B rpade G = (V) E) cymectByer JepeBo
KpaTyaimux myreit 1.

» A6. Ilycts G = (V,E,w) — npousBOJBLHBINA B3BEIIEHHBI OPUEHTHUPOBAHHBIN Trpad.
[Iycts s — mekoTopasi BepmmHa rpada. Ilpemsaokure aaropuTM, KOTOPBI HAXOIUT Jie-
peBo Kpardaiimux myreit Ty 1 KpaTdailime pacCTOsTHUS OT § JI0 KaXKJI0il BepIIuHBI Ipada
G 3a Bpemst O(V?).

Paccmorpum rpad-zmepeBo. ¥V KaxKi0# BEPIIUHBI JiepeBa, KpOMe KOPHs, CYIIECTBYeT
POBHO OJIMH DOJIUTEJb U, BO3MOXKHO, HECKOJIBKO JIOUEPHUX BEPIINH (IOTOMKOB). Y KOPHS
TOJIBKO JIOYEPHEE BEPIIUHBI. Pa3iesmM Bce BepIIUHBI JiepeBa Ha, ciou. [lepewiii caoli nepesa
OyJeT BKJIIOYATb B ce0sl TOJIBKO KOPeHb. Bmopot caot nepeBa OyIeT BKJIIOYATH TOTOMKOB
KopHA. Tpemuii caotl nepeBa OyaeT BKJIIOYATH MOTOMKOB BepIIUH BTOpOro cjosd. U masee
(i + 1)-v1 crot qepeBa OyaeT BKJIIOYATH MOTOMKOB BEPIIHH §-OI0 CJIOSI.

Jleouunvim (uauw 6GurapHbim) T€PEBOM HA30BEM JIEPEBO, Y KAaXKJIOW BEPIIUHBI KOTOPOTO
He OoJjiee JIByX IMMOTOMKOB. Bce BepImHbl IBOUYHOTO JiepeBa MOYXKHO ITPOHYMEPOBATDH CJIE/LY-
fomuM obpa3oM. Beprmuaa mepBoro cyiost (KOpeHb) HOIydaeT HoOMep 1, BEPIMUHBI BTOPOTO
CJIOsI TIOJIyYaloT HOMepa 2 u 3 (cjieBa HAIPABO), BEPIIMHBI TPETHErO CJIOs MOJIyYaroT HO-
Mepa 4, 5, 6 1 7, U Tax jajiee, BEPIIMHBI 4-0I'0 CJIOd MOJIydaioT HoMepa oT 207! 10 20 — 1.
Ecnu B cooTBeTCTBYyIONEM MecTe BEPIIUHA OTCYTCTBYET, TO €€ HOMED IPOIYCKAETCS U He
MIPUCBANBAETCS HUKAKUM JIPYTHM BEPIITITHAM.

HazoBéMm OuHApPHBIE JE€PEBHA NOYMU NOAHBLMU, €CJIU BCE UX k BEPIINH UMEIOT HOMEPa
ot 1 10 k, TO ecTb HU OJIHOTO HOMEepa He OBbLIO TponyIineHo. [IpeanoToXKumM, 94To ¢ KaxKI0it
BEPIINHON JlepeBa CBA3aHO HEKOTOPOE IIeJI0e HHCJI0, KOTOpoe OyJ/ieM HAa3bIBATh KJIIOUOM,
U JIOTIOJTHUTE/IbHBIN HAOOP JAHHBIX KOHEYHOTO pa3mepa. Ilouru mosnoe GuHapHOE JI€PEBO
Ha3bIBAETCA Heybvui8arou,eti buraprol Kyyvet, eCJIU KJII0Y B JIOOO BepIInHe He O0JIbIe, YeM
KJIFOYHU €ro MMOTOMKOB. MUHUMAJIBHBIN 3JIEMEHT B HEyOBIBAIOIIE OMHAPHON Kyde, O9eBU/IHO,
moxkHO Haiitu 3a O(1) omepanuio. OH HAXOAUTCS B KOPHE.
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» A7. Ilpenjoxure aaropuT™, MO3BOJILAIONIUI 100aBUTh ouH 1eMeHT B Ky4y 3a O(log k)
omnepanuii 1 COXpaHUTb OCHOBHOE CBOMCTBO KyYH.

» A8. Ilpemoxkure ajropuT™m, MO3BOJISIONIAN Y/IAJIUTh MUHUMAJIBHBIN /IEMEHT U3 Ky4n
3a O(log k) onepanuii u cOXpaHUTb OCHOBHOE CBOICTBO KYUH.

» A9. I[lpemioxure aJrOpUTM, MO3BOJISIONINI U3MEHUTH 3HAYEHNE KJIFOUa, ITPOU3BOJILHOIO
ssiemenTa Kyuu 3a O(log k) onepanuii u coxpaHUTb OCHOBHOE CBOMCTBO KyYH.

» A10. Ilycrs G = (V, E, w) — B3Belenuslit opueHTupoBanubiit rpad. [lycts s — HeKoTO-
pas BepruHa rpada. llpenmoxkure aaropuT™M, KOTOPBIT HAXOIUT JIEPeBO KPATIANIINAX ITy-
reit Ty v KpaTJaiilme pacCTOsIHUSI OT S JI0 KazK10ii BepiuHbl rpada G 3a Bpems: O(FE log V).

B. Iln1anapable rpadbl

[Mycrs G = (V, F) — nnanapusiii rpad. Kaxkmoit Bepimae v cOMOCTaBIeHA TOYKA HA
IJIOCKOCTH C TEJIBIMU KOODJMHATAMY (T, Yy ). Byem caurarh, uTo Bee pébpa B paccMmar-
PUBAEMBIX IIJIAHAPHBIX I'padax MpeICTaB/JIeHbl Ha ILIOCKOCTH HelepPeCeKaroIUMUCT OTPEe3-
KaMHU.

» B1. Jloxkaxkure, uto B manapaoMm rpade |E| < 3|V].

B nanbueiinmem nam norpedyercs caejyornias Teopema 2Koppana. [Ipuanmaem eé 6e3
JI0OKa3aTeIbCTBA.

Teopema 2Kopdana das mmozoyzosvrukos. Jlan MHOrOYTrOJbHUK (pebpa He mepeceka-
torcst ). JIokasarh, 9T0 3TOT MHOTOYTOJIbHUK Pa30UBaeT IJIOCKOCTb HA JIBE CBsi3HbIE 00/1aCTH
U SIBJISTETCSI UX T'PAHUTIIE.

Bribepem nHa 1miockoctu Touky H, He JiexKaIllylo HU Ha OJHOM peOpe, BKJIIOYasl Bep-
muHbl wiasapHoro rpadga G. s moboro pebpa AB yeaom epawenus w(AB) BOKpyr
rouku H HaswiBaercsi opueHTupoBanubiit yron AHB (or —7 no m). s moboro mapiipy-
TA W = €1€3 ... Em, TIe ¢; € E, yeaom epawernua w(w) HazpiBaercs cymma w(ey) + w(ez) +
ot w(em).

» B2. Jlokazarb, 9T0 /iJIsI JTIOOOT0 3aMKHYTOTO MaPIIPyTa U1 V203 . . . Uy U1, T/ v; € V yroma
Bpalienus BOKpyr H, paBeH 27n, rje n — 1ejaoe 9ucjo. Yucyio n Ha3bIBAETCA UHJIEKCOM
BpAIeHUsT MapIIpyTa OTHOCUTETbHO H.

Bribepem B mtanapaom rpade Bepmuny s. Jlajgee Oysiem paccMaTpuBaTh MapIIPYTHI,
HaYMHAIOIINECS B BEPIIMHE S, KOTOPbIe HA30BEM S-MapIIpyTaMu. S-TIeTJIEH OyaeM Ha3bIBATD
3aMKHYTBII S-MapIIpyT.

» B3. /lana s-mretsisi ¢ uHeKcoM Bpailenus n > 1 Bokpyr Touku H. /lokazaTk, 4TO CyIie-
CTBYeT S-TIeTJISI C WHJEKCOM BpaleHns n — 1 BOKpyT Touku H.

C. Kparuaiinine 3aMKHYTbIe MapIIpyThl BOKPYT OJHOW TOYKH

OcHOBHBIE 3a/1a491 TTPOEKTa OY/IyT MOCBAIIEHBI AJITOPUTMaM IIOUCKA KPaTJdalmx 3a-
MKHYTBIX MapIIpyTOB C 3aﬂaHHOI7I CTapTOBOfI BeleI/IHOfI S IIpU pa3JIMYHBLIX JOIIOJTHUTEJIb-
HBIX OI'DaHUYCHUAX:

1. Komanugecrso TOY€K, BOKPYI' KOTOPBIX Mbl XOTHUM HallTH IeTJIn: OaHa H wnnm ABe
H17 H2

OpueHTUPOBAHHBII / HEOPUEHTUPOBAHHBI Tpad
3. Iowuck nommHOMEAIBHOTO ajropurMa uin osictporo 3a O(V1ogV).

4. Tlouck KpaTdaifInero MapiipyTa CpeJnd BCeX ¢ HEHYJIEBBIMHU UHJICKCAMU UJIU C 3a-
JAHHBIMA MHJICKCAMU BPaIllCHUA.



[IycTbs umeercs ogna Touka H, BOKPYT KOTOPOIl MbI OyJIeM ITPOKJIA IIBATH 3aMKHYThIE
MapIIPYTHI € 33/IAHHOM CTapTOBOI TOYKOIT s. Bo Bcex 3ajlauax HUKe HYXKHO yCTAaHOBUTb,
CYIIECTBYET JIM aJITOPUTM IOMCKa MapHIpyTa ¢ YKa3aHHBIMU CBOWCTBAMM.

» C1. HeopuentupoBaHHblil rpad, HYKHO HalTH KpaTdailnii 3aMKHYTBIA S-MapIIpyT
¢ menyseBbiM uHekcoM 3a O(V log V') onepariumii.

» C2. B opuentupoBanHOM rpade HY>KHO HaWTH KpaTdalmuii 3aMKHYTBIA S-MapIIpyT
¢ menysebiM uHeKcoM 3a O(V log V') onepariumii.

» C3. HeopuentupoBanublii rpad, HYKHO HANlTH KpaTdailinii 3aMKHYTBIA S-MapIIpyT
¢ 3amanubM uHjekcoM k 3a O(V log V') onepanuii. Cunraem, uro |k| < 100.

» C4. OpuenTupoBaHHBII rpad, HY?KHO HANTH KpaTJailiinii 3aMKHYTHI S-MapIIpyT C 3a-
JIAHHBIM MHJIEKCOM K 3a TIOJIMHOMUAIbHOE Juc/io omneparmii. Cunrtaem, aro |k| < 100.

» C5. OpuentupoBaHHBII rpad, Hy?KHO HANTH KpaTdailllinii 3aMKHYTHI S-MapIIpyT C 3a-
nanabiM uHjekcoM k 3a O(V 1log V') onepanmii. Cuuraem, uro |k| < 100.

D. Kparuaiinime MmapuipyThl BOKPYT JBYX TOYeK

[Tycte Tenepsb umerorcst ase touku Hy u Hy. Iyt Bokpyr Hux (ecjm ux paccmar-
pUBATh KaK TPAEKTOPUHN) XapAKTEPU3YIOTCS y2Ke JIBYMsl MHIEKCAMU BpAIeHUs. Y HAC T10-
IIpe2KHEMY €CTb CTapTOBad TOYKa S. BO BCeX 3aJa9aX HU2KE HY2KHO YCTaHOBUTDL, CYIIIECTBYET
JIX aJITOPUTM IIONCKa MapHIpyTa C YKa3aHHBIMU CBOMCTBaMMH.

» D1. HeopuentupoBanusbiii rpad, HYy?KHO HANTH KpaTJIaiiimit 3aMKHYTBII S-MapIipyT C
saganabivu uHjekcamu (k,n) 3a O(V log V') onepanuii. Cauraem, aro |k| < 100, |n| < 100.

» D2. OpuentupoBaHHblil rpad, HY2KHO HANTH 3aMKHYTBIN S-MapIIPyT € 33/ [aHHBIMU HH-
nekcamn (k,n) 3a moamHOMHAJIbHOE THCI0 oneparuit. Cunraem, aro |k| < 100, |n| < 100.

» D3. OpuentupoBanublii rpad, HyKHO HANTH 3aMKHYTBIN S-MapPIIPyT € 33/ [aHHBIMU WH-
nexcamu (k,n) 3a O(V log V') onepanuii. Cunraem, aro |k| < 100, |n| < 100.

E. Kparuaiiinue mapmpyTsl 6e3 ctapTa

Temepr HeT BBIJIEIEHHOI CTApPTOBON TOYKU. 10 ecTh TpedyeTcss HAWTU KpaTdaltimit
3aMKHYTBIIl MapIIPyT, He 00s13aTEILHO TPOXOISIINI Uepe3 3apaHee BbIJIEIEHHYIO BEPIIUHY.
[To-tipexxkHEMY, HY2KHO YCTAHOBHUTD, CYIIECTBYET JIM AJTOPUTM MTOUCKA MAPIIPYTa ¢ YKA3aH-
HBIMHU CBOIICTBAMIU.

Pewemuamuii epagh — 310 rpad, BEPIIHHBI KOTOPOTO COOTBETCTBYIOT TOYKAM HA TIJIOC-
KOCTH C IeJIbIME KoopauHaTamu, (z = 1,...,n; y = 1,...,m), U BepIIUHBI KOTOPOI'O CO-
eJINHEeHbI peOPOM, €CJIM COOTBETCTBYIOINIME TOYKHM HaXOJsTcd Ha paccrogaun 1. [nasa opu-
€HTUPOBAHHOTO CJIydasi, JIBe TOYKHM Ha PACCTOSHUU | COeMHEHBI B 0O0MX HAIPABJICHUSIX,
BO3MOKHO C PA3HBIMHU BECAMHU.

» E1. CymiecTByer jin ajJirOPUTM IIOUCKA KpaTdaiiieil nmetyim BOKpyr H B opueHTHpPOBaH-
. 3

HOM permérdaroM rpade 3a Bpemst O(V'2z logV')?

» E2. * [TonpoOyiiTe HAliTH aJrOpUTM MOUCKA KpaTdaiimeil meran Bokpyr H B opueHTH-

poBanHOM perérdaToM rpade 3a Bpemst O(V log V).

» E3. * [TonpoOyiiTe HaliTH aJropuT™M MOUCKa KpaTdaiimeil meraun Bokpyr H B opueHTH-
3
poBanHOM IIaHapHoM rpade 3a Bpems O(V'2 log V).



Enclosing walks and image segmentation algorithms
A. Malistov, I. Ivanov-Pogodaev, A. Kanel-Belov

A. Algorithms

Consider a book with n pages. Every page contains some word. Moreover, there is
a card with a single word. Using one operation we can look an arbitrary page and read
a word. How many operations are required to find the word from the card in the book?
It is clear that n tests are sufficient to look up all the pages in the book.

Suppose that all the words in the book are sorted in alphabetical order. Now [log, n|
operations are sufficient to check for the existence the word in the book. First of all, we
can check the midpage of the book against our word and eliminate half of the book from
further consideration. The binary search algorithm repeats this procedure, halving the
size of the remaining portion of the book each time.

So, we can make a search faster using specially prepared data. Modern computer
data bases contain billions records. The linear search algorithm must look up all the
records. We can find any record using 30 operations with the binary search algorithm.

Consider the computer operating the memory with some registers. A register is a
location with both an address and a content — a single integer number x (|z| < L, L
is a positive integer). L depends on input data of our problems. Address is an integer
more or equal to zero. The following operations are permitted: addition, subtraction,
multiplication, integer division, modulo operation, comparison and conditional branch,
which may or may not cause branching depending on the comparison result. The running
time of an algorithm is the number of operations or “steps” executed. The memory
capacity used by an algorithm is the maximal address of memory unit used.

Consider an n-element linear array. Are there exist two equal elements in the array?
We can solve this problem using n(n — 1)/2 comparisons — for every pair of elements.
Algorithm needs some additional operations except the comparisons. For example, this
is an increment for the loop variables. The number of additional operations is less than
Cyn? for some constant C;. Thus, the number of all operations is less than Cyn? for some
constant C5. They often describe the running time of algorithm ignoring the constant
factors. They say that the running time of the algorithm is O(n?) (big O notation).

Suppose that we want to compute result using some input parameters. Usually, more
complex input increases algorithm’s running time. Let n be a some integer which depends
on the input. For example, n is array size or number of nodes etc. This parameter is called
“input length function®. There are different inputs for fixed n. We say that an algorithm
has a running time O(f(n)) if there exist some constants C, ng such that for any n > ng
the number of operations executed less than Cf(n) for any input of length n. Thus
one can find two equal numbers in array of size n using O(n?) operations. There is an
O(nlogn) algorithm which solves this problem!. The running time of an algorithm can
depend on the size L of the memory unit. An algorithm is polynomial if there is a polynom
p(n,log, L) such that the runing time and memory used are less than p(n,log, L) for any
input. An algorithm is strong polynomial if there is a polynom p(n) such that the runing
time and memory used are less than p(n) for any input. For exapmle, O(n*) algoritms
and O(nlogn) algorithms are strong polynomial.

O-notations can be easily extended to multiple variables case. For example, for graph
with V vertices and E edges, the running time O(EV?1logV) means that there exist
constants C', Vo and Ey such that for all V' > Vj and F > Ey the number of operations

1 We will use baseless log inside of big O notation. The thing is that two logarithms with different bases
are just scalar multiples of each other.



executed less than CEV?2log V. Usually V is a set of vertices and E is a set of graph
edges. |V| and |E| are sizes of these sets. We will write just V and E inside of big O
notation. O(V2E) and O(|V|?|E|) are the same.

» A1l. Describe an O(nlogn) algorithm that determines whether or not there exist two
equal elements in the array of size n.

An algorithm can use additional memory to store temporary data. The size of re-
quired memory can be estimated via O notation. There are many fast algorithms that
require much memory. To the other side, there are many low memory algorithms that
require much time to perform. Unless otherwise stated, any algorithm has an O(n) mem-
ory capacity (or O(F + V) for graphs). This means that, for the algorithm, there is a
constant C such that this algorithm requires memory amount less than Cn. (or CV+CE
for graphs).

» A2. Suppose that there are no memory restrictions. Describe an O(n)-algorithm that
determines whether or not there exist two equal elements in the array of size n.

Let G = (V, E,w) be an weighted directed graph. V is a set of its vertices, £ =
{(u,v)} (u,v € V) is a set of graph edges, w: F — R is a weight function. Graph
description can hold 3| E| 4 2 memory units. First cell holds the number of graph vertices
|V'|, second cell holds the number of graph edges |E|. The next cells holds | E| triplets for
each edge. Each triplet is the index of outgoing vertex i, the index of incoming vertex j
and weight w(i, 7).

A walk s~t from s to t is a sequence s = vy, v, ..., v, = t such that for any
i = 1,n — 1 there exists an edge (v;,v;+1) € E from v; to v;41. The weight of a walk
s~t is sum of all edges weights. A shortest walk from vertex s to vertex t is any walk
s~»t with minimal weight. The shortest distance from s to t is the weight of a shortest
walk from s to t. Shortest walks are well defined if and only if the graph G contains
no negative-weight cycles. Unless otherwise stated, only positive-weight graphs are
considered.

» A3. Suppose that all weights of the graph G are equal to 1 (unweighted graph). Let
s, t be two vertices of the graph G. Describe an O(F) algorithm that searches for the
shortest distance from vertex s to vertex t.

» A4. Suppose that all weights of the graph G are equal to 1 (unweighted graph).
Describe an O(FE) algorithm that searches for the shortest walk from vertex s to vertex
t. Output of this algorithm is a sequence s, uy, us, ..., t.

For any vertex s there is a shortest-paths tree Ty = (Vs, Es,w) such that 1) Ty is a
subgraph of G, 2) s is the root of Ts, 3) V contains vertices reachable from s, 4) for all
v € Vg, the path from root s to v in T} is the shortest path from s to v in G.

» A5. Prove that for any vertex s there is a shortest-paths tree T.

» A6. Let G = (V, E,w) be an weighted, directed graph. Let s be a some vertex. De-
scribe an O(V?) algorithm that searches for the shortest-paths tree T, and shortest
distances from vertex s to all other vertices.

Consider a tree. Each vertex except the root has a unique parent and probably some
children. The root has children only. Let us divide all the vertices by the levels. Level 1
contains the root only. Level 2 contains the children of the root. Level 3 contains the
children of the verices from level 2 etc. Level (i + 1) contains the children of the verices
from level 1.

Binary tree is a tree in which each node has at most two children. We can enumerate
all the vertices of the binary tree by the following way. The vertex of level 1 (the root)

2



has index 1. The vertices of level 2 have indices 2, 3. The vertices of level 3 have indices
4,5, 6 and 7, and so on. The vertices of level i have indices from 2! to 2¢ — 1. If some
vertex is absent then its index is skipped.

A binary tree is called an almost complete binary tree if all the levels (maybe except
the last one) is completely filled. Suppose that each tree node contains some integer (key)
and an additional data of fixed size. A binary heap is a almost complete binary tree such
that the key at every node is less than (or equal to) the key at its left child and the key
at its right child. It is clear that the element with minimal key can be found using O(1)
operations.

» A7. Describe an O(log k) algorithm that pushes a single element into the binary heap
and retains the heap property.

» A8. Describe an O(logk) algorithm that eliminates the minimal element from the
binary heap and retains the heap property.

» A9. Describe an O(log k) algorithm that changes the key of the minimal element of
the binary heap and retains the heap property.

» A10. Let G = (V, E,w) be the weighted, directed graph. Let s be some vertex. De-
scribe an O(FE'log V') algorithm that searches for the shortest-paths tree Ts and shortest
distances from vertex s to all other vertices.

B. Planar graphs

Let G = (V,E) be a planar graph. Every vertex v corresponds to some point on
the plane with coordinates (z,,v,). We assume that all the edges in considered planar
graphs has nonintersection segments representation on the plane. All edges intersect only
at endpoints.

» B1. Prove that for any planar graph |E| < 3|V].

Further, we need Jordan’s Theorem. You can use this theorem without proof.

Jordan’s Theorem for polygons. Given the polygon, prove that this polygon divides
the plane into an “interior” region bounded by the polygon and an “exterior” region
containing all of the nearby and far away exterior points.

Consider a point H that does not belong to any edge or the vertices of the planar
graph G. The winding angle w(AB) for given edge AB around the point H is a signed
angle AHB (—m < w(AB) < 7). For any walk w = ejes...e,, (e; € E), the winding
angle is a sum w(ey) + w(ez) + ...+ w(em).

» B2. Prove that for any closed walk vivovs ... vpv1 (v; € V), the winding angle around
the point H is equal to 27n (n is some integer). n is the winding indez of the walk around
H.

Fix some vertex s in the planar graph G. Further we will only consider walks that
start in s. Let us call them s-walks. s-loop is a closed s-walk.

» B3. Consider a s-loop of winding index n > 1 around point H. Prove that there is a
s-loop of winding index n — 1 around H.

C. Shortest closed walks around single point
In the sequel, we shall focus on the problem of the shortest closed walk of non-zero
winding number with some source vertex s under different following conditions:

1. The number of points we want to enclose by loop: single point H or two points
H17 H2

2. Directed or undirected graphs



3. Polynomial algorithms or fast O(V log V') algorithms.

4. Finding the shortest walks with non-zero winding index or finding the shortest
walks with fixed winding index.

Given a weighted digraph G = (V, E') embedded in the plane P, let H be a point of
the plane P, let s € V be a source vertex. We want to find a shortest closed walk s~ s
with a given winding number n # 0, n € Z, around H.

» C1. Consider an undirected graph. Find a shortest closed s-walk with nonzero index
using O(V log V') operations.

» C2. Consider a directed graph. Find a shortest closed s-walk with nonzero index using
O(V log V') operations.

» C3. Consider an undirected graph. Given index k < 100, find a shortest closed s-walk
using O(V log V') operations.

» C4. Consider a directed graph. Describe a polynomial algorithm that finds a shortest
closed s-walk with given index k < 100.

» C5. Consider a directed graph. Describe an O(V log V') algorithm that finds a shortest
closed s-walk with given index k < 100.

D. Shortest walks around two points

Consider two points H; and Hs. The walks around these points have two winding
angles and two indices. Recall we have a source vertex s. In the following problems we
want to find closed walks with specified properties.

» D1. Consider an undirected graph. Given indices k£ < 100, n < 100, find a shortest
closed s-walk using O(V log V') operations.

» D2. Consider a directed graph. Given indices k < 100, n < 100, describe a polynomial
algorithm that finds a shortest closed s-walk.

» D3. Consider a directed graph. Given indices k < 100, n < 100, describe an O(V log V)
algorithm that finds a shortest closed s-walk.

E. Shortest walks without source vertex

Now we have no source vertex. So we want to find a shortest closed walk.

A lattice graph, mesh graph, or grid graph is the graph whose vertices correspond to
the points in the plane with integer coordinates (x = 1,...,n; y = 1,...,m) and two
vertices are connected by an edge whenever the corresponding points are at distance 1.
In directed graphs case, these two vertices are connected by two edges in both directions.
The weights are probably asymmetric.

» E1. Is there exist an O(V% log V')-algorithm that searches for a shortest closed walk
around H in directed lattice graph?

» E2. Try to find an O(V logV)-algorithm that searches for a shortest closed walk
around H in directed lattice graph.

» E3. Try to find an O(V 2 log V)-algorithm that searches for a shortest closed walk
around H in directed planar graph.
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Abstract. This paper presents an efficient graph-based image segmen-
tation algorithm based on finding the shortest closed directed walks sur-
rounding a given point in the image. Our work is motivated by the Intel-
ligent Scissors algorithm, which finds open contours using the shortest-
path algorithm, and the Corridor Scissors algorithm, which is able to
find closed contours. Both of these algorithms focus on undirected, non-
negatively weighted graphs. We generalize these results to directed pla-
nar graphs (not necessary with nonnegative weights), which allows our
approach to utilize knowledge of the object’s appearance. The running
time of our algorithm is approximately the same as that of a standard
shortest-path algorithm.

1 Introduction

The shortest-paths algorithms are among the most widely used methods for
image segmentation [1]. These methods have many applications in the field of
medicine (2], optical character recognition systems [3], etc. The shortest-path
segmentation is a so-called graph-based method. All graph-based methods rep-
resent the image as a weighted graph G = (V, E), where each vertex v € V
corresponds to a pixel in the image, the edges connect neighboring pixels [4].
Weights of the edges depend on the properties of the pixels, for instance, their
intensities.

Mortensen and Barret [1] in 1995 was one of the first to present a new seg-
mentation tool known as Intelligent Scissors. Their algorithm finds an optimal
path from a start pixel to a goal pixel, where each pixel corresponds to a ver-
tex in the graph G. Intelligent Scissors assign weights to edges according to the
image gradient: the greater the image gradient, the lower the weight of the edge.

The shortest path from a start pixel s to the same pixel s is trivial. The
shortest closed path surrounding a given point H can be considered as a natural
generalization of a shortest-paths problem. The shortest closed paths are used
as an image segmentation technique in [5-7]. In [5], a new segmentation tool
Corridor Scissors is presented. Their tool searches for a shortest closed path
inside of the corridor marked by a user. The corridor is considered as a ring-
shaped graph. This ring-shaped graph is transformed into a lane-shaped graph



by cutting along the shortest cut-path. In [7], a similar technique is used for
image composition.

Previous works on closed paths are only focused on undirected, nonnegatively
weighted graphs. In this paper we generalize these results. We give a direct
algorithm for the shortest closed walks with the non-zero winding number n
around a given point of the plane. Our algorithm applies to directed graphs with
no negative-weight cycles. Any corridor can be emulated by removing vertices
and edges outside the corridor. This generalization allows the algorithm to utilize
knowledge of the objects appearance. Negative weights can be used to point a
set of mandatory edges for the required walks. Directed graphs can use different
weights for different directions, which makes it possible to find inner and outer
contours (see fig. 1).

In fact, if the graph is undirected and the source vertex s is fixed, then no
cut-path is needed. In [8], Provan found a simple algorithm for the shortest
enclosing walk in undirected graphs. The thing is that the shortest enclosing
walk can be easily produced from the shortest-paths tree. To find the shortest-
paths tree Provan uses Dijksta’s algorithm [9]. The implementation of Fredman
and Tarjan [10] has a running time O(E + V' log V'). For the square grid, where
|E| = O(V), we obtain O(V log V'). To date, there is an algorithm of the running
time O(V') for single-source shortest paths in planar graphs with nonnegative
weights [11]. The shortest path in directed planar graphs with negative weights
can be found in O(V log® V) time [12].

We recall that directed graphs can be useful to enclose an object if we know
a priori color models of the object and background. Object always lies to the
left of counterclockwise enclosing contour. Suppose that all pixels have integer
coordinates. Let us shift each node in the above graph by (0.5,0.5). Then each
node and each edge will lie between pixels. This aproach is used in [2]. Let O
be an object segmented by the shortest closed walk p around the point H € O.
Whenever the walk p travels counterclockwise around the point H, pixels of the
object O lie immediately to the left of p, in the traversal. Suppose e is an edge,
e’ is e given in reverse direction. Let £ be a pixel that lies immediately to the left
of e (to the right of €’), r be a pixel that lies immediately to the right of e (to
the left of ¢’). If the closed walk p contains e, then ¢ is inside of the object O.
If the closed walk p contains €', then r is inside of the object O. To distinguish
this we must have w(e) # w(e’) (see fig. 1). Thus, we obtain a directed graph.

2 Shortest Enclosing Walks in Directed Graphs

2.1 Background

Let G = (V, E) be a weighted, directed graph with weight function w: E — R.
Suppose s,t € G. By s ~ t denote an arbitrary walk from s to ¢t. A closed walk
is a walk such that its first and last vertices are the same. The weight w(p) of
walk p is the sum of the weights of the edges of p. Sometimes the word length
is used instead of weight. But we reserve length for the number of edges in the



Fig. 1. Shortest enclosing directed walks: left) original image; center) the shortest
clockwise walk (winding number = —1); right) the shortest counterclockwise walk
(winding number = +1). Note that the clockwise walk finds the outer contour of the
egg, while the counterclockwise walk find the inner contour (that of the yoke).

walk. In the sequel, only walks of finite length are considered. A shortest walk
from vertex s to vertex t is any walk s ~~ t with minimal weight. Shortest walks
are well defined if and only if the graph G contains no negative-weight cycles.
It follows that if the graph is undirected, all weights are non-negative. In the
sequel, only graphs without negative-weight cycles are considered. Any shortest
walk cannot contain a positive-weight cycle. This cycle can be removed to create
a walk with a lower weight. We can also remove 0-weight cycles to create a walk
with the same weight. Without loss of generality we can assume that all shortest
walks have no cycles. Thus all shortest walks are simple paths. In particular, the
shortest path from s to s is the path that contains no edges.

For any vertex s there is a shortest-paths tree Ty = (Vs, E5) such that 1) T
is a subgraph of G, 2) s is the root of Ts, 3) V, contains vertices reachable from
s, 4) for all v € Vj, the path from root s to v in Ty is the shortest path from s
to v in G.

Suppose G has a fixed planar embedding in the plane P = R? and this
embedding is given by some map f:V — P. All edges intersect only at endpoints.
By (z4,y,) we denote the coordinates of vertex v. Suppose that the plane P
has a distinguished point H. We will assume that no edge intersects H. In the
converse case, remove all those edges. To each pair (u,v), where u,v € V, assign
the directed angle 0(u,v) = LUHV where U = f(u), V = f(v). We have
—27 < Q(u,v) < 27 and O(v,u) = —0(u,v). Suppose e € E is an edge of G. By
defenition, put a(e) = 0(u,v). A winding angle of walk «(p) is the sum of the
angles a(e) of the edges of p.

Suppose s,t € V; then it is not hard to prove that for any walk s ~~ t there
exists a unique n € Z such that a(s ~» t) = (s, t)+2mn. To do this, one can use
the polar coordinate system with the origin at H. In particular, for any closed
walk s ~» s we get

a(s~s)=2mn, necz . (1)

r(p) = a(p)/27 is called the winding number of walk p. It follows from (1) that
the winding number of a closed walk is always integer. If the shortest-paths tree



T, is fixed, then for all v € Vi there exists a unique path ¢ = s ~ v in Ts. By
B(s,v) we denote the winding angle of q.

We recall that the shortest closed walk is a zero-length path. But the shortest
closed walk with non-zero winding number is nontrival. In the sequel, we shall
focus on the problem of the shortest closed walk of non-zero winding number.
Given a weighted digraph G = (V, F') embedded in the plane P, let H be a point
of the plane P, let s € V be a source vertex. We want to find a shortest closed
walk s ~~ s with a given winding number n # 0, n € Z, around H.

2.2 Undirected Graphs

Let p~! be a walk p given in reverse direction. If G is undirected graph, then
we obtian w(p~!) = w(p). It follows that there exist a shortest closed walk of
winding number +n if and only if there exists a shortest closed walk of winding
number —n. Moreover, the weights of these walks are the same. In the next
subsection we will show that the shortest closed walk with non-zero winding
number has winding number +1 (see Theorem 5).

Provan [8] gave the first algorithm for finding nontrivial walks in undirected,
nonnegatively weighted graphs with a fixed (not necessary planar) embedding
in the plane. His algorithm finds a shortest closed walk surrounding a given
obstacle O in the plane. This shortest walk has non-zero winding number. But
we cannot choose an arbitrary winding number n.

Provan considers a plane embedding that is not necessary planar. For planar
graphs, Provan’s algorithm gives a closed walk of winding number =+1.

2.3 Directed Graphs

For directed graphs, w(p~!) is not necessarily equal to w(p). Moreover, the
shortest closed walk with winding number +1 and the shortest closed walk with
winding number —1 may be distinct.

Consider a point F' = (z,y, 2) € R3. By definition, put z(F) = z, y(F) = v,
2(F) = z. Fix the source vertex s. Take a vertex v € V. Let H, be a set given
by

H, = {h € R® | 2(h) = x,,y(h) = yu, 2(h) = O(s,v) + 2mn,n € Z} .

For example, since 0(s,s) = 0, it follows that Hys = {(xs,ys,2mn) | n € Z}. Put
V = U,ey Ho. Let g be the map from V to V' taking h € H, to v. Consider a
graph G = (V, £), where

E={(h1,h2) | hi,ha €V, (9(h1),g(h2)) € E, z(v) = z(u) + 0(g(h1), g(h2)) }

For each edge (hi,hs) € &, we have a weight w(hi, ho) = w(g(h1), g(h2)) The
graph G can be embedded in the helicoid (see fig. 2). Consider S = (zs,ys,0) €
Hs C V, where s € V is the fixed source vertex in G. Clearly, g(5) = s. If we
take another source vertex so, then we get another graph G,. To simplify the
notation we write G instead of G;. In the sequel, s is fixed.



Fig. 2. Helicoid graph.

Lemma 1. Let Wy be a set of walks from s in the graph G, Wsg be a set of walks
from S in the graph G. Then Wy is isomorphic to Wg with respect to weight.

Proof. Let p = (svy...vp) be a walk in G. Consider the path P = (SV;...V}) in
the graph G, where V; = (xvi,yvi, a(svivs .. .fui)), a(svivy ... v;) is the winding
angle of the subwalk s ~» v;. Since a(svl .. .viviﬂ) — a(svl . vi) = 0(vi, vig1),
we get (V;,Vig1) € €) and w(V;, Viy1) = w(vi, vit1). It follows that w(P) = w(p).

Now let P = (SViVh...V;) be a walk in G. Simalarly, consider the walk
p = (sv1vs...ve), where v; = g(V;). The walk p corresponds to P and has the
same weight. This completes the proof of Lemma 1. [

Let I be the isomorphism from Lemma 1, W be the set of all closed walks
in G from s with winding number n # 0 around H. Then I(W) is the set of
all open walks in G from S = (zs,ys,0) to S, = (zs,ys, 2mn). Thus, the shortset
closed walk problem in graph G is equivalent to the shortset path problem in
graph G. No well-known algorithm can be started because the graph G is infinite.
Our aim is to find some subgraph G’ of G that is finite. Then we can use any
well-known shortest-path algorithm.

The first approach is to remove all vertices h € V such that |z(h)| < 4x|V].
This is a good idea because the walks of a length more than 2|V| are not very
useful. The shortcoming of this method is that the number of vertices in G is
V| = ©(|V|?). This method is not optimal. We will show that there is a better
way to find a finite subgraph.



2.4 A Finite Subgraph of G

We recall that 5(s,v) is the winding angle of the unique path ¢ in the shortest-
paths tree Ts. For each vertex v € G there exists a unique vertex h € V such
that h = (x4, yv, B(s,v)). Now we shall give the following definitions.

Definition 1. Suppose v € V.. Then the vertex (xy,yy, B(s,v)) € V is called the
shortest representative of v in the helicoid graph G with respect to the source
verter s.

Since s is fixed, “with respect to the source vertex s” will be omitted.

Definition 2. We say that the vertex h = (x4, Yy, 2) € V has a tier m and write
tier(h) = m if z = B(s,v)+2wm, where v = g(h) € V is the corresponding vertex
in G.

Clearly, all shortest representatives in G have the tier 0.

Theorem 1 (intermediate value). For any walk p = hy ~> hg in G the tier
takes any value between tier(hy) and tier(hs) at some vertezx of p.

Proof. Let (u’,v") be an edge of the walk p. Put u = g(u’), v = g(v’). Then
z(u') = B(s,u) + 2w - tier v/, z(v") = B(s,v) + 27 - tier v’. We recall that z(v') —
z(u') = 0(u,v). It follows that

z(v") — z2(u) = 0(u,v) = B(s,v) — B(s,u) + 27 - (tier v’ — tier u'),

5(37 u) + e(ua U) B ﬁ(S, U)
27

where s ~~ u — v ~» s is the closed curve which contains the shortest path
s ~ u, the edge u — v, and the reverse of the shortest path s ~» v. This curve
has no self-intersections because s ~» u and s ~ v are the paths in the tree T5.
Thus, the winding number r(s ~» u — v ~» s) € {0, £1}. It follows that either
the tiers of the neighboring vertices v/, v" are the same or tier(v’) —tier(u') = +1.

: / : /
tier v’ — tieru’ = =7r(s~u—v~~s),

Theorem 2 (tiers). Suppose h € V, tier(h) > 0. Then there exists a shortest
path p from S to h such that for any vertex u of p we have tier(u) > 0.

Proof. For tier(h) = 0, by definition (2), the shortest paths induced by the
shortest-paths tree Ty contain only vertices of the tier 0. For tier(h) > 0, as-
sume the converse. Then some shortest path (S...w...h) contains u such that
tier(u) < 0. By Theorem 1, there exists a vertex v between u and h such that
tier(v) = 0. Replace (S...w...v) with the shortest path S ~» v that contains
only vertices with the tier 0. Repeating this operation we obtain the shortest
path p from S to h such that for any vertex u of p we have tier(u) > 0. This
contradiction proves the theorem. []

Similarly, there exists a shortest path p from the vertex S to a vertex h € V,
tier(h) < 0, such that for any vertex u of p we have tier(u) < 0.



Corollary 1. If we want to find a shortest closed walk with the winding number
n > 0, then any verter h with tier(h) < 0 can be removed. If we want to find
a shortest closed walk with the winding number n < 0, then any vertex h with
tier(h) > 0 can be removed.

Consider a vertex v € V in the input graph and the corresponding set of
vertices H, C V in the graph G. We can sort all vertices of H, by their shortest
distance from S. Evidently, the shortest of the shortest paths from the vertex S
to the set H, is the path to a vertex h € H, such that tier(h) = 0.

Definition 3. For R > 0, we shall say that a vertex h € H, has a rank R and
write rank(h) = R if the shortest distance from S to h is the (R+1)-th minimum
of the shortest distances from S to the set H,,.

Theorem 3 (ranks). Suppose h € V.Then there exists a shortest path p from
S to h such that for any vertex u of p it follows that rank(u) < rank(h).

Proof. Assume the converse. Then some shortest path p = (S...w...h) contains
u such that rank(u) > R, where R = rank(h). Consider a set U = {u}F*_, such
that up € V, rank(ur) = k, and g(ur) = g(u). We can replace (S...u) with
S ~~ ug. Then there exist R + 1 walks (S...uy.. ->k;R:0 with a lower weight. All
end nodes hy, are distinct because Vi # j tier(h;) # tier(h;). Since Vk tier(uy) #
tier(u), we get Vk tier(hy) # tier(h). We have that w(p) is not the (R + 1)-th
minimum of the shortest distances from S to H4(3). This contradicts Definition 3.
The theorem is proved. [

Definition 4. Suppose H} = {h € H, | tier(h) > 0}, H, = {h € H, | tier(h) <
0}. We shall say that a vertex h € HI has a category K > 0 and write cat(h) =
K if the shortest distance from S to h is the K-th minimum of the shortest
distances from S to the set H. We shall say that a vertex h € H, has a
category K < 0 if the shortest distance from S to h is the |K|-th minimum of
the shortest distances from S to the set ‘H,, . If tier(h) = 0, we put cat(h) = 0.

Using Theorem 2, Theorem 3 and Definition 4, we get the following theorem.

Theorem 4 (categories). Suppose h € V. Then there exists a shortest path p
from S to h such that for any vertex u of p it follows that | cat(u)| < |cat(h)].

Theorem 5 (Main). Vh € V tier(h) = cat(h).

Proof. The cases cat(h) > 0 and cat(h) < 0 are equivalent. Without loss of gener-
ality it can be assumed that k = cat(h) > 0. The proof is by induction over k. For

= 0, there is nothing to prove. For £ > 0, assume the converse. Then there exist
h € V such that cat(h) = k and tier(h) # k. Let h,, € H;L(h) be a vertex such that
tier(h,,) = m. By the inductive assumption, Vm < k cat(h,,) = tier(h,,) = m.
If tier(h) < k, then cat(h) = cat(hyier(n)) = tier(h). Thus, tier(h) > k. Consider
the shortest path p = S ~~ h. Also, consider the first vertex v in p such that
tier(v) > k. Clearly, cat(v) = k. If cat(v) < k, then cat(v) = tier(v). Let u be



the predecessor of v. By Theorem 4, cat(u) < cat(h) = k. If cat(u) < k, then
tier(u) = cat(u) < k. Thus, tier(v) — tier(u) > 2. This contradicts Theorem 1.
It follows that cat(u) = tier(u) = k and tier(v) = k + 1. Let ug_1 be the vertex
such that cat(ux—1) =k — 1 and g(ug—1) = g(u). By the inductive assumption,
tier(ux—1) = k — 1. Replace the subpath S ~» u with the shorter path S ~ ug_1
(cat(ug—1) < cat(u)). Then we obtain the shorter path from S to a new ver-
tex v’ such that tier(v') = k and g(v') = g(v). It follows that cat(v’) = k and
cat(v) # k.

Corollary 2. If we want to find a shortest closed walk with the winding number
n, then any vertex h with |tier(h)| > n can be removed.

2.5 An Algorithm For Finding Shortest Enclosing Walks

Corollary 1 and corollary 2 give the following algorithm. Suppose s is the fixed
source vertex, n is the winding number.

1. Find the shortest-paths tree T5.

2. For all u € V calculate S(s,u).

3. Create the finite subgraph G’ = (V',&’) of G such that h € V' if and only if
sign(tier(h)) = sign(n), |tier(h)| < n, or tier(h) = 0.

4. Find the shortest path from (zs,ys,0) to (xs,ys,27n) in G’.

The running time of our algorithm is O(nT"), where T is the running time of
the shortest-path algorithm in steps 1 and 4. In particular, for n = 1 the running
time is O(T).

3 Evaluation

Experimental results are presented in fig. 3. We put the center point H inside
the object. Also we put the start point S somewhere outside object and run our
algorithm looking for the shortest enclosing walk surrounding the point H. Note
that the start point S can be placed far from enclosing object. We use some
pictures from The Berkeley Segmentation Dataset [13].

Consider the picture with the bear. Note that the segmentation region is
approximately the same for the different start points. Now consider the picture
with flowers. We put the center point H inside the left flower. Start point are
placed in the background. The shortest clockwise and counterclockwise walks are
different. First one helps to find the inner contour inside the left flower. Second
one helps to cut flowers.

The special line marked “Tier cut” in the pictures cuts the edges where the
tier of the vertices changes. If edge intersects the tier-cut-line, then this edge has
vertices with different tiers (see the proof of Theorem 1).



7 “Tier cut

Tier cut

7 “Tier cut

Fig. 3. Experimental results: original image and a segmentation based on the shortest
enclosing walk (clockwise and counterclockwise). The center point H is inside the object
considered. Note that the start point S is far from enclosing object. “Tier cut” is the
line where tier changes (see the proof of Theorem 1). Pictures are from The Berkeley
Segmentation Dataset [13].



4 Conclusion and future work

We have presented a new segmentation algorithm which is based on finding a
shortest enclosing walk in the directed planar graphs. This walk surrounds a
given point of the plane and has a given winding number n # 0. Our approach
generalizes previous works which search for either open simple walks or closed
walks in undirected graphs with nonnegative weights. The method runs in O(nT')
time, where 7' is the running time of a regular shortest-path algorithm. For n = 1,
the running time is O(T).

For future work, we plan to extend our approach to a number of points we
want to surround. Also, we want to use an image pyramid representation to
assign the weights of the edges according to the information about pixels that
does not immediately lie to the left or to the right of closed walks.
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Kakoro nBera mosi nuisiia?

Bajiavy MpeJICTaBIIsIIOT:
Koxaces K., Kytomxkusan K., HYennokos I

Cietytommast 3a/1a9a MIUPOKO U3BECTHA, HO €CJIH BbI €€ eIlle He BCTPeYaJIi, BOCIPUHUMAITE ee KaK BBI30B CBOEMY
WHTEJJIEKTY. DTa 3a1a4a OyaeT pa3obpaHa 1Mocjie OTKPBITHS KOH(DEPEHITNN U HE BJIUSIET HA PE3yJIbTaThl KOHKYPCA.
Peus uger 06 o6bekTe, KOTOPLIA uMeeT Beero 4 cocroguus! Mrax,

NHTEJIJIEKTYAJIBHBIN BBI3OB: unciio 4 npoTHB MEUIMADIOB HEAPOHOB BAIIETO MO3Ta!

Bam u mHe HazeBaror Ha rosoBy murdmy. Kaxmas w3 muisan MoxKeT ObITh depHOil mim 6esoit. Bel BumguTe Momo
LUISIILy, $ — BAllly, HO HUKTO U3 HAC HE BUJUT UPU 3TOM cBoeil nuisinbl. Kaxkaplii u3 Hac (He HOAIISbIBAs, HE
o0wIasich ¥ He [ojaBas APYr APYry HUKAKUX CUIHAJIOB) JOJIKEH IIONBITAThCHA yraJarh nper coeil nursnbl. s
9TOrO 0 KOMAaH/Ie OJHOBPEMEHHO KasKJIbIil U3 HAC JIOJI?KEH Ha3BaTh IIBET — <«YepHBI» uian «besbiiiy. Eciu xoTh
OJIVIH U3 HAC yrajaJl — Mbl Beiurpasu. [lepesr TeM Kak Bce 9TO MPOU30UIET, HAM JIAJI BO3MOXKHOCTD ITOCOBEIATHCH.
Kak mam ciemyer meitcTBOBaTH, YTOOBI B JTFOOO0# CUTyaAllnd BHIUTPATH?

1 Heckxoavxo 3aday o mydpeuax

Ectb HECKOIBKO My IperioB u G0JIBIION 3a11ac MIIs k pa3andHbixX 1(BeToB. C MyJIperamMu IIpPOBOIAT CJIE LY OIIUi
TECT. Benymuit HajeBaeT MyapenaM NUISIIBI TaK, 9TO B PE3YJIbTaTe KaXKJBIA BUIUAT IIJISIBI BCEX OCTAJBHBIX
MY/IPEIOB, HO He BUJIUT CBOEH MIIANBI 1 He 3HaeT ee mBera. Mymapenst me obmaorcs. [lo kKomanme Bemymmero
MYJIpEIibl OJHOBPEMEHHO HA3BIBAIOT I[BET. CUMTAaeTCsl, 9TO MYyJIPEIbl YCIIEITHO MPOIIJIN TECT = «BBIUTPAJINY, €CIIH
XOTsI OBl OJMH U3 HUX yTaJIAJl.

Ilepes TecroM MympernaM coOOOIIUIIN IPaBUja TecTa U gaju BozMoxkHOCTh ycrpourh COBEIITAHUE, yro6et
OHU MOTJIA JIOTOBOPUTHCsI O TOM, KaK JIeCTBOBaTh BO BpeMsi Tecta. CTparerusi MyaperoB JIOJKHA ObITH JeTep-
MUHUPOBAHHON — KaXKIBIl MyIper JO0J>KeH Ha3BaTh I[BET, UCXOIs TOJBKO M3 TOrO, KaKWe I[BeTa OH BUIUT Y
OCTAJIbHBIX.

1.1. Ectb n Mynpenos u nuisnbt n 1BeToB. JlokaxkuTe, 9TO B 9TOH CUTyalluy MYIPEIbl BBIMTPHIBAIOT.

1.2. [IycTb UMErOTCS MLISIIBI TPEX IIBETOB U 1 MYIPEIIOB CTOSIT B MEPEHTY TaK, YTO KaKIbIH BUIUT JIUIIIb

cocenieii (a Kpaitane — oxnHoro cocesa). Jlokazkure, 9T0 B 9TOH CHTYAIMN MY/PEIBI TPOUTPHIBAIOT.
a)n=3; b) n = 4; C) M — UPOM3BOJILHOE.

1.3. Ecrp 10k myaperoB u nuisiibl k 1BeToB (omsiTh Bee BuAAT Beex). [Jokaxkure, uro 10 myzaperos

3aBEJIOMO CMOTYT yraJiaTh CBOH 1BeT, a BOT 11 — BOOOIIE roBOPs, HET.

1.4. Ects 4k — 1 myaperio, 2k 4uepublx u 2k Oebix muisn. Benyiuit He3aMeTHO TPSTYET OIHY TSI,
a ocTaJIbHble HaJleBaeT Ha MyapenoB. Kakoe nanbosbiliee 9MCJIO MYJIPDEIOB CMOTYT YIraJlaTh IIBET CBOEl
TSB!

1.5. YerbIpe Myapenia cTOAT 110 KPYTy BO3JIe HEIIPO3padHOro 6aobaba, y HUX ILIIBI Tpex nBeToB. Kak-
JIBII MyJIPEIl BUJUT TOJBKO JIBYX COCETHUX 110 KPYTy MypenoB. Kak um neiicTBoBaTh, 9T00BI BHIUTPATH?

1.6. Y Tpex MyJperoB NUIAIbBL IBYX IIBETOB. IIycTh Tenepb Mympernam pa3pelaercs nacoBaTh, T. €. CKa-
3aTh «IIac», YTO O3HAYAET OTKA3 OT yrajpiBanusd. IlycTh My/penbl BHIMIPBIBAIOT, TOJIBKO IIPU YCJIOBHH,
9TO XOTst OBl OJIMH M3 HUX yTra aJl IPABUJIBHO, U IIPU 3TOM HUKTO HE YyraJiajl HelpaBUJIbHO. ByjieM canraTh,
YTO BCE PACKJ/IAJbI MLJISAN PABHOBEPOATHLI M UTO CTPATErHWsl MYJPENOB, KAK U B IMPEIbIAYIINX 3a/1a9aX,
JIeTepMUHUPOBaHHAs. Ternepb yKe MYJIpEIbl 3aBeIOMO He MOTYT 00eCIeunuTh cebe CTONPOIECHTHBIN BbI-
urpsit. Hanpumep crparerust «Mynperr A Becersa roBOpuT ““epHBII’, 0CTabHbIE BCETIa TOBOPST “mac’s
BBIUTPBIBAET JIUIIH B MOJIOBUHE cjiydaeB. OnTuMabHas CTPpATErus — 3TO CTPATErnu, KOTOPas JIJisi BCe-
BOBMOXKHBIX PACKJIAJIOB IS JAeT HAMOOIbINee YUCIO BLIUTPHIIIEH.

a) IIpemyoxkuTe cTpaTernio MyJperos, Jjisi KOTOPOil OHM BBIUTPBIBAIOT GoJbIne deM B 50 % cirydaes.

b) Haiijiure onTuMasbHy O CTPATEIHIO U JIOKAZKUTE, YTO OHA ONTUMAJbHA.
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2 Muydpeunst Ha HeopueHMUPOBAHHOM 2padhe

Bynem paccmarpuBars 6osiee obmryio 3amaday. [lycrs man HeopuenTrpoBanubiii rpad G, B KaxKI0il BepiinHe
KOTOPOTO HAXOANUTCA OAWH MyAperl. Myapensl 3HaKOMBI IPYT C IPYTOM M PACIOIOKEHNE MYIPEIOB IO BEPITHHAM
W3BECTHO BCeM. B 4acTHOCTH, KaXKIbIi MyIper MOHNMAET, B KAKOW BEPINHE HAXOAUTCS KarXKJIbIH U3 €ro Coceeit.
Mpbr O6yaeM OTOXKIeCTBJSTH BEPIINHY Tpada U Myapera, KOTOPbI B Hell HaxoauTcsa. Bo BpeMsi TecTa KaXKIbIit
MY/JIPeIl BUJIUAT TOJIBKO IIJISAIBI MYJIPEIOB, HAXOSIIUXCS B COCeIHUX BepinuHax rpada. OcrajbHble paBujia Te
K€ CaMble — MYJIPelbl JTOJ2KHBI Ha COBEIAHUU BBIPAOOTATH CTPATETHIO, TO3BOJISIONTYIO XOTs ObI OJHOMY U3 HUX
yraJaTh IIBET CBOEH IIJIATIIBI.

IIpu He0OXOAUMOCTI MOYKHO TOJIB30BATHCS CACAYIONUM (hopMaau3MoM. [IycTh 1BeTa MIIA MPOHYMEPOBAHDI
qucnamu ot 1 1o k, myers C = {1,2,...,k}, u mycTh y Kaxmoit Bepmmabl v rpada G cocenHne BEPIUHBL (IIyCThH
d — UX KOJMYECTBO) YIOPSJIOUEHBI 110 BO3PACTAHUIO HOMEDOB Up,, Upy, - .. Up,. CTpaTerus Myjapena v — 3TO0
dbyurnust f,: C X C X -+ X C — C. 91u pyHKIUN BLIOUPAIOTCS MyJAperaMu Ha coBeranuu. JleficTBust Myaperos

d pa3s
[I0 YraJbIBAHUIO COCTOAT B TOM, YTO KAaXKJbI MyJper v Bbraucaser f,(c1,ca,...,cq), rue ¢; € C — LBET ILISIIbL
My/Ipella B BEPIIUHE Uy, .

Sagaua 1.1 Moka3bIBAET, YTO €CJIU MYIPEIbl HAXOTCS B BEPIINHAX Ipada U MOI'yT BUIETH TOJBKO COCETHUX
MY/JIPEIOB, TO B CJIydae, KOT1a rpad uMeeT k-KJIMKY, XOTsl Obl OJUH MYJIPeIl CMOXKET yraJaTh CBOI muIsiry. Bompoc
CTAHOBUTCS HETPUBHAJBLHBIM, €CIN T'pad He mMeeT k-KIIUK.

2.1. Jlokaxkure, 4TO HA YETHIPEXBEPIIMHHOM I'pade «KypHUHasi Jialay MyJperbl IpourpbBaoT (k > 3).

2.2. Jlokaxkure, 9T0 Ha JIOO0M JiepeBe Myperbl mpourpsiBaior (k > 3).

ITycts n Myapenos croar no kpyry, k = 3. Ilyere V' — MHOXKeCTBO M3 Tpex 3J1€eMeHTOB (I[BETOB IILISII).
IIycts V; = V — MHOXKeCTBO IIBETOB IILJIAI, KOTOPbIE MOXKHO JaTh i-My Myzperyy. JlomycTtum, 9T0 Mymperibt
y2Ke OLPEJIEJIUINCh, CO cTpaTerneil. 9To 3HAYMT, UTO - Myzaper BeIOpan cebe dyukimo f;: Vi1 X Viyg — V;
(BCromy HyMepalus IUKJInIecKas). ByieM roBopuTh, YTO [OC/IeI0BaTeIbHOCTD 1iBeToB abe, rie a € V;_1, b € V;,
¢ € Viy1, ABisieTcsl KOPOTKOI onposepzarowels yenowkol, ecau b # f;(a,c). Bosee mmHHAs IenoYKa 1BETOB
S =5159...8m, Tae $1 € Vi, So € Viq1, ..y Sm € Vipm—1, HA3BIBAETCST OIIPOBEPTAIONIEH IETIOIKO, €CJIN KaXK bl
ee TPeX3JIEMEHTHBIN (bparMeHT sIBJISIeTCs KOPOTKOIl OIpoBepraroleil mernodykoil. Kcim BoibpaHa ompoBeprarornast
nenouka S obozuadum £ (S) — 4ucao crrocoboB IMPOJOIZKUTD S Ha OJMH IIAr BIIPABO, T. €. YUCJIO CIIOCOO0B BHIOPATDH
uBeT Syt1 € Vigm, 9TOOBI OJMydIach Gojiee IJIMHHAS OMPOBEPTAIOIIAs [ET0YKa. AHATOIHNIHO 0003HAYNM Yepe3
£_(S) uncio crocoboB MPOIO/IKHUTE S Ha OJUH IIar BJIEBO.

2.3. Ilycte n Myapenos crosgT 1o Kpyry, k = 3. JlokaxkuTe, 4TO €C/I HAILIACh OIIPOBEPTAIONIasl IIEIOYKa
S =5182...8m, e 2 < m < n — 1, niusa koropoii £_(s152) + {4 (Sm—15m) = D, TO cTpaTerusi Myjiperos
He BBINT'DBINTHAS.

2.4. Ilycts n myjpenos crodar 1o kpyry, k = 3. Ilycts Mynpenbsl BbIOpasi BBIMTPHIIIHYIO CTPATErHUIO.
Hokaxkute, 410 JjIs1 JIFOOOr0 MyJIpera ¢ 1 Jio00il napsl nBeToB a € V;_1, b € V; BBIIIOJIHEHO PABEHCTBO
0_(ab) + 4 (ab) = 4.

2.5. lokaxkure, uro npu k = 3 Ha rpade «IUKJI U3 31 3BEHbEB» MY/IPEIbl BHIUIPLIBAIOT.

2.6. Jlokaxkute, uTo npu k = 3 Ha rpade «IUKJ U3 N 3BEHbEB» MYIPEIbl IPOUTIPLIBAIOT, eCIu 7 He
JesnnTest Ha 3 U n # 4.

Ciremyromue 33291 MOKA3BIBAIOT, UTO JJIsl BBIUT'PHIIIA MYJIPEIOB HAIIYre O0JIBINNX KJIUK B rpade He SIBJIsieTCs
HEOOXOINMBIM.

2.7. Jlokaxkure, 9TO JIIOOOT0O YHCJA IBETOB k CYINECTBYeT ABYIOJbHBIN T'pad, Ha KOTOPOM MYIpEIb
BBINT'PHIBAIOT.

2.8. Ilycre G — rpad, Ha KOTOPOM MYJIPEIBI BBIUTPHIBAIOT, MMesT MLJISIIbL ¢ 1BeToB. IlycTb K, — TOJIHBIH

rpad Ha r BeprmHax (Ha HEM, KAK MbI 3HAEM, MYJIPEIlbl BBIUTPBIBAIOT, MMesT IIJISIBL 7 1BeToB). [locTponm
Ha ocHOBe (G HOBBII «Oosbmioity rpad G. st aToro kaxkayio BepminHy rpada G 3aMeHUM Ha KOIIHIO
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rpada K,. Eciu npe Bepruubl rpacda G ObLin coeiMHEHBI peOPOM, IPOBeeM pebpa MexK/ly BCeMU
mapaMiy BEPIIUH COOTBETCTBYOIMMX Komuit. [losryaennstit rpad u ects rpad G.
Hokaxkure, aro Ha rpade G MyJApersl BRIUTPLIBAIOT Ipu k = qr.

2.9. Eciim k = 3m, To cymecTByer rpad ¢ 4m BepUIMHAME U MaKCHMaJbHOW KJIUKOI He Oosee 2m, Ha
KOTOPOM MY/IPEIbl BHIMI'PLIBAIOT.

3  Muyodpeust Ha OpuUEHMUPOBAHHOM 2padghe

Temnepn OyseM cuMTaTh, YTO MYIPEIbl HAXOISTCS B BEPIIMHAX OPHEHTUPOBAHHOIO rpada, myzapert A BujauT
Myzpena B, Tosbko eciin B rpade ectb opuenTupoBaHHOe pebpo AB.

3.1. Jlokaxkure, 9T0 Ha rpade «OPUEHTUPOBAHHBII [IUKJI U3 1 3BEHBEB» MYJIPEIlbl BIUTPhIBAOT (k = 2).

3.2. MyzperIipl CUIAT B BEPIIMHAX OPUEHTHPOBAHHOIO I'pada, KaXKIbIil BUANT TOJHLKO COCEIHUX, IIISIIIbI
nByX 11BeTOB. [lycTh ¢ — HanbOJIbITIee KOJIMIECTBO BEPIITUHHO HE3ABUCUMBIX ITUKJI0B B rpade. Jlokaxkure,
YTO CYIIECTBYIOT rpadbl, /I KOTOPBIX OOJIbIIE ¢ MYJIPEIOB CMOTYT yrajaTh CBoil 1ser (k = 2).

3.3. Ilycrb @ — HamMeHblIlee 91UCJIO BEPIINH, KOTOPOE CIEIyeT YAAIUTh U3 Ipada, ITOObI OH CTaJl alluK-
smaeckuM. Jlokaxkure, 4To BOOOIIE TOBOps, He GoJjiee a MyJIpeIroB CMOryT yrajarh nser (k = 2).

3.4. Hazoeem opuentupoBaHHbiil rpad G 104ydeydosbHvim, €Cin MHOXKECTBO €r0 BePINUH MOYXKHO pa3-
6uTh Ha aBe dactu L m R Tak, 9TO MeXKIy BepIImHAMu dacTu L HeT pebep, MexK Iy BepmnmHaMu dactu IR
MOr'yT OBITH pebpa, HO COOTBETCTBYIOIIN Ipad — alUKIMIECKUi, a MeXK 1y dacTsaMu L u R MoryT ObITb
IPOU3BOJIbHBIE pebpa.

IIycrs k — 1o mpeskHeMy 9uCJIo IS, S — IPOU3BOJIbHOE HATYypaIbHOe Juc/I0. Jokaykure, 9T0 ecin
Ha T0JIyABY10/IbHOM rpade |L| = k — 2, |R| = s, TO My/pelbl IPOUTPHIBAIOT.

Zlobasaernue nocae npomescymournoz2o0 Guruwa

Bapuaruu npeapiayIimnX CrO>KeToB

2.10. Tpu mymaperna A, B, C, Bce BuaaT apyr Apyra, 3a HCKIOUECHUEM TOTO, 9TO MyAper, A He BUAWUT
myapena B; k = 3. Jlokaxure, 910 MyJIpeIbl IIPOUTPHIBAIOT.

2.11. Yerbipe Myjzperna CTOST IO KPYry BO3Je HENpo3padHoro 6ao6aba, y HUX IIJISIBI TPEX IIBETOB.
Kaxaprit myaperr BUIUT TOJIBKO JABYX COCEIHUX IO KPYTy MYIPEIOB, 3a UCKJIOUEHUEM OHOTO MYJIpPera,
KOTOPBIA BUJUT JIAIIb OJHOTO cocesia. CMOTYT JiM My/Iperibl BBIUTPATD?

IIycts n myzperoB crosaT mo kpyry, k = 3. Ilycrs Mmympens! BbIOpau BBIUTPBLINIHYIO cTpaTeruio. Byaem
Ha3bIBATH Napy 1BeToB ab, tie a € Vi, b € Vi;1, «esot, ecau BbimosHeHo paeHcTBo {_(ab) = 1, npasoti, ecin
BBINOJIHEHO paseHcTBo {_(ab) = 3, u unepmnoti, ecan BbIIOIHEHO paBeHcTBo {_(ab) = 2.

2.12. Jlokakure, 9T0 cpequ nap ab, rae a € Vi, b € Vi1, TOPOBHY JIEBBIX U MPABBIX.

2.13. Ilycte n > 4. Jlokaxkure, 9To ecjin ab — mpaBasi mapa IBETOB, Tje a € V;, b € V1, T0 cpenn
nap 1BeTOB C1a, Coa, C3a, TAe {c1,ca,c3} = V;_1, POBHO OjlHA JieBasl mapa I[BETOB, DOBHO OJIHA [IpaBasi U
POBHO OJlHa WHEPTHasI.

2.14. To xke, uaro B 3agade 1.4, Ho ectb mk — 1 MyapenoB n NUIAILI k IBETOB — IO 1M MLJIAN KarKI0I'0
[BeTa, IPUIeM M Y9eTHO WM Kk HEeYeTHO (WU U TO, U Apyroe ogHoBpeMeHHO). OJiHY NLIsIly HE3aMEeTHO
npsayT. Jlokaxkure, 970 HamOOJIbIIEEe TUCIO MYIPEIOB, KOTOPhIe CMOTYT 3aBEIOMO yTaJaTh CBOH IIBET,
pasHO 1(mk +m — 2).
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2.15. Mynapenbl cTOAT B JiBe IIEPEHTH: B IEPBOI IIEPEHTe N MYyJIPEIOB, a BO BTOPO — N MyJIpeNoB, y
HUX 1IAnbl (n + 1) nBeToB. Mypersl BUIAT TOJBKO T€X, KTO CTOUT B Apyroii mepenre. J{okaxkure, 4To
MYApPeIbl MOTYT AeHCTBOBATH TaK, YTOOBI XOTsI ObI OJUH yTaaJl.

3.5. Kakoe nanboJbiiee 9ucsio My/IpeIoB CyMeIOT yraJaTh [IBeT Ha cieayiomeM rpade (k= 2)7?

c

NS
E

N

B
A

D

4 Tunepxyb.

~-MEPHBIM T'UIIEPKYOOM MbI IOHUMAEM I BEPIIUHBI KOTOPOD HYMEPOBAHBI H MU U HyJIei
Ilox n-me epKy0o (o) ae ad, Be OTOPOro 34 epoBa; abopa, 3n e
U eHUI. PebpaMu coeMHEeHbl BEPIINHBI, HOMEPA KOTOPBIX OTJIMYAIOTCS POBHO B OJJHOM pas3psije.

4.1. Jloxaxxurte ajredpamvyecku, 9To 32 MyJperia, CTOsIINE B BEPIITUHAX TITUMEPHOTO TUIIEPKy0a, BHIUT-
poiBaior (k = 3).

IlycTh KOJIMYECTBO MYPENOB PaBHO N, a k = 2, mpuyeM IBeTa LIS MbI OyJIeM 0003HAYaTh HYJISIMU WJIN
equaunamu. Ilycrs dpurcupoBaHa Kakas-inbO cTpaTerusi MyJIpPeroB. PaccMOTpUM m-MeEpHBIH rumepkyd u ¢ ero
IIOMOIIBIO  «3aKOIUPYEM» STy CTPATETHIO. DTO JEJAETCs caemyromum obpaszoM. Bepmuubl runepkyba cooTBeT-
CTBYIOT HAOOpaM W3 N HyJEl U eJUHUIL, CBIXKEM C i-M MYJPEINOM i-if 3jieMeHT 31oro Habopa. Ilycrs i-it Mmymperr
(m1st mpuMepa Bo3bMeM 1 = 5, ¢ = 2) BHIWT [BeTa UL APYIUX MyJIpernoB, ckaxeM, 1, */ 0, 1, 1 (B kauecrse
BTOPOT'O 3JIEMEHTa MBI [TOCTABIJIA 3BE3/I0UKY, KOTOpas CUMBOJIU3UPYET, YTO B HAIIEM IIpUMEpE i-if, T.e. BTOPOi
My/Iper], He BUJUT CBoeil Nusnbl). B runepky6e ecTh JiBe BepIIMHBI ¢ TakuM Habopom koopzuHat: (1,0,0,1,1) u
(1,1,0,1,1), npuuem 311 BepiiuHbl coeaunenbl pedpom. Crparerus i-ro Myapera, COGCTBEHHO, U COCTOUT B TOM,
9TO OH JIOJIPKEH «BBIOpATh» OFHY M3 3TuX BepiuH. [locraBuMm Ha pebpe CTPeKy, BeIyILyl0 OT HEBLIOPAHHONW Bep-
IHBI K BHIOpaHHO. PaccTaBuB momo00HBIM 00pa30M CTPEIKH Ha BCeX pedpax, MBI HMOJIYINM HATIATHYIO MOJETH
CTpaTeruu.

Hanpumep, crparerust myaperos u3 3ajgaquu «VHTeIEKTya bHBI BbI30B» OIUCHIBAETCS CJIEIyIONIEl OpreH-
Tarnueil IByMEpPHOro TUIepKyoa:

(0,1) (1,1)

(0,0) (1,0)

4.2. TlycTh uMeeTcss n MyJpPeIoB M HLISIILI KpACHONO U CHHEro IBeTa. Bce Beex BuisaT. Kak Mbl 3HaeM
u3 3agaan 1.3, [n/2] MyapernoB cMoryT yrajarh CBOH mBeT HpaBuibHO. JloKaxKkuTe, YTO CyIIECTBYET
«cOalaHCHpOBaHHasl 110 IIBeTaM» CTpaTerus yralblBaHusl, a UMEeHHO, CTpaTerus, ob/1aaromast CBOCTBOM:
17151 JII00OH pa3iadyu MIILI BEPHO, YTO €CJIU PO3JAHO T KPACHBIX U b CMHUX LI, TO 110 KpaiiHeil Mepe
[r/2] MyIperoB ¢ KpacHBIME HUISIIAME YIAJIA0T 1BeT U [b/2] My/IperoB ¢ CHHUMH IMUISIAMH yIaaoT
IBET.

4.3. IlycTb 2n MyAperoB NOJB3YIOTCsT ONTUMAJIBHON CTpaTerneil, T.e. CTpaTerneil, KOTopast 1aeT He MeHee
N IPABUIBHBIX JOTaI0K. JlIoKaXKuTe, 9TO 9Ta CTpATErusl «HECMeIleHHAasT» (B CTOPOHY OJIHOT'O U3 LLBeTOB),
a MMEHHO: JJId KaKJOTO MYyJpela BEPHO, YTO €CJIM PacCMOTPETh BCE BO3MOXKHBIE PACKJaJbl LA, TO
POBHO B IIOJIOBUHE CJIy4YaeB MyJpel, yrajblBasl, Ha3bIBACT IEPBBINA I[BET U POBHO B IIOJIOBUHE CIy4acB —
BTOPOM.
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Pemennga

1.1. ITycTb niBeTa — 3TO OCTATKU IO MOJYIIO 1. KaKIbIit Myapert BUIUT BCe IS, KpoMme cBoeil. [lycTh
k-ii Myzperr IpOBEPUT TUIIOTE3Y «CYyMMa, BCEX INLIAN paBHA k 1O MO0 ny». Torma poBHO OIMH MYyJIper:
yrajaer.

1.2. YTBepxKaeHne 3Toil 3a/a4n — YaCTHBIN caydail 3amaun 2.2.

1.3. [1, Theorem 2]

s Havasa IpuBelleM CTPATEruio, A1t KoTopoil 10 MyIperioB BEIUTPBIBAIOT. Pa3mennmM Bcex Myzpe-
1oB Ha 10 paBHBIX T'PYHII U BOCIIOJIb3yeMcst 3ajadeit 1.1.

[IpeirionoykumM, cyiecTByeT crparerus, rapanTupyomas 11 npaBuIbHbIX YraJIbIBAHUN IPHU JII00ON
paccranoBke 1BeroB. Pacemorpum Bee k'O BosmorkHbIX paccranoBok. PaceMoTpuM Kakume-To k paccTa-
HOBOK, OTJIMYAIONINXCS TOJIHLKO IIBETOM IEPBO# muisiibl. [IocKo/IbKy cTparerus JieTepMUHUPOBAHHAS, BO
BCEX ITUX PACCTAHOBKAX IEPBBII MYyJpeIl JO/2KEH Ha3bIBATH OJIMH M TOT KE IBET, 3HAYUT, B 3TUX k
CIydasix OH IIPABUJIBHO yTraJlaeT I[BET B CYMMe TOJIbKO O/iuH pa3. PasbuB Bce HavYaJIbHbIE CUTYAIMH HA
TaKne TPYIIbI [0 k, 3aKJIOYNM, 9TO BCErO IIEPBBIi MyJIper] MpaBmIbHO yrajbiBaer mnsera k0P~ pas.
[TockobKy 771sT OCTAIBLHBIX MYJIPEIOB BEPHO TO K€ PACCYKJEHHUE, BCe MYIPEIbl BO BCEX CUTYAIUSX B
cyMMe MpaBWIbHO yrajgaor nser 10k - f10k—1 pa3, 4To MeHbIle, yeMm 11 - K10k,

1.4. [3, nyukr 4.2] Iis Havama JOKayKeM, 9TO HUKaKas CTPATErHsi HE MOXKET TapaHTHPOBATh CTPOTO
6osbiie 3k — 1 yrajaBimx B JIIOO0OH CUTyaIUH.

PaccmoTpuM mpoussoiabHoro Myzapena. Eciin Ha HeM HIISIa TOMO Ke IIBETa, 9TO U CIPATAHHA, TO
OH BUIUT 2k MLIAI OJHOTO nBeTa u 2k — 2 npyroro, TakuM o0pa30M 3HAET, UYTO €ro IBET — TOT KOTOPOIrO
MEHBIIIE.

Ecau ero muisima He TOTO Ke IBETa, YTO CHPATAHHASA, TO HA30BEM TAKOTO MYJIPEINa COMHEGAUIOULUMCS.
Paccyzknas anajgorn4ano 3agade 1.3, moKarkeM, 4To IPH JII0O0I cTpaTeruu 000 MyIpell yralblBaeT IBET
[JIATIBI POBHO B IMOJIOBUHE TEX CUTYAIUH, B KOTOPBIX SIBJISIETCA COMHEBAIOIIMMCS MyJpeEIroM. B camom
JeJie, IMyCTh MYyIpel, HOMED i sIBJIsieTcst coMHeBalomumMces B curyaruu A. Ilocrpoum 1o Heil curyammio
hi(A): momeHsieM MecTaMu ILISIY -I'O MyJpela U CIPATAHHYIO. Myzper i ocTajcs COMHEBAIOIIUMCS
U [BEeTa BCEX NI, KOTOPbLIe OH BUJNAT, HE IIOMEHSJIMChH, TAK YTO OH JOJXKEH HA3BATh TOT YK€ IIBET.
Taxum 06pa3oM MOKHO BCE CUTYaIlUd, B KOTOPLIX ¢ ABJISIETCS COMHEBAIONIUMCS, pa30UTh Ha Iaphl BUIA
(A, hi(A)), u B KaxKI0ii 1ape MyJper yrablBaeT POBHO OJUH pa3. TakuM o6pasoM, HUKaKasi CTPATerust
He rapaHTupyer bosbine 2k — 1 + % = 3k — 1 yraabiBaHwmii.

ITocTpoum crpareruio, rie yraablBanuii OymeT poBHO CTOJLKO. Boinumiem Bce BOSMOXKHDBIE (gi) CUTY-
aIyii, IpeIIuIneM JIFo0OMY He COMHEBAIOIIEMYCsI yraJaTh CBOM IIBET, Jajiee OYIeM 110 0Uepen KarKIOMY
COMHEBAIOIIeMyCsi B Kakoil-ro nape curyaruii (A, h;(A)) coobrmars, 94T0 OH JIOJIZKEH B 9TOM CJIydae CKa-
3aTh. BosbMeM mobyio curyanmio A; W COMHEBAIONIErocs B Heil Myuperna 1. IIpennuiiem emy Ha3BaTh
uBeT ero nuisanbl B Aj, TakuMm obpasoMm B Aj HOIBUIICS OJUH MPABUJILHO YIaJABIIHi COMHEBAIONIUIC,
a B h;j(A) nosiBuscs omubmmiicst. Hasosem A = h;(A) u mosropum nporiece: st Ao Haiijiem 1pyroro
COMHEBAIOIIETOCsT j, Hay<IUM €ro IIPaBUIbHO yraablBaTh B curyarun Ap u ommbarscs B hj(Asz), u T .,
moka He okaxkercsa Ay = Aj. B 3ToT MOMEHT BO BCeX PACCMOTPEHHBLIX CUTYALUAX €CThL IIOPOBHY CO-
MHEBAIOIIUXCsI, YIaJaBIINX [[BeT MPABUILHO U HelpaBWIbHO. EC/n ellle He Bce COMHEBAIOIINECS BO BCEX
CUTYAINAX OIPEICTUINCh — IIPOIOJIZKIM IIPOIIECC.

1.5. YrBepxenue vroii 3ajaun Mbl B3sin B [7]. [Ipusogumoe 31ech pemenne M. Banosa, XoTst u onu-
CBIBAET TY K€ CTPATErHi0 UTPOKOB, 4TO 1 B |7], HO 6arogapst U3sIHO ajredpanviecKoil HHTEPIpeTau
JeJ1aeT ee COBEPIIEHHO NPO3PAYHOl 1 MOTUBUPOBAHHOIA.

IIycrs mBera — 310 octatku 0, 1, 2 mo momyiao 3. Torma HaMm HeOOXOAMMO HalTH Takue pyHKITUU
fa(D,B), fg(A,C), Fe(B, D), fp(C,A), arobsl mis mobbix 3uadennii A, B, C, D xorst 661 ojHa U3
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dyHKIMT nMesia Obl 3HAYEHUE, COBITAJIAIONIEE CO 3HAYEHUEM COOTBETCTBYIOIIEH IEPEMEHHOIT 110 MOJTYJIIO 3.

Bynem nckarph 3t dpyHKINN B KjIacce JIMHEWHBIX DYHKITUII.

Cuauasia monbepem Boipaxkenns A £ B += C + const, A £ C = D + const, A + B + D + const,
B+ C + D + const Tak, arobsr mpu Jobeix A, B, C', D xorsi ObI OJHO W3 9TUX BBIPAXKEHUH OBLIO
CPABHUMO C HYJIEM II0 MOJYJIIO 3. DTO MOXKHO CJIEJIATH C MOMOIIBIO CJIEIYIONIErO U3SATHOTO HAOIOIEHUS,
KOTOPOE K TOMY K€ IT03BOJIsIeT 00OHTHCH 6€3 JOMOTHUTEILHBIX KOHCTAHT. 3aMETUM, 9TO

(A+B+C)?*+(A-C+D)*+(A-B-D)?*+(B-C-D)*= (1)
=3(A2+B*+C?*+D*) =0 (mod 3).

Ecin npu xakux-to A, B, C, D Kaxk10e U3 BbIpaskeHuil
A+B+C, A-C+D, A-B-D, B-C-D (2)

OKa3aJI0Cch He paBHBIM () MO0 MOAY/IIO 3, TO KBaIpaThl BRIPAXKEHUI JTaBajn Obl OCTATKU 1 110 MOIYJIIO 3, U
roryia cymma (1) He Moryia 6bl JesuThest Ha 3. 3HAUUT, JUis 066X 1eabix A, B, C', D xors 6bl 071HO U3
BbIpaxkenuii (2) obparmaercst B 0 o Mozyiio 3.

[Monoxum Torma fp=—-A—-C, fp=C—A, fa=B+D, fo = B— D. llepeBojist Ha I3BIK TPOCTHIX
PEeIenToB, Myiper, A Ha3bIBaeT B KadecTBe cBoell rumoressl cymmy B+ D, mynapen B Hasbisaer —A — O,
myzaper; C waspiBaer B — D, mynpen; D nassisaer C' — A.

Bameuanne. Ha camom nese, dopmyna (1) — aro npocro npomssenenue (A% + B2 + C? + D?)(12 +
12 + 12 4 0?), paznoxennoe 1o dhopmye Diirepa

(A24+ B2+ C?+D*)(a®+ 0>+ P +d?) =
= (Aa+ Bb+ Cc+ Dd)? + (Ac — Ca + Db — Bd)*+
+ (Ab — Ba + Cd — Dc)? + (Ad — Da + Bc — Cb)>.

1.6. [2, cTp.160| IIpuBenem npumep crparernu, BeurpbiBatomeil B 6 ciydasx us 8. [lycrs mysper, ecou
BUJUT HA JBYX JAPYIUX MBI OJTHOTO IIBETA, HA3BIBAET APYTOi IIBET, & €CJHM BUINAT IJISIBI PA3HBIX
BeTOB — MOJ4IUT. Torja ecyim Bce TPU INLIANBI OJHOTO I[BETA — TO B 000MX TAKUX CJIydasgxX BCE TPH
My/Iperia OIUOJINCh, €CJIN YKe ISl He OJIHOIO IIBETA, TO UMEETCs JIBE MLl OJIHOI'O U OJIHA JIPYTOrO.
Tora KaxkIplii U3 JABOUX BJIAJEIIBIEB IS [IBeTa OOIBITUHCTBA ITPOMOJIIUT, TOT, Ha, KOM IILJISAIA JIPYTOro
[IBeTa, MPABUJIbHO HA30BET €€ IIBET, UTOr'0 IIEeCTh BBIMTPBIITHBIX CUTYaIlNH.

JlokazkeM, ITO cTpareruu Jiydiie ObITh He MOXKeT. [lycTh cTpaTerust npeinchbBaeT KAKOMY-TO My/I-
pelly, BUJisi HEKOTOPYIO Iapy I[BETOB HA JIBYX OCTAJIBHBIX, HA3BATH IIBET. DTO COOTBETCBYET HEKOTOPHIM
JIBYM DACCTAHOBKAM LIS (HA CAMOM MYJpEIe MUISa MOYXKET ObITh MEePBOTO UJIM BTOPOTO I[BETA), TAK
YTO MYyJIpEIl CJIeJIaeT OJIHO YeJIOBEKOYTaJIbIBaHWe W OJIHO UejIOBeKOHeyraJibiBaHue. CyMMUPYsl 10 BCEM
CUTYaIusIM U 110 BCEM MYZpeliaM, 3aKII0UaeM, UTO IeIOBEKOYTabIBAaHUN 1 e IOBEKOHEYTa bIBAaHUN IT0-
POBHY.

B kaxk10ii BBIMTPBINIHOM CUTYAINN €CTh XOTs ObI OJIHO Y€JIOBEKOYTA/ILIBAHIE U HU OJIHOTO Y€JIOBEKOHE-
yraJIbIBaHUs, B KAXKJIONH IPOUIPHIIIHON He GOJIbIIe TPeX YeIOBEKOHEYTaIbIBAaHUI (IIOTOMY YTO MYJIPEIOB
BCEro Tpoe). 3HAYUT, COOTHOIICHNE KOJMIECTBA BBIUIPLINIHBIX CATYAIMSA K MPOUTPBIIIHBIM He OOJIbIIe
3: 1.

DTO paccyKaeHne Jerko 0600ImaeTcst Ha Caydail MPOU3BOIBHOTO IHCIa MYIPENoB. Boimie goKa3aHo,
YTO BBIUT'PBIIIHBIX CUTyaIuil He OOJIbIlle YeM Q"nL_H (371eCh U Jasiee YUCIIO MYJPEIoB 0003HAUEHO Yepes
n). Onenka pocruraercs mis n Buga n = 28 — 1 npu marypassnom k. st ynoGersa GyieM KOAMPOBATE
KaxKayto u3 2" curyanuii CJIOBOM JJIMHHBLI N u3 HyJeil u equnui. Ham morpebyercs
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Vrepkaenne. s n = 2% — 1 u3 Bcex ¢J10B U3 Hysieil U € [UHALL JJIHHHBL 7 MOXKHO BBLIOPATH Q”nLH
K0008vIT CA06 TaK, ITO JIFOOOE CJIOBO WJIM BBIOPAHO MJIM OTJIMYAETCS B OMHOM pas3psije OT BBIOPAHHOTO
(Takast BBIOOpKA HA3BIBACTCS COBEPULEHHBIM K0OOM XOMMUHRG ¢ KOOOBHIM DACCMOAHUEM 3 WITH KOOOM
Xommunea, ucnpasasouwsum o0ny owuodry). Ilpusegem crpareruto, mpu KOTOPO My/Ipellbl BBIUTPBIBAIOT
Ha BCEX HEBLIOPAHHBIX IOCIEI0BATEIHLHOCTSAX M IPOUTPHIBAIOT Ha BHIOPAHHBIX.

Crparerust: T0 9YTO BUIUT MYJIPEI €CTh CJIOBO 0€3 OIHOro paspsa. FKcu oHO sIBJIsSIeTCs] KYCKOM KO-
JIOBOTO CJIOBa — TO MYyJIpeI] Ha3bIBaeT HE TOT CHMBOJI, KOTOPBII B 9TOM CJIOBE CTOUT B €r0 Paspsiie.
Wnage mosraut. Torma ecam CjI0BO He sIBISIETCsSI KOJOBBIM, TO OHO OTJIMYAETCS B OJHOM pPas3psije OT KO-
JOBOT'O, U TOJIBKO MY/Ipel] COOTBETCTBYIOIMNNA 3TOMY pa3psaay BUAUT KYCOK HPABUJIBHOI'O CJI0Ba, 3HAYUT
Ha3BaB HEIIPABUJIbHBIN I[BET yraablBaeT. Kcm ncxomaoe cjioBo KOLOBOE — TO BCE MYIPEIbI OJJHOBPEMEHHO

oImubaIoTCs.

2.1. JlommycTuM, 9TO y MYJAPENOB €CTh BBIUTPHINIHAsT cTparerus. [lycTb v — HEHTD Jarbl, uy, U2, U3 —
BHCsiUne BepinHbI. HasHaummM BeplinHe v 1MepBbiil 1BeT. [lycTh Myapensr w1, ug, ts COINIACHO CTPATEIMH
Ha3bIBaIOT mBera hi, ha, hs.

Tereps mpoBeieM BTOPOil 9KCIIEPUMEHT: HAZHAYUM BEpIIUHE v BTOPOH 1BeT. [lycTh Myapensr uy, us,
U3 COIVIACHO CTPATEI'MY HA3bIBAIOT IBETA €1, €2, €3.

Teneps mpoBenem puHANBHBIN dKcHepuMenT. s kaxmoro ¢ = 1, 2, 3 obosnauuMm uepe3 d; IIBET,
KOTODBIil He OBLIT HA3BAH MY/IPEIOM U; B IEPBBIX JIBYX 9KCIIEPUMEHTAX (ec/ii ecThb BEIOOp — GepeM Jioboit
[BET U3 JBYX BO3MOXKHBIX). JIJIsi KayKJI0ro 4 Ha3HAUYMM BHUCsAYell BepiiuHe u; 1ser d;. 1IBera mursim y
coceJieil MyJIperia v y2Ke 3a/IaHbl, 3HAYNT, U3BECTEH ero OTBeT 1o crparernu. Haznauum Bepriuie v TOT
U3 IBETOB — MEPBBIN UJIU BTOPOM, KOTOPBI HE COBIAJIAET C 3TUM OTBETOM. MyIpernsl IpourpaJu.

2.2. 910 nemma 8 u3 [1].

JlokazkeM MHIYKIIHEl 110 YUCTy BEPINUH caeyioiiee yreep:kaenne. [Iycts T — npousBoJibHOE JIepeBo,
¥ — €ero IMPOU3BOJIbHAS BEPIINHA, C1, C2 — JIBA IMIPOU3BOILHBIX 1BeTa. IlycTh Myapenn! y2xe BeiOpasu cebe
crpareruio I'. Torma cymecrByeT pacupeeeHne Il 10 BEPIINHAM, IIPOUTPBIIIHOE JIJIsT MYIPEIOB, IPH
KOTOPOM BEPIIUHA ¥ MOKPAIIEHa B I[BET €] UJIU C3.

Basza maaykmy — ojHa BepIInHa — TPUBHAJIBLHA.

Jokaxkem mepexos. Ilpu ynaieHnn BepiinHbBL v AepeBo pacrnaiaercs Ha dactu 11, 1o, . ... O6o3HaAIHIM
Jepes Ui, Uz, ...BEPIIMHbLI B 9TUX IOIIEPEBbIX, COCENHNE C ¥. AHAJOIMYHO IPeAbIAyIIel 3a1ade Mpo-
BeJeM JIBa HKCIIEPUMEHTA: B [IEPBOM 3313 UM IILIsIe B BEPIIUHE U [BET €] U 1epedepeM BCEBO3ZMOXKHBIE
pacipeeenns Il B AepeBbax 1;, HeyAadHble IJIsl MYyJIpPeloB, KOrja OHU MCIOJB3YIOT B 1; crpare-
ruo I'. Ilycts H; — MHOXKECTBO I[BETOB, KOTOPBIE MOXKET IMPUHUMATh B 3TUX HEYIadHBIX PaCKpacKax
MLIAa U;. BO BTOPOM SKCIEPUMEHTE 3aJIa UM IIJISIe B BEPIIHHE ¥ IBET Cy U ITOCTPOUM MHOXKECTBO
1BeToB F;, KOTOpbhle MOXKET UMETh IMUISIA U%; BO BCEBO3MOXKHBIX HEY/IAUHBIX PACKPACKaX.

3aMeTHnM, 9TO B 000UX IKCIEPUMEHTAX CTPATErHU MYIPEIOB Ha KaXKIOoM Jepese T; OTJINYaoTcs pas-
BE JIMIIL (PYHKIUEH, KOTOPYIO HCIOJIL3YEeT MYIpPeI] U;. JTO 3HAYUT, 9TO €CJIHM Obl eIlle M IBET ILJIAILI
B BepIuHe u; ObLT (DUKCHUPOBAH, TO JJIsi KaKJIOI0 PACK/aJa ILIAN Ha jepeBe 1; OCTAJbHBIE MY/IPEIb
B 0060UX KCIIEPUMEHTAX JaBaJi Obl OJUHAKOBBIE OTBETHI.

[To wHAYKITMOHHOMY MIPEIIOI0XKEHNIO MHOYXKecTBa H; 1 F; cOCTOAT He MeHee ueM U3 JIBYX IJIeMEHTOB
KaXKJ0€e, U II09TOMY Itepecekatorcs. Ilycrh d; — Kakoii-HnOy1b 1IBET U3 IepecedeHnst STUX MHOKeCTB. [1pu
KaXKJOM ¢ Ha3HAYUM BepIINUHE U; IBET d;, a JJIs OCTAJbHBIX BEPIIUH JepeBa 1; BO3bMEM IOIXOJISIILY IO
HEYIAYHYIO [T MYIPEIoB PaCKPacKy. Ternepsb y BEPIINHBI ¥ 33/ IaHbBI IIBETa BCEX COCeeil, Caea0BaTeIbHO,
OTBET MyIpera v 3ajJaH ofHo3Ha4uHo. Haznauum mmuisme v TOT U3 IBETOB €1, C2, KOTOPBII HE COBIAIAET
¢ 9TuM oTBeTOM. Mypersl mpourpasin. VIHIyKIIMOHHDBIN TePEeX0] JOKA3aH.

2.3. |7, Lemma 2c| Mox#o cuurarb, uto {_(s152) = 3, {4+ (Sm—15m) = 2.
[Tposepum, ato ecan £y (Sym—18m) = 2, TO IyTh MOYKHO TPOJOJIZKATH BIPABO, JIOOABUB K HEMY BEp-
HIUHY Sppt1 TAK, YTO S182...Spmi1 — 3TO OINpOBepramiias IeHovYKa U Ha ee Kpalo CHOBA BBIIOJIHEHO
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HepaBeHCTBO {4 (SySm41) = 2.

JleficTBUTEIBHO, MOTEHIINAIBLHO Y HAC €CThb JIBA TAKUX MPOJOJIKEHUSI, CKAXKeM S, U1 U SpyvU2. Pac-
CMOTPUM KOPOTKHE IEMOUKH S U1 W U Sy, VoW, HA30BEM NEPCnekmuerotl Ty u3 Hux (J00yIo U3 HUX, eC/In
rojsiTest 00€), jiist KOTopoit v; # f+1(Sm, w). AHAJIOrHYHO BbIOEPEM IIEPCIIEKTUBHYIO TENOUKY /IS KarK-
JIOTO U3 JIBYX OCTAJbHBIX 3HAYEHUN w. Mbl HAMETHIN TPU TIEPCIIEKTUBHBIE TIETIOYKH, TI0 Kpalineil Mepe y
JIBYX U3 HUX COBITQJAIOT MBETA V;. B KAUeCTBe Sp,11 U CJIEJyeT B3SAThb I[BET V.

Nrax, MBI MOXKEM TIPOIOIKATE HAIIY TEMOYKY CKOJIh YTOTHO JATEKO BIpaBo. OCTanmoch mo3aboTuThCs
0 TOM, YTOOBI 9Ta IENOYKA <«3AIUKIMIaCh». llepe 3alUKINBaAHUEM y HAC WMEETCS JJTMHHAsS IEroYKa
L8182 . ..Sp_1Y, TJe JUIST BEPIIUHBI & UMEETCs] TPU BapUaHTa BbIOOPA, a JJIsl BEPIIUHBL i — XOTsI ObI JIBa
BapuaHTa. Mbr 6e3 Tpy/ia BoibepeM x = ¥y, JJisi KOTOPBIX & # fi(Sp—151)-

B pesyibrare moydusiach MUKJIAIECKasi OMPOBEPraoIiasi mernovdka. Myapersl IpourpaJn.

2.4. |7, Lemma 2d|

Ecyin umeercs: JiByX3/IeMeHTHAsI TIEII0YKa S182, JJisi KOTOPOit £_(s182) + €4 (s182) > 4, TO 110 yTBEp-
JKJCHUIO TIPEIBIAYIIEH 3a1a91 MyIPEbl IPOUTPAJIH.

C apyroil CTOPOHBI, 3aMETHM, UTO /IS 3aaHHOTO § CyMMa

ly(ss1) + l4(ss2) + 04+ (ss3) =6 (3)

(rme s1, S2, S3 — TPH pasinUHBIX 1BeTa). JleficTBUTENBHO, /Il KAzKJOTO [[BETA W CYIIECTBYET DPOBHO
JIBa IBETa S;, /I KOTOPBIX S; # f(s,w), a Tak Kak w MOXKHO BBIOpATh TpeMmsi criocobamu, mosrydaeM 6
BapUaHTOB IIPOJIOJJIKEHUNA.

B cuny caenamHOro HabIIOIEHNS

D Ly (s19) =18, (4)

51,82

Takum 06pa3oM, cpejiHee 3HaYeHne BemInHbl {4 ($152) paBHO 2. AHAJIOTMYHO CpejiHee 3HAUCHUE BeJIN-
aunbl {_(S152) paBHO 2.

Bosspamasch K Haleil 3ajade, 3aMeTHM, 9TO €CJIU JIJIs KaKOi-TO JBYX3JeMEHTHOH IeIIOYKH S$1S2
BBIIIOJIHEHO HePaBeHCTBO {_($152) + {4 ($152) < 4, TO 00si3aTeIbHO HANIETCs IEeHoUKa §) 8, 1/1st KOTOpOi
0_(s)sh) + L4 (s)s5) > 4, 1 Mypens! OIATh IPOUTPAIOT.

TakuM 006pa30M, BBIUIPBINIHAS CTPATETUs MOMKET CYIIECTBOBATL JIMIIL npu ycjuosuu {_(S182) +
04 (s182) = 4 s Beex S, S2.

2.5. [7] IokaxkeM, KaK MOYKET BBIIVISIZIETb CTPATErUsl MyJPEIOB Ha 1ukjie u3 N = 3n BepiuH, 9TOObI
JJIsL Hee He HallJIOCh HU OJHOI OIIPOBEPraloIleil IeloYKUy.

N3 yreepxkaenunit 3amaa 2.12, 2.13 ciieyeT, ITO Ajd BBIUT'PBHINTHON CTPATETHH KOJIUYIECTBO ITPABLIX
nap nuseroB Buja ab, vae a € Vi, b € Vi1, oquHakoBo npu Beex i. (AHAJOIMYIHO OJIMHAKOBO KOJMYECTBO
JIEBBIX [IAP U WHEPTHBIX nap.) VI3 9TuX ke yTBepK/IeHUiT BBITEKAET, YTO JII0Oast [EMovKa, OPOBEPraoiasi
BBIUTDBIIIHYIO CTPATErHIO, JOJIZKHA COCTOSITh M3 3BEHBEB OJMHAKOBOIO THUIIA (TO €CTh B HEll BCe mapbl
[[BETOB COCEJIHUX IS TIpaBble, JubO BCe JIeBble, OO BCE MHEPTHBIE), B 9TOM CIydae BCIO IEHOYKY
OyJeM Ha3bIBATH JIEBOH, IpaBoil min nuepTHOH. /leiicTBUTE/IbHO, KAK MBI BUJE/IN B peliennn 3aa1adu 2.13,
Jobasi JieBas mapa IBETOB ab) MMeeT €JIMHCTBEHHOE ITPOJOJIKEHHE BJIEBO JI0 Dojiee JJIMHHOM NENOYKH
ciaby, u pu 3TOM mapa c1b — OusAThH JeBas. AHAJOIUYIHO OJJHO3HAYUHO 3aJIAHO IIPOJIOJIKEHHE MTPaBOil
IENOYKH BIIPABO TaK, YTO HA KPAIO OKAXKeTCsl OISITh IpaBast Iernovka. Takum oOpa3oM, IUKITIECKast
[IETI0YKa, OIIPOBEPTaloNias BCEX MYIPEIOB, JOJKHA COCTOATh U3 3BEHbEB OJJHOT'O THIIA.

Mpbr mojbepemM Takyio CTPaATEruio, /i KOTOPO IPHU BCEX ¢ MMeeTCs TPHU MPaBbIX mapwl ab, a € V;,
b € Vi41, Tpu JIEeBBIX APl U TPU UHEPTHBIX. B 9TOM cJiydae 3JIeMEHTBI MHOXKECTB V; MO2KHO ITPOHYMEpPO-

BaTh TakuM criocobom V; = {Uli, U%, vg}, 9TO TEMNOYKHA v%v%v% cee v%v%vg’ e U%'I}%U% ... — mupasble. Mbr,
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OHAKO, BBIIIHCaJIA JIMIIb HavdaJla 3TUX IEIIOYEK, HO IIPU IIOIIBITKE ITOCTPOUTH NUKJINYIECKYIO IEIIOYKY MO-

JKeT CJIyYUThCd, 9TO IIEeIoYKa He BaLLI/IKJII/IBaeTCH ¢ mepuosiom N 1 mipu mipojio/kerun vivivs ... vfY ’U{V 1
N+1 _ 1 N+1 _ N+l _ 1 N+1 _ 1 N1 _ 1
oKasblBaeTcs, uTo vy = v wm vy ' = vi. Oboznatum vy T = Usyr V2 T Vpa) U3 T gy

O4Y€BUIHO, 0 — ITO IIepeCTaHOBKa TPEX3JIEMEHTHOI'O MHO2KeCTBa. I/Il\/leHHO 9TOI'o U JOJIZKHBI ,HO6I/IB&TBC5{
MYJIpeIbl: UM Hy2KHO IPUIAYMATh TAKyIO CTPATETHIO, UTOOBI TOKAJIBHBIE OIIPOBEPTAOIINE IENOUKN HE MOL-
JIX OBl 3aIUKIATHCA B N -3JIEMEHTHYIO IIEIIOYKY, M3-38 TOI'O YTO [IEPECTAHOBKA 0 HE UMEET HEIIOABUYKHDBIX
Touek. To »Ke ITOIKHO OBITH BBIIOJIHEHO JJIsT JIEBBIX W JJIsT HHEPTHBIX IIeNovYeK. PaccMOTpUM MOIpOOHEE,

KaK OHU MOr'yT OLITD YCTPOEHBI B TEPpMHUHAX BBG,HGHHOI'?'I HyMepallui OBETOB.

Y nac umeercst Tpu JIeBbIX apel ab, a € V;, b € Vii1, MOXKHO CYATATDH, YTO 9TO MAPbI vlv§+1 UQUi'H

1231)5“ Cpenu nap ab, a € Vi_1, b € V; Toxe Tpu JieBbIX. 3aMeTHM, ITO Hapa vy 1v§ [IpaBasi, IO9TOMY

IEIIOYKa, Vs vgvﬁl He SIBJISIETCsL KOPOTKOIl ompoBeprafoleii merno4koif, a Tora Vg lvéviﬂ SABJISIETCS

OHpOBepFaIOH_[eI/I HGHO‘{KOI/I 1 9TO 3HAYUT, ‘{TO I1apa ’Ug 11)2 €CTb «OIIpOBEpraroiee IpoaoJIzZKeHne» BJIEBO

)

JIJIsT TIaphl 02v1+1, YTO O3HAYAET, UTO IIapa Us 1’02 TOXKe JieBas. PaccyXkas Tak e JJisi APyTrux HabOPOB
MHJIEKCOB, TOJIydaeM, 9To npu Beex @ (i = 1, 2, ..., N) MHOXKecTBO JieBbIX map ab, a € Vi, b € Vi
COCTOUT U3 T1ap
i+1 i+1 i+1
vlv3 , v XU v3v2 .
Ho Torma neBast 1ierovka, HAIMHAIOMIASICS C IIBETA, v% UMeeT BU/I v%v%v%v% . u, TakuM obpaszom, (N + 1)-ii
9JIEMEHT STOH 1eouKn (HaroMHuM, 910 N JeJuTcs Ha 3) MMeeT BH/L v]\?r)l 3HauuT, JieBas IEerovIKa TOXKe

HE 3AIMK/IUTCS, €CJIN Y MEPECTAHOBKU 0 HET HEIOJBUKHBIX TOUEK. TakKe 00CTOST Jieia U ¢ UHEPTHBIMU
[ICIIOYKaMU.

OcraJjioch onucaTh CTPATErnio, KOTopasi Co3/IacT HAM 3Ty PEKPacHYIo KapTuny. [lycTs Bce Myaperibt
IIOJIL3YIOTCA OJIHON M TOH »Ke cTpaTrerueit

fi =

W NN

11
3 2|, i=12...,N
31

rJIe 9JIEMEHT B P-if CTPOKE U B ¢-M CTOJIOIE — 9T0 fi(p, ) U MBI HOJB3yeMCsl COTTIAIICHUEM UZN 1 v;(i),

rnme 0 : 1 — 2 — 3 — 1 — nukInveckas MepecTaHOBKa TPEXIJIEMEHTHOIO MHOXKecTBa. HbIMU ciioBaMu,
ecmv; =1, vy =2, v5y =3mpul <i <N, 10 U{V—H = 2, véVH =3, véVH = 1. D10 corameHue
obecnieunsaercst ceoiicreoM f;(o(p),o(q)) = o(fi(p,q)), KOTOPOE HETPYIHO IPOBEPUTD.

[TpoBepky TOro, 9TO 9TA CTpaTernsa 00ECIEeINBAET TOPOBHY MPABBIX, JIEBLIX U NWHEPTHBIX IIap I[BETOB,

OCTaBJIgAEM YUTATEJIIO.

2.6. [7| B pemenun npesplyineii 3ajaqu MOKa3aHa POJIb TOrO, YTO JUIMHA mukJiaa N genurcst Ha 3.
Oka3sbIBaeTCsl, 9TO OIPOBEPTaloIe MENOYKH UMEOT 3-IEePUOIMIECKYIO CTPYKTYPY M Oj1aromapst 9TOMY
MYIpPEIbl MOTYT HE IMO3BOJIUTH OIPOBEPTAIONINM IEIOYKAM 3AIUKIUTHCS.

B cayugae, xorma N He menurcs Ha 3, MEMOYKH 003aTEIbHO 3aIUKINBAIOTCS. [ 11 cydast, Koraa mpu
BCEX 1 UMEeTCd TPU NpaBbiX Hapbl ab, a € Vi, b € V41, Tpu JIeBbIX U TPU UHEPTHBIX MAPHI, 3TO HETPYIHO
MTOHATH U3 IPEJIBIAYIIETO PEIeHN.

Ho BO3MOXKHBI U JIpyTrue KOJUYIECTBa MPAaBbIX, JEBBIX U WHEPTHBIX I1ap, JJIsi [IOJHOTO PeIeHus: Tpe-
Oyercsi BHUMATE/ILHO U3YIUTh CTPYKTYPY IENOYeK B ITUX CIyUasx. duTaresb, KOTOPBIA J0 CUX IIOP He
YTPaTHI JIOOOIBITCTBA B 9TOM BOIIPOCE, MOXKET 00PATUTHCS 3a MOJAPOOHOCTSIMU K craThe 7).

2.7. |1, theorem 7.

QopMmynupoBKa 3aa49n 3.4 MOACKa3bIBAET HaM, 9TO XOTd Obl B OJHOU M3 JI0JIEHl JOKHO OBITH HE
Menblire k — 1 BepmuHbl. OKa3bIBAETCS, 9TA OIEHKA PEAJIM3YeTCs.

[Iycry neBasi mosst L mamero rpada cocroutr u3 n = k — 1 Beprunbl, a npasas jois R — wus
m = kF" BepiuH. Ilycrs C' — 3T0 MHOXKECTBO BCEBO3MOXKHBIX pacKkpacokK jgoiu L B k nperos. fcHo,
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qro |C| = k™. Torma m = EICl u, smadur, gucio m paBHO KoamdecTBy oToOpazkeHmit u3 muoxecrsa C
BO MHOXKeCTBO IiBeToB {1,2, ..., k}. BadukcupyeMm Kakymo-HUOY(b OUEKIMIO MEXKJLy BepPIINHAMUI [PABOM
JIOJTA ¥ MHOXKeCTBOM oTobpazkenuii m3 C' Bo MHOXKecTBO 11BeTOB {1,2, ..., k}. Ilycrs Myznpens: B mpaBoit
JIoJle B Ka4eCTBE CTPATErMH WCIOJIB3YIOT 9Ty OMEKIINIO: y KaXKJIOTO MYJpeIa UMEeTCsl «CBOE JIMIHOE
orobpazkenue n3 C' BO MHOXKECTBO IIBETOB, U KOTJa MYJPEI] BUIAUT PACKPACKY JIEBOIl J0IM (9TO 3JIEMEHT
u3 C'), OH HA3BIBAET B KAYECTBE I[BETA 3HAUEHHE STOr0 OTOOPAYKEHUs HA ITOH PaCKpacKe.

Hawm monamoburcst ciemyromnas JTeMMa.

Jlemuma. Ilycrs cg — 9T0 buKkcupoBaHHas pacKpacka npasoii gosm. Pacemorpum muoxkectso O Beex
TaKUX PACKPaCOK Cy, JIEBOI JIOJIH, JIjIi KOTOPBIX B TOM CJIydae, KOIryia BeChb rpad IMOKPAIIEH C TOMOIIbIO
00beIMHEHHOI packpacKu (¢r,, CR), HAKTO U3 MyJIPEIOB IIpaBoil dactu He yragan mser. Torma |C| < k.

JlokazaTebCTBO JIEMMbBI IIPUBEJIEHO HIKE, & Cefidac MbI OMPEIETUM CTPATETHIO JIJIS MYIPENoB U3
aesoit mosm L. Korja 3amana packpacka mpaBoil o (1 y»Ke 3ajiaHa CTPATerust MYJIPEIOB B MPABOit
JI0J1€), MBI MOXKeM TocTpouTh Muoxkectso C u3 jgemmbl. Ouo Gyzuer comepxkarh He Gomee n = k — 1
sseMeHTOB. IlycTh ¢1, ¢, ..., ¢, — CIHHMCOK PACKpacoK JIEBOI Josm, cojepxkaieii Bce packpacku n3 C’.
[Tycrs Torma i-it Myper; B JIeBOii j0Jie Ha3bIBAET 1BET ¢;(7).

DT0 BBIUI'PBIIIHAS CTPATErUsT IJIsT MyApenoB. JleiicTBUTEIbHO, eCIM HUKTO U3 MYIPEIOB IPaBoil 1011
He yrajaJj, TO JieBas J0Jisd pacKpallleHa ¢ HOMOIIbIO OJHOH u3 packpacok muoxkecrsa C'. Ecim sta
pacKpacKa IPHCYTCTBYeT B HAIleM CIHCKE KaK Cj, TO j-il Myjper| JIeBoil oM yraJajl IBeT: OH Ha3BaJl
user ¢j(j) !

Ocraoch JokasaTh jgemmy. [Ipenonokum Ha ceKyHI0uKy, 9To MHOKecTBO C’ comepkut k pasmmd-
HBIX 9JIEMEHTOB (7, ..., Ck. Bo3bMeM Jiroboe orobpaxkenue f uz C' B {1,2,..., k}, koropoe npuHIMaeT Ha
stux k snemenTtax k passmanabix 3nadennii. [lycts v € R — BepimHa, COOTBETCTBYIOIIAS 3TOMY OTODpa-
xennto f. Torga muoxkectso nBetos { f(c1), f(c2), ..., f(ck)} comepxur Bee k 11BeToB u, ciie0BaTe/IbHO,
OfWH U3 9TuX 1BeToB f(¢;) COBMAIAET C IBETOM BEPIMUHBLI v. [losydaercs, 9YTO MPHU HUCIOJB30BAHUN B
JIEBOIl 1YaCTU PACKPACKH ¢; KTO-TO U3 MYJIPEIOB MPaBOil YacTU BCe XKe yrajasl [BeT ITPABUJBHO, UTO
IPOTUBOPEINT onpeenennio muoxkectsa C’. Jlemma okazana.

2.8. [4, temma 1|. Ho MBI U3JI0KHM 3TO PACCYKJIEHUE YEJOBEUECKUM SI3BIKOM.

Ha rpade G Myjiperibl BEINTPBIBAIOT, MMesT MLJISIIBI ¢ IIBETOB, — Oy/IeM HA3BIBATH 9TU IIBETa TEILJIBIMH.
Ha rpace K, Myspenpl BBINIDBIBAIOT, HMesl NI T [BETOB, — OyJIeM Ha3bIBATh STH IIBETA XOJIOIHBIMH.
ITokpacky Beprma rpada G B ¢r MBETOB MOXKHO IIPEJICTABIATH cebe Kak yKasaHHUe JJIsl KarXKIoi Bep-
IIUHBI JIBYX [IBETOB — OJIHOI'O TEILJIOTO I[BETA U OJIHOIO XOJojHOoro. U Torja rnpu yrajblBaHUN MYIPEIbI
Ha3bIBAIOT TOXKE JIBA IBETA: OJUH TEILILIH M OIUH XOJIO/IHBIH.

[TycTs Myzperpl HA3BIBAIOT XOJIOMHBIN IBET, IV TOJIBKO Ha CBOMX cocefeil mo kommu K, (1 Ha
XOJIOJ[HbIE KOMIIOHEHTBI IIBETOB X ILjIsM ). Tora pOBHO OJIMH MyJIper] B KarKJI0i KOIUK yraJaeT CBOi Xo-
JIOJIHBIN IIBET MIPABUIILHO, TAKUX MYJIPEIIOB HA30BEM yIadIMBbIMU. KaK/IbIit My/Iper; MOXKeT C JIENKOCTHIO
OMPEJIETINTD, KTO U3 MYAPEIOB B cocenueil konuu K, sBiasgeTcd yaawimBbiM. [[J1s ompeeseHust Terioro
MBETA MYJIPET] JOJIZKEH WCIOJb30BaTh cTpaTeruio Ha rpade (G, mosaras, 9TO ero COCeIsIMHU B CMBICIE
rpada G SABILIOTCS JIAIIb YIAMINBbIE MYJIPEIbl U3 COCEIHUX KOIUIl, U TPUHUMAs BO BHUMAHUE JIUIIb
TEIJIyI0 KOMIIOHEHTY I[BeTa IS STHX MYIperoB. Torga mo KpaiiHeil Mepe OIWH yIAdUJUBBIN MymIpers
[PABUJIBHO YTI'aJIaeT CBON TEILIbIN IBET.

2.9. D10 cpasy ciejyer U3 yTBep:xKIeHuit 3aga4d 1.5 u 2.8.

2.10. Tloacyerom B cTuiie perenusi 3a/a49u 1.3 HETPYIHO yOEIUTHCs, YTO B CyMMe 10 BCEM PACKJIa aM
LIS BMeeTCsl 3° BEPHBIX yraIbIBAHIHH — CTOJIBKO Ke, CKOJIBKO M CAMIX PACKIaoB. Takmm oGpason,
[PV IPUMEHEHNN BBIUTPBINTHON CTPATETrun JJIsl KazKJI0T0 pacKJjaJjia MIJIsiI POBHO OJIMH MYJIPEIl JT0JI2KeH
yrajaTb BEpHO.
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s m060it cTpaTeruu IperbiBUM TOLJIA PACKJIA]] IS, HA KOTOPOM yIaJbIBAIOT J(Ba MYJIpPEIa.
Hagum myaperty C mpounsBosibHYO nuisy. [loroM gagum myaperry A ISy TOTO I(BeTa, KOTOPBIA OH
HA30BET COIJIACHO CTPATEruu, yBuen, uro najero na C. Hakoner, gagum mysaperty B sy Toro msera,
KOTODBIIl OH HA30BET COIVIACHO CTPATEIMU, YBUJIEB, KaKue MIjsbl HaaeThl Ha A u C.

2.11. O6ozuauum myaperos A, B, C, D, u nyctb A ve Bujgur B. CHavaja mokaykeM, 9To HayTCs JiBe
TPEX3JIEMEHTHbIE LEMOYKu a1dic; U aijdice, B KOTOpbIx A u D He yragpiBaior. [ljist 3T0r0 aHaaornaHo
perenuto 3a1a4n 2.4 paccMoTpuM Bee 6 criocobos paszgarh nseta A u D Tak, urobbl A He yrajgan (ero
CTpaTerusi 3aBUCHT TOJBKO OT IBera D), u 18 BapmaHTOB Npojo/KUTh 9TH Ternodkn B cropony C. Tak
Kak [ yrajbiBaeT TOJIBKO B JIEBSITU CJIyUasiX, €CTh IBET di, KOTOPBI OH HA3bIBaeT MAKCUMyM 3 Pasa,
U TOTJA CPEIM IIeCTH IEeMOovYeK C HavajaoM aidi WX asdy XOTsT ObI TPHW TPOUTPHIMHBIE Aast [, u 110
npunruny Jlupuxiie HafiyTcs JBe TPEXIIEMEHTHBIX TENOYKNA aidici U aidics, B KOTopbix A u D He
yragbiBaioT. Beimagum A mser ap, a D — user dj.

Teneps uzyunm crpareruto myapena B. [Tycrs fp(ai,¢1) = by, fp(ar, c2) = ba. Beygagum emy Tpernii
uger b (y06oit, eciu by = by).

3aMmeTnM, YTO Telephb MbI 3HaeM BCE mpo cocereil myaperna C: y B muisna msera by, ay D — nuBera dy.
Ho rorma fo(b1,d1) He coBuajiaer ¢ oJiHUM U3 ¢1, C2. BblaB eMy HEIOXO/SIIUIl BET, Mbl 3aCTABUM BCEX
MY/IPELOB OIIUOUTHCS.

2.12. |7, nemma 3a| Bocmosbsyemest popmysioit (4) n anamorungauoii bopmynoit st £_:
> 4y (ab) =) "t (ab) =18
a,b a,b

[TockoIbKY MBI pacCMaTPUBAEM BBIUTPBINIHYIO CTpaTeruto, s Jjodbix a, b {4 (ab) + (_(ab) = 4. Cie-
JIOBATEJILHO, KaXKJIOMY cjaaraeMoMy 1, 2, 3 B IepBoil cyMMe COOTBETCTBYeT cjaraeMoe 3, 2, 1 Bo BTOpoii
cyMMe. 3HA4UT, cjaraeMblX 1 1 3 B 00eMX CyMMax IIOPOBHY. DTO U TpebOBaIOCh JOKA3aTh.

2.13. [7, smemma 3d| Ilycre Viyqr = {b,b1,b2}. Torma anasnorumuno dopmyse (3) ¢ yduerom paBeHCTBa
l_(s182) + €4 (s152) = 4 nmeem
0_(ab) + _(aby) + {_(ab3) = 6.

Tak kak ¢_(ab) = 3, ocrajbHbIe J[Ba CJaraeMblx — 970 1 U 2, MOKHO cuuTarb, 9ro {_(aby) = 1, u 3Ha4nT,
CyIIECTBYeT KOPOTKasl OIPOBEpraoIiast rernovka, ckaxem, ciaby. Torga ¢_(cja) = 1, mOCKOIBKY B 1IpO-
tusHOM ciaydae {—(ci1a)+ €4 (aby) = 5 u 1o 3aaue 2.3 crparerust MyJIperoB He BhIUIpbIinHast. [Ipumvensis
AHAJIOTUIHYIO (POPMYJITY

(_(c1a) + €_(coa) + £_(c3a) = 6,

MBI BUJUM, 9TO 371€Ch {_(c1a) = 1, 3HAUUT, OCTAIBHBIE JIBA CJIATaeMbIX — 3TO 2 U 3, UTO U TPEOOBAJIOCH.
2.14. [1, Theorem 16.iii|
2.15. [4] Pemenue sroii 3a1aun Tpebyer Gosiee CJI0KHON KOHCTPYKIMH, YeM 3aja4a 2.7.

3.1. Bce mymperibl, KpoMe OHOTO, Ha3bIBAIOT I[BET, IPOTUBOIIOIOKHBIN TOMY, KOTOPBIN BUISIT, & TOCJIE -
HUI Myzpel; — Ha3blBaeT TOT I[BET, KOTOPBIil BUIUT.

3.2. [1, upumep 6] To, uro He MeHEe ¢ My/IPEIIOB MOIYT YIra/laTh YIaJIaTh [[BET, CJIE/LyeT U3 YTBEPKICHHs
npenpiaymei 3amaqn. [Ipumep rpada, g KOTOPOro YHCIO YTaIbIBAIONINX MYIPEIOB OOJIbIIe THCIa
HE3aBUCUMBIX ITUKJIOB, IIPUBEJEH B 3ajiade 3.5.

3.3. [1, remma 4] Ilycrh 1pu yjaieHnu BEPIIUH vy, U2, . . . , Ug I'pad cTaHOBUTC anukindeckumM. Ocraib-
HbIE BEPIIUHBI VUgt1, - .., Up IPOHYMEPYEM TaK, 4TOOBI pedpa M3 3TUX BEPIIUH I TOJbKO B CTOPOHY
yObIBaHUsT HOMepOB. VHave roBops, s MOCJAEIHUX N — @ BEPIIUH BCE BBIXOHdAIINe pedpa UIyT BJIEBO.
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Temnepb MOJIOKUM IIJISANBI HA MEPBBIX @ MYAPEIOB TPOM3BOILHO. J[JIsT KaXK70Tr0 CIedyIONero Myapera
y2Ke 3a/IaHbl I[BeTa NN y BCEX, KOO OH BHUJIUT, CJI€JI0BATEIbHO, OTBET, KOTOPHII MOIKEH OH JaTh IO
crpareruu, yxxe u3pectet. JlaiuM sToMy Myperly ISy TakK, 9TOObl OH HE yraJaJl.

[Tpu Takom pacrpeeseHun IS TOJBKO IePBbIe ¢ MYJIPEIOB CMOTYT UTO-HUOYIb YralaTh.

3.4. [4, reopema 5| BosbMeM IPOU3BOJILHYIO CTPATETUIO MyAPEIOB [ U JIOKazKeM, 9YTO OHA IIPOUTPIIITHASL.

[Tycth A — MHOXKECTBO I[BETOB IS, B KOTOPOM OjuH IBer npomyiieH, |A| = k — 1. Ecin a —
Kakoli-HUOy b 1BeT, 0603HAYNM uepe3 w, Habop u3 k — 2 nperos (a,a, ..., a). Myznpenam u3 sactu L mMbl
HyieM Bcera gaBaTh HAbBOP OJMHAKOBBIX IS BUJA We, THE @ € A.

IIycts 71, 12, ... 7s — BepmuHbl R, TPOHYMEPOBAHHBIE TaK, YTOOLI pedpa ILIN B CTOPOHY yOBIBAHUS
HOMEPOB, JIJIst YJ00CTBa MBI MOXKEM CUHTATH, UYTO KAXKJIBI MyJpelr B R BUJUT BCEX MYJIPEIOB C MEHb-
mumu HoMepamu. [locrpoum Ha6op useroB Y = {yi1,...,ys} s myapenos u3 dacru R. s sroro
[IOCJIE/IOBATEILHO BhIOEpEM

Y1 ¢ {fﬁ(wa)a ac A},
Y2 ¢ {fm(wayyl)’ ac A}7

ys & {frs(Wa, 1,92 .. .,ys—1), a € A}.

[Tosicamm 3TOT BBIGOP UyTH MOApOOHEe Ha TpuMepe Ys. Myzperl B BepiiuHe rs BUIUT BCEX MYIPENoB
gacru L (1iBera ux NUISIIT 3a7aHbI HAOOPOM W, ), KPOME TOrO, OH BUJUT MYJIPEIOB YacTu R ¢ MeHbIu-
MH HOMepaMu. 3HAUUT, OUPEJIeSIeH ero oTBeT fr (Wa, Y1,Y2 ..., Ys—1) O crparernn. IIocKoIbKY 1BET @
upoberaer (k — 1)-ameMenTHOE MHOXKECTBO A, MHOYKECTBO, HAIIMCAHHOE B IIPABOii 4acTu Jjist BBIOOPA s,
comepkuT He 6osiee k — 1 3/IeMEHTOB, [TOTOMY IIBET Y5 JEHCTBUTEIHHO MOXKHO BHIOPATH.

Urax, mbr ocTponau Habop 1seroB Y. Ilycrs £1, o, ... lk_o — Bepruubl L. Beibepem mper b € A,
He coBmaaommii au ¢ oguuM u3 1seros fy, (Y), ..., fo,_,(Y). Torma mus packpackn s (wy,Y) Hu
OJTUH MYJIPEI] He yraJaeT IBET MPaBUIbLHO.

3.5. |1, IIpumep 4| Orser: nBa My/pena MOIYT yraJaTh CBOM IBET IPABUIIBLHO.

4.1. Bemumenm ToxecTBO aHasorndroe (1) u ¢ ero moMornpio Ha3HAYNM JIHHEHHDbIe (DYHKINH, 3312~
IOII[e OTBETHI MYJIpeNoB. UToObl HE BBIIUCHIBATH TOXKJIECTBO JIETAJIBHO (OHO OYEeHb I'POMO3JIKOE), HAM
TOHAIOOUTCST TIpeABapuTeIbHasT paboTa.

Ion N-MepubM THIEpKyGoM Qn MbI HoHmMaeM rpad, comepskamuii 2V Bepmmn, koTopsle mpo-
HYMEPOBAHBI JBOMYHbIMU N-3HAYHBIMEU YHCJIaAMU, & pedpaMy COeJIMHEHBI BEPIIUHBI, HOMepa KOTOPBIX
OTJIMYAIOTCS JIMIITb B OJHOM JBOMYHOM pa3psije. [IpuBoguMbie HUXKE KOHCTPYKIIMM MOXKHO BBITTOJTHUTD
JyIsi JIF060ro runepKyba, HO K 3a/ade 0 MyJjpelax OHU HpuMeHuMb! jiuiib npu N = 2 (mod 3).

Jlemma. Ha pebpax runepkyba (Qn MOXKHO TaK BBECTH OPHEHTAIUIO, YTO KaXKIbIA 4-1UKJI B QN
OyieT cosepkaTh 3 pebpa, yKa3bIBAIOIINX Ha OJIHO U3 HAILPABJIEHUN 00xoa nukia, u 1 pebpo, yKasbiBa-
IoIllee B JIDYTOM HAITPABJICHUU.

.
Zoxazameavcmeo. Nanykmus o N. Baza N = 2. TJ

Nunyknuonnstit nepexoy. [lycts opuenranus na rpade Qn yxke 3amana. Mbl MOXKeM CIUTATH, 9TO
rpad Qn41 COCTOUT U3 JBYX KOnuil rpada (Qy — «JIeBOi» U «IpaBoil» — U M3 KaXKJIOW BEPIITUHBI JIEBO
KOIINU BeJieT pebPo B COOTBETCTBEHHYIO Bepiinny mpasoit koruu. IlycTs B jieBoii konuu Bce pebpa opu-
€HTUPOBAHBI B COOTBETCTBUY C WHIYKIIMOHHBIM IIPEJIIOJIOZKEHUEM, & B IPABOI KOIIUU BBEJIEM ITPOTHBOIIO-
JIoKHYI0 opuenTarnuio. Hakownerr, Ha pebpax, BeAymnx n3 JeBOil KONMWHU B IPABYIO, 3313/ TUM HaIlPABJICHIE
cjeBa HapaBo. HeTpymHO BUIETH, 9TO 9Ta OPUEHTAINS YIOBJIETBOPSET TPEDOBAHUSIM. O
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Kaxyto Bepmmay rpada 0TOXKIECTBUM ¢ KAKOH-HUOY/Ib HE3aBUCUMON IIePEMEHHOII.

Hanomuanm, aro B rpade Qn Bce BepmmHbl uMetor creriedb N. IlycTs @ — npousBoJibHAST BEPIITHHA
rpada; by, by, ...— BepmIMHBI, B KOTOPbIE M3 G BBIXOIUT PeOpO; €1, Co2, ...— BEPIIMHBI, U3 KOTOPBIX
B a BejsieT pebpo. st Kaxkoii Bepiuabl ¢ rpada (Jy PaccMOTPUM BBIpayKeHHe f,, paBHOE KBaJIpaTy
JIMHEIHON KOMOMHAIIIN

fa:(a+b1—i—bg—l—...—cl—CQ—...)Q. (5)

Pacemorpum cymmy > f, 9TuX KBaIpaToB 110 BceM BepiuHaM rpada. Packpoem Bee ckobku. st Kax-
JI0if BEPIINHBI @ cIaraeMble BIJIa a2 Oy/LyT IPHCYTCTBOBATE B 9TOH cyMMe ¢ KpaTHOCTBIO N + 1, IT0CKOIb-
Ky KazKJI0€ TaKOe CJIaraeMoe IOsIBJISeTCs IIPU PaCKPBITUN CKOOOK fu, fo,, foe, -+, fer, fea, ... ¥ TOJBKO
B HuX. Jlasiee, kaxk1oMy pedpy ab cOOTBETCTBYET cjiaraeMoe +2ab, MOsABISIONIeecs TPU PACKPBITHNA CKOO-
KU B BBIPAXKEHUH f,, & TAaK¥XKe cjiaraeMoe —2ab, MosiBJISTIONIeecst IPU pacKPBITUN CKOOKW B BBIPAXKEHUU fp.
[Ipu packpbITun APyrux CKOOOK TAKWe cjaraeMble OSBUTHCA HE MOTYT, [IO9TOMY BCE OHHU COKPAIIAIOTCH.
Kpome Takmx ciiaraeMbIX, IPH PACKPBITUH CKOOOK f, HOABJIAIOTCA claraeMble Bua —2bjc; — pasbe-
pemce ¢ Hnmu nojapodnee. Ilycrs a nmeer nomep 00, b; — momep 01, ¢; — nomep 10. PaccmoTpnm Takxke
BepiuHy d ¢ HomMepoM 11 (orpaHuYIMMCs BBITUCHIBAHUEM T€X OUTOB, IJI€ Y HOMEPOB €CTh pas- d b
muaus). Ouesnmo, fiy = (d—bj—c;+...)?%, 109TOMY IPH PACKPLITUN CKOGKH fy ciaraeMoe !
2bjc; IpUCyTCTBYET CO 3HAKOM <«+». B pesynbprare ono cokparuTcs. AHAJIOIMYHO paccMar-
PUBAIOTCS JIPYrUe COOTBETCTBYIOIINE JIEMMe BO3MOXKHBIE ODUEHTAIUN Pedep B IUKIIE. o—y
Urak, Y, fa=(N+1)->,a>% '
Bepnemcs x 3agade o myzapenax. Ilycrs N =2 (mod 3). B arom ciygae cymma | fo Jeqmres Ha 3.
IIpu srom ona cocront u3 2V cnaraembrx. Ouesuuno, f, = 0w 1 (mod 3). ITosTomy XoTst GBI O/1HO U3
cyiaraeMbiX f, JOJZKHO ObITH HYJIEBBIM 110 MOJYJIIO 3 (a mpu HedeTHbIX N — naxke JBa ciaaraeMbix). s
KasKJI0i BepInHbl a B obo3HaueHusx (opmyssl (5) norpedyeM, 4To0bl Myjperl, HaXOISIIUACS B 9TOM
BepIIHE, B KAYeCTBE CBOEH I'MITOTE3bI HA3BAJI 3HAUEHUE BhIPayKeHUs c1 + co + ... — by — by — . ... Torma
My/JIpell, HaXOJSNMiACs B BepIuHe a, it Koropoit f, = 0 (mod 3), yrajaer nper cBoeil MUISIIbL.

-—

4.2. [1, temma 11| Byaem nosb3oBaTbest runepkyboM Jjisi ONUCAHKsT CTpaTeruil (CM. TEKCT mepejt ycao-
BUEM 33J1a4H1).

Pazobbem rumepkybd Ha cjiom: K $-My CJIOIO OTHECEM BCE BEPIIMUHBI, y KOTOPBIX CyMMa KOODJIHUHAT
pasHa i. KosmaecTBo (HEOPHEHTUPOBAHHBIX) pebep, BBIXOJSIIMX U3 HEKOTOPOI ¥ BEPIIMHBI K BEPIIHHAM
CJIEJLYIOINIEro CJIost, OyeM HA3BIBATH GepIHeli cmenenblo 3Toi sepimmubl udeg v, a ducso pedbep, BhIXOI-
IUX K BEPITMHAM MPEILIYINEro CI0sI, — Hudichetll cmenenvio Bepumabl ddegv.

Paccmorpum pebpo mexkiy i-M 1 (i + 1)-M CJIOSIME U COOTBETCTBYIOIIETO My/Iperna (=MeHSIIOILY0CsT
KOOD/IMHATY ), V BepIuHb! B (1 4 1)-M citoe 9ra Koopaunara pasHa 1, a B i-m cioe — 0. Crparerns 3agaer
opueHTanuio Ha pebpe. Ecim 9170 pebpo opueHTUpoBaHoO OT i-10 ¢jiosi K (i 4+ 1)-My, TO MyJper yrajiaer,
KOT/Ia Ha HeM IIANa IBeTa 1, U He yrajaeT B MPOTUBHOM ciydae. Fcin ke pebpo OpmeHTHPOBAHO OT
(i + 1)-ro cosi K i-My, TO MyJpeI] yraJaer, Korja Ha HeM nuisna 1nsera 0, 1 He yraJaer B IPOTUBHOM
ciaydae. HeTpymHo BUETD, 9TO MBI 3aB€IOMO MOy IUM COATAHCUPOBAHHYIO CTPATETHIO, €CJIN I KAK IO
BEPIIUHBL ¥ U3 (-I'0 CJIOsl, YUCJIO NPUXOJASIIUX B Hee pebep u3 (i + 1)-ro cios 6ymer pasao [udegv/2],
a 4YHCII0 NPUXOAmuX B Hee pebep u3 (i — 1)-ro cios Gyjer pasHo [ddegv/2].

[TocTponm cH6aTaHCHPOBAHHYIO CTPATETHIO, T. €. BBEJIEM OPUEHTAIINN Ha pebpax TaKuM 00pa3oM, UTo-
6bI GBI BBHIIIOJIHEHBI CBOMCTBA BEPXHUX U HUXKHUX CTEIEHEH, YIIOMAHYThIE BhINIe. M ges mpocra: BO3bMeM
POU3BOJILHOE PEOPO, PACIIONIOKEHHOE MEXK LY i-M 1 (74 1)-M cJ1osiMu, OPUEHTHDYEM ero Kak-Huby1b u 0y-
JIEM CTPOWTH OPUEHTUPOBAHHBIA MyTh, 100aBJIsAst HOBbIE pebpa Tak, 9TOOBI MyTh BCE BPEMsSI OCTABAJICS
Mexay -M u (i + 1)-M cuosimu. Eciau myTh HEBO3MOXKHO HPOJIO/KUTH (HU BIepes, HU Ha3aJ) U MBI
OPUEHTUPOBAJIN €Ille He Bce pedbpa, HauHEM CTPOUTH CIEAYIONNi MMyTh, u T. . Korma Bce pedbpa OyayT
OPMEHTUPOBAHBI, MOy IUTCS COATAHCUPOBAHHAS CTPATETHSI.
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4.3. |1, Ilpemoxkenune 13| Korjia KogmaecTBO MyIpEIOB Y€THO, ONTUMAJbHAS CTPATEIHs XapaKTepUusy-
eTCsl TeM, UTO y KaXKJIOW BEpPIIMHBLI T'UiepKyba OJMHAKOBBI BXOMSINAS U BBIXOIAINAA CTEIeHu. B 3ToM
ciydae Ha THIEPKyDe MOXKHO ITOCTPOUTH OPUEHTUPOBAHHBIN DityiepoB 1myTh. CTpaTerus ¢-ro Myiapera —
9TO OpueHTaIMsi pebep, napaJule/IbHbIX OJHOMY HallpaBjieHuio (i-my opry). [losoBuHa BepimH runepky6a
HAXOAUTCs IpU 9TOM B (J1eBoit) rpann x; = 0, a Apyras mojoBuHa — B npaBoii rpaun x; = 1. [Ipu crpes-
KU, HallpaBJICHHBIE BJIEBO, COOTBETCTBYIOT CJIydalo, Korja MyJpell Ha3Bas (, a CTpesKU, HallpaBJIeHHBIE
BITPABO, 9TO KOTJa MYIper; Ha3Bas 1. DiIepoB mMyTh COMEPKUT MOPOBHY TE€X U APYTUX CTPEJIOK.
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What is a color of my hat?

The following problem is well known, but if you miss it before, please, consider it as a challenge. We will
discuss this problem after the opening of the conference, it will not affect on results of the competition. The
object in the problem has 4 states only!

Intellectual CHALLENGE: the number 4 against milliards of neurons of your brain!

Black or white hats are placed on your and on mine heads. You see my hat, I see your hat, but none of us sees
the hat on his own head. Each of us (without any sort of communications) must try to guess the color of his hat.
When a signal is given each of us simultaneously says one word only: «black» or «white». We will win if and only
if at least one of us has guessed correctly. Before this test we hold a consultation. How should we act in order to
win in all possible situations?

1 Several problems about sages

Several sages take part in the following TEST. There are a lot of hats of k different colors. The emcee places
hats on the sages’ heads. Each sage sees the hats of all other sages and does not see his own hat. The sages do
not communicate. When a signal is given they simultaneously name one of colors. The sages win if and only if at
least one of them has guessed correctly.

The sages hold a CONSULTATION before the test in order to coordinate their strategy during the test.
Repeat that the only form of action is allowed during the test: to say one word just after a signal (independently
of other sages). The strategy of sages should be deterministic, i.e. each sage decision is determined uniquely by
the hats of other sages.

1.1. There are hats of n colors and n sages. Prove that the sages win.

1.2. There are hats of three colors and n sages are arranged in a line so that each sage can see only his
neighbours (the leftmost and rightmost sage see one neighbour). Prove that the sages loose.

a)n =3, b) n = 4; c) n is arbitrary.
1.3. There are hats of k colors and 10k sages (everybody sees all others). Prove that 10 sages can guess
their colors correctly, but in general situation none 11 sages guess their colors correctly.

1.4. There are 4k — 1 sages, 2k black hats and 2k white hats. The emcee hides one hat and all other
hats place on the sages’ heads. What maximal number of sages can guess their color correctly?

1.5. Four sages stand around a non-transparent baobab. The hats are of three colors. A sage sees only
his two neighbours. How should they act to win?

1.6. Sages has hats of two colors. It is allowed to say «pass» during guessing, that means that a sage do
not make a guess. The sages win if and only if at least one of them has guessed correctly and none of
them has guessed incorrectly. We assume that all hats placements have equal probabilities and the sages
strategy is deterministic as in previous problems. It is clear that now the sages can not to guarantee
100 % victory. For example a strategy «Sage A always says “black” and all others say “pass”» wins in one
half of all possible cases. We call a strategy optimal if it wins the most number of all possible cases.

a) Find a strategy that wins in more than 50 % cases.

b) Find an optimal strategy and prove that it is optimal.

2 Sages on a non oriented graph

We will consider the following general problem. Let G be a non oriented graph and let sages live at its vertices:
one sage occupies one vertex. All the sages are familiar with each other and all of them know the whole placement
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of sages on the vertices of the graph. In particular, each sage understand in what vertex do he and his neighbours
live. We will identify a vertex and the sage in it. During the test each sage sees only the hats of sages in the
adjacent vertices. Other rules are the same: during the consultation the sages should choose a strategy that allows
at least one of them to guess the color of his hat correctly.

We will use the following formalism. Let the colors of hats be numbered from 1 to k and let C = {1,2,...,k}.
For each vertex v of G order the adjacent vertices by increasing of their numbers (denote by d the number of
these vertices): Up, , Un,, - - - Un,. A strategy of the sage v is a function f,: C X C x --- x C — C. The sages choose

d times
these functions on the consultation. During the test a sage v calculates f,(c1,co,...,cq), where ¢; € C is a color
of the sage in the vertex vy,.

The problem 1.1 shows that if the graph G contains a k-clique, then at least one sage can guess the color of
his hat correctly. But if the graph does not contain a k-clique, the question becomes non trivial.

2.1. Let £>3. Prove that for 4-vertex graph “chicken feet” the sages loose.
2.2. . Prove that for an arbitrary tree the sages loose (k > 3).

Now let n sages live at the vertices of a cycle, k = 3. Let V be a 3-element set of hats colors. Denote by V; =V
the set of colors of hats that will be placed on the head of the i-th sage. Assume that the sages have chosen a
strategy. That means that i-th sage has a function f;: V;_1 x Vi1 — V; (we use cyclical numbering). A sequence
of colors abe, where a € V;_1, b € V;, ¢ € Vi41, is called a short disproving chain if b # f;(a,c). A long sequence
S = 5189...8m, where s1 € Vi, so € Vg1, ..., S € Vigm—1, is called a disproving chain if each its 3-element
consecutive subsequence is a short disproving chain. For every disproving chain S denote by ¢, (.S) the number of
continuations of this sequence by one step to the right, i.e. the number of ways to choose a color $;,41 € Virm
that gives us a longer disproving chain. Denote by ¢_(.S) the analogous number of continuations by one step to
the left.

2.3. Let n sages live at the vertices of a cycle, k = 3. Prove that if there exists a disproving chain
S = 8182...8m, where 2 < m < n — 1, for which the inequality ¢_(s182) + ¢4 (Sm—15m) = b holds then
the strategy of sages does not win.

2.4. Let n sages live at the vertices of a cycle, k = 3. Let the sages choose a winning strategy. Prove
that for each sage ¢ and any pair of colors a € V;_1, b € V; the equality ¢_(ab) + ¢ (ab) = 4 holds.

2.5. Prove that for £ = 3 the sages win on the graph “a cycle of 3n vertices”.

2.6. Prove that for k = 3 the sages loose on the graph “a cycle of n vertices”, where n is not divisible by
3 and n # 4.
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The following problems show that the sages can win in graphs without big cliques.

2.7. Prove that for any number of hats k there exists a bipartite graph for which the sages win.

2.8. Let G be a graph for which the sages win when the number of colors equals ¢. Let K, be a complete
graph on 7 vertices (we know that the sages win on this graph when the number of colors equals 7).
Construct a new “big” graph . For this replace each vertex of the graph G by a copy of graph K,. If
the two vertices were adjacent in G draw the edges between all pairs of vertices in the corresponding
copies of K. The obtained graph is G. N

Prove that the sages win on the graph G when the number of colors equals k = gr.

2.9. Prove that for k = 3m there exists a graph with 4m vertices and maximal clique of size at most
2m, for which the sages win.

3 Sages on an oriented graph

Now let the sages live at the vertices of oriented graph; the sage A sees the sage B if and only if the graph
contains an oriented edge AB.

3.1. Prove that the sages win on the graph “oriented cycle of n edges” (k = 2).

3.2. Denote by ¢ the maximal number of vertex dijoint cycles in a graph. Prove that there exist graphs
for which more than ¢ sages can guess the colors correctly (k = 2).

3.3. Let a be the minimum number of vertices whose removal makes the graph acyclic. Prove that at
most a sages can guess the colors correctly (k = 2).

3.4. An oriented graph G is called semibipartite if its vertex set can be split onto two parts L and R so
that there no edges between vertices of L, and R is acyclic (the edges from L to R and from R to L are
not forbidden).

Let the sages have hats of k colors and s be an arbitrary non negative integer. Prove that the sages
loose on a semibipartite graph if |L| = k — 2, |R| = s.

After semifinal

Variations of previous topics

2.10. There are three sages A, B, C, each sees each other, except that the sage A does not see the sage
B; k = 3. Prove that sages loose.

2.11. Four sages stand around a non-transparent baobab. The hats are of three colors. A sage sees only
two his neighbours, except one sage who sees only one his neighbour. Can the sages win?

Let n sages stand at the vertices of a cycle, k = 3. Suppose that sages chose a winning strategy. The pair of
colors ab, where a € V;, b € V1, will be called a left pair, if £_(ab) = 1, will be called a right pair, if £_(ab) = 3,
and will be called an inert pair, if £_(ab) = 2.

2.12. Prove that the number of left pairs equals the number of right pair among all the pairs ab, such
that a € V;, b € V1.

2.13. Let ab be a right pair of colors, a € V;, b € V;;1. Prove that among the pairs of colors cja, caa,
csa, such that {c1,co,c3} = Vi_1, there is exactly one left pair, exactly one right pair and exactly one
inert pair.
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2.14. The same setting as in Problem 1.4, but there are mk — 1 sages and hats of k colors, m hats of
each color, either m is even, or k is odd (possibly both is true). The emcee hides one hat. Prove that the
maximal number of sages who can guess their color correctly is %(mk +m —2).

2.15. The sages stand in two lines: n sages in the first line and n™ sages in the second lines. They have
hats of (n+ 1) colors. The sages see only sages standing in the other line. oibKo Tex, KTo cTOUT B JIpyTOii
mepenre. When a signal is given, each of the sages simultaneously names a color. Prove that the sages
can act in such a way that at least one guesses.

3.5. What maximal number of sages can guess on the following graph (k = 2)?

3\70
s

A~——D

4 Hypercube.

By an n-dimensional hypercube we mean a graph, such that its vertices are numbered by sequences of n zeroes
and ones. Two vertices are joined by an edge if and only if their numbers differ only in one digit.

4.1. Prove algebraically that 32 sages, standing in the vertices of a 5-dimensional hypercube, can win
(k=3).

Suppose that there are n sages, k = 2. Let us denote the colors of hats by one and zero. Let us fix a strategy
of the sages. Consider an n-dimensional hypercube and “encode” this strategy with it in the following way. Since
the vertices of the hypercube correspond to sequences of n zeros and ones, we relate the ith sage and the ith
element of this sequence. Consider the example for n = 5, ¢ = 2. Suppose that the ith sage sees the colors of hats
of the other sages, for instance, 1, *, 0, 1, 1 (the star means that the ith, i.e., the second sage, does not see his own
hat color). There are two vertices of the hypercube with such coordinates, namely, (1,0,0,1,1) and (1,1,0,1, 1),
moreover, these vertices are joined by an edge. The strategy of the ith sage is to choose among these two vertices.
Let us put an arrow on the corresponding edge, its tail being a non-chosen vertex, its head being a chosen vertex.
Putting such arrows on all the edges, we get an illustration of the strategy.

For example, the strategy of sages from the Intellectual CHALLENGE can be described by the following
orientation of the 2-dimensional hypercube:

(0,1) (1,1)

(0,0) (1,0)

4.2. Suppose that there are n sages, hats can be red or blue. Each sage sees each other. As we know
from Problem 1.3, [n/2] sages can guess their color correctly. Suppose that there exists a “balanced with
respect to colors” strategy: such that for every distribution of hats, if there are r red and b blue hats, it
is true that at least [rr/2] sages with red hats guess, and at least [b/2] sages with blue hats guess.

4.3. Suppose that 2n sages use the optimal strategy, i.e., the strategy which leads to at least n guesses.
Prove that this strategy is “unbiased” (with respect to one of the colors), namely: for every sage it is
true, that if we consider all the distributions of hats, he says “red” in exactly half of the cases and “blue”
in the other half of the cases according to his strategy.
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Solutions

1.1. Let us label colors by residues modulo n. Every sage sees all the hat besides his own one. Let kth
sage check the hypothesis “the sum of all the hats equals £ modulo n. Then exactly one sage guesses.

1.2. This is a partial case of Problem 2.2.

1.3. [1, Theorem 2]

First we present a strategy for 10. Divide 10k sages into 10 groups of k sages each, and use Problem 1.1.

Assume there exists a strategy, that guarantees at least 11 correct guesses in each situation. Consider
all k%% ways to arrange colors to hats. Consider the k situations, that differ only in the color of the first
hat. Since the strategy is deterministic, in all these situations the first sage will name the same color.
Thus in these k situations the first sage will make only one correct guess. Dividing all k%% situations
into k9%~ groups of k, we get that the first sage will make just k'°%%~! correct guesses. The same holds
true for every other sage, thus in total there are 10k - k%~ correct guesses, which is not enough to have
11 correct guesses in each of k'F situations.

1.4. [3, 4.2] Consider a sage. If the color of his hat coincides with the color of the hidden one, then he
sees 2k hats of one color and 2k — 2 hats of another, thus he is sure that his hat is of minority color.

If his hat and the hidden one have different colors, then call this sage in this situation a doubting sage.
Arguing analogously to 1.3 we prove that each sage makes a correct guess in exactly half of situations,
in which he is a doubting sage. Indeed, let some sage i is doubting in some situation A. Construct the
situation h;(A): take sage’s hat and the hidden one and change there places. The sage i is still doubting,
but since we did not change hats of all other sages, he must name the same color in both situations.
Thus no strategy can guarantee more then 2k — 1 + % = 3k — 1 correct guesses.

So, we need to construct a strategy, where exactly half of doubting sages guess correctly in each
situation. We do it in the following way.

Make the list of all (32) situations and mark all doubting sages in each of them. We will take a pair
of sage ¢ and situation Aj, such that sage ¢ is doubting in situation A;, and thus also in situation h;(A7).
Set our strategy to order the sage i name the color of hat in the situation A; whenever he sees what he
should see in the situation A;. Thus he will make the right guess in A; and the wrong one in h;(A4;). Call
hi(A1) = As find another doubting sage in Ay and do the same. Thus in Ag there will be two sages, who’s
actions are already determined, and one of them makes the right guess, another one wrong. We continue
this process until A = Ay. At this moment for each situation there are equal amounts of doubting sages,
making right and wrong guesses. If not all the doubting sages have their actions determined — continue
this process.

1.5. This problem was taken from [7]. We present you the solution after M. Ivanov, which in fact describes
the same strategy as in [7], but is more elegant due to its algebraic formulation.

Let us label colors with residues 0, 1, 2 modulo 3. We need to find functions f4(D, B), fs(A4,C),
Fo(B, D), fp(C, A) such that for any values of A, B, C, D at least one function coincides with the value
of the corresponding variable modulo 3.

Let us try to find linear functions satisfying these conditions.

First, find the expressions of the form A+ B+ C + const, A+ C £+ D + const, A+ B + D + const,
B £ C £+ D + const such that for any A, B, C, D at least one of these expressions is divisible by 3. For
this, note that

(A+B+C)?*+(A-C+D)*+(A-B-D)?+(B-C-D)*= (1)
=3(A2+B*+C?+D* =0 (mod3).
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If for some A, B, C, D every expression
A+B+C, A-C+D, A-B-D, B-C-D (2)

is nonzero modulo 3, then the squares of these expressions have residues 1 modulo 3, and the sum (1)
is not divisible by 3. It means that for any integers A, B, C, D, at least one of the expressions (2) is
divisible by 3.

Now let fp = —-A—-C, fp=C— A, fAr=B+ D, fo = B— D. We can formulate a “recipe” for
every sage: sage A says B+ D, sage B says —A — C, sage C says B — D, sage D says C' — A.

Remark. Formula (1) is just the product (4% + B2+ C% + D?)(1%2 + 12 + 12 + 0?), rewritten with the
help of the Euler formula

(A24+ B2+ C?+ D) (a®+ 0>+ P +d?) =
= (Aa+ Bb+ Cc+ Dd)* + (Ac — Ca + Db — Bd)*+
+ (Ab — Ba + Cd — Dc)* + (Ad — Da + Be — Cb)2.

1.6. [2, p. 160]

2.1. Suppose that sages have a strategy which wins. Let v be the center of the foot, and let uy, uo, us
be terminal vertices. Temporarily let v be of the 1st color. Suppose that sages w1, uo, us say colors hy,
ho, hs according to their strategies.

Now perform another test: let now v be of the 2nd color. Suppose that sages w1, uo, us say colors ey,
eo, e3 according to their strategies.

Now perform the final test. For every i = 1, 2, 3 we denote by d; which was not said by the sage w;
in the first two test (if two colors are possible, we choose any one). For every i, we assign the color d; to
the vertex wu;. Since now v knows the colors of all his neighbors, we can predict his answer with respect
to his strategy. One of the colors 1 and 2 does not coincide with this answer, so we assign v this color,
and sages loose.

2.2. This is Lemma 8 from [1].

Using induction on the number of vertices, we prove the following statement. Let T" be any tree, let
v be any its vertex, and let ¢y, co be two arbitrary colors. Suppose that sages have already chosen a
strategy I'. Then there exists a distribution of hats into vertices, such that sages loose and, moreover,
the vertex v has either color ¢; or color c¢s.

Base of induction: if 7" has only one vertex. This is trivial.

Now we prove the induction step. If we delete the vertex v, the tree T will split into parts 11, 15, .. ..
Let us denote by w1, ue, ...the vertices in these subgraphs, which were adjacent to v in T. As we did
in the solution of the previous problem, we perform two tests. In the first one, we color vertex v in the
color ¢1 and for every 7 consider all the distributions of hats in the subtree T; which are losing for sages
if sages use strategy I' in T;. Let H; be the set of colors which u; can take in these losing distributions.
In the second test, let v be of color ¢y and for every i let E; be the set of colors which u; can have in all
the losing distributions.

Note that in both experiments, the strategies of sages on every tree T; differ only by the functions of
the sage u;. It means that if we manage to fix the hat color in the vertex u;, then for every distribution
of hats on the tree T; the other sages would say the same color in both experiments.

By the induction hypothesis, each set H; and U; contains at least two elements, hence for every 1
the intersection of H; and E; is nonempty. For each i, choose any color d; from H; N E;. Now we can
construct the losing distribution: each u; will be of color d;, every tree T; will be colored in such a way
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that the sages loose, and it remains to color v. Since we know the colors of all its neighbours, we know
the answer of v. It does not coincide with one of ¢; and ¢y, so we assign v this color. Now the sages
loose.

2.3. |7, Lemma 2c]

Suppose that if 4 (s;,—15m) = 2, then this chain can be extended to the right by adding a vertex s,,+1
in such a way that s1s9...$p4+1 is again a disproving chain for which the inequality £ (Sp,Smy1) = 2 is
held.

Indeed, potentially we have two (or even three) such extension, denote them by s,,v; and s,,vs.
Consider the short disproving chains s, viw u sp,vow, and let us call it perspective if v; # fi+1(Sm, w)
(we take any of them if both satisfy this condition). In the same way we choose perspective chains for
two other values of w. Now we have three perspective chains, and at least two of them have the same
color (either vy or vy) of the next vertex. So let s,,+1 be this value of v;.

Now without loss of generality let us assume that £_(s182) = 3, 4 (Sm—15m) = 2. We can unlimitedly
extend it to the right. It remains to check that we can loop it. Just before this, we have a long disproving
chain zs1ssy...s,_1y, where x has three possibilities and y has at least two possibilities. So there exists
x =y such that = # f(sp—151).

We obtained a cyclic disproving chain, and the sages loose.

2.4. |7, Lemma 2d]

If there exists a two-element disproving chain s1sy such that ¢_(s1s2) + ¢4 (s152) > 4, then the sages
loose by the previous problem.

On the other hand, note that for a fixed s, we have

C(ss1) + €4 (s5) + L4 (s3) = 6 (3)

(here s1, s2, s3 are three distinct colors). Indeed, if we fix color w, then there exists exactly two colors s;
such that s; # f(s,w). Since there are three possibilities for w, there are six possible continuations.
It means that

Z €+(8182) = 18. (4)

51,82

Hence, the mean value of /4 (s1s2) is 2. We can similarly show that the mean value of ¢_(s;s2) is 2.
Now let us solve the problem. Note that if for any two-element chain syso the inequality ¢_(s1s2) +
04 (s1s2) < 4 is held, then there exists another chain ss5 such that (_(s]s5) + €4 (s]s5) > 4, and the
sages loose.
Hence, the winning strategy can exist only if /_(s152) + ¢4 (s152) = 4 for any s1, sa.

2.5. [7]

Construct a strategy of sages on the cycle of N = 3n vertices, such that the emcee could not construct
a disproving chain.

First, we deduce from Problems 2.12 and 2.13 that for a winning strategy, the number of right pairs
of colors ab, where a € V;, b € V1, is the same for all i. (In the same way the number of left pairs is
equal and the number of inert pairs is equal). It would imply that any chain, which disproves a winning
strategy, contains links of the same type (i.e., either all the pairs of colors are right, or all the pairs of
colors are left, or all the pairs of colors are inert), in this case all the chain will be called right /left /inert.
Indeed, as we see in the solution of Problem 2.13, any left pair of colors ab; has a unique extension to
the left to a more long chain cjaby, and the pair ¢1b is again left. In the same way a right chain can be
uniquely extended to the right in such a way that its right link will be again a short right chain. Hence,
if there exists a chain disproving all the sages, it contains links of the same type.
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Now we find a strategy for the sages such that for all 4, there are three right pairs ab, a € V;,
b € Viq1, three left pairs and three inert pairs. So elements of V; can be enumerated in such a way

V; = {v}, v}, vt} that the chains vivivd ... viv3vs ... vivde3 ... areright. We give here the beginnings of
these chains, but it can occur that if we loop them, they do not loop with period N, and for the extension
vivivd .. U{VU{V—H it turns out that v} ™ = v or v = vl Denote v} = v;(l), ARREE Ui(?)’

év = UU(3), clearly, o is a permutation of the three-element set. So the aim of the sages is the following:

invent a strategy such that local disproving chains could not loop in an N-element chain because of a
permutation o which has no fixed elements. The same should be true for left chains and for inert chains.
Let us examine these chains using the enumerations of colors introduced above.

We have three left pairs ab, a € V;, b € V;11, we may assume that these are pairs viv?l, UQUi'H,

U3’U§+1 There are also three left pairs among ab, a € V;_1, b € V;. Notice that a pair Ugflvg is right, hence,

the chain vg~ v3v§+1 is not a short disproving chain, consequently, v5~ 1121)1“ is a disproving chain, and
this means that the pair vé 1v2 is a “disproving extension” to the left of the pair v%viﬂ, which means

that the pair vg 1112 is again left. Using the same reasoning for the other pairs of indices, we obtain that

foralli (i=1,2,..., N) the set of left pairs ab, a € V;, b € Vj;1, consists of pairs
vivstt, vttt vivsth,
But then the left chain which begins with the color v1 has the form v{v3v3vf ... soits (N + 1)th element

(recall that 3 | N) has the form vé\ﬁ'l. Hence, the left chain will not loop if the permutation o has no
fixed elements. The same is true for the inert chains.

It remains to describe the strategy which will provide such a picture. Suppose that all the sages use
the same strategy:

2 1 1
fi=l2 3 2], i=12..N
33 1

where the element in the pth row and in the gth column is equal to f;(p, ¢), and at the end viNJrl = vi(i),

where 0 : 1 —+ 2 — 3 — 1 is an appropriate permutation of the three-element set. In other words, if
vi =1, vl =2, vg =3 for 1 <7< N, then U{VH =2, vévﬂ =3, véVH = 1. This is due to the property
fi(a(p),o(q)) = o(fi(p,q)), which can be easily checked.

We leave to the reader the proof of the fact that this strategy has equal number of right, left and
inert chains.

2.6. [7]

2.7. [1, Theorem 7|. The statement of Problem 3.4 hints that one or the parts of the graph must contain
at least k£ — 1 vertices. It happens that this estimation is exact.

Let G be a complete bipartite graph with n = k — 1 vertices on the left side and m = k*" vertices
on the right side. Let C' denote the set of all k-colorings of the left side of G. Note that |C| =
and m = k€|, hence m is equal to the number of mappings from C to {1,2,...,k}. Pick a one-to-one
correspondence between the vertices on the right side of G and the mappings from C to {1,2,...,k}, and
let each vertex on the right side of G' guess its color using the corresponding mapping.

We need the following lemma.

Lemma. Let cg denote a fixed coloring of the right side of G, and let C’ denote the set of all
colorings ¢y, of the left side of G such that the combined coloring (cr,cgr) causes every vertex on the
right side to guess its color incorrectly. Then |C’| < k.

Now it’s time to define the guessing strategies used by the vertices on the left side of G. Given the
coloring of the right side, the set C’ defined in the lemma above has at most n = k — 1 elements. So let
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c1,¢2,...,cy be a list of colorings which contains every element of C’. For i =1, 2, ..., n, vertex i on the
left guesses that its color is ¢;(i). This guessing strategy (combined with the guessing strategy for the
vertices on the right side as defined above) guarantees at least one correct answer. This is because the
above lemma guarantees that at least one vertex on the right side guesses correctly unless the coloring
of the left side belongs to C’. But if the coloring of the left side belongs to C’, then it is equal to ¢; for
some i € {1,2,...,n}, in which case vertex i on the left guesses its color correctly.

It remains to prove the lemma. The proof follows from noting that if C’ contains k distinct elements
1,2, ... ,C, then there exists a function f from C to {1,2,...,k} which assumes k distinct values on
the set {c1,...,cr}. Let v denote the vertex on the right side of G corresponding to f. Since the set
{f(c1), f(c2), ..., f(ck)} contains all k colors, we must have f(c;) = cR(v) for some iin 1, 2,..., k. Thus,
the combined coloring (¢;, cr) causes vertex v to guess its color correctly, contradicting our assumption
that ¢; belongs to C’, ending the proof.

2.8. This is Lemma 1 from [4]. We re-write this proof here in a more readable way.

The sages win on the graph G, when they have hats of ¢ colors. Let us call these colors warm. The
sages win on the graph K, when they have hats of r colors. Let us call these colors cold. In order to
color the graph G into gr colors, we have to assign a warm color and a cold color to each vertex. During
the test, the sages will also say two colors: a warm one and a cold one.

To choose a cold color, the sages will look only on the other sages in their copy of K, (and taking
into account only the cold components of their colors). Then for every copy of K,, exactly one sage will
guess his cold color correctly, we call them lucky. Every sage can understand which sage is lucky in every
adjacent copy of K. To guess his warm color, every sage uses his strategy on the graph G, assuming
that his neighbors on G have the colors of lucky sages on the K,s corresponding to vertices of G and
taking into account only the warm component of their color. Then at least one lucky sage will guess his
color correctly.

2.9. This graph can be obtained from Problems 1.5 and 2.8.

2.10. Let us perform the same computation as we did in Problem 1.3. Let us sum up the number of all
guesses in all the distributions of hats. On one hand, there are 3 - 32 guesses. On the other hand, there
are 33 distributions of hats, so if the strategy of sages is winning, there is exactly one guess in every
distribution.

Now fix any strategy and present a distribution of hats where at least two sages guess. Let us assign
any color to the sage C. Then give A the hat of color which he says with respect to his strategy for this
color of C. npoussosibayio nuisiny. Now let B be of the color which he says with respect to his strategy
for these colors of A and C.

2.11. Denote the sages by A, B, C', D, and suppose that A does not see B. First of all we show, that
there exist two three-element chains ajdic; and ajdycs such that A and D do not guess. For this, as we
did in the proof of Problem 2.4, consider all the 6 distributions of colors to A and D in such a way that
A does not guess (his strategy depends only on the color of D), and 18 possibilities to extend this chain
in the direction of C. Since in total D guesses only in 9 situations, there is a color d; which he says at
most three times. Then among the chains with the beginnings a1d; or asd; there are at least three losing
for D, and by the Pigeonhole Principle there are two three-element chains aidic; and aidice such that
A and D loose. Give A and D hats of colors a; and dy, respectively.

Now consider the strategy of B. Let fg(ai,c1) = b1, fp(a,c2) = by. Let us give him a hat of the
third color b3 (of any possible color, if by = by).

Notice that now we know the colors of C’s neighbors: B has color by and D has color dy. But fc (b1, dy)
does not coincide with one of ¢y, ¢co. If we give the sage C the non appropriate color, the sages loose.
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2.12. |7, Lemma 3a] We use formula (4) and the analogous formula for ¢_:
> ti(ab) => 0 (ab) = 18.
a,b a,b

Since we consider a winning strategy, for any a, b ¢4 (ab) + ¢_(ab) = 4. Hence, any summand 1, 2, 3 in
the first sum corresponds to a summand 3, 2, 1 in the second sum. It means that both sums contain the
same number of 1s and 3s.

2.13. |7, Lemma 3d| Let Viy; = {b,b1,b2}. Then, as in Formula (3), and taking into account that
0_(s182) 4+ €4 (s182) = 4 we have

0_(ab) 4+ ¢_(aby) + ¢_(abs) = 6.

Since ¢_(ab) = 3, two other summands are 1 and 2, we may assume that ¢_(aby) = 1, it means that
there exists a short disproving chain, say, cjab;. But then ¢_(cia) = 1, since in the opposite case
{_(c1a) + €4 (aby) > 5 and the strategy is losing by Problem 2.3. We apply the analogous formula

l_(cra) +0_(coa) + ¥ _(c3a) =6
and see that {_(cia) = 1, hence, two other summands are 2 and 3. We are done.
2.14. |1, Theorem 16.iii|

2.15. [4]

3.1. All the sages, besides the last one, say the color opposite to the color they see. The last sage says
the color he sees.

3.2. [1, Example 6] It follows from Problem 3.1 that at least ¢ sages can guess the color of their hat. In
Problem 3.5 you can find the example of the graph for which the number of sages is greater than the
number of independent cycles.

3.3. [1, Lemma 4] Suppose that the graph becomes acyclic after deleting vertices v, va, ..., v4. Number
the remaining vertices vg41, ..., vy in such a way that the numbers along every edge decrease. In other
words, for the last n — a vertices all the edges are directed to the left. Now let us arbitrarily distribute
hats among the first a sages. For every next sage, the colors of hats which he sees are already determined,
so his answer with respect to his strategy is known. We can give him a hat of another color so that he
does not guess.

For this distribution of hats only the first a sages can guess their color.

3.4. This is Theorem 5 from [4]

Take any sages’ strategy f and prove that it is losing.

Let A be the set of all but one colors of hats, |A| = k — 1. If a is a color, we denote by w, the
collection of k — 2 colors (a,a,...,a). The sages from L will always get the same hats of colors wg, where
a € A.

Let us enumerate the vertices of R by r1, ro, ...7s in such a way that the numbers along every edge
decrease. To simplify the reasoning, we consider only the case when every sage from R sees all the sages
with less numbers. Construct the collection of colors Y = {y1,...,ys} for the sages in R. For this, we
consequently take

y1 ¢ {fr,(wa), a € A}
Y2 ¢ {fm(wa7y1)7 a € A};

Ys & {fro(Was y1,92- -+, ys—1), a € A}.
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Let us explain these formulas for ys. The sage in the vertex rg sees all the sages from the part L (their
colors are given by the collection w,), and he sees the sages from part R with smaller numbers. Hence,
we know his answer f, (wq,y1,¥y2...,Ys—1) according to his strategy. The color a takes values in the
(k — 1)-element set A; the set in the right hand of the formula for ys contains at most k — 1 elements,
hence, we can choose the appropriate color ys according to this formula.

Now the set of colors Y is constructed. Let £1, £, ...f,_o be the vertices of L. Choose a color b € A
which coincides with none of the colors fo, (Y), ..., fr,_,(Y). Then no sage guesses his color for the
distribution (wy,Y").

3.5. [1, Example 4]

4.1. Let us present an equality analogous to (1), and with its help construct linear functions, giving the
strategies of sages. Since this equality is too long, we will not write it here, so we need some preliminary
work.

By an N-dimensional hypercube @y we mean a graph, which contains 2%V vertices, enumerated by
N-digit numbers in the binary number system, and the edges join numbers differing only in one binary
digit. The next constructions can be applied to any hypercube, however they are applicable to the
problem about hats only for N =2 (mod 3).

Lemm a. The edges of the hypercube @ can be oriented in such a way that every 4-cycle in @ will
contain 3 edges pointing to one direction of bypass of this cycle and one edge in the opposite direction.

~~—

Proof. Induction on N. Base N = 2. TJ

The step of induction. Suppose that we have already oriented the graph Qy. We may assume
that @,41 consists of two copies of Qp, the “left” one and the ‘“right” one, and for every vertex of
the left copy there is an edge to the corresponding vertex of the right copy. Suppose that we have
already oriented all the edges in the left copy according to the induction hypothesis, and let us orient
the right copy in the opposite way. For the edges between the copies, all the arrows will point to the
right. It is easy to see that this orientation satisfies the conditions. O

Now let us take independent variables, one for each vertex of Q.

Recall that every vertex of @y has degree N. Suppose that a is an arbitrary vertex of the graph; by,
by, ...are vertices such that there are arrows from a to them, c1, co, ...are vertices such that there are
edges from them to a. For any a consider the expression f,, equal to the square of the linear combination

fa:(a+b1+b2+...—01—CQ—...)Z. (5)

Consider the sum ) f, of these squares within all the vertices of the graph. Now open all the brackets.
For every vertex a, the summands of the form a? will appear in this sum with multiplicity N + 1,
since every such summand appears from the brackets fo, fo,, fo,, -+, fers feo, ... and only from them.
Moreover, every edge ab corresponds to a summand +2ab, which appears from the bracket f,, and a
summand —2ab, which appears from the bracket f,. While opening the other brackets, such summands
can not appear, so they all vanish.

There is one more type of summands, from the bracket f, we obtain summands of the form —2b;c;,
let us examine them. Suppose that a has number 00, b; has number 01, ¢; has number 10. Consider also
the vertex d with number 11 (we write here only the bytes where the numbers differ). Clearly, d b
fai=(d=bj—ci+... )2, so the summand 2bjc; appears from fy with the sign “plus”. It will [ !
vanish. Another possible orientations of the edges of the cycle can be treated in the same { [
way. -

So Y fa= (N +1)- %, a2 R
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Now we come back to our sages. Let N = 2 (mod 3). Then the sum ) fq is divisible by 3. It consists
of 2V summands. Clearly, either f, = 0 or f, = 1 (mod 3). Hence, at least one of the summands f,
must be zero modulo 3 (for odd N there are at least two such summands). Using the notation of (5), we
demand that for every vertex a the sage in this vertex uses the hypothesis ¢ +co+ ... — by — by — ...
Then the sage sitting in a vertex a such that f, =0 (mod 3) will guess the color of his hat.

4.2. [1, Lemma 11] To describe the strategies, we will use the hypercube (see the text before the
formulation of the problem).

Let is cut the hypercube into layers: the ith layer will be formed by all the vertices with the sum of
coordinates equal to . The number of non-oriented edges, going from a vertex v to the vertices of the
next layer, will be called the upper degree udegv of this vertex, and the number of edges going to the
vertices of the previous layer will be called the lower degree ddegv of the vertex.

Consider the edge between the ith and (i 4 1)th layers and the corresponding sage (=the coordinate
which changes), it equals 1 in the (i+ 1)th layer and 0 in the ith layer. The strategy gives the orientation
of this edge: if it points from the ith layer to the (i + 1)st layer, then the sage will guess when his hat is
of color 1 and will loose in the opposite case. If the edge points from the (i + 1)th layer to the ith, then
the sage guesses when his hat is of color 0 and looses in the opposite case. If for every vertex v of the
ith layer the number of edges pointing from the (i + 1)th layer to this vertex equals [udegv/2], and the
number of edges pointing from the (i — 1)st layer to this vertex equals [ddegv/2], then it is easy to see
that we get a balanced strategy.

Construct a balanced strategy, i. e., orient the edges in order to fulfill the properties of upper and
lower degrees mentioned above. The idea is clear: we take any edge between the ith and (i 4 1)st layers,
put any orientation on it and construct an oriented path, adding new edges in such a way that the path
remains between the ith and (i + 1)st layers. If it is not possible to extend this path (in both directions)
but not all the edges are oriented, we start constructing a new path, etc.. When we orient all the edges,
we obtain a balanced strategy.

4.3. |1, Proposition 13] If the number of sages is even, the optimal strategy is a strategy such that for
every vertex of the hypercube, the incoming degreee and the outcoming degrees are equal. In this case,
one can construct an oriented Euler path. Now the strategy of the ith sage is the orientation of edges,
parallel to the ith coordinate line. Note that one half of the vertices of the hypercube in in the (left)
face x; = 0, and the other half in in the right face ; = 1. The arrows pointing to the left correspond to
the case when the sage says 0 and the arrows pointing to the right correspond to the case when the sage
says 1. The Euler path contains an equal number of such arrows.
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Abstract

Several different “hat games” have recently received a fair amount of attention.
Typically, in a hat game, one or more players are required to correctly guess their
hat colour when given some information about other players’ hat colours. Some
versions of these games have been motivated by research in complexity theory and
have ties to well-known research problems in coding theory, and some variations
have led to interesting new research.

In this paper, we review Ebert’s Hat Game, which garnered a considerable
amount of publicity in the late 90’s and early 00’s, and the Hats-on-a-line Game.
Then we introduce a new hat game which is a “hybrid” of these two games and
provide an optimal strategy for playing the new game. The optimal strategy is
quite simple, but the proof involves an interesting combinatorial argument.

1 Introduction

In this introduction, we review two popular hat games and mention some related work.
In Section 2, we introduce our new game and give a complete solution for it. In Section
3, we make some brief comments.

*research supported by NSERC discovery grant 203114-06
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Table 1: Analysis of Ebert’s hat game for three players

configuration guesses outcome
brown brown brown | gray gray gray lose
brown brown gray gray win
brown gray brown gray win
brown gray gray | brown win
gray brown brown | gray win
gray brown gray brown win
gray gray  brown brown win
gray  gray  gray | brown brown = brown lose

1.1 Ebert’s Hat Game

The following hat game was posed in a 1998 computer science PhD thesis by Todd Ebert
6] (also see [7]). This game garnered a considerable amount of publicity in the late 90’s
and early 00’s and was written up in the New York Times [10]. There are three players in
the game: Alice, Bob, and Charlie. The three players enter a room and a gray or brown
hat is placed on each person’s head. The colour of each hat is determined by a coin toss,
with the outcome of one coin toss having no effect on the others.

Each person can see the other players’ hats but not his or her own hat. No communi-
cation of any sort is allowed, except for an initial strategy session before the game begins.
Once they have had a chance to look at the other hats, the players must simultaneously
guess the colour of their own hats, or pass. So each player’s response is one of “gray”,
“brown” or “pass”. The group shares a hypothetical $1,000,000 prize if at least one player
guesses correctly and no players guess incorrectly.

It is not hard to devise a strategy that will win 50% of the time. For example, Alice
could guess “gray” while Bob and Charlie pass. Is it possible to do better? Clearly, any
guess has only a 50% chance of being correct. If more than one player guesses, then the
probabilities are reduced: the probability that two guesses are correct is 25%, and the
probability that three guesses are correct is 12.5%. Hence, it seems at first glance that it
is impossible to win more than 50% of the time.

However, suppose each player uses the following rule: If he observes two hats of the
same colour (i.e., gray — gray or brown — brown), then he guesses the opposite colour.
Otherwise, when two hats of different colours are observed, he passes. To analyse the
probability of winning when using this strategy, we consider all possible distributions of
hats. There are 2 x 2 x 2 = 8 cases to consider. In each case, we can figure out if
the players win or lose. The probability of winning is equal to the number of winning
configurations divided by eight. In the following Table 1, we provide an analysis of all
eight cases. Boldface type is used to indicate correct votes.

The group wins in six out of eight cases, so their probability of winning is 6/8 =
3/4 = 75%. Observe that each individual guess is correct with a 50% probability. Among
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the eight cases, there are six correct guesses and six incorrect guesses. The six correct
guesses occurred in six different cases, while the six incorrect guesses were squeezed into
two cases. This is why the probability of winning is much higher than 50%, even though
each guess has only a 50% chance of being correct!

Here is another way to describe the optimal 3-player strategy:

e specify brown-brown-brown and gray-gray-gray as bad configurations.

e If a player’s hat colour could result in a bad configuration, then that player guesses
the opposite colour.

e If a player’s hat colour could not result in a bad configuration, then that player
passes.

Strategies for more players are based on this idea of specifying certain appropriately
chosen bad configurations and then using a similar strategy as in the 3-player game.
The bad configurations are obtained using Hamming codes, which are perfect single error
correcting codes. For every integer m > 2, there is a Hamming code of length n = 2™ — 1
containing 22" ~™m~! = 2n=™ codewords.

In a Hamming code, every non-codeword can be changed into exactly one codeword
by changing one entry. (This property allows the Hamming code to correct any single
error that occurs during transmission.) If the configuration of hats is not a codeword,
then there is a unique position ¢ such that changing entry ¢ creates a codeword. Player ¢
will therefore guess correctly and every other player will pass. If the configuration of hats
is a codeword, then everyone will guess incorrectly. Thus the group wins if and only if
the configuration of hats is not a codeword.

Since there are 2"~ codewords and 2" configurations in total, the success probability
is1—-2""=1-1/(n+1). It can be proven fairly easily that this success probability
is optimal, and can be attained only when a perfect 1-error correcting code exists. More
generally, any strategy for this hat game on an arbitrary number n of players is “equiv-
alent” to a covering code of length n, and thus optimal strategies (for any number of
players) are known if and only if optimal covering codes are known (see [9] for additional
information).

1.2 Hats-on-a-line

Another popular hat game has n players standing in a line. Hats of two colours (gray and
brown) are distributed randomly to each player. Each player P; (1 < i < n) can only see
the hats worn by players P, 1,..., P, (i.e., the players “ahead of” P; in the line). Each
player is required to guess their hat colour, and they guess in the order Py, ..., P,. The
objective is to maximise the number of correct guesses [3, 2J.

Clearly the first player’s guess will be correct with probability 50%, no matter what
her strategy is. However, a simple strategy can be devised in which players P, ..., P,
always guess correctly by making use of information gleaned from prior guesses.
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As before, suppose that 0 corresponds to gray and 1 corresponds to brown. Let ¢;
denote the colour of player P;’s hat, 1 < ¢ < n. Here is the strategy:

e P, knows the values ¢y, ..., ¢, (she can see the hats belonging to P,...,FP,). P
provides as her guess the value

g1 = z": ¢; mod 2.
i=2

e P, hears the value g; provided by P; and P, knows the values cs, ..., c,. Therefore

P, can compute
n

Co = g1 — E ¢; mod 2.
i=3
Py’s guess is ¢o, which is correct.

e For any player P; with j > 2, P; hears the values g¢i,c¢s,...,cj—1 provided by
Py, ..., P,_; respectively, and P; knows the values c¢j;1,...,c,. Therefore P; can
compute

;=01 — Z ¢; mod 2.
i€{2,...,n\{5}
Pj’s guess is c;, which is correct.

It is not hard to see that the same strategy can be applied for an arbitrary number
of colours, ¢, where ¢ > 1. The colours are named 0,...,q — 1 and all computations are
performed modulo ¢. If this is done, then P; has probability 1/q of guessing correctly,
and the remaining n — 1 players will always guess correctly. Clearly this is optimal.

1.3 Related Work

A few years prior to the introduction of Ebert’s Hat Game, in 1994, a similar game
was described by Aspnes, Beigel, Furst and Rudich [1]. In their version of the game,
players are not allowed to pass, and the objective is for a majority of the players to guess
correctly. For the three-player game, it is easy to describe a strategy that will succeed
with probability 3/4, just as in Ebert’s game:

e Alice votes the opposite of Bob’s hat colour;
e Bob votes the opposite of Charlie’s hat colour; and
e Charlie votes the opposite of Alice’s hat colour.

This game is analysed in Table 2, where the outcomes for all the possible configurations
are listed.

It is also possible to devise a strategy for the majority hats game that uses Hamming
codes. We basically follow the presentation from [4]. The idea, which is due to Berlekamp,
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Table 2: Analysis of the majority hat game for three players

configuration guesses outcome
brown brown brown | gray gray gray lose
brown brown gray gray brown gray win
brown gray brown | brown gray gray win
brown gray gray | brown brown  gray win
gray brown brown | gray gray  brown win
gray brown gray gray brown brown win
gray gray brown | brown gray brown win
gray  gray  gray | brown brown = brown lose

is to associate a strategy for n players with an orientation of the edges of the n-dimensional
cube {0,1}". Each player’s view corresponds in a natural way to an edge of the cube,
and that player’s guess will be determined by the head of the edge, as specified by the
orientation.

If n is a power of 2 minus 1, then there is Hamming code of length n. Direct all
the edges of the cube incident with a codeword away from the codeword. The remaining
edges form an eulerian graph on the vertices that are not codewords; these edges can be
directed according to any eulerian circuit.

The number of correct guesses for a given configuration is equal to the indegree of the
corresponding vertex. From this observation, it is not difficult to see that any codeword
is a losing configuration for this strategy — in fact, every guess will be incorrect. If the
configuration of hats is not a codeword, then there will be (n + 1)/2 correct guesses and
(n — 1)/2 incorrect guesses. So the success probability is 1 — 1/(n + 1), as in the Ebert
hat game, and this can again be shown to be optimal.

Many other variations of the hat game have been proposed. We complete this section
by briefly mentioning some of them.

e Hats could be distributed according to a non-uniform probability distribution ([8]).

e Usually, it is stipulated that each player gets a single guess as to his or her hat
colour; however, allowing players to have multiple guesses has also been considered

([1)-

e When sequential responses are used, it may be the case that players can hear all
the previous responses (we call this complete auditory information), or only some
of them, as in [2].

e Some games seek to guarantee that a certain minimum number of correct guesses are
made, regardless of the configuration of hats, e.g., in an adversarial setting ([1, 11]).
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e In [5], a directed graph, termed a “sight graph”, is used to specify the hats that
each player can see. Note that the visual information in Ebert’s game corresponds
to a sight graph that is a complete directed graph, while the Hats-on-a-line Game
corresponds to the transitive closure of a directed path.

In general, players’ strategies can be deterministic or nondeterministic (randomized).
In the situation where hat distribution is done randomly, it suffices to consider only
deterministic strategies. However, in an adversarial setting, an optimal strategy may
require randomization.

2 A New Hats-on-a-line Game

When the second author gave a talk to high school students about Ebert’s Hat Game,
one student asked about sequential voting. It is attractive to consider sequential voting
especially in the context of the Hats-on-a-line Game, but in that game the objective is
different than in Ebert’s game. A natural “hybrid” game would allow sequential voting,
but retain the same objective as in Ebert’s game. So we consider the following new
hats-on-a-line game specified as follows:

e hats of ¢ > 1 colours are distributed randomly;
e visual information is restricted to the hats-on-a-line scenario;
e sequential voting occurs in the order P, ..., P, with abstentions allowed; and

e the objective is that at least one player guesses correctly and no player guesses
incorrectly.

We'll call this game the New Hats-on-a-line Game.

First, we observe that it is sufficient to consider strategies where exactly one player
makes a guess. If the first player to guess is incorrect, then any subsequent guesses are
irrelevant because the players have already lost the game. On the other hand, if the first
player to guess is correct, then the players will win if all the later players pass.

We consider the simple strategy presented in Table 3, which we term the Gray Strat-
egy. The Gray Strategy can be applied for any number of colours (assuming that gray is
one of the colours, of coursel!).

It is easy to analyse the success probability of the Gray Strategy:

Theorem 2.1. The success probability of the Gray Strategy for the New Hats-on-a-line
Game with q hat colours and n players is 1 — ((¢ — 1)/q)".

Proof. The probability that P sees no gray hat is ((¢ — 1)/¢)" . In this case, her guess
of “gray” is correct with probability 1/q. If P, passes, then there is at least one gray hat
among the remaining n — 1 players. Let j = max{: : P, has a gray hat}. Then players
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Table 3: The Gray Strategy

Assume that gray is one of the hat colours. For each
player P; (1 < i < n), when it is player P;’s turn, if he
can see at least one gray hat, he passes; otherwise, he
guesses “gray”.

Py, ...,P;_y will pass and player P; will correctly guess “gray”. So the group wins if
player P; passes. Overall, the probability of winning is

() () (5

The main purpose of this section is to show that the Gray Strategy is an optimal
strategy. (By the term “optimal”, we mean that the strategy has the maximum possible
probability of success, where the maximum is computed over all possible strategies allowed
by the game.) We'll do two simple special cases before proceeding to the general proof.
(The proof of the general case is independent of these two proofs, but the proofs of the
special cases are still of interest due to their simplicity.)

We first show that the Gray Strategy is optimal if ¢ = 2. In this proof and all
other proofs in this section, we can restrict our attention without loss of generality to
deterministic strategies.

O

Theorem 2.2. The mazximum success probability for any strategy for the New Hats-on-
a-line Game with two hat colours and n players is 1 — 27",

Proof. The proof is by induction on n. For n = 1, the result is trivial, as any guess by P;
is correct with probability 1/2. So we can assume n > 1.

Suppose there are ¢ configurations of n — 1 hats for which player P, guesses a colour.
We consider two cases:

case 1: ¢c>1

There are ¢ cases where P;’s guess is correct with probability 1/2. Therefore the
probability of an incorrect guess by P; is

1 c 1

X = —.
2 2n"1 7 on

case 2: ¢ =0

Since player P; always passes, the game reduces to an (n — 1)-player game, in which
the probability of winning is at most 1 — 27"+ by induction.
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Considering both cases, we see that the probability of winning is at most max{1—2"",1—
27} = 127", =

We observe that the above proof holds even when every player has complete visual
information, as the restricted visual information in the hats-on-a-line model is not used
in the proof.

We next prove optimality for the two-player game for an arbitrary number of hat
colours, as follows.

Theorem 2.3. The mazimum success probability for any strategy for the New Hats-on-
a-line Game with q hat colours and two players is

. (q—1)2_2q—1
q ¢

Proof. Suppose that player P, guesses her hat colour for r out of the ¢ possible colours
for Py’s hat that she might see. Any guess she makes is correct with probability 1/q.
We distinguish two cases:

case 1: r=q
If r = ¢, then the overall success probability is 1/q.

case 2: r < q

In this case, player P, passes with probability (¢ — r)/q. Given that P; passes, Ps
knows that his hat is one of ¢ —r equally possible colours, so his guess will be correct
with probability 1/(q¢ — ). Therefore the overall success probability is

1 r 1 q—r 1

r
- X -+ X :—2—1——.
a9 q qg-r q q q

To maximise this quantity, we take r = ¢ — 1. This yields a success probability of
(2¢ —1)/¢*
Case 2 yields the optimal strategy because (2¢ — 1)/¢*> > 1/q when ¢q > 1. O

2.1 The Main Theorem

Based on the partial results proven above, it is tempting to conjecture that the maximum
success strategy is 1 — ((¢ — 1)/q)", for any integers n > 1 and ¢ > 1. In fact, we will
prove that this is always the case.

The proof is done in two steps. A strategy is defined to be restricted if any guess made
by any player other than the first player is always correct (furthermore, as already stated,
it is not permitted for all players to pass). First, we show that any optimal strategy must
be a restricted strategy. Then we prove optimality of the Gray Strategy by considering
only restricted strategies.

In all of our proofs, we denote the colour of P;’s hat by ¢;, 1 < ¢ < n. The n-tuple
(c1,...,¢cy) is the configuration of hats.
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Lemma 2.4. Any optimal strategy for the New Hats-on-a-line Game is a restricted strat-
eqy.

Proof. Suppose S is an optimal strategy for the New Hats-on-a-line Game that is not
restricted. If player P; passes, then the outcome of the game is determined by the (n—1)-
tuple (co, ..., ¢,), which is known to P;. Since P; knows the strategies of all the players,
she can determine exactly which (n — 1)-tuples will lead to incorrect guesses by a later
player. Denote this set of (n — 1)-tuples by F'. Because S is not restricted, it follows that
F # 0.

We create a new strategy &’ by modifying S as follows:

1. If (¢cg,...,¢,) € F, then P; guesses an arbitrary colour (e.g., P; could guess “gray”).

2. If (co,...,¢,) € F, then proceed as in S.

It is easy to see that S’ is a restricted strategy. The strategies S and &’ differ only in what
happens for configurations (c1,...,c,) where (co,...,¢,) € F. When (¢, ...,c,) € F, S
will guess correctly with probability 1/¢. On the other hand, S always results in an

incorrect guess when (ca,...,c,) € F. Because |F| > 1, the success probability of &’ is
greater than the success probability of §. This contradicts the optimality of S and the
desired result follows. O

Now we proceed to the second part of the proof.

Lemma 2.5. The maximum success probability for any restricted strategqy for the New
Hats-on-a-line Game with q hat colours and n players is 1 — ((¢ —1)/q)".

Proof. Suppose an optimal restricted strategy S is being used. Let A denote the set of
(n — 1)-tuples (ca, ..., c,) for which P; guesses; let B denote the set of (n — 1)-tuples for
which P; passes and P, guesses (correctly); and let C' denote the set of (n — 1)-tuples for
which P; and P, both pass. Clearly every (n — 1)-tuple is in exactly one of A, B, or | so

[Al+[B]+C| =" (1)

Now construct A’ (B’, C’, resp.) from A (B, C, resp.) by deleting the first co-ordinate
(i.e., the value ¢y) from each (n — 1)-tuple. A’, B’ and C’ are treated as multisets. We
make some simple observations:

(i) BN C" = (. This is because P»’s strategy is determined by the (n — 2)-tuple
(€350 yCn).

(ii) For each (cs,...,c,) € B’, there are precisely ¢ — 1 occurrences of (cs,...,¢,) € A'.
This follows because player P, can be guaranteed to guess correctly only when his
hat colour is determined uniquely.

(iii) A’'NC" = (. This follows from the optimality of the strategy S. (The existence of an
(n — 1)-tuple (ca,...,c,) € A such that (cs,...,c,) € C" contradicts the optimality
of §: P, should pass, for this configuration will eventually lead to a correct guess
by a later player.)
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We now define a restricted strategy S’ for the (n — 1)-player game with players Ps, ..., P,
(here P; is the “first” player). The strategy is obtained by modifying S, as follows:

1. P, guesses (arbitrarily) if (cs,...,¢,) € A’ U B’ and P, passes if (¢3,...,¢,) € C".
(This is well-defined in view of the three preceding observations.)

2. P3, ..., P, proceed exactly as in strategy S.

Since the set of (n — 2)-tuples for which P, passes is the same in both of strategies S and
&', it follows that Ps, ..., P, only make correct guesses in &', and therefore S’ is restricted.

Let (3, denote the maximum number of (n — 1)-tuples for which the first player passes
in an optimal restricted strategy. We will prove that

/Gn < qn_l - (q - 1)71—1‘ (2)

This is true for n = 2, since 3 < 1.
Now we proceed by induction on n. We will use a few equations and inequalities.

First, from (ii), it is clear that
Al = (¢ = DIBI. (3)

Next, because &' is a restricted strategy for n — 1 players, we have
C] < qBnr1. (4)
Finally, from the optimality of S, it must be the case that
| B[ + |C] = Bn. (5)

Applying (1), (3), (4) and (5), we have

Bn = |B|+|C|
"t —|A]
< ¢~ (g-1)B]

q'~
"= (g—1)(B.—C))
"= (qg— 1B+ q(qg—1)Bs,

N

from which we obtain
ﬁn < qn—2 + (q - 1)6n—1-

Applying the induction assumption, we see that
/Gn < qn—2 4 <q . 1)(qn—2 - (q . 1)n—2) — qn—l - <q - 1)1@—1’

showing that (2) is true.
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Finally, using (2), the success probability of S is computed to be
1
Pr[P, passes| + — x Pr[P; guesses|
q
1
= Pr[P, passes| + — x (1 — Pr[P, passes])
q

1 1
= — + Pr[P; passes] X (1 - —)
q

) |
(e 1oy
=

Summarizing, we have proven our main theorem.

1
q
1
q
1—-

Theorem 2.6. The Gray Strategy for the New Hats-on-a-line Game with q hat colours
and n players is optimal.

Proof. This is an immediate consequence of Theorem 2.1 and Lemmas 2.4 and 2.5. O

3 Comments

It is interesting to compare Ebert’s Hat Game, the Hats-on-a-line Game and the New
Hats-on-a-line Game. The optimal solutions to Ebert’s game are easily shown to be
equivalent to covering codes. There are many open problems concerning these combina-
torial structures, so the optimal solution to Ebert’s game is not known in general. The
optimal solution to the Hats-on-a-line Game is a simple arithmetic strategy, and it is
obvious that the strategy is optimal. We have introduced the New Hats-on-a-line Game
as a hybrid of the two preceding games. The optimal strategy is very simple, but the
proof of optimality is rather delicate combinatorial proof by induction. This game does
not seem to have any connection to combinatorial structures such as covering codes. The
analysis of these three games utilize different techniques. At the present time, there does
not appear to be any kind of unified approach that is appropriate for understanding these
games and/or other types of hat games.
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On a game on graphs

Felix Giinther*! Irina Mustata *?

Abstract

We start with the well-known game below: Two players hold a sheet of paper to their forehead on
which a positive integer is written. The numbers are consecutive and each player can only see the
number of the other one. In each time step, they either say nothing or tell what number they have.
Both of them will eventually figure out their number after a certain amount of time. The game is
rather cooperative than competitive, and employs the notions of common knowledge and mutual
knowledge. We generalize this game to arbitrary (directed and non-directed) simple graphs and try
to establish for which graphs one or both of them will figure out the solution, and how long they
do need to find it. We give a complete answer for the case of two players, even if they are both
allowed to discuss before the start of the game.

2010 Mathematics Subject Classification: 05C57.

Keywords: game, (directed) graph, common knowledge, mutual knowledge.

1 Introduction

1.1 The original game

We consider a two-player game, also known as a Conway paradox, originally introduced by Conway
et al. in [I] and analysed by van Ende-Boas, Groenendijk and Stokhof in [5]. Two players, A and
B, get each a sheet of paper on their forehead containing one element of a pair of two consecutive
positive integers. They can only see the number on the other player. Now each player tries to figure
out which number is on their sheet. The only information they get is that in each time step (which is
the same for both, e.g., given by a clock) they are allowed to either say nothing or to say the correct
number they have. After some time both of them will eventually figure out their number: as a base
case example, if one of them has 1 on their forehead, the other player will know immediately that they
have 2, in the next step the other player will know that they have 1. If no one has 1, both of them will
know that no one has 1 after the first time step. In the second round a player will know immediately
the right answer if the other has 2 and so on. This is formalized in the Theorem on page 5 in [5].

The paradox is that although they might figure out immediately that both numbers are positive
without being told so, they cannot figure out the correct solution unless a lower (or upper) bound is
given. In each step, they simulate playing a smaller pair of consecutive integers, hence the problem
has an essentially finite descent approach, the direction being however bottom-up.

*Berlin Mathematical School, Institut fiir Mathematik, MA 2-2, Technische Universitdt Berlin, Strafle des 17. Juni
136, 10623 Berlin, Germany.

!Supported by the Deutsche Telekom Stiftung. E-mail: fguenth@math.tu-berlin.de
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Equivalently, we can consider the set of positive integers as a semi-infinite path (a very simple graph
structure). If an upper bound is given as well, the path is finite. Now both players are sitting on
an edge knowing only the position of the other player and try to figure out their own position. The
strategy we described above consists of cutting off leaves (or edges, as in [5], but the term “leaves” is
better suiting our purpose).

1.2 Background

One classical formulation of such a problem we find in the book of Fagin, Halpern, Moses and Vardi
[2]: A family has n children playing outdoors one day. Some of them (for instance k) have gotten
some mud on their foreheads, and whoever does, must clean up before dinner. Everyone can only
see the faces of others, and no discussion of whose forehead is muddied happens. At some point the
fathers goes out, looks at them, and says “At least one of you has mud on their forehead.” Nothing
happens for the first £ — 1 time intervals, and during the kth, the muddied children go and wash their
faces. The question is, what was the reasoning behind this. After all, the father does not impart new
information to any child (assuming k > 2). However, what he says makes each child aware that the
others have the same information.

As for example in [2], we can formalize the above, by stating that these paradoxes play on the notion
of mutual vs. common knowledge. While mutual knowledge is limited to one epistemic level (“A
and B know a fact ¢”), common knowledge presumes an ad infinitum iteration of the statement: “A
knows that B knows that A knows... the fact ¢” and the converse. Hence, if in the game from [L.T]
no bounds for the pair of numbers are given, it is mutual knowledge if, say, A and B are assigned the
pair (5,6) that the numbers are positive, but, since lacking a base case, no common knowledge can be
derived from it. Thus, it is not possiible that the players work their way up to a solution.

Introduced by Lewis in [3], and also analysed in [2], common knowledge plays a central role in daily
life, as it is necessary for the interaction of a group of agents and for establishing convention. For
instance, one such convention is that the red colour of the street light means “stop”. Here, it does
not suffice that each driver and pedestrian is aware of this, but that each is aware the other is aware,
and so on (that is, it is safe to cross the road as a pedestrian when it is red for vehicles, since any
pedestrian assumes any driver is aware of the convention).

Several models exist for this (and epistemological aspects in general), one of them using an extension
of modal logic [2, [4], leading to a graph representation based on the concept of possible worlds (from
the perspective of any agent, given their current level of information) [2]. For a detailed description
we direct the reader to the given literature.

1.3 Organization of the paper

Our purpose it to generalize the game from [[I] to finite graphs, where the players are given the
endpoint labels of an arbitrary edge, with the aim to guess it. There are essentially two variants of
this game: Either they are both allowed to speak in each time step, or they talk one after another,
the starting player being known. Note that in the base problem above, there is not a big difference
between both variants.

In Section 2 we will discuss the case of two players on finite (simple) graphs. First, we show in
Section [Z.1] that at least one player will figure out the solution for any edge of the graph if and only
if the graph is a forest. The result is the same if both players are allowed to discuss before the start
of the game, already knowing the graph. Moreover, cutting off leaves is the most effective strategy in



the sense of knowing the solution as quickly as possible. It will follow that cutting off leaves is also
the strategy they come up with if they are not allowed to discuss before. If they speak in turns, the
strategy is very similar, but slightly differs with respect whose turn is it. Note that if both players
can discuss a strategy, it does not matter whether they are allowed to talk at the same time or not.
We describe the strategy of cutting off leaves in more detail in the proof of Theorem

In Section we show that for any tree there exists a strategy such that both players can determine
their position. In the case they do not discuss before, we give a criterion which player will answer
first, how long the player needs and if the other one also can find out their position. Here it makes a
difference whether they talk simultaneously or alternately in each time step.

The ideas we developed in the case of undirected graphs work for directed graphs in a similar way.
Only the concept of a path will slightly differ. We state the corresponding results in Section [3l

We close our paper with remarks to some possible future directions in Section [l

2 Two-player game on simple graphs

Let G = (V, E) be a finite simple graph. The players A and B are placed on nodes u # v € V not
knowing on which position in V' they are, but knowing that their assigned nodes are adjacent. For
simplicity, we identify the players with the vertices they are placed on. Now both try to figure out on
which position they are knowing only G and the vertex of the other. Since the connected component
of the graph they are placed on is common knowledge, we will assume that G is connected.

2.1 Strategy

In the following, we will simultaneously handle the cases whether they are taking turns in speaking or
are making their statements at the same time. For the next lemma, it does not matter whether both
players have discussed a strategy before or come up with one independently.

Lemma 2.1. Suppose both players have a strategy such that they are knowing the right answer when
they say so. Let A guess their position after n time steps where B has not said anything before time
n. Then, if A had been placed on a different vertex adjacent to B, B would have guessed their position
correctly not later than time n — 1.

Proof. Assume the contrary. Then A would have the same information in both situations, namely the
position of B and that B had not said anything in the n — 1 steps before. Thus, A would guess the
same position for both cases, contradicting that they knows the correct answer. O

The following proposition will describe the graphs where such a game is possible to finish, regardless
of the chosen positions:

Theorem 2.2. All edges of a simple graph G can be guessed correctly by at least one of the players if
and only if G is a tree.

Proof. =: Suppose the contrary. Since G is connected, GG contains a cycle. We choose an edge of the
cycle and a positioning of the two players on it in such a way, that the time n needed for guessing the
edge correctly is minimal. By Lemma 2] at least one neighboring edge of the cycle is guessed in at
most n — 1 steps (assuming the right positioning of players), contradiction.



<: In the following, we consider a tree G. For any X C V(G) we define L(X) as the set of all leaves
of G contained in X.

Suppose first that they talk simultaneously. If both players have not discussed a strategy before, then
they can at least cut off all vertices of degree 1 of the graph after both players have said nothing,
since one of them would now the answer immediately if they know the other one to be on a leaf. The
strategy corresponding to cutting off all vertices of (current) degree 1 will be called cutting off leaves.
Thus, all edges of a tree can be guessed with this strategy.

Suppose now they speak alternately, A being the starting player. Since G is a tree and thus bipartite,
we take the corresponding decomposition of V into V4 and Vp, such that A € V4. After A said
nothing in the first round, B knows that they are not in L(Vp) and can cut all these leaves off. Both
players can then remove G(L(Vp)) and update G. If they still do not know where they are, A can
now cut off all vertices of L(Vy), followed again by removing G(L(V4)), and so on. Since G is a tree,
they cannot get stuck. We call this strategy cutting off leaves as well. O

The following theorem shows that they cannot exclude more vertices in a step, such that cutting off
leaves is exactly the strategy they will play if they cannot talk about a strategy before.

Theorem 2.3. Let G = (V,E) be a tree and suppose both players have a correct strategy. Take any
positioning of A and B. Partition V into two independent sets V4 and Vg such that A € V4. Now
we direct any edge to the player who knows the answer first (if they both say the correct answer in the
same moment, the edge will be bidirected) and label it by the time in which the player says the correct
answer. Here the choice of players on the edge is given by the partition of V into V4 and Vp.

Then the labels are strictly increasing along directed paths. Moreover, unless G consists of only one
edge, there exist either one or two vertices with all incident edges going inward. For all other vertices,
there is exactly one incident edge going outward. If there are two vertices with all incident edges going
inward, then they are connected by a bidirectional edge. Also, this is the only case an edge with two
directions can appear.

In particular, any strategy is a variant of cutting off leaves, and both players come up with cutting off
leaves if they do not discuss before.

Proof. That labels are strictly increasing along directed paths follows directly from Lemma 211 Of
course, in the case they speak alternately, the label corresponding to an edge pointing to the player
speaking at odd or even time can only be odd or even, respectively.

The endpoint v of an unextendible directed path is defined as a vertex with all incident edges going
inward. By Lemma 2.1 any path from a point v’ # v to v is directed to v. If no incident edge has two
directions, v is the only vertex with this property. If there is such one, the other vertex v* incident to
this edge also has the property of having all incident edges ingoing.

Lemma 2.T] shows that if one edge incident to a vertex is outgoing, all other edges incident to this
vertex have to be ingoing and cannot be outgoing. In particular, bidirected edges can only connect
vertices with all incident edges going inward. No other adjacent edge can have two directions. It
follows that v and v* are the only vertices with all incident edges being ingoing, and the edge incident
to both is the only one with two directions.

We directly see that in time step n only leaves of the graph consisting of edges with labels greater
or equal than n are guessed, and the player on the interior endpoint says the correct answer (unless
the updated graph consists of only one edge by this point and we cannot speak about the interior).
Thus, any strategy is a variant of cutting off leaves, and the latter one is the fastest one among all



strategies. Since both players can at least cut off all leaves of the corresponding set V4 or Vg in their
step when they do not discuss before, cutting off leaves is exactly the strategy they come up with if
they have not discussed before. O

Example. Figure [Tl and Figure (2] visualize the strategy of cutting of leaves when speaking simulta-
neously or alternately, respectively, in the notation of Theorem 2.3l White vertices correspond to V4
and black to Vz. Player A starts and talks at odd time, player B at even time.

[ }
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Figure 1: Notation of Theorem 23] for cutting off leaves when speaking simultaneously

We can summarize the difference between the cases where the players speak simultaneously or alter-
natively, as follows:

e If the game is played simultaneously: At each time step, GG is updated by removing all leaves of

G.

o [f the game is played alternately: After each odd time step, G is updated by removing all leaves
of G that are in Vg, whereas after each even one, all vertices of V4 that are leaves of G get
removed.

Remark. Suppose G is a directed tree equipped with a labeling fulfilling the statement of Theorem 2.3]
respecting the parity in the case the players speak alternately, meaning that the starting player can
only guess their position at odd and the other one at even times. Then this labeling corresponds to
a strategy: Player A (B) looks at all edges incident to the position of B (A), and if an edge with
label n is pointing away, they indicate at time n the endpoint of this edge unless B (A) has said their
position before (we do not specify yet what they will say after the other player has told their position,
assuming for the moment the game stops at this point). Note that there is at most one such edge,
since at most one edge incident to a vertex is outgoing. Since each edge is directed, at least the player
on the vertex where the edge is ingoing will say the answer after some time. The strategy is correct,

since by construction, all ingoing edges to the position of B (A) are guessed by B (A) themselves
before.
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Figure 2: Notation of Theorem [2.3] for cutting off leaves when speaking alternately

Finally, note that if A and B can discuss before, the cases when speaking simultaneously or alternately
are essentially equivalent.

Proposition 2.4. If both players can discuss a strategy before the start of the game, the set of edges
of the graph they can find out correctly is the same independent of whether they speak simultaneously
or alternately in each time step.

Proof. Suppose the players have a strategy if they speak simultaneously. They can adapt it to the
alternative case as follows: they agree before that player A speaks in each odd and player B in each
even time step. Moreover, B ignores the information they just got from the immediately preceding
round of A just until after their own turn is over.

Now suppose they have a strategy when they speak alternately. Then in each time step, when one
player would remain silent, the same says nothing when they are allowed to talk at the same time.
This yields an equivalent strategy for the case of simultaneously speaking. O

2.2 Who is first?

Proposition 2.5. For any tree G = (V, E), there is a strategy allowing both players to determine
their position.

Proof. Direct and label G according to Theorem [2.3] and the cutting off leaves strategy. Now multiply
all labels by |E|. Establish a bijection ¢ between E and the set {0,1,...,|FE| —1}. Now for each
e € E add ¢(e) to the label of e. In the case they speak alternately, multiply the resulting number
by 2. Additionally, subtract 1 if and only if the edge is pointing to the starting player. We obtain a
labeling of G fulfilling the statement of Theorem 2.3 with all labels being different. By the remark
after Theorem [2.3] the labeling corresponds to a strategy. Since all labels are different, the player who



does not say the answer first can figure out their position correctly by the time the other one needed.
Thus, both players can find out their position. O

Because both players can figure out their position with the right strategy by Proposition 2.5, we now
consider the case they do not talk about a strategy before. We will discuss whether both players can
get the right answer and how long the first player needs. This also gives an lower bound for the case
of general strategies by Theorem 2.3]

Theorem 2.6. Let G = (V, E) be a tree and assume that both players play without discussing about
a strategy before. Let hp(A) be the height of A in the tree rooted in B and ha(B) the height of B in
the tree rooted in A. Let h'y(A) := hp(A) +1 if hp(A) is odd, and Wg(A) := hp(A) otherwise. In the
same way, let hy(B) := ha(B)+ 1 if ha(B) is even, and h/y(B) := ha(B) otherwise.

(i) Suppose they speak simultaneously in each step. If hp(A) > ha(B), player A will first know
their position at time ha(B); if hg(A) = ha(B), both of them will figure out their position at the
same time hp(A) = ha(B); if hg(A) < ha(B), player B says the answer first at time hp(A).

In the case that hg(A) > ha(B), B will figure out their position at time ha(B)+1 as well if and
only if there is no node other than B in the tree rooted in A with height ha(B). The analogous
statement is true for the case hp(A) < ha(B).

(ii) Suppose they speak alternately in each step, A being the starting player. If hz(A) > W,(B),
player A will first know their position at time h'y(B); if hiz(A) < hy(B), player B says the
answer first at time h'g(A).

In the case that kg (A) > W'y (B), B will figure out their position at time h'y(B)+1 as well if and
only if there is no node other than B in the tree rooted in A with height h'y(B) or h,(B) — 1.
The analogous statement is true for the case h'g(A) < hy(B).

Proof. (i) Consider the longest simple path starting in A going through B and the longest simple path
starting in B going through A. By Theorem [2.3] the shorter of them will determine the time until one
player knows the answer. If both have the same length, both players will know the answer at the same
time (the corresponding edge has two directions), otherwise the edge is pointing to the player being
on the boundary of the shortest path. The lengths of these paths are given by ha(B) and hp(A),
respectively.

For the second part of the statement, assume without loss of generality that A knows the answer first
at time n. Then B can figure out their position as well if and only if the edge incident to A and B is
the only edge incident to A with label h4(B) (note that any edge going out from A has a label greater
than h4(B) by Lemma 2.T]). This is the case if and only if there is no node other than B in the tree
rooted in A with height h4(B).

(ii) In the same way as in (i), the label on the edge connecting A and B is given by the smaller of
h'5(A) and W/, (B). The possible difference of 1 between A’ and h is due to the fact that A can say the
answer at odd and B at even times only. The edge is directed to A if h/,(B) is smaller, otherwise it
is directed to B.

Without loss of generality, assume A knows the answer first. As above, B can figure out their position
as well if and only if the edge incident to A and B is the only edge incident to A with label 1y (B).
Remembering that A can answer at odd times only, this is only the case if and only if there is no
node other than B in the tree rooted in A with height A/, (B) or h/4(B) — 1. In the first case, the leaf
determining the height of B is in Vp, in the second case in V4. As before, V is partitioned into V4
and Vp such that each edge is incident to points in both sets and A € Vy. O



3 Two-player game on directed graphs

Let G = (V, E) be a finite directed graph. The players A and B are placed on an edge in E. For
simplicity, we identify the players with the vertices they are placed on. Now both try to figure out on
which position they are knowing only G, the vertex of the other and the orientation of the edge.

In the following, we are only considering simple directed graphs if we speak about a directed graph.
Note that the graphs in Section 2loccur as a special case, when any two adjacent vertices are connected
by two edges with different orientation. Since the ideas are very similar, we will often refer to Section 2]
for proofs of analogous statements.

Definition. An edge together with a placement of A and B on the endpoints is called admissible, if
the orientation of the edge agrees with the orientation the players got assigned before.

If the placement is clear (for example, when the position of one player is given or for vertex sets
associated to A or B), we will not give the details.

The following analogue of Lemma [2.1]is shown in the same way.

Lemma 3.1. Suppose both players have a strategy such that they are knowing the right answer when
they say so. Assume A guesses their position after n time steps where B has not said anything before
time n. Then if A had been placed on a vertex A" # A adjacent to B, such that the edge (A', B) is
admissible, B would have guessed their position correctly no later than time n — 1.

To transfer the theorems of the previous section to the case of directed graphs, we need a new concept
of paths, see for example Figure B

Definition. A zig-zag-path is a path, where at each interior vertex either both incident edges are
ingoing or both are outgoing. If the path is closed, we call it a zig-zag-cycle.

Figure 3: A zig-zag-path

We introduce now vertex sets V4 and Vpg.

Definition. A € V4, whereas any other vertex A’ is in V4 if and only if there is a zig-zag-path from
A to A’ of even length such that the first edge (incident to A) of this path is admissible. Vp is defined
in the same way as V4 by replacing A by B. Equivalently, any point of Vg can be reached by an
appropriate zig-zag-path of odd length starting in A.

Remark. Note that also for connected G without zig-zag-cycles, there might be vertices being neither
in V4 nor in V. Moreover, the intersection V4 N Vp might be non-empty.

If both players have not discussed a strategy before, they can restrict to the subgraph G(V4 U Vp)
immediately. Namely, this set can be constructed in the following way: Starting in A, add all adjacent
vertices B’ with an admissible orientation of the edge AB’ (i.e. all B’ candidates for B). For each of



them, add all adjacent vertices that are candidates for A. Continue this procedure. This set is known
for both A and B as well knowing the position of each other.

This resulting graph G’ will be further modified as follows: Note that the only vertices with both inde-
gree and outdegree non-zero are those belonging to both V4 and V. Let v € V(G') with indeg(v) # 0
and outdeg(v) # 0. This vertex will now be removed and replaced (split) by viy and veut, vertices
incident exactly to the ingoing and outgoing edges of v, respectively. Since the procedure strictly
decreases the number of vertices with mixed degree, it must be finite.

Vout

) before splitting ) after splitting

Figure 4: Split vertex v

Remark. The graph G, obtained after applying the sequence of all possible splits to G’ has only
zig-zag paths and all edges are admissible.

It is important to notice that G contains a zig-zag cycle if and only if G’ does. Indeed, suppose G
has such a cycle. Then, there are two cases:

e No pair of vertices on the cycle stem from the same split vertex. Then, it must also have existed
before splitting, since the procedure does not add new edges.

e There exists at least a pair v, vout that stem from the same vertex v before the splitting,
assuming without loss of generality that v was the last such split vertex. In this case the cycle
already existed before splitting, passing twice through v.

U Uin ! O Uout
A B Ao———8 B
s O 3 3@ 1 5 O——® O—et
v Uin Vout
(a) G’ (b) G

Figure 5: Obtaining the splitgraph

We can now easily reduce the problem to the undirected case and prove, with the exact same argument,
the following theorem.



Theorem 3.2. A directed graph G has all edges guessable under the above conditions if and only if it
does not contain zig-zag cycles (i.e. it is a zig-zag forest). All conclusions relating to the number of
necessary steps or to who makes the first guess hold. The comparison of the cases of having discussed
a strategy before or not concludes along the same lines.

4 Further directions

One variation, for the two-player case, would be introducing “cycle” as a third allowed answer in
addition to saying nothing or the results. This seems to allow further edges to be correctly guessed in
a general graph.

On the other hand, one can naturally generalize the problem to a multiplayer game where n players
are the vertices of a subgraph H of G with known isomorphism class. The players may or may not
know their positions in H, otherwise the rules of the game stay the same. It would be interesting to
describe how the game runs in at least a number of particular such cases.
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Abstract

Hat problems have recently become a popular topic in combinatorics and discrete math-
ematics. These have been shown to be strongly related to coding theory, network coding,
and auctions. We consider the following version of the hat game, introduced by Winkler and
studied by Butler et al. A team is composed of several players; each player is assigned a hat
of a given colour; they do not see their own colour, but can see some other hats, according
to a directed graph. The team wins if they have a strategy such that, for any possible as-
signment of colours to their hats, at least one player guesses their own hat colour correctly.
In this paper, we discover some new classes of graphs which allow a winning strategy, thus
answering some of the open questions in Butler et al. We also derive upper bounds on the
maximal number of possible hat colours that allow for a winning strategy for a given graph.

1 Introduction

Hat games are a popular topic in combinatorics. Typically, a hat game involves n players, each
wearing a hat that can take a colour from a given set of ¢ colours. No player can see their own
hat, but each player can see some subset of the other hats. All players are asked to guess the
colour of their own hat at the same time. For an extensive review of different hat games, see [1].
Different variations have been proposed: for instance, the players can be allowed to pass [2], or
the players can guess their respective hat’s colour sequentially [3]. The variation in [2] mentioned
above has been investigated further (see [I]) for it is strongly connected to coding theory via
the concept of covering codes [4]; in particular, some optimal solutions for that variation involve
the well-known Hamming codes [5]. In the variation called the “guessing game,” players are
not allowed to pass, and must guess simultaneously [6]. The team wins if everyone has guessed
their colour correctly; the aim is to maximise the number of hat assignments which are correctly
guessed by all players. This version of the hat game has been further studied in [7, 8] due to its
relations to graph entropy, to circuit complexity, and to network coding, which is a means to
transmit data through a network which allows the intermediate nodes to combine the packets
they receive [9].

In this paper, we are interested in the following hat problem, a small variation to Winkler’s
hat game presented in [10]. We are given a directed graph D (without loops and repeated arcs,
but possibly with bidirectional edges) on n vertices and a finite alphabet [¢] = {0,...,q — 1}
(g > 2). We say that f = (f1,...,fn) : [q]™ — [¢]™ is a D-function if every local function
fv : [g]" — [g] only depends on the values in the in-neighbourhood of v in D: f,(x) = fu(zn-(a))-
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We ask whether there is a D-function over [g] such that for any = = (x1,...,z,) € [q]|",
fo(z) = x, for some vertex v. In that case, we say that D is ¢g-solvable and that f solves D.

In terms of the hat game, each vertex in the graph represents a player, an arc from player
u to v means that v can see u. The set [g] then represents the possible colours of their hats
and x = (z1,...,2,) € [g]" represents a possible hat assignment. Each player v must guess the
colour of their hat according to some pre-determined rule which can only depend on the hats
that they see: fy(zn-(y))- If one player guesses correctly, i.e., z, = f,(r), then the team wins;
if all guess incorrectly, the team loses. The question is then to come up with a winning strategy
regardless of the hat assignment.

Clearly, if D is g-solvable, then it is also (¢ — 1)-solvable. The clique K, is g-solvable [10]: if
we denote the players as elements in [g], then v guesses that the sum of all hat assignments is
equal to v modulo ¢: f,(x) = — Zu#v Ty + v. More generally, if the players play on K,,, then
there is a strategy which guarantees that at least |n/q| players guess correctly (simply split
K, into [n/q| cliques K;). The case for K, and ¢ = 2 colours with unequal probabilities was
further studied in [I1] [12]; its relation to auctions has been revealed in [13] and developed in
[14].

Results for other classes of graphs have been found in the literature. Butler et al. proved
in [15] that for any g, there exists a g-solvable undirected bipartite graph. Unfortunately, that
graph has a doubly exponential number of vertices. In the same paper, they also proved that
undirected trees are not 3-solvable.

The main contributions of this paper are as follows. In [I5], it is asked whether there exist
K,-free g-solvable undirected graphs with a polynomial number (in ¢) of vertices. We give
an emphatic affirmative answer: for any e, there exist K,-free g-solvable graphs with a linear
number of vertices; moreover, we present a class of K,-free graphs with w = o(q) which are
g-solvable and have a polynomial number of vertices. We also refine the multiplicative constant
for some values of € by considering small undirected graphs or directed graphs. We also prove
some non-solvability results for bipartite graphs and for graphs with a large independent set.
Another question asked in [I5] concerns so-called edge-critical graphs, i.e., undirected graphs
which are g-solvable but which have no g-solvable proper spanning subgraph. Clearly, the only
edge-critical graph for ¢ = 2 colours is Ko; [I5] asks whether there exists an infinite family of
edge-critical graphs for any other ¢ > 3. By studying the solvability of cycles, we are able to
show that the cycles whose length are a multiple of six form an infinite family of edge-critical
graphs for 3 colours.

The rest of the paper is organised as follows. In Section 2], we prove the existence of bipartite
or K -free g-solvable undirected graphs with a relatively small number of vertices. In Section [,
we refine some constructions by extending our consideration to directed graphs. We then derive
some non-solvability results in Sectiond. Finally, we prove the existence of a class of edge-critical
3-solvable graphs in Section Bl

2 Undirected constructions

In [15], it is proved that for any g > 2 there exists a g-solvable bipartite graph with a doubly
exponential number of vertices (qqqf1 + q — 1 vertices to be exact). We refine their argument to
construct a g-solvable bipartite graph with only an exponential number of vertices.

We say that a set of words S in [¢|™ is distinguishable if there exists a word = € [q]
that dg(x,s) < m—1for all s € S, where dy is the Hamming distance. Alternatively, using the
terminology of [16], this is equivalent to S having remoteness at most m — 1. The main reason
we are interested in distinguishable sets is as follows. If in a graph there is an independent
set M of cardinality m, and the vertices in M know that their hat assignment z € [¢]™ is any

™ such



possible element of a set S C [g]™, then there exist guessing functions for the vertices of M
achieving at least one correct guess if and only if S is distinguishable.

Theorem 1 (See [I5]). The complete bipartite graph K,_; 4—1ya—1 is g-solvable.

Proof. Set m = ¢ — 1, and label the left vertices of K,_; 4_1)a-1 by v1,...,vm. Write [q]+
for the set {1,...,q — 1} (so [g]+ C [g]) and label the right vertices of K, _; (4_1)s-1 by w, for
z € [q]. For each z € [q]"" define the guessing function f, : [¢]™ — [¢] by

0 if dg(z,2z) =m
min{i : z; = z;} if dg(xz,z) <m

f2(z) =

It is enough to show that for any hat configuration (z,y) = (21, -, Tm, Y(1,..1)s - - - Y(g=1,....g—1))
if all the vertices w, guess incorrectly, then the vertices v; know that the vector x lies in some
distinguishable set.

That is, it is enough to show that for all y there exists a € [¢]™ such that

ﬂ f;l(yz)c c Bm—l(a)'
z€[q|T

(The m components of the vector a, which depends on y, are exactly the guessing functions for
the vertices v1,...,vUpm.)
We prove by (reverse) induction on i the following:

Claim. Suppose (z,y) € [q|™ x [q]!9% is a configuration of hats guessed incorrectly by every

verter. Then, for everyi =1,...,m, and every (z1,...,2i-1) € [q]f;l there exists (z;,...,2zm) €
[q]ﬁ’f_lJrl With Y2y, zm) & {i,...,m}.
Proof of Claim. Let © = m, and fix 21,...,2n—1. Consider the variables y(,, .. . . for z €
[q]+; if all are equal to m, then

X (2) := f(7z11,...,zm71,z) (Y(zr,zmr,z) = 1T € [q]™ : 7 # 2 for all i < m and z,, = 2}.

Hence
U Xm(2) ={x € [q]™ : ;i # z; for all i <m and z,, # 0}

z€[ql+

implying that ﬂ Xm(2)¢ = Bp—1(21,...,2m-1,0), contradicting the fact that the vertices

z€[ql+
U1,. ..,y guess incorrectly. Therefore there exists some z € [¢]; with Y(orzmo1,2) 7 M
Now, suppose the statement is true for ¢ > 1; we show it holds for ¢ — 1. Fix z1,...,2;_9;

for each a € [¢]4, by our inductive hypothesis there exist z;(a), ..., zn(a) € [g]+ with

Y(z1,.y2i—2,0,2i(a),....2m(a)) € {ia v ,m}.

So, it is enough to show that for at least one a € [g]; the variable Y., . .. 5 .a.z(a),...2m(a)) 1S DOt
equal to ¢ — 1. For a contradiction, suppose not, so that all such variables equal ¢ — 1. Then,

1
Xzfl(a/) — f(Zl7___7Zi_27a72i(a)7___72m(a))(y(zl,...,zi_g,a,zi(a),...,zm(a)))
={zeq" :az;#zforall j <i—1and z;1 =a}.
Therefore,
U Xici(a) ={x €™ :xj # z; for all j <i—1and z;_; # 0}

a€lql+



implying that ﬂ Xi—1(a)® € Bp—1(21,---,2i-2,0,...,0) contradicting the fact that vy, ..., vy,

a€lql+
guess incorrectly. O

Finally, applying the claim for i = 1, we find a z € [¢]"!' where y, cannot take any value in
{1,...,m}. This implies that y, = 0 and £, (y.)¢ = B,,_1(2), so that at least one of vy, ..., vy,
guesses correctly. O

The lezicographic product of a directed graph D = (V| E) and a clique K, denoted as (D, r),
is defined as the graph with vertex set V' x [r], where ((u,a), (v,b)) is an arc if and only if either
(u,v) € E or u=wv and a # b. If D has n vertices and clique number w, then the graph (D, r)
has rn vertices and clique number rw.

Lemma 1 (The blow-up lemma). If G is a p-solvable directed graph, then (G,r) is a q-solvable
graph, where q = pr.

Proof. Let f be the corresponding guessing function that solves G over p colours. For any
vertex (v,a) in (G,r), we denote the configuration as (z(yq),Y(w,a)) € [p] X [r] and we also
denote X, = Zae[r] T(y,a)s Yo = Zae[r] Y(v,a) and write X for the vector (X,,v € G). We claim
that the (G, r)-function g, defined as follows for each (v, a), never fails:

9(v,a) (CE, y) = (fv(X) — Xy + L(v,a)s =Y, + Y(w,a) — a) :

Suppose (x,y) is guessed wrong by all vertices. In particular, it is guessed incorrectly by (v, a),
hence either f,(X) # X, or Y, # a. Since this holds for all a, in particular this holds for
a = Y,; we conclude that f,(X) # X,. Since this holds for all v, this violates the fact that f is
a solution for G. O

Theorem 2. For any € > 0, there exists ne such that the following holds. For any q, there
exists a q-solvable undirected graph with at most neq vertices and clique number eq.

Proof. Firstly, let p = [1/€e| + 1 and let ¢ be divisible by p. Let G, be the p-solvable bipartite
graph in Theorem [l and let g, denote its size. Then by the blow-up lemma, (G,,q/p) is a
g-solvable graph with g,q/p vertices and clique number 2¢/p. If ¢ is not divisible by p, consider

¢ =plg/p] < q(1+1/p) and ne = (1+1/p)gp/p. O
Theorem 3. For any w such that w > %k’lgol% holds for large enough q and some m > 0, there

2m+1

exists a q-solvable K, -free undirected graph with at most q vertices for q large enough.

Proof. Let p = sz—qj + 1. According to Theorem [II the graph Ky, 1 (p—1)p-1 is p-solvable. Then
by the blow-up lemma, there exists a g-solvable graph with n := % ((p —1)Ptyp— 1) vertices
and clique number 2% < w. We have n < g(p — 1)?~!, and hence for ¢ large enough

2 1
p—lg—q§2mﬂ and
w log log q
log ¢

logn < loggq + 2m " {log(2m) + loglog g — log loglog ¢} < (2m + 1)loggq,
q

loglo

and hence n < ¢?m+1.

O

In general, the constant n. obtained from Theorem [l decreases rapidly with e. We refine it
below for € = 2/3.



Proposition 1. The complete bipartite graph Ko is 3-solvable.
Proof. Denote the bipartition as {vy,v2} U{vs,v4}. With

=)
the guessing function is given by
(fi, fo) = (m3,20) A, (f3, fa) = (21, 79) A"
Suppose z is guessed wrong by all vertices. The vertices v and v4 guess wrong, hence we have
(x3,24) = (acl,xg)Afl + w
for some w = (w1, ws) € S :={(1,1),(1,2),(2,1),(2,2)}. Similarly, we have
(x1,m2) = (23, 24)A +u = (21,22) + WA+ u

for some u € S. However, it can be shown that for any (wy,ws) € S, wA ¢ S and hence
wA +u # (0,0). We thus obtain the contradiction (x1,x2) # (1, x2). O

Corollary 1. For any q divisible by 3, there exists a g-solvable graph on 4q/3 wvertices with
clique number 2q/3.

3 Directed constructions

If we allow directed graphs, then we can further refine the constants obtained in Section 2l

Theorem 4. If q is even, there exists a q-solvable directed graph with 3q/2 vertices and clique
number q/2. For any q divisible by 3, there exists a g-solvable directed graph on 4q vertices of
clique number q/3. For any q a multiple of four, there exists a q-solvable directed graph on 10q
vertices and with clique number q/4.

The main strategy to produce a p-solvable oriented graph is by using a gadget, defined
below.

Definition 1. An oriented graph D on n vertices is called a g-gadget if it is not g-solvable, but
if there exists a D-function f over [g] such that any configuration x guessed incorrectly by f
satisfies an equality of the form z1 = ¢(xa, ..., x,) for some ¢ : [¢]" ! — [q].

Lemma 2 (The gadget lemma). If there exists a p-gadget on n vertices, then there exists a
p-solvable oriented graph on n(’z’) + p vertices.

Proof. Start with a transitive tournament on p vertices with arcs (i,7) for all ¢ < j. For any
ordered pair (i,j) with ¢ > j, add a gadget D;; and arcs from 4 to all vertices in D; ; and
whence to j. This yields an oriented graph G on n(’Q’) +p vertices; we claim that G is p-solvable.
We denote the vertices of the original tournament as 0,1,...,p — 1 and for each ¢ > j, the
vertices of the gadget D; ; are 1;;,...,m; ;.
Let f be the function on the gadget D with corresponding ¢. The corresponding function g
for G is as follows:

g_](x) = _Zxk‘ - Z [QS(ka’ja s axnkyj) - xlk’j] +]’

k<j k>j
91,5 (x) = fl('r2i,j’ s ?xni,j) - Ti;
9o ; () = folw1,; + 24,02, 5, Ty ;) v=2,...,n.



Suppose that x is guessed incorrectly by all vertices. First, all vertices in D; ; guess wrong;
we then have
fl(in,ﬁ e 7xni,j) # T, ; + X,
Jo(T1,, +2is @, 5 Ty ) F Ty s v=2,...,n,
hence
Ty = (ﬁ(.%’gm., cee ,xni’j) - 1‘11.’1. .

for all ¢ > j.
Now, j guesses wrong, therefore

Zxk =+ Z [(ﬁ(ka’ja e 7xnk:,j) - xlk,j] + x] 7& j7
k<j k>j

which combined with the above, yields
j{: T # J-
kel[p]

Since this holds for all j € [p], this leads to a contradiction. O

Proposition 2. The following graphs are gadgets.

1. The graph with a single vertex and no arc is a 2-gadget.
2. The directed cycle on three vertices is a 3-gadget.

3. The graph D on siz vertices in Figure[ll is a 4-gadget.

Proof. The first graph is trivial. For the directed cycle on vertices 1, 2,3 and arcs (1, 2), (2, 3), (3,1),
the function f is

fi(z)
fo()
f3(x)
Therefore, = is not guessed correctly by any vertex if and only if z1, x9, and x3 are all distinct.
Thus we have {z1,x2,z3} = [3] and hence z1 + z9 + x3 = 0.
For D, first remark that the transpose of its adjacency matrix (i.e., the matrix Ap where
A; ; = 1if and only if (j,4) is an arc in D) is given by

3

= l‘l
= Z92.

01000 1
00110 0
100010

AD_101001
110100
011010

For ease of presentation we shall write the hat configuration x as a column vector; we let
f(x) = Mz, where

0 -1 0 00 1
0 0 -1 100
-1 0 0 010
M= -1 0 1 0 01
1 -1 0 1 00
0O 1 -1 010



Figure 1: The 4-gadget D in Proposition

Then z is guessed wrong by all vertices if and only if Lx is nowhere zero, where

-1 -1 0 0 O 1

0 -1 -1 1 0 O

-1 0 -1 0 1 0

L= -1 0 1 -1 0 1
0

1 -1 0 1 -1
o 1 -1 0 1 -1

Denoting the rows of L as Lg,...,Ls, we see that Ly = Lo — Ly, Ly = L1 — Lo, Ly = Loy — Ly.
Therefore, = is not guessed right if and only if Lox, Lix, and Loz are all distinct and nonzero.
Therefore, {Lox, L1z, Loz} = {1,2,3} and x must satisfy

2x0 + 2w, + 222 + w3 + x4 + 15 = 2
Renaming the vertices such that the fifth vertex becomes first, we obtain the desired equality. [J

However, it is still unknown whether there exist gadgets for more than four colours.

4 Non-solvability results

In Section 21 we showed that a complete bipartite graph with one part of size ¢ — 1 was ¢-
solvable. In contrast, in this section we show that any bipartite graph that has a partition
with one part of size at most ¢ — 2 is not g-solvable. To do this we consider the following non-
distinguishable set in [¢]™ (in other words, a subset of [¢]™ with remoteness m). Set m = g — 2,
and denote the words w, = (a,...,a) € [g|™ for all a € [¢]\{0}, then W = {w, : a € [¢]\{0}}
is non-distinguishable. Indeed, for any = € [¢]™, let X = {b € [¢] : ; = bfor somei} denote
the set of values taken by the coordinates of z, then |X| < m < |W| and hence there exists
a € ([¢\{OP\X and thus dg(z,w,) = m.

In fact, our proof applies to a larger class of graphs than bipartite graphs, defined as follows.

Definition 2. We say a directed graph D is (m, s)-semibipartite if its vertex set can be par-
titioned into V= L U R, where |L| = m, |R| = s and D[L] is an independent set and D[R] is
acyclic.

Theorem 5. Any (m, s)-semibipartite graph is not (m + 2)-solvable.



Proof. Let ¢ = m + 2 and denote the vertices of R as rq,...,7s. Let y € [¢]° such that

y1 & {fri(wa) - a € [q]}
Y2 ¢ {fTQ(wa,yl) fa€ [Q]}

Ys ¢ {frs(waayla e aysfl) tac [Q]}§

such y exists for each set on the right hand side has cardinality at most |W| = ¢—1. Furthermore,
let b € [q\{fi,(y),.-- f1,.(y)} (where ly,..., 1, are the vertices of L), then all vertices guess
(wp,y) incorrectly. O

This theorem is best possible, for Theorem [l indicates that there are g-solvable bipartite
graphs with left part of size ¢ — 1.

Corollary 2. The complete bipartite graph Ky, is not (m + 2)-solvable.

Corollary 3. Any graph with a minimum vertex feedback set of cardinality one is q-solvable if
and only if g = 2.

Proof. By Theorem [B such a graph is not 3-solvable. Conversely, it is not acyclic, hence it
contains a directed cycle as a subgraph: let us prove that the directed cycle C,, on n vertices
is 2-solvable. Let the function be fi(x) = x, and f;i(z) = z;—1 + 1 for 2 < ¢ < n, then z is
guessed incorrectly by all vertices if and only if 1 = 29 = ... = x,, = x1 + 1, which is clearly
impossible. O

Theorem 6. Let D be a directed graph on n vertices with an acyclic induced subgraph of size
I.1If
q 1
N AT .
(n—1) <q — 1) <4q

Proof. We denote the set of vertices inducing an acyclic subgraph of cardinality I as A; we also
denote a guessing function as f. Let x € [q]/ be the hat assignment on A and y € [¢]"~! be the
assignment on the rest of the vertices. For each choice of y, denote by Sy(y) the set of choices
for x such that exactly d vertices in A guess correctly for all 0 < d < I. It is easy to prove
by induction on I that Ny := |S4(y)| = (é)(q —1)"=4. We shall consider the situation when
x € Sp(y), i.e., when no vertex in A guesses correctly; given y, there are Ny = (¢ — 1)! such

then D is not g-solvable.

assignments.
For any y, let G denote the number of times the vertices in A guess their colours correctly
when z ¢ Sy(y):

I I

Gi= Y > Wfulw,y) =z} =) dNg=1I¢""".
zeq)! i=1 d=1

The total number of correct guesses, over all assignments (z,y), is of course equal to ng™ .

Therefore, there are at most
H:=ng"'—¢1G=n-I)g" !

correct guesses over the whole graph for any (x,y) where z € Sy(y). On average, such an
assignment is guessed correctly

H —Dg'!
_(-Dg—"
qn—INO (q _ 1)[
times, and hence one hat assignment is never guessed correctly. O



Corollary 4. A graph with an acyclic induced subgraph of size I is q-solvable only if it has at
I
least I + q <1 — %) vertices in total.

Corollary 5. If a graph on n vertices has an acyclic induced subgraph of cardinality at least
n/2, then it is g-solvable only if n > 2a(q — 1), where a ~ 0.5675 satisfies o + log v = 0.

Proof. Suppose n < 2a(q —1), and let i = n/(2q) < a(q —1)/q, then logi +iq_L1 < log % and
hence

0>logi+1

S 1
> log i + iq log <1 + —)
qg—1

1 \“
1>i<1+—>
qg—1

n

n q 2
>_ -
I 2<q—1> ’

which, by Theorem [, shows that the graph is not g-solvable. O

5 Even cycles

In this section we show that a cycle whose length is a multiple of 6 is 3-solvable. In fact, we
can define guessing functions for any even cycle which have the property that at most 3 hat
configurations are not guessed correctly by any vertex.

For n > 1, let Cy, be the cycle of length 2n and let V' = {vj,v9,...,v,} and W =
{w1,wa, ..., w,} be a partition of the vertices of Cy, into independent sets, with v; adjacent to
w; and w;—1 for all i = 1,...,n (index arithmetic taken modulo n). Denote the hat colour of
v; by x; and its guessing function by f;. Similarly, for w;, denote its hat colour by y; and its
guessing function by g;. We define the guessing functions to be

yi—1 ify; #yi1+1, .

filyic, i) =17 e for i # 1; (1)
yi+1 ity =y1+1,

yi—1 ify #yn — 1,

y1+1 ifyr =y, —1,

x; if oy # w01 + 1,
x;—1 if oy =29 + 1,

J1(Ynsy1) =

gi(zi, xip1) = for i # n; (3)
Tn if x, # x1,

Ty, T1) =
gn(n; 1) z, —1 if z, = x1.

—N N —/



Graphically, we have

1 0 1 0 1 1
fizwyi|2 0 fi:wy]| 0 0
2 2 1 2 1 2
Yi—1 Yn
2 1 0 1 1
gi:wiy1| 0 1 1 gn:x1| 0 O
0O 0 2 2 1 2
X; Tn

the sets f; (z;) and g; '(y;) forming L-shaped regions of [3]".

Theorem 7. The cycle Cy, is 3-solvable for n = 0 (mod 3). Using the guessing functions
as defined above, when n = 1 (mod 3), the only configurations (x,y) that all vertices guess
incorrectly are

z=(a,a+2,a+1,a,...,a),y = (a,a+2,a+ 1,a,...,a) for some a € [3],
and when n =2 (mod 3), the only configurations (x,y) that all vertices guess incorrectly are
z=(a+2,a,a+1,a+2,...,a),y=(a,a+1,a+2,a,...,a+1) for some a € [3].

Proof. Suppose y = (y1,...,yn) € [3]" is the configuration of hat colours for the vertices in W
and that each vertex in W guesses incorrectly. Then z € (' g; 1(y,~)°, where

n
(Vo w) =z :zi=pi—1orzy =y — Lor (w,ir1) = (i + Ly +1)}
=1 i<n

N{z:x,=yp—1orzy =y, or (xn,z1) = (yp + 1y, — 1)}

Suppose further that each vertex in V' guesses incorrectly. We claim the following implica-
tions are true.

Claim. If (x,y) is guessed incorrectly by all vertices then the following hold. For all i # 1,
e Aisifri=y;—1theny;=y;1+1 and 2,1 =yi—1 — 1;
e B;: ifx; =vy; + 1 then either
1. yi=yi—1 and x;_1 = y;—1 + 1, or
2.y #yi1+1land vy =y;1—1;
and for all i # n,
o C:ifx; =y; then yip1 =y; — 1 and 41 = Yit1-

Proof of Claim. Take i # 1, and suppose x; = y; — 1. Since v; guesses incorrectly, we must
have y; = y;_1 + 1, so that z; = y;_1. But z € g;_ll (yi—1)¢ which implies that z;_ 1 = y;—1 — 1,
establishing A;.

Now suppose z; = y; + 1. Since v; guesses incorrectly, we must have y; # y;—1 + 1, so that
x; #yi_1— 1. Butx € gi:ll(yi_ﬁc which implies that either x;—; = y;—1 — 1 or (zj_1,2;) =
(yi—1 + 1,y;—1 + 1), the latter implying that y; = y;—1, which establishes B;.

10



Finally, take i # n and suppose x; = y;. Since x € g;l(yi)c, we must have x;41 = y; — 1.
But v;41 guesses incorrectly which implies that ;11 = y; — 1. To see this, use the fact that the
function f;, for ¢ # 1, can also be written as

iyt y:) = yior—1 iy #yia— 1,
e yi—1+1 ifyi:yi_l—l-

Therefore z; 11 = y;+1, establishing C;. O

We use the implications A;, B; and C; as follows. First, suppose z, = y, — 1. Then using
the chain of implications A,, A,_1, ..., Ao we find that z; = y; — 1 for all 4 and y; = y;_1 + 1 for
i# 1,80y, =y1+ (n—1) (mod 3). Since x1 = y; — 1 and v; also guesses incorrectly, we must
have y; = y, — 1, a contradiction unless n = 2 (mod 3). When n =2 (mod 3), we discover that
the configurations = = (a + 2,a,a+ 1,a+2,...,a),y = (a,a+ 1,a+2,a,...,a+ 1) for a € [3]
are guessed incorrectly by all vertices.

Now suppose x, = y, + 1. Since = € g, ' (y,)¢ we have that z1 # y,, + 1. We consider the
chain of implications B,,, B,,_1, ... for as far as possible and note that case 1 of B; cannot occur
for all i # 1, for then x; = y; + 1 for all ¢ and y; = y;_1 for i # 1, contradicting the fact that
x1 # yn + 1. This means that for some k > 1 case 2 of By occurs, so that ;1 =yr_1 — 1. We
then apply the chain of implications Ag_1, Ag_9,..., Az to find that x; = y; — 1 for all i < k,
so in particular xy = y; — 1. Since v; guesses incorrectly, we have that y; = y, — 1 which
contradicts the fact that x1 # y, + 1. Hence for any configuration with x, = v, + 1 there must
be some vertex that guesses correctly.

Finally, suppose z, = y,. Since x € g, '(y,)° we have that z; = y,. Since v; guesses
incorrectly, we must have that y; = y,,. To see this use the fact that f; can be also written as

YUn if Y1 7é Yn,
fl(yn7y1) = .
Yn— 1 if y1 = yn.

Therefore 1 = y;. We now apply the chain of implications Ci,C5,...,C,_1 to find that
x; = y; for all 4, and y;41 = y; — 1 for i # n. Therefore y,, = y1 — (n — 1) (mod 3), which is a
contradiction unless n =1 (mod 3). When n =1 (mod 3), we discover that the configurations
x=(a,a+2,a+1,a,...,a),y = (a,a+2,a+ 1,a,...,a) for a € [3] are guessed incorrectly by
all vertices. U

Unfortunately, this ‘L-shaped’ construction falls just short of proving 3-solvability when
n # 0 (mod 3); indeed, out of the 32" possible hat configurations, there are only 3 where all
vertices guess incorrectly!

In any case, the family of cycles of length a multiple of 6 gives an answer to a question of
Butler et al. about edge-critical graphs. A graph G is called edge-critical for q colours if G is
g-solvable, but G — e is not g-solvable for any edge e € G. For ¢ = 2 the only edge-critial graph
is the graph of a single edge, and for ¢ > 2 there are at least two distinct edge-critical graphs,
namely K, and some subgraph of the bipartite graph K,_; 4—1)a-1 presented earlier. Butler et
al. ask whether there are infinitely many graphs which are edge-critical for ¢ colours, for g > 2.
Since trees are known not to be 3-solvable, the cycles of length a multiple of 6 form such an
infinite family for ¢ = 3.

Theorem 8. The family {Cgy : k € N} is an infinite family of edge-critical graphs for 3 colours.

11
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The three-colour hat guessing game on the cycle
graphs

Witold W. Szczechla *

Abstract

We study a cooperative game in which each member of a team of N
players, wearing coloured hats and situated at the vertices of the cycle graph
Cy, is guessing their own hat colour merely on the basis of observing the hats
worn by their two neighbours without exchanging the information. Each hat
can have one of three colours. A predetermined guessing strategy is winning
if it guarantees at least one correct individual guess for every assignment of
colours. We prove that a winning strategy exists if and only if N is divisible
by 3 or N = 4.

1 Introduction

N ladies wearing white hats are sitting around the table and discussing a tricky task
which is going to be presented to them by the Wizard. They know he will suddenly
paint each hat one of three colours (green, orange or purple) in an unpredictable
way and then ask each of them to independently guess her own hat colour. The
light is so dim that everyone will only see the hat colours of her two neighbours.
If at least one of the ladies guesses right, they will all win; if they all guess wrong,
they will lose; and they want to be absolutely certain of winning. However, can
they devise a winning strategy before they invite the Wizard?

The answer, depending on the number N, is presented in this paper. Problems
of this kind have become popular in recent years both as mathematical puzzlers
(see [2], [3]) and research subjects. Basic results so far concerned two colours
(instead of three), or unrestricted visibility (a complete graph), or probabilistic
variants (the expected number of the correct guesses): see [1], [4], [5], [6], [8] and
overviews in [7] and [9]. The round-table problem described above has until now
remained open for all N > 5.

1 Formalism

The team players are seeing each other along the edges of the cyclic graph Cly.
Let the set Vi = {vi(k),v2(k),v3(k)} represent the three different appearances
of the k-th hat, where k is counted modulo N in the positive direction (to the

*Department of Mathematics, Informatics and Mechanics, University of Warsaw,
ul.Banacha 2, 02-097 Warszawa, Poland. witold@mimuw.edu.pl
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right). It will be technically convenient to regard them either as pairwise disjoint
(0 <k < N), or simply as Vi, = Z3. A cyclic notation will also be used:

vf = v = vi(k) = v;(m) and Vi =V,

i =

where i,j5,k,m €Z, i =j(mod3), k=m(modN).
An individual guessing strategy of Player k is represented by a function

fk : Vk—l X Vk—l—l — Vk,

which may simply be regarded as a function (i, j) + 7, where fi(vF=*, 0¥

Vg
A composite strategy is a sequence

f=U L In),

or equivalently, a function Z > k — fi, satisfying frin = fr.
According to the assumed rules, strategy f is winning if and only if there is no
sequence (1, So, ..., Sy) satisfying

k

) = vy

sk € Vi and s # fe(Sk—1,8k41) for k=1,... N, where sy = sy, Syy1 = S1-

If there exists such a sequence, f is a losing strategy.

2 Hat games on graphs

In a more general setting an arbitrary ‘visibility’ pattern can be assumed. For a
broader exposition, see [7] ald [9]. The directed ‘visibility graph’ I" has IV vertices
corresponding to the players, and edges AB € E(T') = E wherever player A is
seen by player B. For each vertex v € V(I') = V' a nonempty set of ‘colours’ V,, is
known to all. For each ‘assignment of colours’, i.e., a selector g : V' — U, V,, with
g(v) € V,,, each player u € V tries to guess g(u) by using a function

fu:IIVy, — Vi, (product taken over vii € F).

as an individual strategy. The combined, or collective, strategy is the collection
f ={fu: ueV}. The game is thus played against an opponent assigning the
colours (the Wizard, the Demon, Chance, etc., in a fantasy world). In this paper,
the notion of winning or losing refers to the cooperative players. The strategy
effectiveness depends only on the numbers of possible colours, i.e., the function
h given by h(v) = |V,|. Let X,(f,g) denote the number of correct guesses. The
deterministic minimax approach defines the value of this game as

u(h) = u(T, h) = max min X4(f, g).

This paper concerns the minimal condition p(h) > 0 where f is a winning strategy
if
mginXh(f, g) > 0.

J.Grytczuk has conjectured that a winning strategy exists provided |V, | < deg_(v)
for every v € V(I'). One consequence of our main result is that the weaker condi-
tion |V, | < deg_(v) + 1 is generally not sufficient.
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3 Examples with N <5

The game on Cs In the simplest puzzle (outside our main problem, though)
there are just two players and two possible hat colours. In this situation one
person should guess that their hats have the same colour and the other person
sholud guess the opposite. If one interpretes the colours as elements A, B € Zs,
the effect can be written as an alternative:

A=B or B=A+1.

Next, suppose Player 1 hat can still have two colours, but Player 2 hat can have
three colours. Then there are six possible colour assignments. With any strategy,
Player 1 guesses right for three assignments, Player2 for two. Since the number
of assignments is 6 > 3 4 2, they can both be wrong and they have no winning
strategy. (In the above cases, the players might as well guess the other person’s
colour while knowing their own.)

An algebraic strategy for Cs If A, B,C € Zs3 represent the appearances of

hats, then a winning strategy can be based, for instance, on the alternative:
A=-B—-C or B=—-C—-A—-1 or C=—-A—-B+1,

clearly valid in Zs.

An algebraic strategy for C, Let variables A, B, C, D € Z3 represent elements

of the sets Vi, Vs, V3, Vy, respectively. Then a winning strategy f can be based on
the following alternative:

A = D+B
or B —A-C
or C = B-D (1)
or D = (C—-A.

To verify (1), let us suppose the first and third equalities are false. In Zg this
implies
{ D+B = A+1 @)
B-D = C+*1.

If the signs above are opposite, we add the equations to get 2B = A+C', equivalent
to the second equation of (1). If the signs are the same, we subtract the equations
to get 2D = A — C, equivalent to the last equation of (1). Thus indeed, strategy
f wins.

2 The main result

Let us observe the following (inconvenient, as it turns out) property of the last two
examples. For any b € V,,, and ¢ € V,,,;; there is exactly one d € V,,, satisfying
fmz1(b,d) = c and exactly one a € V,,,_; satisfying f,,(a,c) = b. However, winning
strategies with this property are mot possible for N > 4 (see Section 4). Our
method will thus produce another kind of strategy for some N-gons whenever
possible, while demonstrating the losing case for all the rest. The main result of
this paper is:



Theorem 1 In the three-colour hat guessing game on the cycle of length N a
winning strategy exists if and only if N is divisible by three or N = 4.

Proof of the main result

An interplay of various relatively simple local and global combinatorial methods
will be used.

1 Admissible paths in the enlarged graph

Let us introduce a larger graph G = G (which we will also denote 3 * Cy) whose
3N-element set of vertices is V = V(G) = Ur_, Vi, and 9N-element set of edges is

E=FEG)={vik—1)v;(k): k=1,...,N; i,j =1,2,3}.

Remark An analogous construction can applied to any visibility graph I" and
any height function h: V(I') — N\ {0} (whose values are the numbers of possible
colours). The resulting graph, which may be denoted G = %I", has

V(G)=A{(,v):veVI),i=1,...,h(v)}
and .
E(G) = {(i,0)(j,u) : vi € E()}.
Now let us consider a (composite) strategy f.

Definition 1 Let J be any set of consecutive integers. A path (si)ges in the
graph G will be called f-admissible (or simply admissible, when f is fixed) if

speVy for keJ

and
Sk # fre(Sk—1, Sky1) whenever k—1,k+1¢€ J.

O

Thus, a path is admissible if and only if all its 2-edge segments (i.e., sub-paths
of length 2) are admissible. It is clear that strategy f is winning if and only if the
graph G contains no f-admissible path (of infinite length) which is periodic and
has period N, or equivalently, no f-admissible path of length N 4 1 whose last
edge coincides with the first. However, the definition does not direcly settle the
question of whether any periodic admissible path exists, and if it does, whether it
can have period N (or at least less than 9N).

The set of all the f-admissible paths (of all lengths) will be denoted A(f). The
set of all the edges between V}, and Vj,, will be denoted by

Ei g1 = Vi X Vi1 = {E cbeV,and ce Vk+1}-
Definition 2 Let f be a fixed strategy. For any edge bc € Ej 11, define
Ci(be) = #{d € Viyz s bed € A(f)},
i.e., the number of the immediate admissible continuations of bc to the right, and
(_(bc) = #{a € Vi_1: abe € A(f)},

i.e., the number of the analogous continuations to the left. O
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Hence, in general, we have ¢, (bc),{_(bc) € {0,1,2,3}.
Lemma 2 Consider a fixed strategy f.

(a) The average value of {_ (resp. ) over any three right-adjacent (resp. left-
adjacent) edges of G equals 2. That is, for any vertex b € V;, we have

> @)= Y fF0) =6

a€Vy_1 c€Vit1

(b) If two edges of G have the same left (resp. right) endpoint then one of them
has at least two admissible immediate continuations to the right (resp. left).
That is, for any vertex b € Vj, and any two distinct vertices ¢; € Vj4q (i = 1,2)
there is a choice of i € {1,2} and two distinct vertices dy, dy € Vo such that
beid; € A(f) for j = 1,2; the analogous fact holds for passages to the left.

(c) If the graph G contains an f-admissible paths7...3, such that2 <n < N—1
and
(_(57%2) + {4 (55=15) = 5,

then f is a losing strategy.

(d) If f is a winning strategy, then for every edge 5 € E(G) we have
0o(8)+0_(8) = 4.

Proof. (a): Consider ¢,. For any vertex d € Vj 1o, the set Vi1 contains two
vertices different from fi (b, d), defining two admissible connections of b with
each of the three choices of d. (The situation with /_ is symmetric.)

(b): For any d € Vj.o we can choose an i € {1,2} such that fy1(b,d) # ¢;.
Since d takes three values, two of them must correspond to the same choice of 7.

(c): We may assume ¢_(5153) = 3 and (1 (5,-15,) > 2, with s; € V. By (b),
the path can be continued to the right until n = N — 1. Then the paths of the
form Ts1s5 .. sy_1y are in A(f) for all three values of x € V; and at least two
values of y € Viy = V5. Now it is enough to choose y # fo(sy_151) to make the
ends meet, obtaining an N-periodic f-admissible path 75755 sy_1y51 ... (This
argument is partly illustrated in Figure 1.)

(d): Denote £(y) = £ (y) + £_(y) for all v € E(G). If £(8) > 4 for some
f € E(G), then f is losing by (c) applied to the single edge 5. However, (a)
implies that the average value of {(y) over v € Ej 11 equals 4. Hence, if there was
an edge o € Ejy 41 with ¢(a) < 4, there would also be an edge § € Ej +1 with
((B) > 4, the case already excluded. H

2 The three categories of edges

Let us assume that strategy f satisfies
lr(y)+0-(y) =4 forall v e E(G). (3)

Then all the edges v € E(G) can be divided into three categories:



SN—2 SN-1 \81 S2

Figure 1: Closing the path of Lemma2 (c).

—< o< o

Figure 2: Examples of edges (red, blue, yellow) with their admissible continuations.

o If /_(v) =3 and £, (y) =1, let us paint vy yellow and direct it right.
o If {_(y) =1 and {,(y) = 3, let us paint v red and direct it left.
o If {_(v) =/, () =2, let us paint v blue and leave it undirected.

The three patterns can thus be shown as in Figure 2.

Definition 3 Any strategy f satisfying (3) will be called balanced or colourable.
O

By Lemma 2(d), every winning strategy is colourable. However, not all bal-
anced strategies will be winning. The sets of all the yellow, red, and blue edges
in E(G) (or in Ejjq1) will be denoted E*, E~, and E° (or Ej, ., Ey ).y, and
E} 1.41), respectively.

Lemma 3 If strategy f is colourable, then:

(a) For each k, there are equal numbers of yellow and red edges in the set Ej 1
(e |E el = [Eppl)-

(b) Any three edges of G having a common left or right end-point (i.e., left- or
right-adjacent) either have three different colours or all are blue.

(c) If f is a winning strategy and N > 4, then every directed edge is admissibly
continued in its direction by an edge of the same direction. That is, if
B € By is yellow, v € Egy1 42 and the path By is f-admissible, then v
is also yellow. Analogously, if 3 € Ey 41 is red, a € Ex_14, and aff € A(f),
then « is also red.



Figure 3: An example of the typical configuration at the head or tail of any directed
edge.

(d) If f is a winning strategy and N > 4, then every directed edge is a contin-
uation of three edges of three different colours. That is, if B = bc € Ej j41
is yellow, then among the three edges ab with a € Vj,_; one is yellow, one is
red, and one is blue. Analogously, if 3 = bc is red, then among the edges
cd € Ej 5 one is in ET, another in E~, and the third in E°.

(e) If f is a winning strategy and N > 4, then any periodic f-admissible path
has one colour. Conversely (under the same assumption), any path of a
fixed direction (red or yellow) is admissible, and an undirected path (blue) is
admissible provided that all its vertices are incident to some directed edges.

Proof. (a): By Lemma 2(a), we have

Y o= Y Lh)=18

YEEK k+1 YEEK k+1

The terms equal to 1 and 3 in the first sum correspond to the terms equal to 3
and 1, respectively, in the second.

(b): This follows from Lemma 2(a)(d), since the number 6 can be expressed as
an unordered sum of three terms equal to 1, 2 or 3 in just two ways: 1+2+ 3 and
2+242.

(c): If B is yellow (i.e., £_(5) = 3) and ~ is not, then £,(y) > 2. Then
Lemma 2(c) applied to the path v (where n = 3 < N — 1) implies that f is a
losing strategy, contrary to our assumption.

(d): Let B = bc € Ej 11 be yellow. By (b), some edge v = bc’ € Ej, 1 must
be red. Then, by (c), the left continuation of 7 into Ej_1 4 is also red, showing that
not all edges ab € Ej_1 are blue. By (b), these edges must be of three colours.

(e): Consider any path containing a yellow (resp. red) edge 5. By (c) and
the definition of colouring, the edge  has a unique forward (resp. backward)
admissible continuation, consisting of edges of the same direction. This proves
that every periodic admissible path must have one direction or be undirected.
Conversely, any directed path is admissible by (c).

Finally, consider a blue path abc (of length 2) with vertex b incident to some
directed edge. We may suppose an edge bc’ is directed. By (b) and (c), there is
some left-directed edge bc” uniquely continued by another edge a’b € E~ ¥ ab.
Since abc” is not f-admissible and ab is blue, both remaining right continuations
of ab must be f-admissible, including abc. B



Alternative arguments (b) implies (a), since there must be equal numbers (0
or 1) of red and yellow edges left-incident to every vertex of G. Another way of
proving (d) is using (c) to continue § to the right with yellow edges until the last
one points to the beginning of another, which must be  (the first one), as two
yellow edges cannot be (right-)incident, by (b).

3 The characteristic number of a winning strategy

Corollary 4 Let f be a winning strategy and N > 4.

(a) Every directed edge B € Ej 41 meets exactly two edges of G having the same
direction. Moreover, one of them is an o € Ej_;j and the other is ay € Ej11 k42,
and the path afv is f-admissible.

(b) There exists an integer x(f) € {0,1,2,3} such that for all values of k, the set
E) k11 contains exactly x(f) yellow edges and the same number of red edges.

Proof. (a): Consider an edge [ € E,j,kﬂ. By Lemma 3(b), § cannot be co-
incident to another element of E,:r p+1- By Lemma 3(d), there is a unique edge
o € E;[_|, meeting 5. By Lemma 3(c)(b), there is a unique edge v € E; .,
adjacent to 5. (Again, the case of E~ is symmetric.)

(b): By (a), the set E;, ., has at most 3 elements (as including no coinci-
dences) and there is a one-to-one correspondence between the elements of E;f,
and By, | .., for every k (namely, o <+ § <+ ) Now it is enough to use Lemma 3(a)
and the fact that the cyclic graph C'y is connected. B

Definition 4 The number

x(f) = |Elj,k+1‘ = |Ek_,k+1‘

(as in Corollary 4(b)) will be called the characteristic number of the winning strat-
egy f. O

The case x(f) = 1 can be excluded outright, since it would imply the existence
of an f-admissible N-periodic paths of both directions (red and yellow). Now only
three cases remain: x(f) =0,2, and 3.

4 The case x(f)=0

Here we additionally suppose that N > 5 (the cases of N = 3,4 being already
settled).

In the case of x(f) = 0 all the edges of G are blue. That was possible for
N =3 and N = 4 as shown in Section 3. But supposing N > 5 we are going to
prove that f would in fact be a losing strategy, implying x(f) # 0 for N > 4.

Take any edge ab of graph G . It has, in particular, 32 different f-admissible
extensions of length N + 1, by N — 3 edges to the left and 3 edges to the right, of
the form

QA5 U1 - UN—4 QA b bp bpq bpqr (4)

for i,4,p,q,r € {1,2}, where the choice of vertices u; ..., uy_4 is fixed. Observe
that, while there are exactly 4 edges of the form @;;a; and b,b,, alike, there may
be either 2 or 3 vertices b,, (and a;; alike).
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First, suppose vertex by, assumes three different values. Then there are at least
six edges bpqbpqr, While the number of the edges @;;a; is four, making the path close
as 6+4 > 9. Next, suppose there are just two different vertices b,,. We can make
index ¢ point to these vertices, so that by, = b1, for ¢ = 0,1. Since the a;; and
b, are both in a 3-element set V,,,, one can now fix ¢, j, ¢ so that a;; = bog = big4.
Then, one of two paths b,b,,a; (p=0,1) must be admissible since ¢_(b,,a;) = 2
and b, takes 2 values. Thus, the path (4) acquires a closure with no use of vertex
bpgr- (But in fact, a; = by, for some 7.)

Corollary 5 For N > 4, every winning strategy f has x(f) # 0.

5 The case x(f) =3
By Corollary 4, the yellow edges of graph G are arranged as follows:

0 1 2 N-1 0 ool 2
A e T T e e T
A e T T e e e
us us us T us Ug(3) Ug(3) Ug(3) " -

where {uy(k),uz(k),us(k)} = Vj for all k and o :{1,2,3} — {1,2,3} is a permu-
tation.

(If o had a fixed point, then a yellow cycle of period N would defeat strategy f.
Hence, ¢ must be a rotation: ¢(i) =i+ 1 (mod3) for i = 1,2, 3. This observation
will be used later to construct winning strategies.)

Now let us locate the other colours. By Corollary 4, the set E; 5 contains three
disjoint red edges. Thus, we may assume

Ery = {un(Dus(2), u2(1)ur(2), us(uz(2)

(the other possibility being symmetric: ujug, usus, usuy). Considering the set Ey
(to the left of E 5) we see that uz(0)us(1) is red. Indeed, since uz(0)us(1) € ET, we
have ug(0)us(1)u1(2) & A(f), so uz(0)ua(1)us(2) € A(f), implying that us(0)ua(1)
must be the left-directed left continuation of uy(1)ui(2) € E~ (by Lemma 3(c)).
It follows that the edges in Ej; have the same arrangement as in Ey,. Similarly,
the sets Fj ;, and Ej ;o have the same arrangement for all k =0,..., N — 2,
so we may assume that

- _ [k, R+l ko k1 )k k+1 _
g1 = {U1U3 ; UgUy ', U3Us } (k=0,1,2,...,N—1).

All the remaining edges of G must be blue (by Lemma 3(b)). Here, by Lemma 3(e),
the periodic f-admissible paths are precisely the periodic ones of a fixed colour.

Now consider all three one-colour paths of length N, starting at vertex u,(0)
and going to the right (for the red one, this means going back). If N is divisible by
3, they all end at wu,(1)(0). But if NV is not divisible by 3, they end at three distinct
vertices of Vi, one of which must be v;(0). That makes one of the paths close to
defeat the strategy, which is a contradiction. A significant part of the situation for
N =5 is illustrated in the diagram.



Figure 4: Part of a typical strategy of characteristic 3 on Cj

5.1 Winning for 3|N

If N is a multiple of 3 and strategy f is colourable in the pattern just considered,
then any one-colour path starting at u;(0) passes through u;(N) # u;(0) and goes
three times around the graph Gy, ending with period 3N # N. Moreover, the
considered colour arrangement is always (for every N) given by some colourable
strategy, defined in the following way. Let

ui(k +N) = uy)(k) forall keZ,

where o is some fixed-point-free permutation, and

1
2 (keZ), (5)
1

W W =

2
fe=12
3

using the convention: fi(7, ) in row ¢, column j. The definition is consistent since
fr is rotation-invariant, i.e.,

filo(i), 0(5)) = o(fu(i,5)),

which can be checked directly. (In fact, the strategies fi are uniquely determined
by this rotation-invariant colouring, hence they must themselves be o-invariant).

With this strategy, every directed edge is followed by an edge of the same
direction, as in Lemma 3(c)). Thus, any admissible periodic path has one colour,
as in Lemma 3(e). Since no admissible path has period N, the strategy is winning.

5.2 The solution for x(f) =3

Corollary 6 A winning strategy f with x(f) = 3 exists if and only if N is divisible
by 3. If it exists, f is unique up to isomorphism (induced by permutations of colours
at the vertices).

Remark. The situation for x(f) = 3 can be visualised on a torus obtained by
rotating a triangle which at the same time makes 1/3 of a full turn in its own
plane. This situation can also be viewed using a covering of graph 3 %« C'y by the
graph 3 x C',, where C,, has edges between all pairs of consecutive integers and is
the universal covering of Cl.
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6 The case x(f) =2

Corollary 4 implies the following arrangement of all the yellow edges and some
blue edges of graph G:

0 1 2 N-1 0 1 2
Us us Uus T Us Uus Us Uz -

where {uy(k),us(k),usz(k)} = Vi for all k and 7 : {1,2} — {1,2} is a permutation.
If 7 were the identity, then two yellow cycles would have period N, contrary to
the assumption that f is winning. Thus, 7 must be a transposition: 7(1) = 2 and
T(2) = 1.

Let us look for the red and the remaining blue edges. By Lemma 3(b)(d), the
red edges are crossing between rows of the yellow ones:

By = {n(B)ua(k + 1), va(k)ur(k+ 1)} for k=0,1,...,N 1

and all the remaining edges are blue.

Now if N were an odd number, then the red (left-directed) path ( f-admissible
by Lemma 3(e)) ending at vertex u;(0) would begin at vertex u,)(N) = u;(0) and
have period N, again contrary to the assumption that f is winning. Consequently,
N must be an even number.

6.1 The strategy for x(f) =2

As in the case of x(f) = 3, from the obtained coulour arrangement one can deduce
the form of strategy f. One obtains:

3 1 1
=123 2| (kez) (6)
21 3

with the same convention as before, and the permutation o = (2,1, 3). Again, this
colourable strategy f with single-colour admissiblility exists for all even numbers
N since fi is invariant under the permutation (2,1, 3).

Since both directed paths have period 2N, any N-periodic admissible path
must be blue by Lemma 3(e). The only admissible blue paths of length 2 are:

bl T AT uku T T ubu T kT where i€ {1,2).

6.2 The question of winning with y(f) =2

Already for N = 2 (despite the fact that x(f) was not defined for N < 4) a losing
blue cycle can be observed, namely

0,1,2,3,,4,,5
... V3103050307 .. .,

where v = v3.

Now consider the case N = 4. Then any admissible path containing an edge
vhvi T could not close with period 4. At the same time, any admissible path

containing no such edge must have the form ...31323132.. ., i.e. (up to a shift),
e U3(0)U1(1)U3(2>U2(3)U3(4)U1 (5)1,63(6)1,62(7), ey

11



3——3 3 3——3 3 3 3 3

Figure 5: A diagram of the typical strategy of characteristic 2 on Cy, showing all
the directed edges and a critical undirected path.

which has period 8 as u;(1) # u1(5). This shows that f is a winning strategy for
N =4.

If, however, 2|N and N > 6, then there exists the following admissible blue
path of period N:

...33133D)(32)(31)(32) ... (37) . ..

(where 7 € {1,2} and j = N/2(mod2)). Consequently, the strategy f is loosing
for N > 4. The situation for N = 8 is illustrated in the diagram.

6.3 The solution for x(f) =2

Corollary 7 A winning strategy f with x(f) = 2 exists only for N = 4 (and is
unique up to isomorphism).

Remark. The above situation for 2|N can be visualised as a Mobious band
with the yellow cycle on the boundary and the red cycle inside, completed with a
separate blue cycle which is not admissible. The edges can be drawn on a Klein
bottle arising from this construction. As before, this is equivalent to using an
appropriate covering of graph 3 %« Cy by the graph 3 % C.

Thus we have proved Theorem 1. B

3 Corollaries

The number of 3 colours turns out to be effectively maximal for the cycle graphs.

Corollary 8 The hat game on any cycle Cy (n > 4) with the height function h
satisfying h(1) = 4 and h(k) =3 for k =2,..., N is losing, i.e., u(h) = 0.

Proof. If f were a winning strategy for this game, then it would also be winning
for any of its 3-colour restrictions. It follows that choosing any k € {1,2,3,4} and
changing any values fi(i,j) = k into any values fi(i,7) # k would result in a
winning strategy for the 3-colour game. By Corollary 6, such a strategy is unique
up to permutations of colours. Now, f; assumes some values, so for instance,
we have fi(i,7) = 4 for some pair(s) (¢,7). But the form (5) of the individual
strategy shows that f; must assume each value three times. Some arbitrary choice
of f(i,7) # 4 could always change that, contrary to the fact that f should remain
a winning strategy. B

If N is not divisible by 3, at least a strategy with a high probability of winning
can be found.

12



Corollary 9 In the three-colour game on any cycle Cy (3 JN) there exists a
strategy for which the probability of winning is > 1 — 37N +1L,

Proof. This follows from the fact that the strategy described in Section 5 has
at most three admissible N-periodic paths. B

Acknowledgements. 1 would like to thank Prof. Jarostaw Grytczuk and
Stawomir Porebski for acquainting me with the hat problems.
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Abstract

We present a methodology for solving a variety of games involving
guessing the colors of hats. As an example, consider the following
game. Seven players sit in a circle. There are four blue hats and four
red hats. Seven hats are placed on the heads of the seven players,
and the remaining hat is discarded. Every player can see the colors
of the hats of the other six players, but cannot see the color of his
own hat, or that of the discarded hat. Then every player needs to
guess the color of his own hat. The players may coordinate a strategy
before the game begins, but once the hats are placed on their heads,
there is no communication of any form between the players, and in
particular, no player knows whether another player already produced
a guess. Is there a guessing strategy that guarantees (with absolute
certainty) that at least five of the players guess correctly?

1 Introduction

In this paper we consider several mutiplayer games in which every player
needs to guess the color of the hat placed on his/her head, while seeing
only the colors of the hats placed on the heads of other players. In all the
games that we consider, if all players guess at random, a certain number of
guesses are expected to be correct. The problem is to design a deterministic
strategy that guarantees that the number of correct guesses is as expected.



We call such a strategy a perfect strategy. The trigger to the work reported
here was a collection of results of Benjamin Doerr (currently unpublished),
concerning variations on a setting described by Peter Winkler [4].

This paper is organized as follows. The abstract presents a puzzle that
the reader may try to solve before reading the rest of the paper. In Sec-
tion 2 we describe several color guessing games. In Section 3 we give some
preliminary observations that may help orient the reader towards solutions
to our puzzles. In Section 4 we present solutions to two of our color guess-
ing games. In Section 5 we present a general methodology for establishing
that a large class of color guessing games have perfect strategies. We show
how this methodology applies to the remaining color guessing games of Sec-
tion 2. In Section 6 we conclude with some additional observations and open
questions.

2 The games

In all our puzzles, the number of players is denoted by n. Sometimes, n will
need to be of a special form, and then we will use an additional parameter
k to indicate this. For example, n = 2k indicates that n is even. Players are
allowed to coordinate a strategy before the game begins. The game consists
of placing colored hats on the heads of the players, where C' denotes the set
of allowable colors in the game. For simplicity, these colors are denoted by
€, ---¢|c|—1- Every player can see the colors of the hat of all other players
(and nothing else), and needs to guess the color of his own hat. Players have
names (and for simplicity, the names will be py,...,py,). The colors of their
hats will be denoted by hq,...,h,. The guesses of the players are denoted
by ¢1,...,9n. Formally, a strategy is a collection of n stragies, one for each
player. A strategy s; : C" 1 — C for player p; specifies the “guess” of p; as
a (deterministic) function of the tuple of colors (hy,...,hi—1,hit1,-.., hy).

We may view the actual colors hq,...,h, of the hats as being assigned
by an adversary who knows the strategy of the players, and tries to select
the combination of colors that causes the strategy to be least successful.

A strategy of the players will be called perfect if it meets some conditions
(that differ from game to game). In all games, the question is to find a perfect
strategy (or show that no such strategy exist).

2.1 The plain version

This version appears in [4].

Here |C| = 2 and n = 2k. A perfect strategy is one that guarantees that
at least k = n/2 players correctly guess the colors of their hats.

One may also consider the case of having more than two colors for the
hats. Then |C| = ¢ > 2, n = ck, and at least k£ = n/c players need to guess
correctly.



2.2 The discarded hat version

This is the version that appears in the abstract to this paper.

Here |C| =2 and n = 4k — 1. (The version in the abstract corresponds
to the choice £ = 2.) The players are given one more piece of information
before the game begins, namely, that the total numbers of hats of color ¢
will be either 2k — 1 or 2k (with the rest of the hats being of color ¢y).
Equivalently, one may think of there being 2k hats of each color, and one
hat is discarded (without the players knowing which hat is discarded). In
this game, a perfect strategy guarantees that at least 3k — 1 players guess
their color correctly.

2.3 The everywhere balanced version

Here |C| = ¢ > 2 and n is arbitrary. The goal of the players is as follows. Let
H; be the set of the players that have a hat of color ¢;. Hence Zj;(l) |H;| = n.
(A player does not know to which set he belongs, and the players do not
know the cardinalities of the sets H;.) A perfect strategy guarantees that in
every such set H;, the number of players who guess correctly (namely, guess
¢;) is between ||H,|/c] and [|H}|/c].

2.4 The majority version

This version was studied by Doerr (private communication).

Here |C| = 2, n is arbitrary, and there is an additional parameter m that
may depend on n. For H; as defined above, a perfect strategy guarantees
that at least max[|Hy|,|H:|] — m players guess their color correctly. How
small can m be for a perfect strategy to exist?

3 Preliminary observations

For the plain version (with ¢ = 2), it is not hard to see that no strategy
can guarantee more than n/2 correct guesses. Regardless of the strategy
of the players, if the adversary assigns the colors of the hats independently
at random, each player guesses his color correctly with probability half.
By linearity of the expectation, the expected number of players who guess
correctly is n/2. As expectation is an averaging operator, it follows that
there is some assignment of the adversary that causes the number of correct
guesses not to exceed n/2. (For ¢ > 2, the same argument shows that no
strategy can guarantee more than n/c correct guesses.)

For the discarded hat version, call the color that appears on 2k hats the
majority color, and the color that appears on 2k — 1 hats the minority color.
Every player that has a hat of the minority color sees two more hats of the
majority color than the minority color, and hence knows the color of his own
hat. This guarantees 2k — 1 correct guesses. The players that have a hat
of the majority color see an equal number of hats of each color. It can be



shown that if the adversary assigns the colors at random, then regardless of
the strategy of the players, in expectation k of the players that have a hat
of the majority color guess correctly. Hence no strategy can guarantee more
than 3k — 1 correct guesses.

For the everywhere balanced version, again averaging arguments show
that no strategy may guarantee more than |H;|/c correct guesses, and simi-
larly, no strategy can guarantee less than |H,|/c correct guesses. Hence the
range between ||H;|/c] and [|H,|/c] is the best one can hope for.

For the majority version, let us bound m from below as a function of n.
Recall that if the adversary assigns hat colors at random, in expectation n /2
players guess their color correctly. On the other hand, the majority color is
expected to include n/24-0(y/n) hats (as this is the standard deviation of the
Binomial distribution). Hence in expectation, the number of correct guesses
is Q(y/n) below max[|Hy|,|H;|], implying that one needs m > Q(y/n).

The reader may find it useful to tackle the plain version and the discarded
hat version by first considering the most simple setting of the parameters,
namely, that of k¥ = 1. For the plain version this gives two players, one of
whom needs to guess correctly. For the discarded hat version, this gives
three players, two receive hats of the same color and the other receives a hat
of a different color, and two players need to guess correctly.

4 Perfect strategies

In this section we present perfect strategies for two of the games of Section 2.

4.1 The plain version

The perfect strategy presented by Winkler for this version is to pair players
together (for 1 < i < k, the pairs can be p; and p;;), and have each pair
play the case n = 2. That is, player p; guesses h;,; as the color of his hat,
and player p; ., guesses the color not equal to h; as the color of his hat.

Another perfect strategy for the plain version (that came up in a dis-
cussion with Amir Shpilka) is based on a symmetric strategy. A strategy is
called symmetric if the guess of a player is a function of the number of hats
of each color (except his own), disregarding the distribution of hats among
the players. Different players may use different symmetric functions.

For 1 < ¢ < k, player p; guesses ¢g if he sees an odd number of hats of
color ¢y, and ¢; otherwise. For k+1 < i < 2k = n, player p; guesses ¢q if he
sees an even number of hats of color ¢y, and ¢ otherwise. As the true total
number of hats with color ¢y is either even or odd, either the first k& players
all guess correctly, or the last.

The above solutions generalizes easily to the case ¢ > 2. We show the
generalization for the symmetric strategy. Think of the color names as the
numbers 0,...,¢— 1. For 0 < j <c¢—1, for jk+1 <i < (j + 1)k, player
i guesses for his hat the color g; that leads to equality in g; + >4, b = j



(modulo ¢). As there is some j such that Y ;' ; hy = j (modulo ¢), exactly &k
players guess correctly. (The above startegy in fact appears in a manuscript
of Doerr for the case ¢ = n.)

4.2 The discarded hat version

Recall that the difficulty in the discarded hat version is to ensure that of
those players that have a hat with the majority color (that we call the
magjority players), half would guess correctly. A player call easily tell whether
he is a majority player or not (but without knowing which is the majority
color), and all minority players guess correctly their colors. Hence we shall
only specify the strategy that players use when they are majority players.

Symmetric strategies cannot be perfect in the discarded hat version. All
majority players see exactly 2k — 1 hats of color ¢y and 2k — 1 hats of color
c1. Hence there are only two possible symmetric strategies in this case:
either guess cg, or guess c;. If all players have symmetric strategies, then
at least 2k players have the same symmetric strategy (say, guess ¢1). The
adversary may assign these 2k players hats of color ¢y and all other players
hats of color ¢;. In this case, all majority players fail in their guess, and the
number of correct guesses is only 2k — 1.

We now present a perfect nonsymmetric strategy for the discarded hat
version. Think of the players as sitting in a circle. Every player that sees
2k — 1 hats of each color (and hence does not know the color of his own
hat), computes which of the two colors occurs more times among the hats
of the (4k — 2)/2 = 2k — 1 players that follow him in clockwise order. He
then guesses the same color for his own hat.

We show now that exactly k£ of the majority players guess correctly.
Assume without loss of generality that there are 2k blue hats, and consider
only the players having blue hats. Starting with an arbitrary such player,
name them from by to byg in clockwise order. Now for every 1 < ¢ < k,
exactly one of the two players b; and bpy; guesses correctly, because either
biy; sits at most 2k — 1 locations after b; (and then b; guesses correctly) or
b; sits at most 2k — 1 locations after byy; (and then bg; guesses correctly).
This is an exclusive or that follows from the fact that there are exactly 4k —1
players altogether.

5 A general methodology

In Section 4 we presented strategies for the plain version and the discarded
hat version of the color guessing game. These solutions were elegant (so the
author thinks), and may well be understood by nonmathematicians. How-
ever, they were of an ad-hoc nature, and it is difficult to see how to extend
them to other color guessing games (such as the everywhere balanced ver-
sion and the majority version). In this section we present general principles
for establishing that certain color guessing games have perfect strategies.



Though we try to keep the presentation at a fairly elementary level, some
level of mathematical maturity is needed in order to follow this section. In
particular, we only prove the existence of a perfect strategy, but do not ac-
tually exhibit one. (Our methodology provides an algorithm for designing
a perfect strategy, but the complexity of the algorithm is exponential in
n. As bad as this complexity sounds, it is still much better than the time
complexity of exhaustive search over all possible strategies, which is doubly
exponential in n.)

A common property of all our color guessing games is that it is relatively
easy to come up with randomized strategies for the players that achieve
the goal of the game in ezpectation. For example, for the plain version, if
every player guesses a random color for his hat, in expectation n/2 players
guess correctly. Our methodology is based on transforming a randomized
strategy into a deterministic one. Rather that discuss randomized strategies,
we shall deal with what we call fractional strategies. In the following we
shall use h = (hy,...,h,) € C™ to denote a vector of n hat-colors, and
hi = (h1y...,hi—1,hiz1,...,hy) € C" ! to denote the subvector of colors
seen by player p;.

Definition 1 A fractional strategy s; : (C,C" ') — C for player p; maps
to every color ¢ € C and every tuple of colors h; € C™ ' a value z
where the following two constraints must be satisfied:

ivgvhji’

1. For every i,q and h we have Zi g 2 0.

2. For every i and h we have YgeC Zigh, = L.

Intuitively, one may view z; , - as the probability that player p; guesses
color g upon seeing colors h;, or as a confidence level that p; associates with
color g upon seeing colors h;. We note that true strategies are special cases
of fractional strategies, as they satisfy the additional Boolean constraint
that for every 4, ¢, h, we have 2 gh; €10,1}. )

In the color guessing games, for every assignment h of hat colors, there
is some goal that needs to be met by the strategies of the players (a certain
number of correct guesses). We may extend this goal to apply also to frac-
tional strategies. Recall our notation that H;(h) denotes the set of players
that have a hat of color ¢; in h. Then for example, for the plain version, we
may add the following set of constraints. For every h,

Z Zioh; + Z Ziq fy = N/2.

i€Ho(h) i€Hy(h)
We have seen in Section 4.1 some perfect strategies for the plain version that
indeed meet the constraint above. But assume now that we were not clever
enough to find perfect strategies for the plain version. We show how our
methodology can be used to infer that perfect strategies exist (but without
actually exhibiting a strategy).



There is a trivial fractional strategy that satisfies all the constraints,
namely, all z; . = 1/2. We shall show that this strategy can be rounded to
give a true (Boolean) strategy that still satisfies all constraints. The main
point that we use in this case is that every variable z; , ;. participates in
exactly three constraints:

1. The nonnegativity constraint z; , 5. > 0.

g

2. The strategy constraint }° cc z; .5 = 1.

3. The goal constraint 3= ;c i r) 20,5, T 2 jem (i) %15, = 1/ 2, for h that
has h; = g and h agrees with h; for all indices j # i.

Ignoring the nonnegativity constraints, we consider a bipartite graph
(that we call the constraint graph) with all strategy constraints on one side,
and all goal constraints on the other side. Every variable z; , ;. contributes
one edge to the bipartite graph, namely, the edge connecting the two con-
straints in which z;  , participates. This edge is labeled by the value of
ziygﬁi'

We present a rounding procedure that rounds all edge values to 0/1
values, while preverving the sum of edge values incident with every vertex.
This gives a true strategy for the game that satisfies the goals of the game.
The rounding procedure that we describe has multiple iterations. In every
iteration, some edges that previously had fractional values get integer values
(either 0 or 1), and are frozen. When all edges are frozen, the rounding
procedure ends. An invariant preserved by the rounding procedure is that
for every vertex, the sum of values that are incident with it does not change.

An iteration of the rounding procedure works as follows. Assume that
G contains at least one nonfrozen edge (as otherwise we are done). Observe
that the subgraph induced on the nonfrozen edges has minimum degree 2,
as otherwise the sum of label values incident with some vertex is noninteger.
Hence it must contain a cycle. This cycle must be of even length, because
the constraint graph is bipartite. Starting at an arbitrary edge e along the
cycle, consider the edges of the cycle as alternating between positive and
negative. Add a small value 6 > 0 to the values of the labels of all positive
edges, and subtract ¢ from the values of the labels of all negative edges.
Note that this does not change the sum of label values incident with any
vertex. Now choose ¢ to be the smallest possible value that makes (at least)
one such edge reach a 0/1 value. By this, at least one more edge becomes
frozen and the iteration is completed.

Using the approach outlined above, one can show that both the plain
version and the discarded hat version have a perfect strategy. But for the
everywhere balanced game, and for the majority game, we need to address
one technicality. The distinction is that in these latter games, the goal con-
straints are inequalities rather than equalities. For example, in the every-
where balanced game, the goal is to have in every set H; between ||H;|/c]
and [|Hj|/c] correct guesses. A fractional strategy that satisfies the goal



constraints might have the property that in the constraint graph, the sum
of values of edges incident with a goal constraint is noninteger. If this
happens, it is no longer true that in the rounding procedure the subgraph
induced on nonfrozen edges has minimum degree 2. To handle this issue,
we add one more vertex r on the strategy constraint side of the bipartite
graph, and connect it to every vertex in the goal constraint side. Now if
s(u), the sum of values given by the fractional solution to the edges incident
with a goal constraint u, is noninteger, then we give to the edge (r,u) the
fractional value that rounds s(u) up to the nearest integer. Now the sum
of values incident with each goal constraint is integer. For every fractional
strategy, it also must hold that the sum of values incident with each strategy
constraint is integer. As the values summed up on the left hand side of the
bipartite graph must be equal to the values summed up on the right hand
side, it follows that also for r the sum of values incident with it is integer.
Hence we can round the fractional strategy to an integer strategy. An edge
(r,u) ends up with value 0 if s(u) was rounded up, and with value 1 if s(u)
was rounded down.
Summarizing, we have the following general theorem.

Theorem 1 Using the notation of this section, consider an arbitrary color-
guessing game with the following properties:

1. Ewvery goal constraint addresses one particular h and one particular set
I c{1,...,n} xC, and has the form q < Y (i,g)el Zign; S Py where q
and p are integers (possibly, ¢ = p).

2. Every variable z; , . appears in at most one goal constraint.

Then such a game has a perfect strategy iff it has a perfect fractional strategy.

5.1 The everywhere balanced version

The goal constraints of the everywhere balanced game are for every h and
je{0,...,c—1},

LHjl/e] < D2 #iey i < T1Hjl/c].

iGH]‘

The conditions of Theorem 1 are satisfied. Hence we shall only show a perfect
fractional strategy for the everywhere balanced game, and then Theorem 1
implies the existence of a perfect strategy (without actually exhibiting one).
The fractional strategy is simple: for all i, g, h we set Zighi = 1/c. Tt is easy
to check that all strategy constraints and all goal constraints are satisfied
by this fractional strategy.

5.2 The majority version

Let the two colors be 0 and 1. For a given h, recall that Hy and H; denote
the set of players with 0-hats and 1-hats respectively. For player p;, let H



be the set of players with 0-hats that are seen by p; (which differs from Hy
when p; himself has a 0-hat). Consider the following fractional strategy.
For a given h, if |H| > n/2 + /n, then Zioh, = 1 and 2,4, = 0. If
|HE| < n/2—/n, then Z o = 0and z;; ;. = 1. Else, let b denote |H|—n/2.
Then 2, = 1/2+b/2\/n and 2, 5. = 1/2 = b/2\/n.

Clearly, the above fractional strategy satisfies all strategy constraints.
We now consider goal constraints. So as to slightly simplify the presentation,
for every h we stregthen the corresponding goal constraint by breaking it
into two separate constraints, one for Hy and one for H;. They are:

- 1 |Ho|—1—-n/2
Y %o > min[|Hol, {IHOI(— + —)J]
i€Hp 2 24/1n

> sian > minll, 101G - )|
ieHy

These constraints are satisfied by the above fractional strategy. Moreover,

as goal constraints they satisfy the conditions of Theorem 1. Hence, there

is a Boolean strategy satisfying the same goal constraints.

Now, for arbitrary h, if |[Ho| > n/2 + /n (or |Hy| > n/2 + \/n, respec-
tively) then all Hy players (Hi, respectively) guess correctly and the number
of correct guesses is max|[|Hy|, |H;||. If ||Ho| — |Hi|| < 24/n, then sum up
the two goal constraints. The number of correct guesses is:

n [Ho| —n/2  |Ho| n_n
Z Zioh;t Z Zi1g > 5 +([Hol—|Hil) - —2> -2
P P 2 o0/n 2yn 2" 2

As max[|Hy|, |H1|] < n/2 + /n in these cases, this gives a perfect strategy
for the majority game with m < 3y/n/2. (The leading constant in front of
\/n can be improved with more careful analysis.)

6 Discussion

We presented perfect strategies for various color guessing games. The plain
version and the discarded hat version can be appreciated also by nonmathe-
maticians. The everywhere balanced and the majority version are presented
so as to illustrate a general approach for solving such problems, via Theo-
rem 1.

In the constraint graph for the discarded hat game, all strategy constraint
vertices have degree 2, and all goal constraint vertices have even degree. By
shortcutting the degree 2 vertices, we get a bipartite graph of even degree,
with Hy goal constraints on one side and H; goal constraints on the other
side. This graph is Eulerian. Every Eulerian cycle in this graph gives a
perfect strategy, by having red/blue alternate along the edges of the cycle.
Moreover, every perfect strategy for the discarded hat game can be viewed
as a strategy obtained in such a way from an Eulerian cycle. (Think of



the red/blue values as giving right/left orientations to the underlying edge.
The resulting directed graph is Eulerian.) Using this characterization of
perfect strategies it is not hard to show that every perfect strategy for the
discarded hat game must be unbiased in the following sense: every majority
player guesses red on exactly half of the possible hat assignments to the
other players, and blue on the other half. (Hint: colors necessarily alternate
between two successive visits to edges associated with the same player p;.)

For the majority game, Doerr presents an explicit strategy (one for which
the computation performed by every player takes time that is at most poly-
nomial in n), but for m = O(n??) rather than m = O(\/n). The author
does not know whether the majority game has an explicit strategy when
m = O(y/n).

The puzzles and solutions given in this paper are related to some well
studied research areas.

Theorem 1 can be viewed as a special case of the well known fact that
linear programs with integer constraints and a totally unimodular constraint
matrix always have integer optimal solutions. The connection between total
unimodularity and the solution of integer programs was apparently first
made in [2], and can be found in any of a number of textbooks.

The puzzles studied here can be cast as questions about discrepency.
The approach we used to solve them (by rounding a fractional solution) has
been previously use in order to prove other results concerning discrepency,
such as the well known Beck-Fiala theorem [1].
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Hat Guessing Games
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Abstract

Hat problems have become a popular topic in recreational mathematics. In a typical hat
problem, each of n players tries to guess the color of the hat they are wearing by looking at
the colors of the hats worn by some of the other players. In this paper we consider several
variants of the problem, united by the common theme that the guessing strategies are required
to be deterministic and the objective is to maximize the number of correct answers in the worst
case. We also summarize what is currently known about the worst-case analysis of deterministic
hat-guessing problems with a finite number of players.

Key words: hat game; deterministic strategies; sight graph; Tutte-Berge formula; hypercube
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1 Introduction

Consider the following game. There are n distinguishable players and one adversary. The adversary
will place on the heads of the players hats of k different colors, at which point players are allowed
to see all hats but their own. No communication is allowed. Each player then makes a private guess
as to what hat they are wearing. The goal of the players is to maximize the number of correct
guesses.

To help players maximize their correct guesses, the players are allowed to meet before the hats
are placed on their heads and to determine a public deterministic strategy (public in that everyone,
including the adversary, knows the strategy and deterministic in that the guesses are determined
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completely by the hat placement). What is the maximum number of correct guesses that can be
guaranteed, and what strategy should be implemented to achieve the maximum?

This question has been answered in [3, 9]. Here we will present the answer and consider some
variations on the game, showing that they lead to some surprisingly subtle combinatorial and
algorithmic problems and theorems. We proceed as follows. In the remainder of the introduction
we answer these questions for the game as stated. In Section [2| we consider what happens when
players are not able to see everyone, which might be applicable as an abstraction of the problem
of guessing information globally in a market or a decentralized computing system, in which each
person (or software agent) has only partial/local knowledge. In Section [3| we give a hypercube
interpretation of the game which gives insight into the nature of optimal strategies, and we explore
a version of the hats game where the adversary has a restricted hat supply.

Hat guessing games have long been a popular source of problems in recreational mathematics,
and variations of hat guessing games have recently attracted increasing attention [6], partly be-
cause of their connections with coding theory (particularly Hamming codes). As another example,
Aggarwal et al. [I] have used hat problems in the design of deterministic auction mechanisms.
When constructing truthful auction mechanisms, a mechanism designer must devise a procedure
for assigning a price to each bidder based only on the bids of other players (else she may have
an incentive to lie about her bid), with the aim of charging many bidders a price which is close
to their own bid. Note the formal similarity with hat problems, in which the goal is to devise a
procedure for assigning a guess to each player based only on the hat colors of other players, with
the aim of assigning to many players a guess which matches their own hat color. By exploiting
this similarity between the two problems, Aggarwal et al. used hat-guessing strategies for a variant
of the balanced hat problem (discussed below in Section 3.1) to provide a generic procedure for
converting a randomized auction into a deterministic auction with approximately the same revenue,
in markets with single-parameter bidders and no supply constraints.

Finally it is worth mentioning the fact that we are considering deterministic strategies instead
of randomized ones is very important in this paper. The main reason is that these deterministic
strategies focus on the worst-case scenarios instead of average or even almost-all scenarios. As a
result, for several problems in this paper obtaining a randomized algorithm which guesses a constant
fraction of the desired hat colors on average is easy though we cannot even guess one or a constant
number of hat colors deterministically (see Sections and .

1.1 A winning approach to the hat guessing game

Example 1. Consider the case where there are 2 players and 2 colors of hats. Then a winning
strategy for these players is to have the first player guess what the second player is wearing and
the second player guess the color opposite of what the first player is wearing. If they are wearing
hats of the same color then the first player guesses correctly. If they are wearing different colors
then the second player guesses correctly. In any case there is one correct guess (and one incorrect
guess). O

It is interesting to note that in this example the expected number of correct guesses is 1, the
same as if they had guessed randomly. What their strategy has done is to eliminate the variance



involved in the guessing. The other thing to note is that neither player has any idea who guessed
correctly, but they do know that collectively one of them did. These two properties will hold in
general.

We have the following general result, first proved for 2 colors by Winkler [9] and later generalized
to k colors by Feige [3].

Theorem 2. If there are n players and hats of k different colors then there exists a strategy
guaranteeing at least |n/k| correct quesses. No strategy can improve on this.

Proof. We first demonstrate a strategy. Number the players 1 to n and the colors of the hats 1
to k. The ith player will guess as if the sum of all the hats (including their own) is congruent to
i mod k. At least |n/k| of the players will be acting correctly and will therefore guess correctly.
To see that this cannot be improved upon we use an averaging argument. If a player sees a
particular placement of hats then they are in one of k£ situations and they will guess correctly in
exactly one of these situations. Since there are k"1 ways to place the hats on the remaining players
we see that each player will make k"' correct guesses over all possible placements of hats. Since
there are n players and k™ ways to place the hats then on average we have nk" 1 /k™ = n/k correct
guesses. It follows that the adversary can find some placement of hats with at most [n/k| correct
guesses. ]

2 Restricting our vision in the game

In the original version of the game every player can see every other player. In an actual imple-
mentation of the game with a large group of people this might be difficult to achieve. So we now
consider a variation where each player sees some subset of the other players.

To do this we introduce another layer to the game. We consider the “sight graph” where the
vertices are the players and we have a directed edge from a—b if player a can see player b. As an
example, in the original version of the game the graph was the complete graph on n vertices. For
a given sight graph G we will let H(G) denote the maximum number of correct guesses that the
players can guarantee using an optimal strategy when there are 2 colors of hats.

In this section we will first consider the undirected case, i.e., the case in which every directed
edge (u,v) is accompanied by the reverse edge (v,u). For this case, an exact answer to H(G) is
known. In the directed case no exact answer for H(G) is known but simple lower and upper bounds
do exist. Finally, we consider the case when there are more than 2 colors of hats, for which little
is known.

2.1 The undirected case

When we have an undirected graph the obvious strategy is to have players pair up as best as
possible. Then in each pair we can implement the strategy in Example [1} This shows that we can
guarantee at least |M| correct guesses where M is a maximum matching of G. The next result
shows that this cannot be improved upon.

Theorem 3. Let G be an undirected graph with M a mazimum matching of G. Then H(G) = |M|.



Proof. It remains to show that H(G) < |M|. To do this we use the Tutte-Berge formula [2, §],
which says that there is a subset U of the vertices such that
VI + U] = o(G-U)

2 b

| M| =

where o(G — U) is the number of connected components of the induced subgraph G — U which
have an odd number of vertices. For j = o(G —U) let W1, ..., W; be the connected components of
G — U which have an odd number of vertices and Y the union of all the connected components of
G — U which have an even number of vertices.

Given any strategy we place hats as follows. First place hats on U arbitrarily. Having fixed
the hat placement on U, for each player in W; their guess is now completely determined by the
hat placement on W; (since the only other players that can be seen are U which has already been
placed). Applying the arguments from Theorem there is some placement of hats on each W; with
at most (|WW;] — 1)/2 correct guesses. Similarly we can place hats on Y so that there are at most
|Y'|/2 correct guesses. Therefore the total number of correct guesses is bounded above by

i Wal-1_ Wil-1_ VI+|Ul-j

U+ =0 -y
||+2+2+ 2 2

= |M]. O

2.2 The directed case

For the directed case there is no obvious strategy to adopt, and no sharp bound for H(G) is known.
However there exist simple upper and lower bounds as shown in the following.

Lemma 4. Given a directed graph G let ¢(G) denote the mazimal number of vertex disjoint cycles
in G, and F(G) denote the minimum number of vertices whose removal from G makes the graph
acyclic. Then ¢(G) < H(G) < F(G).

Proof. The lower bound follows by noting that for every cycle we can guarantee one correct guess.
For example, if we have a cycle a;—as— - - - —ar—a; then by having players ai, ..., ar_1 guess the
opposite color of the next player and a; guess the color of the hat a; has, we guarantee at least
one correct guess.

For the upper bound we note we can arrange the vertices in order so that the removal of
v1,...,Vp(q) leaves the graph acyclic and the remaining vertices vp(gy41,. .., vn are such that if
i > F(G) and there is an edge from v; to v; then j < i. In other words for the last n — F'(G)
vertices, all outgoing edges point to the left. We place hats on the first F'(G) players arbitrarily
and then we can place hats on players F'(G)+ 1 to n in turn, choosing each of the last n— F/(G) hat
colors so as to force the corresponding player to guess incorrectly, given the colors of the preceding
players. O

By a theorem of Reed et al. [4], formerly known as Younger’s Conjecture (namely, for every
integer k > 0 there exists an integer ¢ > 0 such that every digraph G has k vertex disjoint
directed cycles, or G can be made acyclic by deleting at most ¢ vertices), this implies a criterion
for determining whether a family of directed graphs has unbounded “hat number.”



Corollary 5. Let G be a set of finite directed graphs. The set {H(G) : G € G} is unbounded if
and only if the set {F(G) : G € G} is unbounded.

Neither bound in Lemmais sharp. For the upper bound, the undirected triangle has F'(G) = 2
but we know from Theorem [2| that H(G) = 1. An example to show the lower bound is not sharp
is a little more involved and is given below.

Example 6. Let G consist of a directed four cycle a—b—c—d—a with a fifth node e joined to the
other four by bi-directed edges. This graph has ¢(G) =1 and H(G) = 2.

—> C

N
SN

LS —

—d

To describe a strategy we will let A, B, C, D, E denote the actual colors of hats placed on players
a, b, c,d, e respectively, while g4, 95, gc, g4, ge denote their guesses. We can describe their strategy in
mod 2 arithmetic as follows.

Jgo = B+ FE; ap=C+FE, ge=D+ E; gi=A+FE+1;

|1 it(A+B,B+C,C+ D,A+ D + 1) has Hamming weight 1;
Je= 0 if (A+B,B+C,C+ D,A+ D + 1) has Hamming weight 3.

What happens is that the players a, b, ¢, d will make either 1 or 3 correct guesses depending on what
e is wearing. So e guesses as though his/her hat would force 1 correct guess among the other four
players. Thus, either e guesses wrong and there are 3 correct guesses among a, b, ¢, d; or e guesses
correctly and there is 1 correct guess among a, b, ¢, d for a total of 2 correct guesses. O

Question. For an undirected graph G how do we calculate H(G)? The obvious algorithm for de-
ciding if H(G) > h requires nondeterministic exponential time: the algorithm nondeterministically
comes up with a guessing strategy for the players, and then spends exponential time verifying that
this strategy produces at least h correct answers on every input. We do not know if there is a more
efficient algorithm for deciding if H(G) > h.

We note that in answering this question for directed graphs it suffices to consider graphs GG which
are strongly connected. In particular, H(G) = >, H(G)) where G, are the strongly connected
components of G. The proof of this is similar to the argument of the upper bound in Lemma
Namely, we can order the strongly connected components so that there is an edge from G; to G
only if ¢ > j. Then the adversary acts optimally on each of the connected components in turn.

A related question concerns the complexity of optimal guessing strategies. Define a guessing
strategy with sight graph G to be optimal if it achieves at least H(G) correct answers on every
input. We saw in the proof of Theorem [3| that when G is undirected, there is always an optimal
guessing strategy in which each player’s guess is computed by evaluating a linear function (over the
field with two elements) whose inputs are the other players’ hat colors together with the constant
1. For directed graphs this is not the case. The sight graph in Example |§| has H(G) = 2, but the



reader may verify by a simple case analysis that for every linear guessing strategy, there exists an
input on which fewer than 2 players answer correctly.

Question. Is it true that for every directed graph G, there is an optimal guessing strategy in which
every player’s guess is computed by inserting the other players’ hat colors into a Boolean circuit of
size polynomial in |G|?

Note that an affirmative answer to this question would imply that the problem of deciding if
H(G) > h belongs to the complexity class Ef , providing a partial answer to the preceding question.

2.3 More than 2 colors of hats

Considerably less is known when there are more than 2 colors involved in the game. Let Hy(G)
denote the maximum number of correct guesses that the players can guarantee using an optimal
strategy when there are k colors of hats. From the proof of Theorem [2| we know that Hy(G) =
1 when G is an undirected k-clique, and therefore Hyi(G) > ¢ whenever G contains ¢ disjoint
undirected k-cliques. However it is possible to avoid k-cliques altogether and still guarantee at
least one correct guess, as shown below.

Theorem 7. For every number k, there exists a bipartite graph G with Hi(G) > 0.

Proof. Let G be a complete bipartite graph with n = k — 1 vertices on the left side and m = k"
vertices on the right side. Let C denote the set of all k-colorings of the left side of G. Note that
|C| = k™ and m = kIl hence m is equal to the number of mappings from C to {1,2,...,k}. Pick
a one-to-one correspondence between the vertices on the right side of G and the mappings from C
to {1,2,...,k}, and let each vertex on the right side of G guess its color using the corresponding
mapping.

We will need the following claim.

Claim. Let cr denote a fixed coloring of the right side of G, and let C’ denote the set of all
colorings ¢y, of the left side of G such that the combined coloring (cr,cr) causes every vertex on
the right side to guess its color incorrectly. Then |C'| < k.

Now it’s time to define the guessing strategies used by the vertices on the left side of G. Given
the coloring of the right side, the set C” defined in the lemma above has at most n = k — 1 elements.
So let ¢q,¢a,...,c, be a list of colorings which contains every element of C’. For i = 1,2,...,n,
vertex ¢ on the left guesses that its color is ¢;(i). This guessing strategy (combined with the
guessing strategy for the vertices on the right side as defined above) guarantees at least one correct
answer. This is because the above claim guarantees that at least one vertex on the right side guesses
correctly unless the coloring of the left side belongs to C’. But if the coloring of the left side belongs
to C’, then it is equal to ¢; for some ¢ in 1,2,...,n, in which case vertex ¢ on the left guesses its
color correctly.

It remains to prove the claim. The proof follows from noting that if C’ contains k distinct
elements ¢, ca,...,c, then there exists a function f from C to {1,2,...,k} which assumes k
distinct values on the set {c1,...,ck}. Let v denote the vertex on the right side of G' corresponding



to f. Since the set {f(c1), f(c2),..., f(ck)} contains all k colors, we must have f(c;) = cr(v) for
some i in 1,2, ..., k. Thus, the combined coloring (¢;, cr) causes vertex v to guess its color correctly,
contradicting our assumption that ¢; belongs to C’; ending the proof. O

Question. Is there a bipartite graph G satisfying Hy(G) > 0 whose size is polynomial in k7 What
if instead of bipartite we consider k-clique-free graphs?

Question. Call an undirected sight graph G “edge-critical for the hats game with k colors” if G
has the property that there exists a guessing strategy which guarantees at least one correct answer
for the hats game with k colors, but no proper subgraph of G has this property. For k = 2, the
only edge-critical graph is a 2-clique. For k > 2, there are at least two (undirected) edge-critical
graphs, namely a k-clique and a subgraph of the complete bipartite (k — 1)—by—(k‘kk71) graph. For
k > 2, are there infinitely many graphs which are edge-critical for the hats game with k colors?

We close this section by proving that Hy(G) = 0 whenever k£ > 2 and G is an undirected tree.
This fact is a consequence of the following more general lemma.

Lemma 8. Suppose we are given: an undirected tree T'; a guessing strategy I' for the hat k-coloring
problem on T'; a node v in T; and a pair of colors ci,cy. Then there exists a k-coloring (k> 3) of
T such that every node guesses its color incorrectly; and the color of node v is either ¢1 or cs.

Proof. The proof is by induction on the size of . When |V (T)| = 1 the result is trivial. Otherwise
deleting v from T partitions the remaining vertices into a collection of disjoint subtrees 17, T5,. ..,
T;. Fori=1,2,...,7, let r(T;) denote the unique neighbor of v in T;. Let I';(T;) (respectively
I'2(T;)) denote the guessing strategy applied in 7; when the color of v is ¢; (respectively c2). Note
that I'1(7;) and I'y(T;) differ only in the function which r(7;) uses to guess its color based on the
colors of its neighbors in 7;. Let Bi(T;) denote the set of “bad colorings” for guessing strategy
I'1(T3), i-e., the colorings which cause every node of T; to guess its color incorrectly. Let C(T;)
denote the set of colors assigned to r(T;) by colorings in B;(T;). Define sets Ba(T;), Co(T;) similarly,
but using the guessing strategy I'o(7;) in place of I'1(7;). The induction hypothesis implies that
C1(T;) and C(T;) each have at least k — 1 elements. (If not, then the complement of one of these
sets, say C1(T;), contains at least two colors, say c3, c4. Applying the induction hypothesis with
tree T;, guessing strategy I'1(7;), node r(7;), and color pair c3, ¢4 would lead to an element of
Bi(T;) in which the color of r(T;) is either c3 or ¢4, contradicting the assumption that cs, ¢4 are
both in the complement of C(T;).) Having established that C;(7;) and C2(7;) each have at least
k — 1 elements, it follows (from the fact that k£ > 2) that the intersection of C1(7;) and Ca(T;) is
non-empty. Choose a color ¢; from the intersection of these two sets and assign it to r(7;). Do this
for each i in {1,2,...,j}. Having assigned a color to each neighbor of v, the guess of node v is now
determined. At least one of the colors ¢y, co, differs from this guess, so we may assign this color to
node v and thereby ensure that it guesses incorrectly. Assume without loss of generality that color
c1 is assigned to v. For each subtree Tj, the set B;(7;) contains a coloring which satisfies:

e the color of r(T;) is ¢;

e every node guesses its color incorrectly using guessing strategy I' (7;).



We choose one such coloring and use it to assign colors to the nodes of T;. Doing this for every
iin {1,2,...,7} yields a coloring of T which satisfies the two properties in the statement of the
lemma. O

Corollary 9. If G is an undirected tree and k > 2 then Hy(G) = 0.

2.4 Generalized guessing graphs

In this section we consider a variation in which players are not necessarily trying to guess their
own hat color. Instead there is a set P (“players”) and a set H (“hats”), and two directed graphs
G, (“visibility graph”) and G, (“guessing graph”). Both graphs have a vertex set which is the
union of P and H. Every edge of G, has its tail in P and its head in H; we think of edge (u,v)
as indicating that person u can see the color of hat v. Every edge of Gy has its tail in H and its
head in P; we think of edge (v,u) as indicating that person v must guess the color of hat v. (Note
that the orientation of these edges is from hats to people, the reverse of the orientation convention
used in G,. This orientation convention is adopted because it will be convenient later on.) The hat
problem considered in earlier sections corresponds to the case when there is a bijection ¢ : H — P
and the edge set of Gy is {(v,¢(v)) : v € H}.

A “guessing strategy” is a set of functions, one for each edge in G4. Each such function maps
the set of k-colorings of H to the set of colors, and has the property that the value of the function
corresponding to edge e = (v, u) depends only on the colors of the elements of H which are adjacent
to uw in G. Given a k-coloring of H and a guessing strategy, we say that edge e = (v,u) of Gy
gives a correct answer if its function evaluates to the color which was assigned to v. We define
Hy(Gy,Gy) to be the maximum number of correct guesses that the players can guarantee using an
optimal strategy when there are k colors of hats.

Theorem 10. When k = 2, Hy(G,,Gy) > 0 if and only if at least one of the following properties
holds:

a. There is a vertex of G4 whose outdegree is greater than 1.
b. There is a directed cycle in the union of G, and G|,.

Proof. Identify the set of colors with the set {0,1}. If property (a) is satisfied and G, contains
edges (v,u) and (v,u’) for some v in H and u, v’ in P, then assign the constant function 0 to edge
(v,u) and the constant function 1 to edge (v,u'). Clearly, on every input, at least one of these
edges gives a correct answer.

If property (b) is satisfied, let the vertices of the cycle be

V1= ULV UL— - U U

and adopt the following guessing strategy. For ¢ = 1,2,...,n—1, player u; guesses that the color of
v; is different from the color of v;11. Player u,, guesses that the color of v, is the same as the color of
v1. Observe that this is a legal guessing strategy since each of the edges (u1,v2), (uz,v3), ..., (Un, v1)



belongs to G,,. Also, for any input on which none of uq, us, ..., u,—1 guess correctly, it must be the
case that vy, vs,..., v, are all assigned the same color. But then (u,,v1) guesses correctly.
Finally, suppose neither (a) nor (b) is satisfied; we must prove that for every guessing strategy
there exists an input on which every edge guesses incorrectly. We will only sketch this part of
the proof. Let G be the union of G, and Gy, and let G’ be the directed graph obtained from
G by contracting the edges of Gy4. If G’ contains a directed cycle, then G must also contain a
directed cycle. (In fact, our assumption that property (a) is not satisfied implies that every edge
of G’ corresponds to a 2-hop path between two elements of P in G.) Since we are assuming G
contains no directed cycles, it follows that G’ is acyclic. An elementary induction argument, using
a topological sort of G’, produces a coloring of H which causes every edge to guess incorrectly. [

Question. Above we characterize visibility and guessing graphs for which we can guarantee at
least one correct answer. It would be nice if we can determine exactly how much more information
in the guessing graph we can obtain by adding a particular edge to the visibility graph. More
generally, given m, G, and G, determine the smallest value j such that there exists a graph G|,
consisting of G, with j additional edges such that the hat number Hs(G),, Gy) is at least m?

The above question can be loosely considered in the same line as the Aanderaa-Rosenberg
Conjecture [7] which asks the minimum number of edges of a graph that should be revealed in
order to determine whether the graph has a given monotone property P or not (see also [5]).

3 Using hypercubes to approach the game

One of the interesting connections between hat guessing games and applications lies in interpreting
the game in terms of various structure restrictions on hypercubes (the restriction depending on the
rule of the particular game). In this section we will consider several questions for which we can use
hypercubes to give an answer. One drawback to using hypercubes is that the number of vertices
is exponential in the number of players and so many of the constructions are not polynomial in
n. Nevertheless insight to the game can be achieved by considering hypercubes (see for example
Proposition .

Recall that the n-cube has as vertices all 2" binary words of length n. This has a natural
connection with the possible placements of hats. The edges of the n-cube join two vertices which
differ in one letter. As an example, in the 4-cube there is an edge between 1011 and 1010; we can
represent this in shorthand as 101% where the *x indicates an indeterminate bit which is either 0 or
1. The edges of the n-cube represent the decisions which must be made in forming the strategy.
So 101x* indicates that the fourth player (the %) sees 1, 0, and 1 on the first, second, and third
players respectively. In this situation they must either guess 0 or 1. To indicate his/her guess we
will “orient” the edge in the direction of the guess. So for instance if the player guesses 0 in this
case then we will have 1011—1010.

The original version of the game reduces to finding an orientation on the edges of the n-cube
to maximize the minimum in-degree.



3.1 Balanced strategies

We now return to the original game. In Theorem [2] we gave one example of how to construct a
strategy to guarantee |n/k| guesses. This strategy is far from unique, and may not have some
desired property. For example, while that strategy is easy to implement the correct guesses are not
reflective of the actual hats that are placed on the players. For 2 colors of hats we will show how
to construct different strategies and in particular how to construct a balanced strategy.

Lemma 11. If there are n players and 2 different hat colors, then there exists a strategy which is
balanced. That is, if there are b blue hats and r red hats placed on the players (r +b = n) then
at least |b/2] of the people wearing blue guess correctly and |r/2| of the people wearing red guess
correctly.

We first approach the problem by using hypercubes. To construct a balanced strategy we will
group the vertices of the hypercube in ¢ levels, where a vertex is at level i if the word indexing the
vertex has Hamming weight 7. The up-degree (respectively down-degree) at a vertex in level i will
be the number of edges between that vertex and vertices in level ¢ + 1 (respectively i — 1). If we
consider how directing the edges corresponds to guesses we have the following picture.

level 7 +1
correct incorrect
0 guess 1 guess
level 7
correct incorrect
1 guess 0 guess
level 7 — 1

We now see that the balanced strategy in Lemma would correspond to an orientation on
the edges of the hypercube so that at each node the number of directed edges from level i + 1
to that node is |up-degree/2| while the number of directed edges from level i — 1 to that node is
|down-degree/2].

Construction of Lemma[I1l For n even we start with any edge and orient it arbitrarily and then
continue to lengthen the directed path to be as long as possible by continually directing an undi-
rected edge which is incident with the current terminal vertex. The only restriction is that if an
edge is between level 7 and level ¢ + 1 then if possible the next edge will also be between level i and
level i + 1. When the path can no longer be extended, if we have not oriented all the edges, then
we pick an unoriented edge and repeat the process.

When n is odd a similar construction works, the only caveat being that we must be careful in
selecting our initial edges. Now an initial edge cannot be chosen arbitrarily but must be directed
up from a vertex of odd up-degree or down from a vertex of odd down-degree.

It is easy to see that the strategy we construct is balanced, since at each vertex we pair directed
in- and out-edges, in such a way that every edge coming in from below (resp. above) is paired, if
possible, with an edge going to below (resp. above). O
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Using a different technique based on network flow, it is possible to construct balanced strategies
for every k; see [1] for details.

Theorem 12 ([1])). If there are n players and k different hat colors, then there exists a strategy
which is balanced. That is, if a; of the players are wearing hats of color i (1 < i < k) then at least
la;/k]| of the people wearing color i guess correctly for each value of i.

3.2 Optimal strategies are unbiased

If one constructs many optimal strategies for the 2-color game when n is even, one starts to see
a pattern emerge. Namely, each player is as likely to guess one hat color as they are to guess the
other. We give a short proof that uses hypercubes.

Proposition 13. Suppose the set of hat colors is {0,1} and there are n players playing an optimal
strateqy, where n is even. For any fized player i, looking over all possible hat placements, we have
that the number of times that player i guesses 0 is the same as the number of times that player i
guesses 1.

Proof. When n is even an optimal strategy corresponds to an orientation on the edges of the n-cube
with the in-degree equal to the out-degree at each vertex. In particular, the strategy corresponds
to some Eulerian walk on the n-cube. We now redraw the n-cube as follows.

}nodes with 1 for the ith entry

strategy for the ith player
corresponds to these edges

}nodes with 0 for the ith entry

Then note that the number of edges in the center that point up is the number of times the
ith player guesses 1 and the number of edges that point down is the number of times that the ith
player guesses 0. Since we have an Eulerian walk the number of up-edges equals the number of
down-edges. O

Proposition [13| can be generalized to games with more than 2 colors.

Proposition 14. Suppose that n players are playing an optimal strategy of the k-color game, where
k is a divisor of n. If the players’ hat colors are drawn independently from the uniform distribution
on {1,2,...,k} then for each player i and each hat color c,

Pr(i guesses ¢) = 1/k.

Equivalently, in an optimal strategy each player guesses each hat color an equal number of times.

11



Proof. Let X denote the random variable which counts the number of correct answers provided by
the players. Our assumption that the players use an optimal guessing strategy means that X > n/k
at every point of the sample space. Now let (7, c) denote the event that player i is assigned hat
color ¢. We have

E[X | €@, 0)] = ZPr(j guesses correctly | £(i, ¢)) (1)
j=1
n—1 . )
= 3 + Pr(i guesses ¢ | £(i,¢)) (2)
- = ; ! + Pr(i guesses c). (3)

Here follows from linearity of expectation, and follows from the fact that, conditional on
E(i,c), every player except i has a hat color which is uniformly distributed and is independent of
its own guess. Finally, follows from the fact that player i’s guess is independent of its own hat
color.

Recalling now that X > n/k at every point of the sample space, we see that

E[X | £(i,8)] > n/k,

and according to this implies Pr(i guesses ¢) > 1/k. Since this inequality applies to every hat
color ¢, it must be the case that Pr(i guesses ¢) = 1/k for every color c. O

3.3 The limited hats game

We now consider another variation on the original hats game. The setup is as before, but now the
adversary has a limited supply of hats to choose from. We will let H(n;aq,as,...,ax) denote the
maximum number of correct guesses that we can guarantee when there are n players and a; hats
of the first color, as hats of the second color, and so on up through a; hats of the kth color. We
need aj + ag + -+ + ax > n (to ensure that we have enough hats for the players) and without loss
of generality we can assume that 0 < a; < n for all 4.

Example 15. Suppose that there are 3 players and the adversary has 2 blue hats and 2 red hats.
The players can choose to ignore this information and use the same strategy as in Theorem
guaranteeing 1 correct guess. However if they modify their strategy then they can guarantee 2
correct guesses. If the players are a, b, ¢ then such a strategy would be for a to guess the opposite of
what b is wearing, b to guess the opposite of what ¢ is wearing, and ¢ to guess the opposite of what a is
wearing. So H(3;2,2) = 2. (More generally, it was shown in [3] that H(4k—1;2k,2k) = 3k—1.) O

Theorem 16. We have the following properties:
i) Hn;n,n,...,n) = |n/k|.
(1) H( ) = [n/k]

k times

(it) If a1 +as+ -+ ap = n then H(n;a1,a9,...,a;) = n.

12



(i1i) If m is even or k is odd (or both), then H(mk — 1;m,...,m) =
k ti
1mes

(iv) H(n;ai,ag,...,ar) = H(n; 0,01y, 05(2), - - - > Qo(r)) for any permutation o.

(v) If b; < a; for alli=1,2,... k then H(n;aq,az,...,a;) < H(n;by,ba, ..., bg).

. n—1 n
(vi) H(n;ay,ag,...,a;) < { Z n<b17"‘7bk)/b»<azl<i<k (bl,...,bk)J'

b;<a;, 1<i<k
by+--Hbp=n—1 by+-+bp=n
Proof. Ttem (i) is Theorem Item (ii) is obvious because the strategy is to have each player
guess the hat they do not see. Item (iv) says we can permute the hat colors. Item (v) follows by
noting that the optimal strategy for the H(n;a1, a9, ..., ar) game is also a (not necessarily optimal)
strategy for the H(n;b1,bo,...,by) game.

To prove item (vi) we first give a hyper-hypercube interpretation of the game. The k™ vertices
are words of length n from the alphabet {0, ..., k—1} and correspond to the k™ possible placements
of hats. The tuples (i.e., edges) represent the decisions which must be made in deciding a strategy.
So for example if n = 5 and k = 3 then one tuple would be 210«1 = {21001,21011,21021}
representing the situation when the fourth player (the ) sees 2, 1, 0, and 1 on the first, second,
third, and fifth players respectively. A strategy corresponds to marking one vertex on each tuple,
the marking indicating the guess that the player will make. Note each marking is one correct guess.

We now use an averaging argument similar to that given in Theorem

H(n;a1,as w) < # of correct guesses J
Y Y PAE —

| # of possible hat placements

# of tuples available for marking
# of vertices to be marked

| N VD o (S|
= n

by+-tby=n—1 by +-+by=n

The numerator is the n possible positions of the x along with the allowable combinations of the
remaining n — 1 entries. The denominator is the number of ways to place the n hats in allowable
combinations.

For item (iii) we have that H(mk — 1;m,...,m) < (mk +m — 2)/2 from (vi). So it suffices to
show that we can construct a strategy guaranteeing at least (mk+m — 2)/2 correct guesses. There
are two types of tuples, those which involve only one markable vertex and those that involve two.
The first kind is for players who see a full set of all but one type of hat and so automatically know
their hat. The second kind is for players who see a full set of all but two types of hats and so have
to make one of two choices.

Every vertex will be associated with m — 1 tuples of the first type (one for each hat of the
deficient color in the placement), we mark these tuples and put them aside. We now construct a
bipartite graph with the remaining edges and tuples as follows: The vertex set is S UT where S

13



is the set of tuples we have not yet marked and T is the set of vertices to be marked, there is an
edge between an element in S and an element in T if the corresponding vertex can be marked by
the corresponding tuple.

Every element in S has degree 2 and every element in 7" has degree mk—m, which by assumption
is even. We now split the elements in 7" by duplicating each element (mk — m)/2 times and then
distributing the edges of the original element so that each resulting piece has degree 2. It is easy
to now construct a perfect matching between S and T' (for example start with any edge and going
through a cycle alternatively include/not include the edges). This perfect matching gives a marking
on the tuples so that each of the vertices is marked (mk —m)/2 times.

In total each vertex was marked (m — 1) + (mk —m)/2 = (mk + m — 2)/2 times giving our
desired strategy. O

Question. What is H(n;ai,as,...,a;)? Is the upper bound given in Theorem tight? [Note:
items (i), (ii) and (iii) in Theorem [16|are examples where the bound is tight.]

As a warmup to the above question, the interested reader might enjoy showing that H(5;4,3) =
3 (an upper bound of 3 immediately follows from Theorem so it suffices to find a strategy
guaranteeing at least 3 correct guesses).

4 Summary and open questions

In this paper we considered hat guessing games in which players wearing hats of various colors
use deterministic strategies to guess the color of some hats (usually their own) with the goal of
maximizing the number of correct answers in the worst case. In this section we summarize our
main results, and we list the open questions which are scattered throughout this paper.

Focusing on hat games with a sight graph that specifies the set of hats visible to each player, we
defined the hat number Hy(G) to be the number of correct answers provided in the worst case by an
optimal strategy for players guessing their own hat color, when the sight graph is G and there are
k colors of hats. We proved that for two colors and undirected sight graphs, the hat number equals
the cardinality of a maximum matching in the sight graph. For a directed graph G and two hat
colors, we provided lower and upper bounds on the hat number; these bounds suffice to distinguish
graph families with bounded hat number from those with unbounded hat number. For three or
more colors, we proved that the hat number of a tree is zero and that there are bipartite graphs
with nonzero hat number. When there are two hat colors and there is a guessing graph which
specifies the set of hat colors which each player must guess, we provided necessary and sufficient
conditions for the existence of a strategy which guarantees at least one correct answer.

Turning to questions about the distribution of guesses and of correct guesses, we introduced
a hypercube interpretation of the game which permitted us to prove that when there are two
colors of hats and players can see all hats except their own, there is a guessing strategy which
guarantees that roughly half of the players wearing each type of hat guess correctly. (This result
was also proved in [I], which contains a generalization to more than two colors.) We also proved
that optimal strategies are unbiased, i.e. when the number of hat colors is a divisor of the number
of players, each player guesses each hat color with equal probability when the colors are assigned
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independently and uniformly at random. Finally, turning to a version in which the players are
given an a priori upper bound on the number of hats of each color, we exhibited some bounds on
the number of correct answers provided by the optimal strategy in the worst case.

In presenting these results, we also introduced many open questions inspired by them. Here we
recapitulate the open questions presented earlier.

Complexity of computing hat numbers and optimal strategies: What is the computational
complexity of determining H(G), given k and G? There is a polynomial-time algorithm when
k = 2 and G is undirected (because a maximum matching can be computed in polynomial
time), but for all other cases the best known algorithm requires nondeterministic exponential
time. On the other hand, we do not know if the problem is NP-hard.

How much computational power is required to implement an optimal guessing strategy? For
k = 2, can the optimal guessing strategy for a directed sight graph G always be implemented
by players using Boolean circuits of size polynomial in the size of G?

Graphs with positive hat numbers: Is there a bipartite graph G satisfying Hyx(G) > 0 whose
size is polynomial in k7 What if instead of bipartite we consider k-clique-free graphs? Are
there infinitely many graphs G such that Hy(G) > 0 but Hx(G") = 0 for every proper subgraph
G cG?

Augmenting sight graphs to improve hat numbers: Given a positive number m and two
graphs G, G4 (the sight graph and guessing graph of a hat guessing game), determine the
smallest value j such that one can add j additional edges to G, to obtain a graph G, satisfying
HQ(G;,GQ) >m.

The limited hats game with unrestricted vision: Suppose players can see every hat color ex-
cept their own, and must guess their own hat color. When there are k& hat colors and at most
a; hats in color class i (1 < i < k), compute the maximum number of correct answers that
can be guaranteed by a guessing strategy given this limitation on the placement of hats. Is
the upper bound in part (vi) of Theorem [16| tight?
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THE THREE-HAT PROBLEM

BRIAN BENSON AND YANG WANG

1. INTRODUCTION

Many classical puzzles involve hats. The general setting for these puzzles is a game in
which several players are each given a hat to wear. Associated with each hat is either a
color or a number. Every player can see the color or number of everyone else’s hat but not
his own. The players are then trying to figure out the colors or the numbers on their own

hats. The Three-Hat Problem is one of such puzzles.

The Three-Hat Problem. Three players are each given a hat to wear. Written on each
hat is a positive integer. Any player can see the other two numbers but not his own. It
is known that one of the numbers is the sum of the other two. They take turns to either

identify their numbers, or pass if they can’t. The following process has taken place:

Player A: Pass.
Player B: Pass.
Player C: Pass.
Player A: My number is 50.

The question is: What are the other numbers?

There is also a more complex version of the above problem, in which the process has gone

longer as follows:

Player A: Pass.
Player B: Pass.
Player C: Pass.
Player A: Pass.
Player B: Pass.
Player C: Pass.
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Player A: Pass.
Player B: Pass.
Player C: My number is 60.

Again the question is: What are the other numbers?

The most general form of the Three-Hat Problem would have numbers a, b, a + b. In this
general setting one may ask: (a) Will the players be able to determine their numbers, and

(b) how will the process go if so.

As far as we know, both puzzles were proposed by Donald Aucamp in the MIT Technology
Review, see [4, 5, 6]. Although by no means trivial, the first puzzle is readily within grasph
of most enthusiasts who have some familiarity with these type of puzzles. The solution is
Player B has 20 and Player C has 30. To see why these two numbers work. Player A on his
first turn obviously doesn’t know whether his number is 50 or 10. Similarly neither Player B
nor Player C can immediately figure out their numbers. However, on his second turn Player
A can reason: If mine is a 10, then Player C would know his number is either 10 or 30. If
it is 10 Player B would immediately know his number is 20. But he didn’t know. So Player
C should know his number is 30. Now since Player C didn’t know, my number must be
50. With this kind of reasoning we can also rule out all other combinations. So [50, 20, 30]
is the only solution to the first puzzle. The second In a private communication Aucamp
mentioned that he received no solution to the second puzzle from the readers [1]. As it
turns out, our study shows that the second puzzle has eight solutions! They are [25, 35, 60],
[35,25,60], [42,18,60], [18,42,60], [10,50,60], [50, 10, 60], [44, 16, 60], [16,44, 60].

The Three-Hat Problem is among the more challenging hat puzzles. However, as we shall
see, like the Three-Hat Problem many of these hat puzzles can be solved using the same

principles and techniques. We list two classical hat puzzles here.

The Two-Hat Problem. Two players are each given to wear a hat with a positive integer
written on it. Assume that the two numbers are consecutive integers. Fach player can see
the other’s number but not his own. They take turns to either identify their numbers or
pass if they cannot. Will they be able to identify their numbers, and if so what will the

process be?



THE THREE-HAT PROBLEM 3

The Color-Hat Problem. Several players are each given either a red or a blue hat to
wear. Each player can see all other hats but not his own. They are also told that there is at
least one red hat. The game goes by rounds. In each round, every player will either identify
the color of his hat or pass, but all players do so simultaneously. The game ends when one
or more players have corectly identified their colors while no one makes a mistake. What
will happen? This puzzle takes on many popular forms, one of which is the Muddy Face

Problem analyzed in Tanaka and Tsujishita [8].

A very challenging variation of the Color-Hat Problem was due to Todd Ebert [2] and
was reported in an article in the New York Times [7]. In this variation, the players are
allowed to collaborate as a team and decide on a strategy before the game starts. However,
the players have only one chance to identify their colors. They win if at least one player
correctly name the color of his hat while no one is wrong. The question is: How well can
they do? What is their optimal strategy? This problem has an interesting connection to

coding theory.

In fact each of the hat puzzles mentioned here can have a similar collusion version that
is phrased as a game of strategy. Suppose that we say the players win if at least one player
makes a correct identification while no one else is wrong. Then each aforementioned hat
puzzle can be viewed as a problem of finding the strategy for the players to win with the

least number of go-arounds.

Although this paper is concerned with the Three-Hat Problem, a main additional objec-
tive is to show that these type of puzzles can be analyzed easily if we first treat them as
games of strategies. Once optimal strategies are found we can often easily show that the
non-collusion version and the collusion version for those games are equivalent, and therefore
they will end in exactly the same fashion. One of the main advantages of presenting these
puzzles as games of strategy is that we can avoid the so-called super-rationality assump-
tion (see Hofstadter [3]), namely each player has unlimited mental capacity to process all
informations available to them, including long chains of reasonings such as “I know player

” Such an assumption can be con-

B knows player C knows I know player C knows ....
fusing even to mathematicians without venturing deeply into the realm of set theory and

mathematical logic. The Three-Hat Problem is an excellent example to illustrate this point.
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2. OPTIMAL STRATEGY FOR THE THREE-HAT PROBLEM

We now discuss a strategy for the collusion version of the Three-Hat Problem. We say a
strategy is viable if it always leads to a win for the players. (So there is no guessing at any
stage.) A viable strategy is optimal if it requries the least number of turns (go-arounds) to
end the game successfully regardless what the numbers are on the three hats. Of course,
not all viable strategies are optimal. In theory it is also possible that an optimal strategy
does not exist, in which case a strategy may be the best for some configurations but no
strategy is the best for all configurations. For the Three-Hat Problem there does exist an
optimal strategy, which we give here. The optimality of the strategy is proved in the next

section.

The optimal strategy we describe here is a reduction scheme involving a chain of vectors
with postive integer entries. Throughout this paper we assume that the game begins with
Player A, followed by Player B next and Player C last. This order remains in all subsequent
rounds until the game ends. The numbers a, b, ¢ for Players A, B and C respectively are
represented by the vector [a, b, c]. Such a vector is called a three-hat configuration, or simply

just a configuration.

Let H denote the set of all triples s = [a, b, c] where a,b, c are positive integers such
that the largest of which is the sum of the other two. H represents the set of all possible
configurations of the Three-Hat Problem. Define a map ¢ : H — H as follows: For
s = [a, b, c] € H, if two of the entries are identical then o(s) = s; otherwise the largest entry
is replaced by the difference of the other two entries. For example, o([3,10,7]) = [3,4, 7],
o([10,1,9]) = [8,1,9], and o([3,3,6]) = [3,3,6]. We shall call s € H a base configuration if s
contains two identical entry, or equivalently o(s) =s. Note that in the base configuration,
the player with the largest number can immediately declare that his number is the sum of

the other two numbers. (He may choose not to in order to obey his strategy.)

Our strategy for the Three-Hat Problem involves a chain of configurations for each player.
For any s € H we otain a sequence of configurations s, o(s),...c"(s) where n > 0 is the
smallest power such that o™(s) is a base configuration. For example, for s = [3,10,7] the

sequence is

3,10,7],[3,4,7],[3,4,1],[3,2,1], [1, 2, 1].
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We call the sequence in reverse order the configuration chain associated with s. So in the

above example s = [3, 10, 7] the associated configuration chain is
1,2,1],[3,2,1],[3,4,1],[3,4, 7], [3, 10, 7].

Given a configuration, we say that a player has the cue if his number is the sum of the other

two. For example, for the configuration [3, 10, 7] Player B has the cue.

Chain Reduction Strategy for the Three-Hat Problem. For the Three-Hat Problem
with configuration s = [a, b, c|, let s4 = [b+ ¢,b, ¢, sp = [a,a + ¢,c] and s¢ = [a,b,a + b].
These are the working configurations for Players A, B, and C respectively. Each player
now writes down the configuration chain associated with his working configuration. It is
important to note that the chains differ only at the end. The players with the two smaller
numbers have longer chains by one configuration, which may differ for these two players.

The rest of the chains are identical.

When the game begins, the players are assigned the first configuration in their respective

configuration chain, and proceed with the following reduction scheme:

At each turn, a player looks at what remain on his configuration chain. If it contains only
one configuration he declares his number to be the sum of the other two numbers. The game
is over. Otherwise he will pass. Each player will now examine his assigned configuration
(which is in fact the same for all the players before the game ends). If he sees that the player
who has just passed has the cue for this configuration he will cross out the configuration
from his chain and assign himself the next configuration in the chain. Otherwise he keeps
his assigned configuration and his chain intact. The game continues until a player declares

his number. [ |
The following two examples will facilitate the understanding of the strategy.

Example 1. The numbers for Players A, B, C are 60, 36, 24, respectively. In this case the
working configurations are s4 = [60,36,24], sg = [60,84,24] and sc = [60,36,96]. The
configuration chains are

Player A : [12,12,24],[12, 36, 24], [60, 36, 24]

Player B: [12,12,24], [12, 36, 24], [60, 36, 24], [60, 84, 24]
Player C: [12,12,24], [12, 36, 24], [60, 36, 24], [60, 36, 96]
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As the start of the game, all players are assigned the configuration [12,12,24]. Player A
will pass, as will Player B and Player C. But Player C has the cue. So after Player C has
passed the configuration [12, 12, 24] is crossed out by all players from their chain. The new

configuration chains are

Player A : [12, 36, 24], [60, 36, 24]

Player B: [12,36,24], [60, 36, 24], [60, 84, 24]

Player C: [12,36,24], [60, 36, 24], [60, 36, 96]
All three players are now assigned the configuration [12, 36, 24]. Player A and Player B will
pass again. But since Player B has the cue, after his pass all three players will cross out
[12, 36, 24] from their chain and assign themselves the next configuration, which is [60, 36, 24]

for everyone. The new configuration chains are

Player A : [60, 36, 24]
Player B : [60, 36, 24], [60, 84, 24]
Player C : [60, 36, 24], [60, 36, 96]
It is Player C’s turn and he will pass. Now Player A has only one configuration left on

his chain, namely [60,36,24]. So he declares his number to be the sum of the other two

numbers, which is 60. The game ends with a win for the players. [ |

Example 2. The numbers for Players A, B, C are 3,10, 7, respectively. In this case the
working configurations are s4 = [17,10, 7], s = [3,10, 7] and s¢ = [3, 10, 13]. The following

shows the configuration chains and the action at each turn. Players with the cue are denoted

by a x*.
Player A:  Pass  [1,2,1],[3,2,1],[3,4,1],[3,4, 7], [3,10,7], [17, 10,7]
Player B*: Pass 1,2,1],[3,2,1],[3,4,1],[3,4,7],[3,10,7]
Player C:  Pass  [3,2,1],[3,4,1],3.4,7],[3, 10,7], [3, 10, 13]
Player A*:  Pass  [3,2,1],[3,4,1],[3,4,7],[3,10,7], [17, 10, 7]
Player B*: Pass [3,4,1],[3,4,7],[3,10, 7]
Player C*: Pass [3,4,7],[3,10,7],[3, 10, 13]
Player A: Pass [3,10,7],[17,10,7]
Player B*: [ have 10 [3,10,7].
The game ends successfully for the players. [ |

Using this strategy, the player with the sum of the other two numbers will always be the
one to declare his number correctly to end the game. This is quite easily shown. Since his
chain is a subchain of the other two players, and by the time his chain is down to only one

configuration the other players still have two. Moreover, since he holds the cue at that stage
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the other players cannot reduce the chain further without waiting for him to act. But when

he does act he will declare his number. So he is always the first to identify his number.

3. OPTIMALITY OF THE CHAIN REDUCTION STRATEGY

We will now prove that the above strategy is optimal for the Three-Hat Problem in the
sense that no other viable strategy will be able to end the game with fewer turns for all
configurations. Before proceeding further we first notice that because ged(a, b) = ged(a, ¢) =
ged(b, ¢) the players can always divide out the numbers by the greatest common divisor of
the two numbers they see. So we may without loss of generality assume that all numbers in
the Three-Hat game are pairwise coprime. In the coprime case the only base configurations
are [1,1,2], [1,2,1] and [2,1,1].

Proposition 1. No matter what viable strategy the players use for the Three-Hat Problem,
the player whose number is the sum of the other two is always the first player to declare his

number.

Proof. Assume that in the Three-Hat Game a player declared his number on the very first
turn of the game. It is easy to see that this can happen only if we have a base configuration
and this player has the sum of the other two numbers. No other cases allow the game to
end on the very first turn without guessing. For instance, even in the base configuration
[1,2,1] Player A cannot declare his number on his first turn without guessing, for he can
have both 1 or 3.

If the proposition is false then we have a game with configuration [a, b, ¢| that ends on the
n-th turn, n > 1, by a player who does not have the sume of the two numbers. Without loss
of generality we assume that Player C declares his number to end the game, and he does not
have the sum. So ¢ = |a —b|. But if so Player C must have concluded on the n-th turn that
his number is not ¢ = a+b. This is equivalent in saying that had his number been ¢ = a+0
the game would have ended earlier, with another player declaring his number. Therefore
the strategy the players use allows them to end the three-hat configuration [a,b,a + b] in
k < n turns by a player other than Player C. This player does not have the sum of the

other two numbers.



8 BRIAN BENSON AND YANG WANG

We can repeat this reasoning. In the end, we deduce that using their strategy the players
can end a non-base configuration game in one turn by a player whose number is not the

sum of the other two numbers. This is a contradiction. [ |

Theorem 2. The Chain Reduction Strategy is the optimal strategy for the Three-Hat Prob-

lem.

Proof. For the Three-Hat Problem with the configuration [a, b, c] let r([a, b, ¢]) denote the
number of turns needed to end the game using the Chain Reduction Strategy. We prove

that one cannot end the game in fewer turns using any other strategy.

Assume that the players are using another viable strategy such that the game ends in
f([a, b, c]) turns. Our objective is to show f([a,b,c]) > r([a,b, c]). Without loss of generality
we assume that a, b, c are pairwise coprime. We will prove the optimality of the Chain

Reduction Strategy by induction on max(a, b, c).

For max(a, b, c) = 2 we have the base case. It is clear that the Chain Reduction Strategy
is optimal, f([a,b,c]) > r([a,b,c]). Now assume that f([a,b,c]) > r([a,b,c]) whenever

max(a, b,c) < M. We now prove that f([a,b,c]) > r([a,b,c]) if max(a,b,c) = M.

We shall examine the case a = b+ c and b > ¢, so a = M. The other cases are proved in
virtually identical fashion so we shall omit them. Note that by Proposition 1 the game will
end with Player A declaring his number regardless of the strategy. With this in mind we
need only to examine what happens before Player A declares his number. Clearly from his
perspective Player A knows he has either a = b+ ¢ or a = b — ¢. He is not able to declare
his number until he rules out a = b — ¢, regardless of the strategy the players are using.
Now since all strategies end with the player with the sum declaring his number, Player A
knows that if his number is a = b — ¢ Player B will declare his number first on the n-th
turn, where n = f([b — ¢,b,¢]). But by the n-th turn Player B will pass because he does
not have the sum, and after it the earliest Player A can declare his number is after Player

C’s pass. Thus
f([a, b7 C]) 2 2 + f([b —C, ba C])
Note that here we do not get equality in general because we do not aasume the strategy

is optimal. By the induction hypothesis, since max(b — ¢,b,¢) = b < a = M we have
f(b—c¢,b,c]) > r([b—c,b,c]), and hence f([a,b,c]) > 2+ r([b — ¢,b,c]). We argue that
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r([a,b,c]) = 2+ r([b — ¢,b,c]). This can be seen easily if we compare the configuration
chains for [b — ¢, b, c] and those for [a,b,c|]. For all three players the former is a sub-chain
of the latter with one less configuration. On the r([b — ¢, b, ¢])-th turn Player B will pass,
and he has the cue. So [b — ¢,b, ] is crossed out from eveyone’s chain, leaving Player A
with only one configuration on his chain, namely [a,b,c]. After Player C passes Player
A is able to declare his number as a = b + ¢ using the Chain Reduction Strategy. Thus
f([a,b,c]) > 2+r([b—c, b, c]) = r([a, b, c]). This proves the optimality of the Chain Reduction
Strategy. [ |

One may wonder whether there are indeed non-optimal viable strategies for the Three-
Hat Problem. One such strategy is the following: Players will note the larger of the two
numbers they see, call these na, np, and no respectively. Unless another player has already
declared his number, Player A will pass until his n 4-th turn, when he will declare his number
to the the sum of the two other numbers. Players B and C do likewise. This is clearly a

viable strategy but by no means an optimal one.

4. EQUIVALENCE OF COLLUSION AND NO-COLLUSION VERSIONS

We now argue that under the super-rationality assumption the no-collusion version of the
Three-Hat Problem will end exactly the same way as if the players are colluding using the
Chain Reduction Strategy. Specifically, we assert that if there exists an optimal strategy
then a super-rational player is able to obtain this result. Clearly, from this perspective, if an
optimal strategy exists then the players need not collude. The super-rationality assumption
suffices to gurantee that all players will be able to find it and use it with the knowledge that
other players will do likewise. Collusion is helpful only when there exists no single optimal
strategy. This is the case when for any one strategy there is another strategy that is better
for some configurations. If so the players need to collude to decide on one strategy. Note
that two strategies for the Three-Hat Problem are considered to be the same if they lead to
exactly the same solution for all configurations. In this sense the Chain Reduction Strategy

is clearly the unique optimal strategy. By the above argument we have

Theorem 3. The no-collusion Three-Hat Problem is equivalent to the collusion Three-Hat

Problem using the Chain Reduction Strategy.
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By establishing the equivalence of collusion and no-collusion versions we can also solve
the other two hat problems easily. For the Two-Hat Problem, the no-collusion version is
equivalent to players using the following strategy: Each player will pass until on his n-th
turn, when he will declare his number to be n 4 1, where n is the number written on the
other player’s hat. The game ends when one player declares his number. For the Color-Hat
Problem, the no-collusion version is equivalent to this strategy: Players will each note how
many red hats he sees. Say a player sees n red hats. He will then pass in the first n rounds,
but declares his hat to be red on the (n + 1)-th round. The games ends when some players
declare their numbers. These strategies are easily shown to be optimal by similar arguments
for the Three-Hat Problem.
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TP KJIACCA TPEYI'OJIbHUKOB

A.3acnasckuii, O.3acnasckuii, @.NUsnes, [I.KoxxeBuukos, /I.Kpekos

Covununuco cmuzyu 6pedosoie
Bes xaxoti-aubo nymmot muicau,
Caosro eedpa 60dv, nydosvie

S npumnec sam Ha Kopomvicae.
A. Beaurudi

1 Omnpenenenus n BBOJHBIE 33291

Kak m3BecTHO, BOKPYT JIIOGOTO TPEYTroJbHAKA MOZKHO ONHUCATH OKPY?KHOCTH U B JTIO-
00if TPeyroJibHUK MOXKHO BIHCATh OKPY2KHOCTb. Kpome Toro, y J10001o Tpeyrojib-
HUKa CYIIEeCTBYIOT TPU BHEBIUCAHHBIE OKPYZKHOCTH, KazKjast U3 KOTOPbIX KACAETCs
OJTHON W3 CTOPOH TPEYrOJbHUKA W MPOJOJKEHUH JABYX JApYyrux cTopoH. s Tpe-
yronbanka ABC' obo3navaem:

() — onmcanHas OKpy:KHOCTH, O, R — ee MeHTp U paJuyc;

~ — BIHCAHHAS OKPYKHOCTH, [, I — ee MEeHTP U PaJInyC;

Yas Vb, Ve — BHEBIHCAHHbIE OKpyzKHOCTU, [4, [, [, — UX HEHTPBI, Ty, Tp, e — UX
PaINYCHI.

OCHOBHBIM 00'BEKTOM HAIIEr0 W3ydeHust OYLyT TPU CIEMUATbHBIX KJIACCa TPEYTOJIb-
HUKOB.

Ounpenenenne A. A-mpeyzosvrurom OyIeM Ha3bIBATH TPEYTOJHHUK, B KOTOPOM
Ol || BC.

Onpenenenne B. B-mpeyzosvrurom OyjieM Ha3bIBaATh TPEYTOJHLHUK, B KOTOPOM
OKPYZKHOCTH Yp, U §) IEePIeHUKYIAPHBI.

Ounpenenenne C. C-mpeyzorvhukom OymeM Ha3bIBATh TPEYTOJbHUK, YIOBIETBO-
psitoruit ycaosuo R = r..

B 3agagax, nomedennbix 0Oykosoit A, B, C, upeaiosmaraercs, 4To JaH COOTBETCTBEH-
Ho A, B, C-tpeyrosnbuuk (nnave tpeyroibauk ABC' mnpenonaraercst npon3Boib-
ubiM). Ecan B 3aade cdhopMyTupoOBaHO YTBEPKIEHNE, TO €10 MPeJIaraeTcs JoKa-
3aTh. /Ig KazkI0ro u3 jmokasaHHbIX cBoiicTB A, B, C-mpeyeoivhuros npemiaraem
BBISICHUTD, SKBUBAJIEHTHO Jii OHO ompeenenuio A, B, C-mpeyzorvruros.

Hausee jyist tpeyrosibauka ABC ucnosib3yem 0003HAYEHUS:

Co, Ay, By — cepeaunnt cropon AB, BC u C'A cooTBeTCTBEHHO;

AH,, BH,, CH. — BbBICOTHI;

H!, H|, H — Bropblie TOYKH mepecedenns BbICOT ¢ ).

C', A", B — cepemunnl nyr AB, BC, C'A okpyzKHOCTH §), HEe COIEPXKAIIUX BEPIINH
TPEYTOTbHUKA;

c", A", B" — cepepunnt qyr ACB, BAC, C'BA okpyxuocru §2;

Cy, Ay, By — rouku kacaunus vy co croponamu AB, BC', AC,

Ce., Aey, B. — moukn kacauusi . co croponamu AB, BC, AC (amamorwdauo st
OKPYZKHOCTEH Y, U Yp);



H — opronenrp, M — touka nepecedenus: Meanan, G — rouka 2Keprouna (Touka
nepeceuenust AA;, BBy, CCy), N — rouka Harenst (touka nepeceuenuss AA,, BBy,
CC.), F — rouka Deiiepbaxa.

1. B 11060M 0CTPOYTOJIBHOM TPEyTOIhHUKE cCyMMa paccTostanit o O 70 CTOPOH paBHA
R+r.

2. a) B mo6om Tpeyronbauke OI2 = R? — 2Ry,

B smo6om tpeyrombauke OI? = R% + 2Rr..

3. ITyctb KAy — amamerp okpyzkHoctu 7. Torga AK npoxogur yepe3 N.

1A.
2A.

3A.
4A.
HA.
6A.
TA.
8A.
9A.
10A.
11A.

12A.

1B.

2B.

3B.
4B.

oB.

[TocTpoiite A-TpeyrojbHUK MO OIMUCAHHONW OKPY?KHOCTH U TOYKe 1.

Touka A’ gBjseTcss NEHTPOM BHEBIUCAHHONW OKPYZKHOCTHU JJIA TPEYTOJbHUKA
A, obpazosannoro npsmbeivu OI, AB u AC.

Touka N sexxkur Ha npsmoii AO.

cos /B +cos/C = 1.

r+r, =2R.

[Tpamast Agl nepecekaer AH B Touke Z rtakoit, uro AZ =r.
|OA| =R —r.

Hokazkure, aro A; nexur va H.O.

LAITH = 90°.

Touka I apnsgercs yexxkuT Ha npaMoit AH.

[HenTp roMOTeTHH C MOJOKUTEIbHBIM K03(hdUIueHToM, mepeposineir v B {2,
JIEZKUT Ha BBICOTE, MPOBEAEHHON M3 BepIINHLL A.

A'C' m A’B’ — 6ucceKTpUCH BHENTHUX YTJIOB TPEyTOJbHUKA A.

T’bZQR.

A CeinB =1
a) cos 4 cos 5 sin g = 5.

6) cosC + cos A = cos B + 1.
H nexwur na npamoit A,C.
[Ipsimasi, coequusiionas ocoBanus seicor u3 A u C, kacaerca 7.

Touka, cummerpuunas I ornocurenbuo O, jexur na BC.



1C.

2C.
3C.

4C.

5C.

6C.

7C.
8C.

Haiimure miuny obrmeii Xopabl OKpyzKHOCTeH 7, u 2 (R MpeIIoaraeTca u3-
BECTHBIM).
Haiimure yrer paBaoOeapenroro C-TpeyroibHIKA,

A Bgn€ —1
a)cos 5 cos 5 sin 5 = 7.

6) cos C' = cos A + cos B.

[Tycrs C, A, B — T04KHN KacaHusi OKPYKHOCTH Y. CO CTOPOHON AB u 1npo/10Ji-
xkenustmu cropon BC, AC.
a) Hokaxmure, uro orpeskn [C, I, A, I,B u I.O nepecekaiTcst B OJHON TOUKe.

6) B kakom orHOmeHNn 3Ta TOUKA MeuT oTpe3ok [.07

AA. = BB.=CC..

II3BecTHO, 9TO IpSAMBbIE, COeUHSAIONIIE BEPIIMHDI JTFOO0I0 TPEYTrOJbHUKA C TOY-
KaMHi KacaHus TPOTHBOIOIOKHBIX CTOPOH U BIIMCAHHON OKPYZKHOCTH, IIepece-
KAaIOTCS B OHON Touke. DTa Touka (G Ha3pIBaeTcsa moukot 2Kepzonna. Anamro-
I'MYHO, €CJIM 3aMEHUTDb BIIMCAHHYIO OKPY2KHOCTDL BHeBHHC&HHOﬁ, MO2KHO OIIpe-
IEJIATH TPU eHewHux mouku Mepzonna G, Gy, G..

G, siexkut Ha onucanuoit okpyxuocru ABC.

O — opronentp tpeyroapauka A.B.C..



TP KJIACCA TPEYT'OJIBHVKOB

1 Omnpenesienusi 1 BBOJIHbIE 33a1a9M



2 OcHoBHBIE 331241

Byiem Ha3bIBaTh OKPYKHOCT [TOJIYBIIMCAHHOM JIJIs TPEYTOJIbHUKA, €CJTH OHA KACACTCS
JIBYX €r0 CTOPOH U OMICAHHO OKPYKHOCTU. OOO3HAYMM MOJTYBIIUCAHHY IO OKPYKHOCTH
tpeyrosibanka ABC', kacarornrytocst cropor AB u AC 3a w,.

13A.

14A.

15A.
16A.

17A.
18A.

19A.
20A.
21A.

6B.
7B.
8B.
9B.

a) B kakoit Touke KacaTcs w, u {27
0) Hokazkure, uTo derhipexyroyibauk H' C’'AB’ rapMoHndecKuii.
) y a

PaccmoTpuM oKpyKHOCTS ¢ TIeHTpOM B B kacarottytocs npsmoit C'H | 1 OKpyKHOCTH
¢ nearpoM B C', Kacarorrytocs psimoit B H . Obo3nadnm ux 3a ', u ['. cooTBeTcTBEHHO.

Jlokaxkure, uaro ['y, u I'. Kacarorcss B HeKOTOpOit TouKe, JexKareit Ha BC.

O6o3HaunM TOUYKY U3 IpeabLayIieil 3agaan 3a X.
Hoxkazkure, aro Toukn [ u X nexar na H, A”.

Hoxaxkure, ato npameie [ H, BC' n H] A’ nepecekaiorcst B OHOIN TOUKe.

O6o3HaINM TOYKY U3 MPEIbIIyIei 3a1aam 3a Y .
Jokazkure, 94T0 Y — IEHTP MOJIOXKUTEJIbHOM roMoTeTun, nepeojsieii ['y, B .

JlokaxkuTte, 9TO BTOpble KacaTesbHble U3 X K 7 U U3 Y K 7y Kacalorcd 7Y B
TOYKAX €€ IepecevueHust ¢ BbICOTOM, OMyIIEeHHON 13 BepIUHbI A.

Hokaxkure, uro HAy u A’ X nepecekarorcs Ha OKpyzKHOCTH §2.
Hoxaxkure, uto HAy, H.O n AA’ nepecekaiorcst B OIHON TOUKe.

a) Jlokaxkure, 4T0 TOYKA U3 MPEJIBILYINEH 3aa9U sIBJISETCS IEHTPOM W, .

6) [lycte R u S — mouku nepecevennss Ol ¢ w,, a T — neHrp w,. Haiigure
yroa STR.

IH nemur AC nomosam;
B’ nexur na ApCh.
O1I mpoxonut depe3 By.

A,, By, C., H, nexkat Ha OJHOI OKPY?KHOCTH.

Omnpenenenne. [Ipsamvas [ HazbiBaeTcs noaApot TOUKHU PP OTHOCUTETIBHO OKPY2KHOCTU

¢ nearpom O u paguycom R, eciu jiya OP niepecekaer | u nepHeHUKYISIPEH
2
eit, a paccrosiane ot O 10 | paBHO g—P. TpeyroibHUK HA3BIBACTCS AGMONOAADPHHLM

OTHOCHUTEJIbHO OKPYKHOCTH, €C/IN KaxKJasd ero CTOPOHA SBJSETCA TOJITPOit
ITPOTHUBOIIOJIOXKHOI BEPIITUHBI.



9C. Tpeyrompuuk A.B.C, aBTONOISIpEH OTHOCUTEIBLHO ().

10C. Kacarenbabie K OKpy:kHOCTH ) B TOuKax A u B mepecekaloTcs Ha MPSMOit

A.B..
Ilycts AL,, BL, — OGUCCEKTPUCHI.

11C. O nexwur na upsamoit L, Ly.

12C. Ilycrs npsamas L, L, nepecekaer oKpyKHOCTD ) B Toukax X u Y.
a) Tpeyrosbuuk 1. XY — npaBH/IbHBIL.

6) Haitsure 1ieHTp 9TOrO TpeyroJabHUKA.
13C. I nexur va H, H,.
14C. OI upoxoaut uepe3 H,.

15C. (A.Golmakani, Iran) ITycrs npsimbie AL,, B L, niepecekaioT KacaTeJbHyIO K ),
nposegennyio B Touke C, B Toukax P u (). Torna npsamas O pennt oTpe3ox
PQ nomnoam.

3BecTHO, 9TO cuMenuaHbl JI0O0r0 TpeyroJabHuKa (TpsMble, CUMMETPUIHbIE
Me/IaHaM OTHOCUTEJHLHO OHCCEKTPHUC) MEPECeKaroTCs B OJJHON TOUYKE, KOTopast
Ha3bIBaeTcsd moykol Jlemyarna L.

16C. Ilpsambie OG. u LI, mapaiieabHbI.

17C. Tlossipa G OTHOCUTETLHO BHEBIUCAHHON OKPYZKHOCTU TTPOXOAUT |depe3 L.

3 onosHuTe/IbHbIE 334241

® W W wy COJEPKAT IEHTPBI JAPYT JpPyra W Iepecekaiorcs B Toukax P m ().
Kacarenpabie 13 Toukn C' Ha w) MEPECEKAIOT BTOPUYHO w; B TOYKax A u
B. Hokaxure, uro AB || PQ. (nmu CP u C() cuMMEeTPUIHBI OTHOCUTEIHHO
6uccekrpucsl yria ACB)

e B Boimykiiom gersipexyronbiuke ABDC /ABD = /ACD = 90° u DA =
DB+ DC'. Hokaxure, aro AD nenut nepumerp Tpeyroybanka ABC momnoam.

e /IBe OKpy:KHOCTH pajinyca 1 nepecekaioTcsd B Toukax X, Y, paccTosiHre MEXK Ty
KOTOPBIME TaKkzKe paBHO 1. VI3 Toukn C' 0/iHOi OKPY2KHOCTH IIPOBEICHBI KacaTe/ILHbIE
CA, CB x gpyroii. [Ipamas CB BTOPHUYHO IIepeceKaeT IMEPBYI0 OKPYKHOCTD
B Touke A’. Haiijure paccrosinue AA’.

Cornacno Teopeme Ilonceae cymecTByeT GECKOHEUHO MHOI'O TPEYTOJILHUKOB,
UMEONINX JIaHHble ONMCAHHYIO W BHEBINCAHHYIO OKpy:KHOCTH. Paccmorpum
Bce Takue Tpeyroyipauku ABC.



18C.

19C.

BC.

a) CTOPOHBI BCeX COOTBETCTBYOIMUX TpeyroabHuKkoB A, B.C, KacaoTcs OIHO
1 TOM »Ke TUrepoOOoJIbl.

6) B kakoii Touke sTa runepbosa Kacaercs npsimoit A.B.?

B) Haiiti hokycer rumepbosbL.

a) Jlokazarb, 9T0 TOUKHU 1epecevenust npsambix AB u A.B., AC u A.C,, BC
u B.C, nexar Ha OJIHOH MIPSIMOii, KACAIOIMIENHCsT TUIIEePOOIBI.

6) B kakoii ToOUKe MPOUCXOUT KacaHue?

[Ipamas OI epecekaeT OJIHY U3 CTOPOH TPEYTOJILHUKA B OCHOBAHUU OITY IIEHHO

Ha 3TY CTOPOHY BBICOTHI, a APYI'YIO B TOUKE ee KacaHUsl C COOTBETCTBYIOIIEL
BHEBIIMCAHHOI OKPYKHOCTHIO. Haiiiure yros Mexry 3TUMH CTOPOHAMMU.



TP KJIACCA TPEYT'OJIBHVKOB

Permenuga

1 Omnpenenenust u BBOAHBbIE 3a0a4N

1. Ilpumensis reopemy Itosemest k BuncanubiM deTbipexyrosibaukam O AgC' By, O BoAC),
OCyBAj n cknapiBast Oy YeHHbIe PABEHCTBA, MOy IaeM

b+ c c+a a+b

Rp:d1 9 +d2 9 +d3 5 ,

ahitblteds — Sy pc = pr, 910

rje p — MOJIyIIEpUMETP TpPeyrojbHuKa. TaK Kak
PABEHCTBO PABHOCHILHO MCKOMOMY.
IIpumeuanue. Drta dhopMmysia BepHA U I TYNOYTOJLHOTO TPEYTOJIbHUKA, €CJIN
pPaCCTOSTHUE JI0 CTOPOHBI CINTATH OPUEHTHPOBAHHBIM.

2. a) 3amerum, uto R* — OI* = CI-C'I1.K. 370 MOJy/Ib cTenenu I oTHOCUTEIbHO €.
[Tpu stom CI = r/sin %, aC'l =Al = Bl =2R sin% 10 TEOpeMe O TPUJIUCTHUKE.
Orcroma, 09eBUIHO, CIeyeT Hy?KHOE COOTHOIIEHUE.

6) [okasaresbcTBO MOJHOCTHIO AHAJOTUIHO MPEIBIIYIIEMY, CJIEIyeT PACCMOTDPETh
crenens 1.

3. Ilycrs npsamast, mpoxojsinas depe3 K u nmapautesbias BC, nepecekaeT CTOPOHBI
AB, AC B toukax X, Y coorBercTBenno. Torja v — BHeBIHMCaHHAs OKPYKHOCTh
tpeyrosibauka AXY', romorernanoro ABC'. Touku K u As cOOTBETCTBYIOT JIpyT
JIDYTY TIPpUA 9TOH TOMOTETUHU, 3HAYUT, COEJMHMAIONIAS UX IHpsSMas MPOXOJIUT Uepe3
[eHTp roMoreTun A.

1A. U3 onpenenennst A-TpeyrojibHUKA CIEAYET, 9TO IUAMETD, ePIEHIUKY/IsIPHbII
O1I, nepecekaeT OMUCaHHYIO OKPY2KHOCTH B Touke A’. ITo Teopeme o Tpuimcranke
9Ta TOYKa — 1eHTp oKpykHOCTH [ BC'. COOTBETCTBEHHO, IOCTPOUB 3Ty OKPYZKHOCTb,
MBI HaiiJIeM JIBE BEPIIHMHBI UCXO/IHOT'O TPEYTOJIbHUKA. T PeThbs ABJIsI€TCS BTOPOI
TOYKOI nepecedenns npsimoit A’ ¢ onucaHHON OKPY>KHOCTDIO.

2A. He ymansas oomuoctu, AB < AC. Ilycrs X — npoeknuss A" na AB, L, —
ocHoBaHue 6ucekTpuchl yria A. 3amerum, uro /OA'l = /BA' X, 1x. /A'BX =
(ACA=—ABA = —AB+-A'C = /A L,C = /A'1O. Tak kak A’'B = A'I,
orcioza cieayer, auro A’ pasHoynasena ot npaMmbix AB, AC u OI.

3A. OdeBmjiHO, cje/lyeT U3 TPEAbLIYIIE 3a/1adu, ecii PACCMOTPETh TOMOTETHIO,
nepeBosntyo Tpeyroabauk A 8 ABC.

4A. U3 3amaqan 1 cieayer, aro cymma paccrostauit or O no AB u AC pasna R,
T.K. OAg = r, 9T0 paBHOCMJILHO yTBepzKaeHuio 3aaa4un, uoo OCy = Rcos /C,

OBy = Rcos /B.



5A. Anayiormano 3ajate 1, mojydaeM, IToO B JIFOOOM TpeyrojbHuke r, — R = dy +
ds — dy. CkjapiBast 9TO paBEHCTBO C PABEHCTBOM 3aJa49n 1, TOoIydaeM, 9To
r+r, = BH + CH. U3 npenpiayimeii 3a1a4n cjienyer, 910 B A-TpeyrojbHuKe
9TO PaBEHCTBO PABHOCUJILHO UCKOMOMY.

6A. DTO yTBep:KJieHNEe BEPHO JIJIsI JTIOOOTO TPEYTOJbHUKA U CJEAYeT U3 TMOI00MS

tpeyronbuukos AgA'l u Z Al. [eiicrBuresnbho, Tak Kak AgA’ = R(1—cos A) =
2Rsin® &, AZ = AgA' - AIJA'T =r.

7TA. U3 npeapuiymieit 3aaaan ciaeayer, uro AO || Agl. 3uaqur, rpeyroasauk A’ Ayl
nojoben pasHoObGeperHoMy TpeyroabHuky A'OA, 1e. OA; = [Ayg = AgA' =
R — r. TakzKe 3T0 JIerKo ciejyeT u3 3ajaqn 2: jeficrsuresnbno, OA? = [A? +
I0? = r*—2Rr+R? = (R—r)?. TlepBoe paBeHCTEO CJIeJlyeT U3 NapaJjlielbHOCTH
Ol n BC.

8A. Tak kak AO || Agl, npsmbie OH! u Agl 06pa3yioT paBHBIE YIJIBI ¢ BBICOTOI
AH. Ho npsambie Agl n OA; Takke 00pa3yoT ¢ Heil paBHBIE YIJIbI, TOCKOJIBKY
OAgA; I — npsaMOyTOJILHUK.

9A. Takkak /IAH = \B%C |, yTBepzK IeHne 33/1a91 PABHOCHIIBHO paBeHCTBY 2R cos A cos B%C =

r/sin4 u cos B+ cosC = 1.

[To zamage 6, AZ = r, kpome toro, AH = 20Ay = 2r, takxke /[AZ =
/TAO = /AOI B cuny napananeasnoctu AO u [ Ay. Orcrona, ZA =720 = Z1,

U3 9ero yTBepXKJeHne 3a/1adl OUYeBUTHO CJIETyeT.

10A. U3z 3amaun 6A caemyer, aro npsamas Agl menut orpesok AH momosam, T.e.
IepecekaeT ero B TOUYKe /, jexKalleil Ha OKpy»KHocThu Jitinepa. Kpome Toro,

rak Kak OA || Aol, to /AIZ = /OAI = [IAZ w IZ = AZ = r. 3nauur, Z

JIE2KUT TaKzKe Ha BIIMCAHHOI OKPY2KHOCTH, T.€. COBIIaJa€T C F.

11A B sr060M TpeyroibHUKE yKa3aHHbBIN IEHTP TOMOTETUN N30TOHAJIBHO COMPSIYKEH
touke Haressi. [TosTomy nckomoe yTBepKeHne cpasy cieyer u3 3ajgaan 3A.

12A. Ouesujno, cieayer us 3agaqu 2A u Toro, yro A'C’ nepreH uKyIsspHO OUCCEKTPUCE
yria B.

1B. TlepnenuKy/sipHOCT OKPYsKHOCTe( 03HavaeT, uto R2+2Rr, = OIF = R*+rl.

2B. a) Taxk kax BA, = p, o R, = ptg2

sin A +sin B + sinC = 2sin 48 COSX

2

= R(smA + smB + sin O)tgZ. Ho
—i— 2sin $ cos §. HOCKOJIbe £ip =
27

2 — £ 310 Bblpakenne pasao 2 cos < (cos 452 +cos 458) = 4 cos 4 cos £ cos
OTKy,ZLa U 110JI y9aeM UCKOMOe PaBEHCTBO.

6) Io npeapiayiei 3amade 1 = 2sin g cos g cos € = sin g(cos % + sin %) =
%(Sin B+A ¢ +sin B+§_A +1—cos B. Tak kak B+A O = = 5 — C, 3T0 paBeHcTBo

paBHOCI/I.HI)HO HCKOMOMY.



3B.

4B.

oB.

1C.

2C.

3C.
4C.
5C.

6C.

7C.

8C.

B cireytomeii 3a1a4e jjokazano, uro npamad H, H,. kacaercd v, T.e. 7y ABJIsA€TCs
BHEBITMCAHHOM OKPYKHOCTDBIO TpeyroyibHuka B H, H., KOTOPHIil T0100€H HCXOTHOMY
¢ koaddunuentom cos B. 3uaunt, cos B = r/r, = (p —b)/p u A1C, L BC,
C1A, L AB. Torna o reopeme @aieca npsambie AH, u C H, nepecekator A;C

B OJIHOM U TOI K€ TOYKe.

B cuny toro, aro H,H. = AC' cos B, yc0Bre OITUCAHHOCTH Y€ThIPEXyTOTbHIKA
AH.H,C nmeer sujg AC + AC cos B = AC cos A+ AC cos B, T.e. coBaiaer ¢
paBeHCTBOM U3 3ajga4un 2B.

U3 pasencts r, = 2R u r = 1, cos B crenyer, aro OBy = r/2, 9410, 09€BUJIHO,
BJIEYET UCKOMOE YTBEPKJIECHUE. 3aMEeTHM TaKKe, UYTO TOUKa, CUMMeTpudHas [
oTHOCUTENBHO (), JIEXKUT Ha TEPIIEH/INKYJIApaxX, BOCCTaBIeHHbIX UX Ay, By, Cy

K COOTBETCTBYIOIINM CTOPOHAM TpeyroyibHuKa. CiieloBaTeibHo, B B-TpeyroyibHIKe
9Ta TOYKa COBIIAJIaeT ¢ Bs.

[Iycrs R = r, = 1. Torma no 3aa4e, 2 O, = /3. Tax Kax eHTPBI OKPYKHOCTEl
U TOYKHU WX IepecevdeHuns o0pa3yioT poMO, ero Bropas JuaroHajib paBHa 1.

Otser. /4, w/4, 7/2.

YkazaHwme. Bocrioip3yiiTech ciieyroleii 3aaqdeii.

Pemenne anagoruyuno 3amatde 2B.

Tpeyronvuuku 11,1, u C.B.A. TOMOTETUIHBI TAK KaK X CTOPOHBI IIAPAJLICIbLHbI
JIBYM BHYTPEHHHUM U OJTHO# BHEITHEH OUCCEKTPUCAM UCXOIHOTO TPEYTOIbHUKA.

Boiee Toro, Tpeyroisauk ABC s rpeyronbauka I 1, Iy, ssBjisieTcst OpTOTPEYTOJTBHUKOM.

SHaYUT, paJINyC ONMUCAHHON OKpyKHOCTH Tpeyroibuuka 11,1, pasen 2R, a ee
neHTp cummerpuder I, ornocuresbuo O. [losTomy 1eHTp roMoreTuun JieKuT
Ha orpeske [.O u geauT ero B orHOmeHun 2 : 1.

Henocpecreennoe Bbrancienue mnokaseiBaer, uyro LOAIl, = LAl A.. Kpome
toro, OA = I.A.. Tlosromy OAI.A. — paBHOOeapeHHas Tpamennd u AA. =
OI, = R\/3. AHajorndaso st IByX JPYIUX OTPE3KOB.

HernocpeicrBenno cieryer u3 Toro, 4ro yroy mexy AAc u BB, pasen 2/ Al.B,
nOO 3TU TPAMBIE TOJyYaoTcd u3 TpaMoit [[. oTpazKeHusiMH OTHOCUTE/IHHO
CepeIMHABIX TepHeHnKyIapoB K Al. u BI, cooTBETCTBEHHO.

Henocpeicrsenno ciemayer us 3amaan H5C a takeke u3 3agaqu 6C ¢ MOMOIIBIO
PacCMOTpPEHUs TTOIYIUBIINXCA B HEll pABHOOOKUX TpalleInii.



TP KJIACCA TPEYT'OJIBHVKOB

1 Omnpenesienusi 1 BBOJIHbIE 33a1a9M



2 OcHoBHBIE 331241

13A.

14A.

15A.

16A.

17A.

18A.

19A.

Pemienns.
a) OrBer. H.

Ykazanue 1. PaccMoTpunM KOMIIO3UIUIO HHBEPCHE C TIEeHTPOM A U pajmycom
VAB - AC u cummerpun otHOcHTEeTbHO OuccekTpuchl yria A. Ona menser
mectamu Toukn B u (') a takke upamyo BC u omucaHHYIO OKPYZKHOCTD
TpeyrosbauKa. [losromy noysnucamniast OKpyKHOCTD TIEPEXO/IAT BO BHEBIIUCAHHYTO
U, 3HAYUT, IIPsIMbIE, COINHSIONIE A ¢ COOTBETCTBYIOMNMI TOYKAME KACAHUSI,
CUMMETPUIHBI OTHOCUTEIBHO buccekTpuchl. Ho B A-TpeyrosibHuKe BhICOTaA CUM-
MerpudHa mpsamoit AA,.

Ykazaame 2. Touka KacaHWs ITOJIYBIHUCAHHOW U OIMCAHHON OKPYKHOCTEi
SABJISIETCSI IEHTPOM NOMOTETHH C TTOJIOKUTETbHBIM KO3(MMUIIMEHTOM, ITePEeBOISIIEH
OJIHY U3 9TUX OKPYKHOCTEM B APYTyI0. PaccMoTpuM TakzKe BIIMCAHHYIO OKPYKHOCTbD,
BOCIIOJIb3yeMCsI Telephb pe3ysabraToM 3aadn 11A u Teopemoit o meHTpax TpEX
TOMOTETUIA.

6) UsBecTHO, 4TO B JIIOOOM TPEYTOJIbHUKE MPsiMast COSINHSIIONIAs TOUKY KACAHUSI
we 1 2 ¢ Toukoit A”, nenur nononam orpesok B'C’. ITosromy, Tak Kak Jyru
B'A" u AC' pasubl, H, A sBisercs cumenuanoii tpeyronasauka H! B'C’) aro
PABHOCUJILHO yTBEPKJICHUIO 3a,1a4H1.

OueBHIHO cJleIyeT U3 TOro, YTO CyMMa PaJInycoB OKpyzkHocTelt paua BC' cos B+

BCcosC = BC.

Taxk kak BX : CX =cos B : cosC = BH] : CH], o X nexut na buccekrpuce
H! A" tpeyrompanka H BC, koropast B JIIOOOM TPEyTOJbHUKE IIPOXOIUT TepPes3
I (ecom 3amenuts H] Ha TOUKY KaCaHUsI MOJTy BIUCAHHOI 1 OIIICAHHO OKPYZKHOCTH).

[Ipsmvbte TH nw H. A" gBnstiorcst BHEITHUMU OHCCEKTPUCAMI TPEYTOIHHUKOB
HBC n H]BC, cummerpuanbix orHocutessno BC.

Taxk kak HX u HY — BHyTpeHHss U BHemHsis Ouccekrpuchl yria BHC,
rouku B, C'; X nu Y obpasyor rapmonundeckyio 4derBepky. llpu srom B u
C — nentpsr okpyxkuocteit Iy, ', a X — 1eHTp ux BHyTpeHHEl TOMOTETHH.
CrenoBarenbHO, Y — IEHTD BHEITHEH TOMOTETHHN.

[Ipsamast H] A" npoxomut 1epes O n, 3ua4ut, cuMmMerputna H) A ornocresnsno
ouccexrpucst H!I yrma BH!C, t.x. H,A — Boicota Tpeyroasunka BH,C.
VTBep:KJIeHHE 33JIa4U CJICJIYET U3 TOTO, 9TO X TaK»Ke JICYKUT Ha 9TON OUcceKTpuce
— TOYKA, CHUMMeTpHUYHasg TOUYKe Kacauud v u BC u ecThb TOYKa U3 3aJ1a4W.
JokazaTebeTBO it Y aHAJTOTUYIHO.

B mo6om Tpeyrombauke npsivast H Ag TpoxoanT depes ToUKy As, JraMeTpasbHO
uporusonosiokuyio A. ITosromy yTBepK/iemnue 3a/1a11 PABHOCUIHHO PABEHCTBY
npoitapix orHomenuit (BC'AgX ) u (BC A3 A’), KoTopoe poBepsieTest HEIoCpe/i-
CTBEHHBIM BBIUHCIIEHAEM.



20A.

21A.

6B.

7B.

8B.
9B.

9C.

10C.

[Tycre P — Bropasi Touka mnepecedennss A’X u ). Torma /A"PA" = 90°,
suaqnt, upsamaa A” P upoxoaut qepes3 Y. Hanee, LA'PAy = (A XAy = LH!A" =
LA'PAs, TO ecTb, A nexxut Ha PA,.

Pacemorpum tpeyromsnukn OA’A; m H)ITH. Kak mam yxke mzsectno, A'O
nepecekaet H] I B Touke A”. Kpome toro, ouesumnmno, H, H 1 A;O niepecekaiorcst

B TouKe A. Croponbt HI u Ay A’ 5TUX TPEyroJIbHUKOB IIEPECEKAIOTCsT B OECKOHETHO
yJAJIEHHON TouKe, KoTopas Jiexkut 1 Ha A” A, ubo Bce Tpu npsvbie AA” HI u

A’ Ay nepnieniuKyisipab paMoit AL, Y TBeprKieHue 3a/1a491 Telepb HelOCPEICTBEHHO
crejyer u3 TeopeMbl Jlesapra.

a) Ilpsmere H,O nu AA’ npoxoJdar depes3 IEHTD W, MOCKOIbKY H! m A —
IEHTPBI FTOMOTETHH W, € {2 U Y COOTBETCTBEHHO.

6) Ilycts K — Touka nepecedenus upsimbix AO u H!I. Torma K u T cyrtb
OCHOBaHMS OMCCEKTPUC YIJIOB TP OCHOBAHUN PABHOOEIPEHHOT'O TPEYTOIbHIKA
AOH!, orkyna nerko cienayer, uto AK = KT = TH!, 8 wactnoctu, T K pasen
pajguycy w,. [Ipamas O, oueBUIHO, ABIIETCSA CEPEIMHHBIM MTEPIEHTUKYISTPOM
K T'K, n3 9ero HenocpeITBeHHO cjenxyer orBeT 120°.

B smrobom TpeyrosibHuke ripsimasi Byl BbicekaeT Ha BbicoTe B H 0Tpe30K, paBHBIi
r. Ho B B-tpeyronmbnuke BH = 2R cos B =rycos B = 7.

Tax kak [ nexxut Ha npambix C, Ay 1 ApC1, gerbipexyronbauk I A, I, C), sBisteTcs
poMmboMm, T.e. cepeunnl orpeskoB A,Cy u 11, cosnanaror. Ho B’ — cepennna
11, o Teopeme O TPUJIIMCTHUKE.

Jlokazano B perreHun 3aja4qu HB.

U3z zamaam 5B ciemyer, aro npoekiuu Touku Bb va AB u BC' coBmajgaior ¢
C. u A,. CnenoBarenbto, A,, By, C.., H, 1ex)ar Ha OKPY?KHOCTHU C JTUAMETPOM
BBy,.

Onpenenenne. [Ipamvas [ nazpiBaeTcd noaApot TOUYKU PP OTHOCUTEIBHO OKPYZKHOCTH
¢ ieaTpoM O u pajmycom R, eciu ayda OP nepecekaeT [ U MepIeHUKYIAPEeH

eit, a paccrossaue ot O 10 [ paBHO g—;. TpeyrosbHUK HA3BIBACTCA ABMONONADHDIM
OTHOCHUTEJIbHO OKPYKHOCTH, €CJIN KaxKJIasd €ro CTOPOHA SABJISIETCs IOJISTPOii

HpOTI/IBOHOHO)KHOI'?'I BEPIINHDBI.

Touku A, B., C. IBJASIOTCSI TOUKAMU TIepeCeTeHUsI IPOTUBOIIOIOXKHBIX CTOPOH
u juaroHasieit srucanuaoro B ) gersipexyrosbuuka AC BG,, T.e. BepIuHaMu
TPEyTrOJIbHIKA, aBTOMOJIIPHOIO OTHOCUTETBHO {20

Tak kak npsimasi AB npoxomut depes nostoc C, npsamoit A.B,., nomoc AB
jexkut "Ha A.B..



11C.

12C.

13C.

14C.

15C.

16C, 17C.

Tax kak cos C' = cos A+cos B, paccrostaue ot O 110 AB paBHO cCyMMe pacCTOSTHUI
J10 ByX apyrux cropon. Touku L,, L, Tak:ke 00JiaJaloT 3TUM CBOCTBOM,
KOTOPO€, OYEBHIHO, OIPEJIEIseT IPAMYIO.

N3BectHo, aro npsmasi L, Ly, oHA 1 Ta 2Ke I/ BCeX TPEYTOJILHIKOB C 33 aHHBIMI
okpy:kHOCTAME §2 U .. g C-Tpeyroibauka 3Ta npsMas OyIeT JTuaMeTpoM
Q, nepuenukyaapabiM O1.. O4ueBUIHO, KOHITBI 3TOTO guameTpa u I, o0pasyor
[PaBUILHBIN TPEYTOJIBHUK, IIEHTP KOTOPOTo JIeiuT 0Tpe3oK I, B OTHONIEHUN
1:2.

Tak kak tpeyroibuuku ABC u H,H,C 1momobusr ¢ koaddurmenrom cos C
upsivmast H, Hy nemur 6uccekrpucy yria C' B ornorteruu cos C' : (1—cosC). U3
TeopeMbl 0 OuccekTpuce n paBeHcTBa cos C' = cos A 4 cos B JIerko moJiyIuTh,
4qTo [ JieTUT OMCCEKTPUCY B TAKOM K€ OTHOIIECHUU.

Buccekrpuca yriia C' apisiercs takxke Ouccekrpucoir yrima OCH,.. 3uaqur,
oHa mepecekaer orpe3ok OH, B Touke, ngensmeil ero B orHomennun R : CH,.
[Tockombky paccrosiaust ot Touku H,. 10 cropon BC' u AC pasubt CH.cos B un
CH,cos A, onrygaem, arto cos C' = cos A + cos B Torja u ToJIbKO TOIa, KOTJIa
9Ta TOYKa COBIagaer ¢ 1.

Tax kax O jtexxut Ha L, Ly, yTBEpXKIeHNe 38191 MOXKHO 11epeOpMYyIHPOBATh
caeaytomum obpazom: npsimbie I L,, L, 10 n nepunenauxkynap n3 I na OC
00pa3yroT rapMOHNYIeCKYI0 YeTBepKy. Ho U3 IByX Mpeaplaymux 3a/1a9 CIe/Iyer,
9TO 9THU HpsiMble repecekaioT AB B Toukax A, B, H. u Touke nepeceuennss AB
c H,H,.

Ykazanme. Korma Touka C' gukercs mo ), L aBuzkercss 1o rurepOoie,
Kacaroreiicss cropor TpeyroiabHuKoB A.B.C.,.



THREE CLASSES OF TRIANGLES
A.Zaslavsky, O.Zaslavsky, F.Ivlev, P.Kozhevnikov, D.Krekov

Covununuco cmuzu 6pedosoie
Bes kaxoti-aubo nymmoti muicau,
Cnosro 6edpa 600v. nydosvie

A npunec eam na Kopomvicae.
A.Beaukud

1 Definitions and introductory problems

Every triangle has an incircle and a circumcircle. In addition to it, every triangle
has three excircles, each of them touching one of the sides of the triangle and the
extensions of two other sides. For a triangle ABC we denote:

) — circumcircle, O, R — its center and radius;

v — incircle, I, r — its center and radius;

Yas Vb, Ve — excircles, I, I, I. — their centers, ry, 14, 7. — their raduiuses.

The main objects that we study are three special kinds of triangles.

Definition A. A-triangle is a triangle in which OI || BC.

Definition B. B-triangle is a triangle in which circles 7, u {2 are perpendicular.
Definition C. C-triangle is a triangle in which R = r..

In the problems that are marked by the letters A, B,C, we mean that A, B, C-
triangle is given (otherwise the triangle ABC' is arbitrary). If we formulate some
proposition in the problem, you should prove it. For every proved property A, B,
C-triangles we offer you to find out, if it is equivalent to the definition of A, B,
C-triangles.

For the triangle ABC we use such notations:

Co, Ag, By — midpoints of AB, BC' u C'A respectively;

AH,, BH,, CH, — altitudes;

H!, H; H! — second intersection points of altitudes and €.

C', A, B — middles of the arcs AB, BC', C'A of the circle €2, not containing its
vertices;

C”, A", B" — middles of the arcs ACB, BAC, CBA of the circle Q;

C1, Ay, By — intersection points of v and the sides AB, BC', AC respectively;

C., A., B, — intersection points of 7. and the sides AB, BC, AC (similarly for the
circles v, u );

H — orthocenter, M — the common point of medians , G — the Gergonne point
(the common point of AA,, BB;, CCy), N — The Nagel point (the common point
of AA,, BBy, CC.), F — the Feuerbach point.

1. In any acute triangle the sum of distances from O to the sides equals R + r.
2. a) In any triangle OI> = R? — 2Rr.

In any triangle OI? = R? + 2Rr,.

3. Let K A; — be the diameter of the circle v. Then AK contains V.

1



1A.
2A.

3A.
4A.
SA.
6A.
TA.
8A.
9A.
10A.
11A.
12A.

1B.
2B.

3B.
4B.

oB.

1C.
2C.
3C.

4C.

5C.

Construct A-triangle if its circumcircle and the point I are given.

Point A’ is the center of excircle of triangle A, whose sides are the lines O1,
AB and AC.

N lies on AO.

cos /B +cos/C = 1.

r+r, =2R.

Aol intersects AH at the point Z such that AZ = r.

|OA| =R —r.

A lies on H.O.

/ATH = 90°.

F lies on AH.

The center of homothety with positive ratio taking v to € lies in AH,,.

A'C" u A’B’ — are external angle bisectors of A.

T'bIQR.
A CginB =1
a) cos 5 cos 5 sin 5 = 3.

6) cosC' + cos A = cos B + 1.
H lies on A,C,.

The line that passes through the bases of the altitudes drawn from A u C, is
tangent .

The point symmetric to I with respect to O, lies on BC.

Determine the length of the common chord of 7. u Q (R is given).

Find the angles of isosceles C-triangle

A Bgn€ —1
a)cos 5 cos 5 sin 5 = 7.

b) cos C' = cos A + cos B.

Let C., A., B. — be the tangent points of 7. with the side AB and the
extensions of the sides BC', AC.

a) Prove that the segments IC., I,A., I,B. u I.O have a common point.
b) Determine the ratio in which this point divides the segment 7.O.

2



6C. AA. = BB, =CC..

It is known that lines joining verices of a tringle with touching points of the
inscribed circle and the opposite side have a common point. This point is called
G is called Gergonne point. Similarly, if we replace the incircle by the excircle
we can define three external Gergonne points G,, Gy, G..

7C. G, lies on the circumcircle of the triangle ABC.

8C. O — is the orthocenter of triangle A.B.C..
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2 Main problems

We will call the circle touching two sides of a triangle and its circumcircle the semiin-
circle. The semiincircle of triangle ABC' touching sides AB and AC' will be denoted
as We.

13A. a) Which is the touching point of w, and Q7
b) Prove that quadrilateral H,C'AB’ is harmonic.

Consider the circle with center B touching C'H and the circle with center C'
touching BH. Denote them as I', and I', respectively.

14A. Prove that I'y and I'. touch at some point lying on BC'

Denote the touching point from the previous problem as X.
15A. Prove that I and X lie on H,A".
16A. Prove that lines IH, BC' and H] A’ concur.

Denote the concurrency point from the previous problem as Y.
17A. Prove that Y is the center of positive homothety mapping I', to T..

18A. Prove that the second tangents to I' drawn from X and Y touch I' at its
intersection points with the line AH.

19A. Prove that HAy and A’X meet at Q.
20A. Prove that HAy, H,O and AA’ concur.

21A. a) Prove that the concurrency point from the previous problem is the center
of w,.

b) Let R and S be the common points of OI with w,, and T be the center of
wge. Find angle STR.

6B. I H bisects AC.

7B. B’ lies on A,Cj.

8B. OI passes through By.

9B. A,, By, C., H, are concyclic.

Definition. Line [ is called the polar of point P wrt the circle with center
O and radius R, if ray OP meets [, is perpendicular to it, and the distance
from O to [ is equal to éi;. A triangle is called autopolar wrt the circle, if its
sidelines are the polars of opposite vertices.



9C

10C.

11C.
12C.

13C.
14C.
15C.

16C.
17C.

The triangle A.B.C, is autopolar wrt €2.

The intersection point of the lines that are tangent to the circle €2 at the points
A and B lies on the line A.B,.

Let AL,, BLy be the bisectors of angles A and B of triangle ABC.

O lies on the line L, L.

Let the line L,L; intersects the circle €2 at the points X and Y.
a) The triangle I. XY is equilateral.

6) Determine, which point is the center of this triangle.
I lies on the line H, H,,.
The line OI contains H..

(A.Golmakani, Iran) Let the lines AL, and BLj intersect the line, tangent to
the circle €2 at point C, at points P and @) respectively. Then the line Of
passes trough the midpoint of the segment PQ).

It is well known, that in any triangle symedians (the lines, symmetric to the
medians of this triangle with respect to its angle bisectors) have the common
point. This point is called Lemuann point L.

The lines OG,. and LI, are parallel.

The polar of the point GG, with respect to the excircle passes through L.

3 Extra problems

Each of the circles w; and ws contains the center of the other circle and they
intersect each other at points P and (). The lines, passing throuh C' tangent
to wy intersect w; at the second time at the points A and B. Prove that
AB || PQ. In a convex quadrilateral ABDC' /ABD = /ACD = 90° and
DA = DB + DC'. Prove that AD divides the triangle ABC on two polygons
with equal perimeters.

Two circles of radii 1 intersect each other at points X Y. XY = 1. CA and
CB are tangent lines to one of these circles from point C' lying on the other

one of these circles. Line C'B meets the first circle for the second time at point
A’. Determine the length AA’.

Due to Poncelet theorem there exist infinitely many triangles with fixed cir-
cumcircle and excircle. Consider all such triangles ABC.



18C.

19C.

BC.

a) The sidelines of all correspondent triangles A.B.C, touch some fixed hyper-
bola.

b) Which is the touching point of this hyperbola with line A.B.?

¢) Determine the foci of this hyperbola.

a) Prove that the common points of lines AB and A.B., AC and A.C,, BC
and B.C, lie on some line touching the hyperbola.

b) Determine the point of tangency.

Line OI meets one of sides of a triangle at the base of the correspondent

altitude, and the second one at its touching point with the respective excircle.
Find the angle between these sides.



Three classes of triangles
Solutions

1 Definitions and introductory problems

1. Applying the Ptolemy theorem to cyclic quadrilaterals O AoC By, O ByACy, OCyB Aq
and summing the obtained equalities we have
b+ c c+a a+b

Rp:d1 9 +d2 9 +d3 5 ,

where p is the semiperimeter of the triangle. Since Sapc = pr, this is
equivalent to the desired equality.

Note. If we consider dy, ds, d3 as the oriented distances this formula is also correct
for an obtuse-angled triangle.

2. a) Note that R? — OI? = CT - C'I because this is the absolute value of the degree
of I wrt Q. Also we have that CI = r/ sin%, and C'I = AI = BI = ZRSm% by
the trident theorem. From this we obtain the desired equality.

b) Considering the degree of I. we obtain the similar proof.

3. Let the line passing through K and parallel to BC meet AB, AC' at points X, Y
respectively. Then + is the excircle of triangle AXY homothetic to ABC'. Points K
and A, are correspondent in this homothety, thus these points and the homothety

center A are collinear.

ad;+bda+cds
=

1A. Using the definition of A-triangle we obtain that the diameter perpendicular
to OI meets the circumcircle at A’. By the trident theorem this point is the
circumcircle of triangle I BC'. Therefore constructing this circle we find two
vertices of the desired triangle. The third vertex is the second common point
of A'I and the circumcircle.

2A. We can suppose that AB < AC'. Let X be the projection of A" to AB, and
L, be the base of the bisector from A. Note that /OA'] = /BA’X because
(ABX = (ACA = —ABA'J2 = —AB + —A'C/)2 = tA'L,C = /A']O.
Since A’B = A'I this yields that the distances from A’ to AB, AC and OI are
equal.

3A. We obtain this from the previous problem considering the homothety mapping
A to ABC.

4A. By problem 1 the sum of distances from O to AB and AC is equal to R
because OAy = r, this yields the desired assertion because OCy = Rcos /C,
OBy = Rcos /B.



bA.

6A.

TA.

8A.

9A.

10A.

11A

12A.

1B.
2B.

Similarly to problem 1 we obtain that in an arbitrary triangle r, — R = dy +
d3 — dy. Summing this with the equality of problem 1 we obtain that r +r, =
BH + CH. In A-triangle this is equivalent to the desired equality by the
previous problem.

This assertion is true for an arbitrary triangle and follows from the similarity
of triangles AgA’l and ZAI. In fact since AgA’ = R(1 —cos A) = 2R sin? & we
obtain that AZ = AgA’ - AIJA'T =r.

By the previous problem AO || Apl. Thus triangle A’Ay! is similar to isosceles
triangle A'OA;, i.e. OA; = [Ag = AgA’ = R—r. This also follows from problem
2: in fact OA? = TA? + 10* = r? — 2Rr + R? = (R — r)?. The first equality is
true because OI || BC.

Since AO || Aol, lines OH! and Ayl form equal angles with altitudes AH.
But lines Agl and OA; also form equal angles with AH because OAgA;1 is a
rectangle.

Since /IAH = |BT_C| the desired assertion is equivalent to 2R cos A cos 2=¢ EC =

r/sin4 and to cos B + cosC' = 1.

From problem 6A we have AZ = r, also AH = 20Ay = 2r and /IAZ =
LTAO = /AOI because AO || I Ag. From this ZA = ZO = Z1, which evidently
yields the assertion of the problem.

From problem 6A we obtain that line Ayl bisects segment AH, i.e. their com-
mon point Z lies on the Euler circle. Also since OA || Ayl we obtain that

LAIZ = /OA] = /IAZ and IZ = AZ = r. Therefore Z lies also on the
incircle, i.e. Z coincide with F.

For an arbitrary triangle the considered homothety center is isogonally con-
jugated to the Nagel point. Hence the desired assertion immediately follows
from problem 3A.

This evidently follows from problem 2A because A’C’ is perpendicular to the
bisector of angle B.

Since the circles are orthogonal R? + 2Rr, = OIf = R* +r}.

a) Since BA, = p, we have R, = ptg2 = R(sinA + sin B + sin C)tgZ. But
sin A +sin B +sin C' = 2sin AgB C087 + 2811150085 Since A;B =7 — %
this is equal to 2cos $ (cos 252 + cos #12) = 4cos 4 cos £ cos & which yields
the desired equality.

b) By the previous problem 1 = 2sin £ cos 4 cos & = sin Z(cos 45¢ +sin £) =
%(Sin B+A ¢ 4 sin B+§_A + 1 —cos B. Since B%A_C = 5 — C this is equivalent

to the des1red equality.



3B.

4B.

5B.

1C.

2C.

3C.

4C.

5C.

6C.

7C.

8C.

In next problem we prove that line H,H, touches ~, i.e. 7 is the excircle of
triangle BH,H., which is similar to the given triangle with coefficient cos B.
Hence cos B = r/r, = (p — b)/p and A,C, L BC, C1A, L AB. Then by the
Thales theorem lines AH, and C'H. meet A;C at the same point.

Since H,H. = AC cos B quadrilateral AH.H,C' is circumscribed if and only if
AC'+ AC cos B = AC cos A+ AC cos B, which coincide with the equality from
problem 2B.

Since 1, = 2R and r = 1, cos B we obtain that OBy = r/2, which evidently
yields the desired assertion. Note also that the reflection of I about O lies on
the perpendiculars from A,, By, C. to the correspondent sidelines. Therefore
in B-triangle this point coincide with By.

Let R = r, = 1. Then by problem 2 OI, = /3. The centers of the circles and
their common points form a rhombus, therefore its second diagonal is equal to
1.

Answer. w/4, n/4, 7/2.
Hint. Use the next problem.

The solution is similar to problem 2B.

Triangles 11,1, and C.B.A. are homothetic because because their sidelines are
parallel to two internal and one external bisector of the given triangle. Also
triangle ABC' is the orthotriangle of triangle I1,1,. Thus the circumradius of
triangle 11,1, is equal to 2R, and its cirumcenter is the reflection of I, in O.
Hence the homothety center lies on segment 1.0 and divide it in ratio 2 : 1.

It is easy to see that /OAI. = /AI A.. Also OA = [.A.. Thus OAI A, is an
isosceles trapezoid and AA, = OI, = R+/3. Similarly two remaining segments
have the same length.

The angle between AAcs and BB, is equal to 2/AI.B because these lines are
symmetric to OI. wrt the perpendicular bisectors to segments Al. and BI,
respectively.

Immediately follows from problem 5C. Also this can be obtained from problem
6C considering the correspondent isosceles trapezoids.
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13A.

14A.

15A.

16A.

17A.

18A.

19A.

Main problems

Solutions.
a) Answer. H.

Hint 1. For any triangle consider a transformation that is the composition of
inversion with center A and radius v AB - AC and symmetry with respect to
the bisector of angle A. It maps B to C', and the line BC' to ). Hence it maps
Yo 10 wy. Thus line through A and touching points of w, and €2 is symmetrical
to AA, in AI. But in A-triangle altitude is symmetrical to AA, in Al.

Hint 2. Touching point of w, and €2 is the center of homothety with a positive
ratio that maps one of these circles to other. Consider the incircle, and use the
result of problem 11A and theorem on three centers of homothety.

b) It is known that in any triangle line connecting tangency point w, and €2
with point A", bisects segment B'C". Since arcs B’A” and AC" are equal, H] A
is a symmedian of triangle H, B’C". This is equivalent to the statement of the
problem.

Easily follows from the fact that the sum of radii is BC' cos B+BC' cos C' = BC.

Since BX : CX = cos B : cosC = BH| : CH], we obtain that X lies in the
bisector H! A" of triangle H! BC. Now the statement follows from the fact: in
any triangle the line through A” and the tangency point of Q and w, passes
through 1.

Lines IH and H] A" are external bisectors of triangles HBC and H,BC' that
are symmetric in BC.

Since HX u HY are internal and external bisector of the angle BHC', the
quadruple B, C, X, Y is harmonic. We know that B and C' — are centers of
circles I'y, I'., and X — is the center of their homothety with negative ratio.
Hence Y is the center of their homothety with positive ratio.

Line H] A, passes through O, hence it is symmetric to H, A with the respect
of the bisector H!I of the angle BH!C' (since H/ A is the altitude of triangle
BH!C). The statement of the problem follows from the fact that X also lies
in this bisector (a tangent to  through X passes through the point that is
symmetric to Ay in H!I). The proof for Y is analogous.

In any triangle line H Ay passes through the point As of 2 such that AA is
a diameter. Hence the required statement to equality (BC Ay X) = (BCAA’)
that can be obtained by easy calculation.

Let P be the second common point of A’X and 2. Then /A”PA’" = 90°, thus
line A”P passes through Y. Now /A'PAy = (A XAy = /H!A" = /A'PA,,
hence Ag lies in PAs.



20A.

21A.

6B.

7B.

8B.
9B.

9C.

10C.

11C.

12C.

13C.

Consider triangles OA’A; and H,IH. We know that A'O meets H,I at A”.
Further, it is clear that H, H and A;O meet at A. Sidelines HI and Ay A’ meet
at the infinite point of A”A since lines AA”, HI nu A’ A, are perpendicular to
Al. Now the statement follows from the Desargues theorem.

a) Lines H/O and AA’ pass through the center of w, because H, and A are
homothety centers of w, with €2 and v respectively.

b) Let K be the common point of AO and H)I. Then K and T are the
feet of the bisectors in isosceles triangle AOH]. From this we obtain that
AK = KT = TH], hence TK is the radius of w,. It is clear that line OI is
the perpendicular bisector of TK, therefore the answer is 120°.

In any triangle Byl intersects BH at point Z such that BZ = r. In particular,
for B-triangle we have BH = 2Rcos B = rycos B = r.

I lies in lines CyA; and A,C4, hence [A,I,Cy is a rhombus, therefore, the
midpoint of A,C} coincides with the midpoint B’ of I1.,.

Follows from the solution of 5B.

From 5B it follows that the projections of Bb to AB and BC are C,. and A,,
respectively. Hence A,, By, C., Hy belong to the circle with diameter BB,.

A, B., C. are intersection points of the opposite sidelines and diagonals of
the quadrilateral AC' BG,. inscribed to 2. Hence A, B,., C. are the vertices of
a triangle autopolar with respect to 2.

AB passes through the pole C. of the line A.B,, therefore the pole of AB lies
in A.B..

From cos C' = cos A + cos B we obtain that the distance from O to AB equals
the sum of distances from O to BC and C'A. Points L,, L, also satisfy this
condition. Now it suffies to note that this linear condition defines a line.

It is known that the line L,L; is fixed for all triangles with fixed circles 2
and .. For C-triangles this line is a diameter of {2 perpendicular to OI.. The
endpoints of this diameter and I. are the vertices of an equilateral triangle
whose center lies in OI, and divides the segment OI, with ratio 1 : 2.

Triangles ABC and H,H,C similar with ratio cos C', hence H,H, intersects
the bisector of the angle C' with ratio cos C': (1 —cos C'). From the property of
bisectors and equality cos C' = cos A + cos B it is easy to prove that I divides
the bisector with the same ratio.



14C.

15C.

16C, 17C.

The bisector of the angle C' is the bisector of the angle OC' H,.. Hence it inter-
sects the segment O H, at a point V with OV : VH, = R : CH,. The distanced
from H, to BC and AC equal CH.cos B and CH,cos A, respectively. From
this we obtain that the condition cos C' = cos A + cos B holds iff V' = 1.

Since O lies in L,L;, one can reformulate the statement of the problem in
the following way: IL,, IL,, IO, and the perpendicular from I to OC' is a
harmonic quadruple of lines. From two previous problems it follows that these
lines intersect AB at A, B, H., and the common point of AB and H,H,.

Hint. When C moves on 2 L moves on the hyperbola touching the sidelines
of all triangles A.B.C..






PEIIIEHUE YPABHEHUN C UCIIOJIb3OBAHUEM O/JHOI'O PAUKAJIA

npeacrasaserca . Axtamosbim,! V1. Bornanosbim,?

A. T'ne6osbiM, ° A. 3pikuabiM, * A. CkomnenkosbiM ° n E. Crpeabnosoii °

DTOT NHKJI 3aja9 MOCBSINEH KJIACCHIECKUM Pe3yabTaTaM W MeTOJaM YHCTON MaTeMaTu-
KU, HHTEPECHBIM 17Tt HH(MOPMATHKY (TeOPUH CUMBOJILHBIX Bbrunc/ienuii). OCHOBHBIE 3a1a4u —
3.3.d, 4.2, 5.5.c, 6.7 u 6.17.bc. B ortmaue oT OOJBIINHCTBA YyICOHHKOB 110 3TOH Teme, PUBO-
JIIMBbIE 33JIa91 U PEIleHnsl He UCMOJIBL3YIOT TepMuHa ‘Tpytima Lanya’ (1axe repMuna ‘Tpymma’).
HecMmoTpst HA OTCyTCTBHE 3TUX MEPMUHOE, UOEU TPUBOJUMBIX JTOKA3ATETBCTB SBJISIOTCI OM-
npasnoimu 17 meopuu Tanaya [S09] u konempyxmuerot meopuu Ianya [E).

Mpr mpuriiammaemM Beex MIKOJBHUKOB, PEIIAONX 3TOT UK 33189, KOHCYALMUPOSATHCS TIO
IIOBOJIy BO3HUKAIOIIUX BOIIPOCOB U WJIEH PEIIeHNs.

[IKOIBHUKH, YCIEITHO PEIIAOIIHe 3a/1a491, CMOTYT IOy YUTh donoanumenvhvie 3adavwu. OHI
CMOT'YT BBICTYTIATh CO CBOMMH pe3yJIbTaTaMy Ha KOH(MEPEHINAX IMKOJBHIKOB, Harpumep, [M].

[IkombHKK (MM KOMAaH/IA MKOJIBHIUKOB, pAGOTAIOINIIX BMECTe HAJ| IUKJIOM 3a/1a) MOJIyIaeT
,3BE3JI0UKY " 3a KarKJi0e 3allMCaHHOe PeIleHue, oleHeHnoe B + uin +.. 2Kiopu Oyaer Takxke
HArpaXkJIaTh JIOMOJHATEJIbHBIMHI ,,3BE3I0YKAMU" 38 KPACHUBBIE DPeIleHHUsl, PEIIeHNs CJIOKHBIX
3aj1a4 U 3a (HEKOTOpBIE) pellieHus, 3anucannbie B TEX-e. ,3Be3/049eKk” y KIOpu OGECKOHETHO
MHOTr0. MOKHO caBaTh 3a/1a4u YCTHO, Tepssd ,,3Be3/I0UKY " 3a KaXKJIyIO HOIIBITKY.

Pemenus 3aaa 1.1.ab, 1.2.ab, 1.4.ab, 1.5.a, 2.1.a"f, 2.3.abcd, 3.1.a, 3.2.a, 4.1.a, 5.1.a, 5.2.a,
5.4.ab GymayT pa3zobpaHbl Ha MPEJICTABICHNN, CIABATh UX MOXKHO TOJIBKO JI0 (3aTO yCTHO W He
TpaTs 3BE3/I0UEK).

Ecimu ycioBue 3aja4un spjsiercs (pOpMYJIMPOBKON yTBEPXKJIEHUs, TO B 3ajade Tpedyercs
9TO yTBEp:K/IeHUE JI0Ka3aTh. K HeKoTopas 3ajada He MOJIydaeTcs, TO duTaiite jasbiie —
COCEeJTHUE 33891 MOTYT OKA3aThCSI ITOJICKA3KAM.

Yepes Q obo3HaTAETCS MHOKECTBO BCEX PAIMOHAIBHBIX YUCET; ‘MHOTOUIEH ¢ PAIMOHATbHbI-
MH Ko uimeHTaMu’ KOPOTKO HA3hIBAETCsT MHONOW/IEHOM. MHOIOW/IeH HA3hIBAETCA HENPUS0JU-
MbLM HAJT MHOYKECTBOM F', eciin OH He pacKJjaIblBaeTcs B IIPOU3BeIeHNe MHOIOYIEHOB MEHbIIEH
crenern ¢ kodddurmenramu B F.

3agaum 0 MPOMEXKYTOYHOro (PMHUIIA

1 Pemenue ypaBaeHuii 3-it u 4-ii creneHn

1.1. (a) VYpasuenue ax®+bx? +cx+d = 0 ‘cBoaures’ K ypanennio 22 +pz +q = 0 3aMeHoi
HepPEeMEHHOM.

(b) Vpasuenue ax + bz + cx? + dz + e = 0 ‘cBogurcs’ K ypasuenuio xt + pz? + gz + s = 0
3aMEHOH I1epeMeHHOM.

B cremyomux aByX 3aJadax MOXKHO HOJb30BATLCA 0€3 J0Ka3aTebCTBa TEOPEMOil O Ipo-
MEXKYTOUYHBIX 3HAUEHUAX MHOrOWIeHa: s MmHozovuaena P u wucea a < b, ecau Pa) > 0 u
P(b) <0, mo cywecmeyem maxoe ¢ € |a,b], wmo P(c) = 0.

1.2. CkoJIbKO (BEIIECTBEHHBIX ) PEIIEHUiT MeeT ypaBHEHUe

(a) 2° + 22+ 7 =07 (b) 2® — 4z — 1 =07

! Canxt-IleTep6yprexuit [ocyapcTBeHHbIH Y HIBEPCUTET

2Mockoscknit ®usuko-Texnmdaecknit UacTuryT

3Hosocubupckmit [ocyqapcTBeHHDIit Y HUBEpCHTET

‘Harmonaspubrit ccremoBarensekuii YHIEBEpCHTET «BbICITast KO8 SKOHOMUIKI»

STlomnepskan rpantomM doumna 1. 3uvuna «Tunactuss. Mockoscknuit Pusnko-Texundecknit Uncruryt, Hesa-
BucuMblii MockoBekuii YHuBepcuter; www.mccme.ru/” skopenko

6Mockosckuit TocynapcTBeHHBIH YHIBEPCUTET



1.3. (a) IIpu KaKoM yc/I0BUM Ha p, ¢ ypaBHenue ° + pz + ¢ = 0 uMeeT poBHO JiBa penieHus?

(b) Beipasure 511 jBa pemnienus: aepes p, q.

(c) Haiiyiure Ko/tuaecTBO (BeliecTBeHHBIX) pemtenuil ypasuenus z° + pr + ¢ = 0, B 3aBucu-
MOCTH OT HAapPaMETPOB P, (.

B stom Tekcre ‘pemuth ypaBHeHHe O3HAYAET ‘HANTH 6Ce €ro Geu,ecmeertbie PerieHus .
(O1HAKO PEKOMEH IyeM HANTH TAaK¥Ke BCe KOMILJIEKCHBIE. )

1.4. (a) Jokaxkure, 910 {’/2 ++5 — {’/\/5 —2=1.

(b) Haiiaure X0oTs1 ObI OJHO pellleHue ypaBHEHUSA T° — 3v2x+3=0.

Vxaszanue. Memod deav @eppo. Tak xax (b + ¢)® = b® + ¢ + 3bc(b + ¢), To uncyno b + ¢
ABJIsieTcs KopHeM ypaphenns x3 — 3bcx — (b® + ¢*) = 0.

(c) Pemmre ypasnenne ° — 3+3/2x + 3 = 0.

(d)* Pemmure ypasnenne 22 — 3z — 1 = 0.

1.5. (a) Pasnoxkure na MHOKUTENN Bhipazxkenue a® + b® + ¢ — 3abe.
(b) Pasnoxute Boipazkerne a® + b% + ¢ — 3abc Ha nuHEHHBIE MHOKUTEIN ¢ KOMIITIEKCHBIMA
K03 durmenTaMu.

1.6. (a) CdopmyaupyiiTe i T0KazKUTE TEOPEMY, OIMUCHIBAOILY IO BCE BEIIIECTBEHHBIE DEIIeHNST
ypasuenust z° + pr +q = 0 B ToM ciiydae, Korja pabotaer MeTo aeib @eppo (em. sagaqy 1.4).
A npu KakoM yCJIOBHM Ha p,q UPUMEHHM STOT METOJ, eCJIM KBaJPATHBbIE KOPHU PAa3PeIaeTcs
U3BJIEKATH TOJBKO U3 TOJIOKUTEILHBIX TUCET!

(b) To ke jy1si KOMILJIEKCHBIX PEIeHuii.

1.7. Pemnre ypasnenne  (a) (2 + 2)% = 18(z — 1)%

M)zt +42-1=0. (c)2*+222—-8xr—4=0. (d)2*—122% — 242 — 14 = 0.

Vrazanue x 1.7.0. Memod @eppapu. [lonbepure Takue «, b, ¢, 910
gt +4r — 1= (22 + a)? — (bx +¢)*

g sToro Haiiiure XoTd OBl OTHO (v, I KOTOPOT'O KBJIPATHBIN TpeXHIeH (332 + a)2 — (3:4 +
4x — 1) sBsieTcs HOJTHBIM KBajpaToM. Jljist 9Toro Haiijure TUCKPUMUHAHT TOTO KBaJIPATHOTO
tpexwiena. OH gB/geTCss KyOMIeCKUM MHOTOYJIEHOM OT (v M HA3BIBAETCH KYOU4eckol pe3onn-
senmoti muorousena xt + 4x — 1.

2 llIpeacraBUMOCTH C HUCIIOJHB30BAHNEM OJHOIO PaanKaJia

2.1. IIpeacraBumo Jiu cjeyroIiee 9ucjio B BUIE a + \/l_), rae a,b € Q7

() V32V (a) %5\/5; 0) V2= Vo—2 (o) VT+5v2 (d)cos(2n/5);
() V2 () V2+ V2 (g) cos(2r/9);  ()* cos(2n/7); () V24 V2.

2.2. Yucio cos(27/9) samasercsa kopueMm ypaphenust 8z° — 6x + 1 = 0.

2.3. Ilyctrb r e R\ Q u r? € Q.

(a) Jlemma o nenpusodumocmu. Muorounen z? — r? nenpusoaum naj Q.

(b) Jlemma o aunetinoti nezasucumocmu. Ecim a,b € Qu a+br =0, 10 a =b = 0.

(c) Eciiu MHOTOUJIEH MMeeT KOPEHb 7', TO 3TOT MHOTOYJIeH JejuTed Ha 12 — 2,

(d) Teopema o comnpsiKeHuu. Fcau MHO20UAEH UMEEM KOPEHD T, O KOPHEM IM020 MHO-
20MNEHA ABAACMNCA MAKACE YUCAO —T .

(e) Caedecmsue. Eciau a,b € Q u MHOrOWIeH nMeeT KOPeHb a + br, T0 KOPHEM 3TOr0 MHOTO-
qIeHa SIBJISIETCS TaKKe Inucyao a — br.

(f) Caedcmesue. Ecim a,b € Q n Kybudeckuit MHOrO4JIeH UMeeT KOPEHb a + br, To OH mMeer
paluoHaIbHBIA KOPEHb.

2.4. YrBepxkaenue. Fciu mrozousen cmenenu sviwe 6mopoti nenpusodum wad Q, mo nu
00un u3 e20 kopneti e npedcmasum 6 cude a £+ /b, 2de a,b € Q.



2.5. TIpecraBunMo Ju cireayiomiee 9ucio B Buie a + by/2 + e¢v/4, tue a, b, ¢ € Q?
1

a) v3; (a —:  (b) cos(2w/9); (c) V3; (d) V3.

(a) V3 (>1+5€’/§+€/71 (b) cos(27/9);  (c) V/3; () V3

(e) HaMMEHbIIHI TI0JI0XKUTE/IbHBI KOPeHb ypasHenust 15 — 4z + 2 = 0.
(f)* equuCTBeHHDBI BelecTBeHHbIN KOpeHb ypasHenust 2° — 6x — 6 = 0.
(g)* esMHCTBEHHDIN BelecTBEHHbI KOPeHb ypasuenus z° — 9z — 12 = 0.

Ob6o3HaINM

2T . 2w

€q 1= COS — + 181N —.

q q

2.6. ITyctrb r e R\ Q u r* € Q.
JI d M 3 _p3
a) Jlemma o nenpusodumocmu. Muorowien x° — r° menpuoum Ha1 Q.
(b) Jlemma o aunetinoti nesacucumocmu. Ecm a,b,c € Qua+br+cr? =0,10a =b = ¢ = 0.
(c) Ecin MHOTOU/IEH UMeeT KOpeHb 7', TO 3TOT MHOTOUJIeH JlejuTcs Ha o5 — 7.
(d) Teopema o compsikeHUU. Ecau MHO20UAEH UMEEM KOPEHL T', MO KOPHAMU MO0
MHOZ0UNEHA ABAAIOMCA TAKIHCE YUCAG E3T U EIT.

(e) Caedemeue. Eciu a,b, c € Q u MHOrOUIEH UMeeT KOPeHb To = a + br + cr?, To KopHem

9TOI'O MHOI'OYJICHa ABJ/JIAIOTCA TaK>Ke YduCJIa

zy = a+begr +cgir® w39 = a+ beyr + cear’

(a') Cusavnasn aemma o nenpusodumocmu. Muorodnen z° — r3 nenpusoaum Hal

Qles) = {w +yes = @y € Q.

(b") Cunvras semma o aunetinot nesasucumocmu. Ecmu k1, m € Qles] u k+ Ir +mr? = 0,
Tok=[0l=m=0.

2.7. Ilyctb r e R\ Q u a,b,¢,7° € Q.

(a) JTemma o payuonarvrocmu. ducio a+br+cr? apjisercs KOpHEM HEKOTOPOTO HEHYJIEBOTO
MHOI'OYJIEHA CTEIEHU He BBIIIE 3.

(b) YrBepxkaeune. Ecau mnozounen nenpusodum wad Q u umeem xopens euda a + br +
cr? € Q, mo cmeneny MHO20MACHA PAGHA 3 U ON UMEEM POGHO 00UH GEULLCMEEHHBIT KOPEHD.

3 YpaBHeHusd 3-ii crereHu, pa3penimMbie 3a OJIUH PaJIAKAJI

Cuagasa y Yebyparku ectsb uncyo 1. CrrokeHrne nMeIOIIXcst 9ucesl OH COBEPINAeT OECIIATHO.
To ke cipaBe IJIUBO /11T BHIYUTAHUS, yMHOKEHUS U JIeJIEHUs] Ha HEHYJIEBOE YUCJIO0. 33 OJINH I0aHb
Yebypartika u3BJAEKAET KOPEHb JIIO0OH IIEJION IMOJIOKUTE/ILHON CTEeIeHn U3 OJIOXKUTETLHOTO
YHuCIa, y2Ke HOJy9eHHOro B Ipolecce Bbluucienuit. Ipyrux omepanuit on He JiesaeT. 3aTo OH
BBIUUCJISIET YUCTIa C a0COJIOTHOW TOYHOCTHIO M NMeeT HeOTPDAHMIEHHYIO MaMATh.

3.1. (a) [Tomorure Yebyparike moayduTs 3a 1 0aHb IUCIO V2 + V4.

(b) ITomorure HYebypariike moayIuTh 3a 2 0aHSI 9UCIIO V2+V3+ V2 — 3.

(c) ITomornTe Yebyparke moIyduTs 33 1 10aHb THCIO !

Y Y 1+5v2+ V4

HU¢, HO UCIIOJIb3Ysl OECIUIATHO BCe PAITMOHAJbHBIE KOHCTAHTHI.

HE HUCIOJIb3Yyd Aejie-

3.2. (a) Yucso MOXKHO MOJIYIATH 32 1 10aHb, J1a TakK, 9TOOBI KOPEHb M3BJIEKAJICS BTOPOIA
CTEIeHH, TOrJA U TOJIBKO TOMA, Korua oHo nMeer Bt a + /b, rae a,b € Q u b > 0.

(b) Hucmo MOKHO MOy YnTh 3a 1 10aHb, 14 TaK, YTOOBI KOPEHb U3BJIEKAJICS TPEThEl CTEIeHH,
TOTJIa U TOJBKO TOTJA, KOTJla OHO mMeeT BuI a + br +cr?, rner € Ru a,b,c,r® € Q.

(c) Teopema o kKaabKyasiTOpe. Jucao MOHCHO noaywums 3a 1 10anb moz2da u MoAbKo
moada, kozda ono pasno A(r) daa mexomopwr mmuozousena A u r € R, npuvem r" € Q das
HEKOMOPo20 Uea020 n > 1.



3.3. (a) Ipumymaiite HeHy/eBble DAIMOHATIBHBIE P U ¢, JIJI KOTOPBIX OJUH U3 (BEleCTBEeH-
HBIX) KopHefi ypasHenus x° + px + ¢ = 0 Yebypalika cMOXKeT TI0Ty4UThb 3a 1 10aHb.

(a) Ilpumymaiite parponaababie p # 0 U ¢, /I KOTOPBIX OJWH 13 (BEIEeCTBEHHBIX ) KOPHEIl
ypasHenus r°+pr+q = 0, He IMeIoIero pammonaIbHEIX KopHeil, Yebyparnika cMoKeT MOy IiTh
3a 1 r0aHb.

(b3) Cmoxker mu Yebypamka HOSyINTh XOTs Obl OJUH KOpeHb ypasHenust x> + 3z + 6 = 0
3a 3 oaHd?!

(b2) To ke 3a 2 10aHs.

(b1)* To e 3a 1 aHb.

(c) Hokazkure, 9T0 ecyin ypaBHeHue 3-i CTEleHN ¢ PAIMOHATLHBIMU KOd(h duIneHTaMu nMeer
POBHO OJINH BEIECTBEHHBIN KOPEHb, TO Uebypalika CMOXKET MMOJIYIUTh STOT KOPEHb 3a 2 I0aHs.

(d)* OcuoBHas 3agada. Kax 110 par@oHa/JbHBIM P, ¢ y3HATH, CMOXKeT Jii ebyparika mo-
JIy4uTh 3a 1 10aHb X0oTs ObI OIMH KOPeHb ypasHeHus x° + pr + ¢ = 07

3.4. * (a) CymecrByer i KyOu4eckoe ypaBHEHHe ¢ pAlMOHAIbHBIMU Kodbdurmentamu, Hu
OJIUH U3 KOpHel KoToporo Yebypaiika He CMOXKET MOJyUIUTh 3a 2 I0aHs?
(b) To ke myist 10000 roanei.

[ToBTOpUM TO K€ HA MATEMATHIECKOM SI3bIKe. PaccMOTpUM KaIbKY/IATOD ¢ KHOIKAMUI
L, + = X, : m  jasmoboro n.

KanbKyaarop BLIYUCISET 9UCIa ¢ abCOMIOTHON TOYHOCTHIO U MMEET HEOIPAHUYCHHYIO HaMSITh.
[Ipu nesnennu Ha () OH BBIJAET OIIUOKY.
[TycTh cHavasa KaJIbKyJIsITOP GEUECMEEHHDIT, T.€. ONEPUPYET € BEIECTBEHHBIME YUCIaME
U [IPU U3BJIEUEHUN PaJIMKaJjia 9€THON CTENeHU U3 OTPHUIATEbHOIO YHC/Ia BbIIAET OIMUOKY.
Crporue (u cierka mopudunupoBatubie) Gopmynauposku 3aa4 3.3.cd u 3.4 ciemyorue.

YTBepKeHrEe O Pa3pPENIMMOCT B BEIMIECTBEHHBIX pPaAuKaJiax. Keiu mrozousen 3-1
CMENEHYU € PAUYUOHAADHHMU KOIPHUUUEHMAMYU UMEEM POSHO 00UH BEULELCMEEHHBIT KOPEHD, MO
IMOM KOPEHD MONCHO NOAYYUMD HG BEULECNEEHHOM KAALKYAAMOPE.

Boaee mozo, 9mo moorcho cdeaamvp mak, 4mobwvl u3sieuenue paoukans npoucrooulLo moivko
dsa pasa, 00ur pas 6mopotl U 00uH Pad mpemuveti cmeneru.

Teopema o Hepa3pemIMMOCTU B BENIECTBEHHBIX paauKaiax. Cywecmsyem mHo20-
waen S-1 cmenenu ¢ payuonaibiuLmMu kosdhuuuenmamu (nanpumep, x3 — 3z +1), nu odun uz
KopHel KOmopo2o HeGO3MOHCHO NOAYUUMD HG BEWECTNEEHHOM KANDKYAAMOPE.

Boaee mozo, ecau mmozounen 3-1i cmenenu ¢ payuoHaAbHOLMU KOIPHUUUEHMAMU UMeEE,
POBHO MPU BEULLCMBEHHVLT KOPHA, MO HU 00UH U3 HUL HEBOZMOHCHO NOAYUUMD HA BEULECTNEEH-
HOM KAALKYAAMODE.

Eciu ke KopHeil pOBHO JIBa, TO OHU paIMOHAJbHBL (cp. ¢ 3aaadeii 1.3.ab).

Bonpoc. Kopnu xaxuxr mmozounsenos 3-G cmenenu ¢ pauuoHasoHuMU KoIPHuuuenmamu
MOCHO NOAYUUMD MG BEUWECTNEEHHOM KANOKYAAMOPE MAK, ¥MOoObl U3BAEUEHUE PAOUKANL NPO-
uczoduso mosvko odun pas? Cywecmeyem Au ai20pUMM PACTOZHABAHUS NPUHAOACHCHOCTIU
MHO20YNEHA MAKOMY KAGCCY?

4 YpaBHeHusd 4-ii cTerieHu, pa3penimMble 3a OJIUH PaJIAKAJI

HazoBem muorowien k-paspewumvim, ecian XOoTs Obl OJIMH €ro KOPEeHb MOXKHO IIOJIYUYUTh Ha
BEIIECTBEHHOM KaJIbKYJIATOPE 3a Kk M3BJICYCHUT KOPHEIA.

4.1. (a) Jloboit sm OGMKBAAPATHBEINN MHOrOWIEH (4-#f CTENeHM), UMEIONHUH BEleCTBEHHbII
KOpEHb, 2-pasperum’

(b)* Kax 10 palMoHa/IbHBIM P, § Y3HATh, sIBIAETCS JI 1-pazpemnMbiM MHorousien xt + pr? +
s?

(c)* JIrobGoit jim MHOTOWIEH 4-if cTelneHn, UMEIONUH BEIECTBeHHBIN KOpeHb, 4-paspernm?

4



4.2. OcuoBHas 3amava. (4,1) Kak 1o pannonaabHbiM KodhQUIEHTaM HEIIPUBOJIUMOIO
na; Q muorounena xt + pr? + qr + s = 0 y3uaTh, gBIgeTca 11 OH l-pazpermmuMbinm?

CyImecTByer Jin aJllOPUTM PACIO3HABAHUSA 1-paspernmmocTi’?

(4, k) (Pemenue nam wemssectHo.) To xke mist k-paspemumoctu, k > 2.

(n) (Pemenne jiust n > 4 wam wemssectHo.) Kak 110 panmonasbHbiM Ko3dhdUIIHEHTaM MHO-
rOYJIEHA Y3HATb, ABJISETCS JIM OH OO-Pa3penMbIM?

CyrmecTByer Jin aJllOPUTM PACIIO3HABAHUS OO-PA3PEITUMOCTH !

(n, k) (Pemenune nam HemspectHo.) Kak 1o panmoragbHbIM KO3 hDUIIEHTAM MHOTOUIEHA
n-ii CTEIEHN Y3HATD, SIBJISETCS JIU OH k-paspernmmbin?

CyImecTByer Jii alrOpUTM PACIO3HABAHUSA k-Pa3pernMocTu’?

4.3. (a) Hpumymaiite paruoHaIbHBIE P, ¢ U S, st KOTOPLIX ¢s # 0, muorowien z* + pr? +
qr + s nenpusoaum Has Q n 1-paspentim.
(b) SIpnsiercs u 1-paspermumbiM MHOrOUIeH 24 — 622 + 722 — 997

4.4. Ecm p < 0 u KyOndeckasi pe30JbBEeHTa MHOTOYJICHA, xt + pr + qx + s nUMeeT KOpEHb
a € Q, nna koToporo —p > 2a¢ > p, TO 3TOT MHOTOUJIEH 2-Pa3PEIM.

4.5. Ecan menpuBoguMmbiii Has (Q MHOrOWIeH 4-if cTeleHn mMeeT KOpPEHb, MOJIydaeMbIil Ha
BEIECTBEHHOM KaJIbKY/IATOPE 38 OJIHO M3BJICYCHUE pajuKaJia 4-if crereHu, To Kyonmdeckas pe-
30JIbBEHTa 9TOI'0 MHOI'OYJIEHa UMEET PAIlMOHAJIbHBIA KOPEHb.

4.6. ChopmynupyiiTe u JJ0KaKuTe aHajaor TeopeM o conpsikenunn 2.3.de u 2.6.de jijist MHO-
TrO4JIeHOB 4-ii cTeneHu.

5 c]:)OpMy.TH:;Ha,SI BbIPpa3nMOCTDb B BE€IIIECTBEHHDBIX pPaJdHKaJiaX

HekoTopsble njien n KOHKpeTHBbIE 3a/1a49u B §5 3ammMcrBoBanbl u3 [CS, L.

B cnenyromeit 3a71a1e TpebyeTcs IpeK e BCero NpuyMaTh (popMaJn3aIiio MOHATH ‘Hall-
tn’. Takasg dopmasimzaiius NpUBOJIUTCA TIOC/Ie yeaoBudA. Tem cambiM Bbl Ha IpOCTBIX MpuMepax
Hall[y[laeTe OCHOBHOe ompeJieieHne (BbIpasuMOCTH B pajukasax). CaMo perieHne He J0JIZKHO
peJICTaBIATD g Bac 60sbiux mpobJiem.

5.1. (a) Beerma sm MmoxkHO, 3Hast © + y u xy, Hajitu © — y? A x7

Bot npocreiimasg dbopMaIsaIms MOHATHS ‘HailTnn: cywecmeyem au omobpasicerue f: R? —
R, daa xomopozo f(x +y,xy) = x —y npu mobvix v,y € R?7

(b) Beerma s moxHO, 3Hast © + Y + 2, 2y + y2z + 2o u xyz, Haiitu (z —y)(y — 2)(z — x)?

(Qopmasm3anust aHAJIOIWIHA IYHKTY (a).)

OcHOBHOE OllpejieIeHne 9TOro pasjiesia — elne ojHa (hopMaTU3aliust MOHITHS ‘HailTu .

Muorounen f € Rlxy,...,z,] ¢ BemecrBerHbIME KO3 dUIEHTAMI BBIPA3UM B Bellle-
CTBEHHBIX paJiKajiax 4epe3 Habop MHOTOYJIEHOB a1, ..., a; € R[xq,. .., x,], ecim f Mox-
HO J06aBUTH B 9TOT HAOOP IEMOYKON OHeparuii e/ IyoIIero Bua:

e /100aBUTH B HAOOP MHOTOUJIEH OT YK€ MMEIOIIIXCS;

e ec/in MHOTOUJIeH U3 Habopa pasen pt s HekoTopwix p € R[zy,. .., x,] u nemoro k > 1,
TO J00aBUTH B HAOOP MHOTOUJIEH P.

"Bor apyras dopManmanus MOHATHS ‘HAfITH', KOTODPBII HE HCIOJIL3yeTcs B JAJbHEHIIEM: CYu,ecmeyem
au makoe omobpasicenue f uz R? 6 mmosrcecmeo 2D]§m BCET KOMCUHBLT NodMmHoscecms muoccecmsa R, wmo
flz+y,xy) 3 x—y npu aobuwx x,y € R? Toscanm, nmouemy 3ToT BOpoc (1 JazxKe ero 0000IIeHnsT Ha HECKOIBKO
[IEPEMEHHBIX ) TPUBHAJIEH.

Otrobpazkernns f: R? — 2]1}1-” (T.e. BEIECTBEHHDbIE KOHEYHO3HAUHBIC (DYHKIIUK) MOXKHO 3a/1aBaTh (GOPMYJIAMHU.
Hanpuwmep, dopmyna f(x) = ta asaserca cokpamenueMm dbopmynbl f(x) = {x,—x}, 3anamoomeii (ne 6(1166,

x

gyeMm) jBy3nadnoe orobpaxkenue f. (Ilomymaiite, ckosbku 3uaunoe orobpazkenue 3ajaer dopmyna f(z) = i—x)

O6osnraunm epes f(p, q) (KoHeunoe) MHOXeCTBO (BeleCTBEHHbIX) permennii ypasaenns t2 + pt + q = 0. Toraa
dbopmymna © —y = f(z +y,2y) — f(x + y, 2y) 3anaer nuckomoe orobpazkenue (mogymaiite, Kakx!).



Hampumep, e yzke IMEIOTCs MHOIOUIeHbI 22 + 2y U o — >, To HepBoii olepaleil MOXKHO
nobasuth Muorousen —5(x?+2y)2+3(x%+2y)(x—1y>)5. A ecsm numeerca muorownen 2 —2ry+y?,
TO BTOPOI orepareii MOKHO JI00aBUTh MHOTOYJIEHBI & — Y U Y — T.

5.2. BoIpasuM Jin B BEIECTBEHHBIX PAJUKAIAX Yepe3 & + y U Ty MHOTOUJIeH

(a) z —y? (b) x?

Otger K 3aja4e 5.2.b NOKa3bIBALT, YTO KOPEHL KBAIPAMHO20 YPASHEHUSA BbPAZUM 6 BeuLe-
CMEEHHHLT PaduKarar uepes e2o Kosdduyuenmo,. PopManusarus npuseieHa B 3auade 6.17.

5.3. (a,b,c) [Ipencrasbre
4yt 422, Py i+ e+ 2t Py 4+, B4yt 4 28
B BUJIe MHOTOYJIEHOB OT
oy =T+Yy+z, O0O2:=TY+yYyz+zr U 03:= ITYZ.

(d) Tpencrasnsercs mu (28 + 82 + 282) (282 + 2%y +y®2) B BUAE MHOrOWIEHA OT 07, 09, 037

5.4. (a) MynbTuCTeNneHb POU3BEICHHST MHOIOYJICHOB OT HECKOJbKHUX IE€PEMEHHBIX paBHA
CyMMe UX MYJIbTHUCTEIICHEL.

(b) Muorownen f orT ABYX IEPEMEHHBIX T,y HA3BIBAETCA CUMMEMPUUECKUM, ECJIU MHOTO-
wienbl f(x,y) u f(y,r) pasabl. [Jokazxkure, 9ro 060N CHMMETPUIECKUHT MHOTOUWIEH OT JBYX
HEepPEeMEHHBIX T,y ABJIAETCS MHOTOYJIEHOM OT T + Y U TY.

(c) Muorouen f or Tpex IMEepPeMEHHBIX T, Y, 2 Ha3bIBACTCS CUMMEMPUHECKUM, €CIIU MHOTO-
wrensl f(z,y,2), f(y,z,2) n f(y,z,2) paBabl. [Jokaxkure, 9r0 JHOOOH CUMMETPHIECKUAN MHO-
TOYIEH OT TPEX IIEPEMEHHBIX T, %, 2 ABJISCTCs MHOTOWICHOM OT 01, 0 U O3.

(d) CdhopmynupyiiTe n 10KazKuTE OCHOBHYIO TEOPEMY O CUMMETPHIECKUX MHOTOUJIEHAX JIJIsT
7 NepeMEHHBIX.

5.5. BrIpasuMm Jin B BelleCTBEHHBIX paJinKajiax depe3 01,0y, 03 MHOIOUYIEeH
(a) (x —y)(y—2)(z —2)? (b) 2%y + vz + 2227  (c)* a7

YKa3zaHusI 1 pemeHnsda OJid rnmpeacraBJIEeHUA

1.1. Bocnomab3syiiTech 3aMeHoii iepeMentoi y := x + 3—”@ B(a)my:=x+ ﬁ B (b).

1.2. (a) Omeem: 1. Tak KaK MHOrOYJIEH HEYETHOH CTENEHM, TO KOPEHb MMEETCsA. BBuy
MOHOTOHHOCTHA KOpeHb TOJIBKO OJHWH.

(b) Omeem: 3. O6oznaunm f(z) := 2% — 4x — 1. Umeem f(—2) < 0, f(—1) > 0, f(0) < 0,
f(3) > 0. Bnaunt, 0 Teopeme O MPOMEXKYTOUHBIX 3HAYEHUSIX MHOIOUYJIEHA YDABHEHHUE MMeeT
TPHU BeIIeCTBEHHBIX KOPHS.

1.3. (¢) Ykasanue. Haiimure mpomekyTku Bospactanus u yoObiBanus dyHkimn f(x) =
23 + px + q. HaiiinTre TOIKN JTOKAJIBLHBIX S9KCTPEMYMOB U 3HadeHud B Hux. g aToro msydnTe

3HAK BBIPAYKCHUS w (nsm, Gostee yueno, npoauddepennupyiire GyHKnuio f).
1— %2
1.4. (b) Omsem: v = —1 — /2.
6o :163—3€/§x+3:w3—3bcx+(b3—l—c3), rmeb=1,c= V2.
1.5. (a) Ilpu a = —b — ¢ MuOrO4IEH OGpaIaeTcsa B HoMlb. Llomenute a® — 3abc + (b + ¢3) na
a+ b+ ¢ ‘yrosxom’.
1 7—-5V2

= = —7+5V2.
7T+5/2 T2—2-52 +5v2

2.1. (a”) Omeem: na. 6o

(f) Omeem: ner.
ITycrs, manporus, v/2 + /2 = a + V/b. 1o uucio spisercs KopueM Muorowiena P(z) =
(z — V2)* = 2)((z + v/2)® — 2) ¢ pammonanbubivu Koddbdurmentamu. [Ipuvenum Teopemy
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o compskennn 2.3.d k 7 = /b u MHOrOWICHY P(a + t) (nmm npumennM ciejcrsue 2.3.€ K
r = Vb u muoroureny P(t)). Homyumm, aro P(a — v/b) = 0. Ilo Teopeme 0 paruoHaIbLHBIX
KOPHSIX y MHOTOUWIeHa P HeT paloHaIbHBIX KopHeil. 3uaunt, b # 0 u kopan a4 v/b pasamdHs!.
Ho y mmorowiena P TOJILKO JiBa BEIIECTBEHHBIX KOPHI: V2 4+ 2 u —vV2 + V2. [TosTomy
a+Vb=vV2+2ua—vVb=—V2+ 2. Orciona v/2 = a € Q. IlporuBopeune.

2.3. (a) Eciu muorousen z2 — r? npusogum Hag Q, TO OH UMeeT pPaIlUOHAJILHBIN KOPEHb.
[IporuBopeyne.

(b) Ecim b # 0, To r = —a/b € Q, uro HeBo3zmoxkHo. [Tosromy b = 0, orkyna a = 0.

(c) Tlomemum MHOTOUIEH ¢ ocTaTKOM Ha 2 — 72, TlojicTaBiisgs T = r, HOJIydaeM IO JeMMe O
JrHeHO HezaBucumocTu (b), 9TO OCTATOK HYyJIEBOIL.

(d) TTo (c¢) momy4aem, uto eciu R? = r% 10 R ecTb KOpeHb MHOTOY/ICHA.

3.1. (a) 3a 1 1oaub nosyuaem v/2, nocie gero v/2 4+ V4 = /2 + (v/2)%.

3.2. (a) fcHo, urto m06Oe Yncsgo TPeGyeMoro Buja MoayIuTh MOKHO. OCTaIoCch mMoKa3aTh,
YTO BCe MOJIydaeMble YHC/Ia UMEIOT 3TOT Bu. JJocTarodno ObLI0 ObI JOKA3aTh, 9YTO MHOXKECTBO
YHCe] TAKOI'O BHJIA 3aMKHYTO OTHOCHTEIHHO CJIOXKEHWsI, BHIYUTAHUS, YMHOXKEHUS U JICJICHU.
OsiHAaKO 9TO, €CTECTBEHHO, He TaK. [l09TOMY MBI ITOCTYIIMM 9yTh XUTpEE.

[Iycth r = /s — KBaJpaTHBIl KOpeHb, MOJIydeHHbli 3a 10anb (Torga s € Q). Ecm r € Q,
TO YTBEDXKJIEHNE OYEBUIHO, MO0 BCe MOJIyJarolInecs Iucja paruoHa babl. [lycTh 910 He Tak.
[Tokazkem TOrJI@, ITO BCe UHCIA, MOJIydeHHbIe ebypalnkoii, mmeroT Bud a + br, riae a,b € Q.
JlJ1s1 9TOTO TOCTATOYHO JIOKA3aTh, UTO CyMMa, [IPOU3BEJEHIE U YaCTHOE UHCET TaKOTO BUJIA
UMEIOT TOT K€ BUJ. DTO HEOUYEBUHO JIUIIb JJIsd JICJCHUS, JIJisi KOTOPOI'O HAIE YTBEPKICHIE

1 a—br
caetyeT u3 (hopMyJIbl PRI e R
4.1. (a) Omeem: na. Tak Kak KBaJpaT J060r0 KOPHS OUKBAIPATHOIO MHOIOUJIEHA SIBJISIETCS
KOpHEM KBaJIPATHOT'O MHOT'OYJIEHA, TO 3TOT KBaJIpaT IOJIYIaeTCs 38 OJIHO M3BJI€UYEHNE KOPHSI.

5.1. (a) Paccmorpure mappt z = 1,y =2 ux =2,y = 1.
5.2. (a) (x —y)? = (z +y)* — 4ay.
5.4. (b) Unayknus 1m0 My/JIbTHCTENEHH MHOIOWIEHA (€ JIEKCHKOrpadUIecKiM MOPSIIKOM ).

Tt cummeTpuaeckoro Muorodiena f myssrucrenenu (k, 1) (T.e. co crapmum monomom az®yl),
k > [, Bosbmure muorowten [ — a(z + y) ! (zy).

6 3agadm K BbIJavde HA MPOMEXKYTOYHOM (hUHUIITE
1. Pemenue ypaBHeHuii 3-ii m 4-ii cTereHu

6.1. * (a) CdopmynupyiiTe u I0KaXKUTE TEOPEMY, OIUCHIBAIOILYIO BCE BEIECTBEHHBIE Pellie-
HUs YpaBHEHUsI x? —|—pa:2—|—q:c—|—3 = 0. MokHO HCTIOJIB30BATb KOPEHb (v KYyOMI€eCKO# pe30IbBEHTHI.

Yrasanue. Ucnonbayiire meron Peppapu (cm. 3amady 1.7.b). He 3abyapre pazobpars Bce
ciaydan!

(b) To »Ke 15 KOMILIEKCHBIX DEIIEHUI.

2. Hpe,ZI;CTaBI/IMOCTb C MCIIOJIb30BaHMeM OJHOI'o paJmKaJjia

6.2. [IpejacraBuMO JiM CJIeJIyIOlIee YUCJIO B BUJE g + a1\7/§ + agﬁ + -4 ag \7/2_6, rie
ag, 1, 0Qz,...,a¢ € Q7

(a) V/3; (b) cos 2% (b') Kaxoit-HUGY b U3 KopHeil MHOrouIeHa 17 — 41 + 2;

(c) V3, (d) V3.

Vrasanue. Vcnionb3yiiTe chopMy/IMpOBaHHbIE HUZKE JIEMMBI.

6.3. Ilycts g mpocroe, r € R\ Q u 7 € Q.

(a) Jlemma o nenpusodumocmu. Muoroanen x? — r? menpuoum Ha Q.



(b) JIemma o aunetinot nesasucumocmu. Ecin A — muorousen crenenn mMenbine g u A(r) =
0, To A= 0.

(c) Teopema o compspkKeHUH. Ecau MHO2OUAEH UMEEM KOPEHD T, MO OH UMEETN MAKICE
KOPHU ra’; oas kaotcdozo k =1,2,3,...,q— 1.

(d) Jlemma o payuonasvrnocmu. Ecamn A — muorownen, o unciao A(r) gBisercs KOpHEM
HEKOTOPOI'O HEHYJIEBOI'O MHOIOUJIEHA CTEIEHH He BBIIIE ¢.

O6o3HauM
Q[gq] = {ao + a1Eq + agfg + .-+ aq72€g_2 ’ Qgy ..., Qg—2 < Q}

6.4. Ilycts g upocroe, r € C\ Q[g,| u r? € Q[gy].

(a) Muorowren x? — r? nenpusoguM Hajg Q|e,].

(b,c) Hdokaxkure anasoru myHkToB (b,c) mpenbiayimieil 3ajaqm s MHOTOWIEHa ¢ Koabdu-
rentamu B Q[e,].

6.5. * Ilycte ¢ mpocroe, 7 € R\ Q u 7 € Q.

(a) Cusavnas aemma o nenpusodumocmu. Muoroanen x4 — r? menpusonnm nag Q[e,].

(b) Cunavraa aemma o aunetinot nezasucumocmu. Ecanm A — MHOTOWIEH CTEICHH MEHbIIE
q ¢ koabdurmentamu B Qle,] n A(r) =0, To A = 0.

6.6. (a) YrBepxkaenue. Ecau muozounen nenpusodum nad Q u umeem xopennv A(r) € Q
daa nexomopuir mnozousena A u r € R, npuvem r? € Q daa nexomopozo npocmozo q, mo
MHOOUAEH UMEETN, CTENEHD ¢, U, NPU q 7 2, He umeem 0pyaur 6eusecmeenHu Kopred.

(b) Bepen Jin anasor 1. (a) ¢ 3aMeHOli yCIOBHS IIPOCTOTHI YKUC/Ia ¢ Ha ycaosue 12 ... ri~! &

Q7
3. YpaBHeHus 3-ii cteneHn, pa3pelrnnuMbie 3a OJIUH pPaauKaJl

ORION

3a JI0Ka3aTeIbCTBO JII000# ‘JIOrnYecK HeTPUBUAJIBHOM MMILIUKAINY B CJIEIYIONIe TeopeMe
na Kondepennun craBurcd mioc.

O60o3Ha4YNM

6.7. Teopema. Jlaa wybuueckozo ypasnenus x> + pr + q = 0 ¢ payuonasvrvimy K0@@du-
YUEHMAMU CAEIYIOULUE YCAOBUSA PABHOCUNLHDL:

(1-paspewumocmv) xoms 6v, 00U €20 KOPEHD MOHCHO NOAYUUMD 306 00HO U3BAEUECHUE DA~
Jurana;

(a+ br + cr?) ono umeem xopens euda a + br + cr?, 2der € R u a,b, c,r® € Q,

(n/Dpy € Q) aubo ono umeem payuonasonuiil kopenv, asubo Dy, > 0 u /Dy, € Q.

6.8. Ecin 4o, y1, Y2 — BCe KOMILIEKCHBIE KOPHE MHOTOUIeHa 12 + px + ¢ (¢ y4eToM KpaTHo-
CTH), TO

—108Dp, = (o — 91)° (%1 — 42)° (%0 — 2)°
s p € C obosznadnm

Q[p] = {P(u): P — MHOrOWIEH C pAIMOHATBHBIMI KO3 DUIIHEHTAMN | .

3amernm, ITO 9TO 0O03HAUEHIE COIVIACYETCs C BBEEHHBIM paHee obosHaderneM Qle,].
6.9. Eciin 1 — KopeHb HeHyseBoro MuorowieHna, 1o 1/t € Q[u| mag moboro HeHyseBOro
t € Qlul.

6.10. (a) Ilycts r € R\ Q, « € Q[r] u " € Q upu mexkoropom nesom n > 1. Torma
cylecTByeT Takoe HaTypasibhoe k, urto o € Q[r*] u r* € Q[a] (r.e. uro Q[r*] = Qla]).

(b) ¥YrBepxkaenue. Ecau mnozounren cmenenu n wenpusodum nad Q u 1-paspewum, mo
on umeem kopenv A(r) daa nexomopwixr mmuozouaena A u wucaa r € R maxozo, wmo r" € Q.
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Komnaexcnoili KaIbKyJIATOp UMeeT Te yKe KHOIKHU, YTO U BEIEeCTBEHHBII, HO OIEPUpYeET C
KOMIIICKCHBIMI “IHC/IAMI I DU HAXKATUM KHOUKHU g/ BBIIACT BCE 3HAYUCHHS KOPHHL. Ha xom-
IIJIEKCHOM KaJIbKYJISATOPE MOHCHO NOAYHUMD YUCAO, €CJIU Ha HEM MOXKHO IIOJIyIUTh MHOXKECTBO
4qncesi, CoJIePKaINX 38/ IaHHOE YHCJIO.

Hazosem mMHOTOWIEH KomnaexcHo k-paspeuwsumvim, eCn XOTs ObI OJUH €ro KOPeHb MOXKHO
HOJIyIUTh Ha KOMILIEKCHOM KaJIbKYJIsATope 3a k u3Bjedenunii kopueit. OcHoBHYyIO 3a1a1y 4.2 (u
JIPYTHE 33/1a91) HHTEPECHO PENIaTh U I KOMILIEKCHON k-paspermimocti. JacTo KOMILIEKCHBIE
BEPCUU OKA3bIBAIOTCS ITPOIIIE.

6.11. (a) JTio6oit KyGuuecKuit MHOMOWIEH KOMILIEKCHO 2-Pa3PEIM.
(b) Kak 1o p, ¢ y3HaTh, gBJIsIeTCs JIM KOMILIEKCHO 1-paspemmMbIM MHOTO4IeH 12 + px + 7
(c) JIroboit MHOTOUWIEH 4-ii CTENEeHN KOMILIEKCHO 4-pa3perinm.

4. YpaBHeHUud 4-ii cTeneHn, pa3pelnnMbie 3a OJIUH PaauKaJl

6.12. Teopema o compsizkenuu. Ilyemv a,b,c,d,r* € Q, ° & Q u wucio rg == a +
br + cr? + dr? asaaemcsa xoprem nexomopozo mrozousena. To20a KOPHAMU IM020 MHO20UACHA
ABAAIOMCA MAKNHCE YUCAG

Tri=a+bri—cr® —drdi, zyi=a—br+co?—dr, x5:=a—bri—cr?+drii.

6.13. IIycts muOrowsen 4-it crenenn (¢ HyJeBbIM KO(DMUIMEHTOM TIpH ) MMeeT KOM-

IJIEKCHBIE KOPHU Yo, Y1, Y2, Y3 C YIeTOM KparHocTu. Torja

(a) Yoy1 + Y2ys3 8

— KOpPeHb ero KyOm4ueckoil pe30IbBEHTHI.

(b) YoY1 + Y2Ys  YolY2 + Y1Y3  YoYs + Y1Y2
30JIbBEHTHI C yIETOM KpaTQHOCTI/I. 2

6.14. Ilycts p,q,s € Qup < 0 < q.

(a) Ecim ¢* = 2p(4s — p*) u /2q € Q, To Muorousnen xz* + pr? + qr + s UMeeT KOpeHb,
[IOJTy9aeMblil Ha BEIIECTBEHHOM KAJIBKYJ/ISITOPE 38 OJHO M3BJICUCHIE KOPHS 9eTBEPTOil CTEleHN.

(b) Bepho s o6parHoe?

— BC€ KOMIIJIEKCHbIE KOPHHU €I'0 Ky6I/I‘I€CKOI7I pe-

5. (I)OpMy.TII)HaSI BbIPa3MMOCTDb B BE€IIIECTBEHHbBIX paJiuKaJiaX

Orser ‘mer’ K 3azade 5.5.c (n 3amada 6.17.b HizKe) MOKA3BIBAIOT, YTO KOpeHb KYOUUECKO20
YPABHEHUA HE BBIPAZUM 6 BEULLCMBEHHBIT PAOUKGAAT “eped e20 koappuyuermot. Ilomxymaiire,
IIOYeMy STOT pe3yJIbTaT He IpoTuBopednT dopmyste Kaprano, Belpazkatomeil KopeHb Kyoude-
CKOrO ypaBHeHUsl depe3 ero Ko3(hUIeHTsl (K049 K OTBETY — BbIparKeHUe JIMCKPUMUHAHTA,
Yepe3 KOpHH 13 3aja4u 6.8).

Muorouien f oT HepeMeHHBIX 1, L, . .., L, HA3bIBAETCA MUKJINIECKA CUMMETPUIHBIM,
ecan MHOTOUIEHB! f(X1,Za, ..., x,) U f(T9, X3 ..., &p_1, %y, 1) DABHBL

6.15. Bripazure x1x3+ 1305+ T5T7+T7T9+T9x1 B pauKaax dyepe3 HEKOTOPbIe IUKJITIECKN
CAMMETPUIHBIE MHOTOUWJIEHBI OT X1, X2, . .., L10-

OTBet ‘HeT’ K 3a/1a9e H.5.C BbITEKAET U3 CJIEJIYIONIE 3a/1a9u.

8Hamomuum, 4To KyGudeckasi pe3o/ibBeHTa R(cv) muorowrena f(z) = xt + pr? + qx + s — 310 MHOTOUIIEH
OT TIepeMeHHOf (v, SABJIATONIMiCS TUCKPIMIHAHTOM KBaJpaTHoro Tpexdiena (12 + a)? — f(x) (oTHOCHTETBHO
[IEPEMEeHHOH &), TO eCTh

Ry(a) = ¢* — 4(2a — p)(a® — 5) = —8a® + 4pa® + 8sa + (¢* — 4ps).



6.16. IIycrs f,g € Rz, vy, 2].

(a) Ecim g mekoToporo menoro ¢ > 0 muorowies f? MUKIMYECKH CUMMETpUYeH, TO f
MUKJINYEeCKN CUMMETPHUYCH.

(b) Ecim fg =0, 10 f =0 nm g = 0.

(c) f+ fg+g*#0, ecm fg#0.

6.17. OGi1ee ypaBHeHUE n-ii CTElEHM Pa3pelirnMoO B BEIeCTBEHHBIX PaanKajiax,
eCJIM CYMIECTBYIOT

e HeoTpHUIlaTeIbHbIE TIeJIble YUCa S, ki, ..., ks 1

® MHOI'OYJIEHBI Pg, P1, - - ., Ps C BEIECTBEHHBIMEU KO3 duimeHraMu u oT n,n + 1,...,n + s
[IEPEMEHHBIX, COOTBETCTBEHHO,

TakKue, 9TO €CJH ag,...,0, 1, € R u

"+ ap 2" a4+ ag =0,
TO CyIecTBYIOT f1,..., fs € R, a1 koropbix
k’l _ k2 —
fit =polag,...,an-1), [2*=mplao, .. an-1, f1),

ks __ _
fs _psfl(CLO;'"7an717f17"'7f571): x_ps(a0>"'aanflaflw"afs)'

O6parure BHUMAaHUE, YTO MbI ONPEJIEUIN CBORCTBO Uncaa n (& He KOHKPETHOTO yPABHEHHUS C
3ajiaHHbIMU KOdd dunmenTamu, Kak B meopeme Laaya [S]).

(a) ObGiee ypaBHeHue 2-if CTENEHN Pa3pelIuMO B BEIIECTBEHHBIX PaJInKa/Iax.

(b)* O6imee ypaBHenue 3-if crenenu He pa3permMo B BEIIECTBEHHBIX PaJInKaIax

(c)* To ke camoe jyist Bcex n > 3.

Pesynbrar 3amaq 5.5.c u 6.17.b (a Takzxke ero cpasaenue ¢ ¢popmysioit Kapnano) mokassisaer,
YTO OIpeJie/IeHne BhIPA3UMOCTH B BEIIECTBEHHBIX paJUKajax He COBCEM yIadHO (hOpMAJIH3yeT
HJIEI0 Pa3pelmmnMocTi B pajanKaaax. C OgHOI CTOPOHBI, BMECTO BEIECTBEHHBIX UMCE/I Pa3yMHee
paccmarpuBaTh KominiekcHble [S’|. C mpyroit cTopoHbI, BMECTO PAGOTHI ¢ MHOTOUJIEHAMU MOYKHO
paboraTh ¢ YnucIaMI — 3TO IPUBOAUT K Teopeme [asya [S|. Oanako Ha mpuMepe 9Toil He coBceM
yaauHoii dhopmasmszanuu Bel yBuuTe HIEIO JOKa3aTe bCTBa TeopeMbl Pyddunu, cm. [S’].

Yka3zaHus U pelieHus K BblJade Ha MPOMEXKYTOYHOM (DUHUIIIE
1. Penitenne ypaBHeHunii 3-ii u 4-ii cTerneHn

1.3. Omsem. Ecmu p = q¢ = 0, To Kopenb ogun. Unaue npu Dy, > 0 xopensb oxus, npu D, = 0
Kopueit nBa, upu D,, < 0 KopHeil Tpu.

1.4. (c) Omsem: v = —1 — /2.

B cuy 3azaun 1.5.a ypasnenue 3 — 3V2x4+3=0 PaBHOCUJIBHO YPaBHEHUIO

(x4+b+e)(a?+ P+ —be—br—ca)=0 ¢ b=1 u c=v2
d) Omeem: x € {2cosT,2cos I™ 2cos BT},
9 9 9
Bamenoit x := 2y ypasaenue x> —3z—1 = 0 ceoauTcs K ypasHenuo 4y° —3y = % Ucnonb3ys

TOZKJIECTBO €OS 30 = 4 ¢cos® a — 3 oS @, IOJIydaeM, 9TO 9HCIa COS X, cos &, cos BT gpsorcs
KOpHSIMHE ypaBHenus 41° — 3y =

9 97 9
5.
1.5. (a,b) Omsem:
a*+ b+ —3abc = (a+b+c)(a® +b*+c* —ab—bc—ca) = (a+b+c)(a+bes+ce3)(a+bes+ces).

1.6. (a) Omeem: meton genab Peppo npumennm, korpa D, > 0.
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Teopema. [Iycmo p,q € R. Ecau D,, > 0, mo ypasrenue z + px + q = 0 umeem edun-
cmeeHnbll 8eULLCMBEHH LT KOPEHD

q q
\3/_5 +/Dpy — §/§ + /Dy

Ecau Dy, = 0, mo ece sewecmseennvie KOpHU YpaGHEHUA 2+ pr+q=0— omo —23 q/2 u
—m (onu pasgaununv, npu q 7 0).

(b) Teopema. ITycmv p,q € C u pg # 0. Obosnauum wepes

. \/D_pq ao0boe u3 deyx 3navenuli kK6adpammnozo kKopnsa us D,

o u 060 u3 mpexw snanenull KYOUECKo20 KOpHa U3 —i — \/D_pq;

o v:=—L. (Tax xax p # 0, mo (q/2)* # Dpy, omryda u® = =% — /D,y #0.)

Tozda ece KopHu YpasHeHUA 22 +pr+q=0 — wucra u+ v, ues + Ué‘g, ua% + veg (onu me

00A34MENDHO PASAUNHDL NPU q F 0).
—3vV2+ V10 + 122 —V/2+ V42 -2 <>\/§i\/8\/§—6
. S (e .
2 ’ 2 ’ 2 ’

1.7. Omsemwi:  (a)

(d) V2 £ (V2 +V3).

(b)

2. IIpencTaBUMOCTh C MCIIOJIL30BAaHUEM OHOTO PanKaJia

2.1. Omsemuwi: (a,a”b,c,d) na, (a/,e,f,g,h) Her.

(a,c) V3+2v2=V7T+5/2=1+2.

(a”) Mimeem (1+45+/24+/4)(3++/2—8v/4) = —75. (IT0 paBeHCTBO HECIOKHO HANTH METOIOM
HEOIIpeJIeJIeHHBIX KO3(hDMUIMEHTOB WM [IPHU MOMOIIM aJropurMa EBKIIMIA Jjisi MHOIOYJIEHOB
23 —2u 2% + 5z + 1, em. pemenne 3agaun 3.2.b.) ITosTomy

]_ 1 1 3 8 3 2
- e D (e
1+ 52+ 4 25 75 \/_+75 (V2)

) VV5+2—vV5—-2=1.

(d) cos(27r/5) (V5 —1)/4.

(e) Tlycrs mpeacrasumo. Torma 2 = (v/2)° = (a® + 3ab) + (3a® + b)V/b. Tax kak 3a® +b # 0,
10 Vb € Q. Buaunr, /2 € Q — nporusopeune.

Hpyrue criocobsr — anasoruyano myaktam (f,g) win yreepxKenuio 2.4.

(g) IMycrs npeacrasumo. o 3anaue 2.2 uucio cos(27/9) sBaserca Kopaem ypapHenus 4x> —
3r = —%. [To cirepcrBuio 2.3.f 970 ypaBHEHUE MMeeT paIMoOHAIBHBIN KOpeHb. [IpoTuBopeune.

Jpyroii criocod — aHaJOTHYIHO YTBEPKICHUIO 2.4.

2.2. Tlo dopmyie Kocumyca Tpoitnoro yriaa —1/2 = cos(27/3) = 4 cos®(2m/9) — 3 cos(27/9).

2.3. (e) O6osnaunm gepes P muorounen us ycaosus u G(t) := P(a + bt). Torna G(r) =
Buaunt, no nyskry (d) G(—r) = 0.

(f) Cnenyer u3 mynkra (e) u Teopemnr Buera.

2.4. Tycrb, HAIPOTUB, JAHHBIH MHOTOWIEH P mMeer Kopenb o = a + v/b. Ilo ciencrsuio
2.3.€ I AHAJIOIIYHO €My KOPHEM MHOrodwIeHa P sBiisercs Takxke ancio 1 = aFv/b. Ilpu b = 0
yTBepKaeHne oueBuHO. [loaromy cunraem, aro b # 0. Torma xg # 1. [lostomy P(z) menmres
na Ha (r — a)? — b. Tak kax deg P > 2, To P npusogum. [Iporusopeune.

2.5. Omeemui: (a,b,c,d,e,g) uer, (f) na.

O6o3HAIIM T := /2.

(a) Ilepsoe pewenrue. ITycrs npencrasumo. Torma

3 = (a® 4 4bc) + (2ab + 2¢*) V2 + (2ac + b*)V/4.
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Tak KaK MHOTOUWIEH 2° — 2 He nMeeT paIloHaIbHBIX KOPHeii, To oH HenpusoauM Haj Q. 3naunT,
2ab + 2¢* = 2ac + b* = 0 (cp. 2.6.b). Hosromy b* = —2abc = 2¢®. Torma m6o b = ¢ = 0, ubo
V2 = b/c. Oba cydas HEBOZMOYKHEI.

Bmopoe pewenue. Ilycts npeacrasumo. O6oznauum P(z) := x? — 3. Tlo ciencreuio 2.6.e
P umeer Tpu KOpHS g, T1, Ty, BBEJICHHBIX B (POPMYJUPOBKE CIeACTBHA. TaK Kak HU OJUH W3
HUX HE pal@oHaJieH, To0 b = ¢ = () HeBO3MOXKHO. 3HAYHT, [0 CUJILHON JieMMe O JIMHEeHHOi
nesapucumocTu 2.6.b" stu Kopuu paszmmunnl. IIporusopeune.

(b) IIycrs npeacrapumo. ducio cos(2m/9) sBngerca KopueM ypasHenud 4a° — 3z = —3.
JlBa ApYrHUX €ro BEIIECTBEHHLIX KOPHS ecTh cos(8m/9) u cos(4m/9).

ITo caencreuio 2.6.e mMuorounen 8z° — 6x — 1 uMeerT Tpm KOPHS g, T1, To, BBEJCHHLIX B
dopmymuposke creacrsusd. Tak Kak HE OIUH U3 HUX HE paloHaseH, To b = ¢ = () HeBO3MOXKHO.
BHaunT, 110 CUILHOI JeMMe o JnHeitHol HesasucumocTn 2.6.b" 3T KopHU pas3JIndHbL.

Tak Kak £3 = €3, TO Ty = T1. SQHAYUT, To U T1 HE MOIYT OBITH BEIECTBEHHBIMU U PA3/IHY-
uoiMu. [IporuBopeune.

(¢) [Tycrb npexacrasumo. Tlo 3amade 2.7.a, HEKOTOPBI KyOUUECKIH MHOTOYIEH UMeeT KOPEHb

a + br + cr?. Tlporusopedne ¢ HEIPUBOIUMOCTLIO MHOrOWIeHa 2° — 3 Haj Q.

3 — r3 mpusoguM mag Q, TO OH MMeeT PAIMOHAILHBIH KOPEHb.

2.6. (a) Ecau mmorowren x
[IpoTuBopeune.

(b) Ipeanonoxum nporusuoe. [ogemnm 2 —r® na a+ bz + cx? ¢ ocrarkom. Ilo (a) ocraTox
nenysesoit. O6a muorowiena 2 — r® u a + br + cx? uMeT KopeHb T = r. 3HAYHUT, OCTATOK
HMeeT KOPeHb & = 7. 3HAYUT OCTATOK IEPBOIl CTENEHH U MMEET MPPAIMOHAJIBHBIA KOPEHb.
[IporuBopeyne.

(¢) Homennm muorowien ¢ ocrarkom Ha z° — r3. TlofacTapngs © = r, moydaem Mo JIieMMe O
JHelHo# HezaBucumoctu (b), 9T0 0CTATOK HYJIEBOIL.

(d) TTo myukTy (c) momydaem, uro eciiu R® = r3 10 R ecTb KOpeHb MHOTOY/ICHA.

(e) O6oznaunm yepes P muorowsen us yciaosusa u G(t) := P(a + bt + ct?). Torna G(r) = 0.
Buauut, 110 nyukry (d) G(res) = 0= G(re3).

(a’) Ecim npuBogum, 10 oauH u3 ero kopueii jexkut B Q[es]. Torma r € Qles) NR = Q.
IIporuBopeune.

D10 yTBepK/IeHIe TaKkKe caeyer u3 myHkTa (b').

(b’) Paccmorpure BeIeCTBEHHYIO U MHUMYIO YaCTH.

D10 yTBEpXKIEHNE TaKXKe CIeyer u3 myHKTa (a').

3

2.7. (a) Ilepsoe pewenue. Tocrarouno mokazarh yrBepxkjenue g a = 0. dng aucioa
t = br + cr? omosnneno 3 = b3r® + 31 + 3berdt.
(Mubivu cioBamMu, BBUJLY PaBEHCTBA U3 pelienus 3aga4au 1.5.a aucio a + br + cr? asisercs
KopreMm Muorowtena (r — a)® — 3ber®(z — a) — b33 — 3r8.)
Bmopoe pewenue. Oboznauum xg = a + br + cr?. Paznoxum uucia zk npu k = 0,1,2, 3 no
CTEIEeHSIM JHCIIa 7'
xlg = ay, + bpr + 12,

Yro0b! pemuTh 3a/1aty, JTOCTATOYHO HAWTH 9UCIA A, A1, A2, A3 € (O, HE Bce U3 KOTOPBIX PaBHBI
HYJIIO, TaKue, uTo \g + A1To + AozZ + Agzd = 0. Jna 3TOro 10CcTaTovHo, 9Tobbl 3TH UUCIA
YJIOBJIETBOPSIIH CUCTEME yPaBHEHHIT

)\0a0+"'+/\3(l3:0
Aobo + + - + Agbs = 0
)\060+"'+>\303:0

Kax m3BecTHO, OfHOPO/IHAS (T.€. ¢ HYJIEBBIMU IPABBIMU YaCTSIME) CHCTEMA JTHMHEHHBIX ypaBHEe-

HUI ¢ paIrMOHAJIBHBIMEA KO3 PUITMEHTAMU, B KOTOPO# ypaBHEHUI MEHBIIE, YeM MEePEMEHHBIX,
BCerjla MeeT HeTPUBHAIbLHOE PAIMOHAJIBHOE PeleHne. 3HAUNT, TpedyeMble Jrc/Ia Hal Iy TCs.
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(To, uTo MOJIyYeHHBIT MHOTOYJIEH UMEET CTEelleHb POBHO 3, ToJIydaercs u3 3a1a4d 2.6.eb’.)
Fuwe odno pewenue mpuBeeHO B KaUecTBe IIEPBOrO JOKA3ATEIHLCTBA JIEMMbI O PaIllOHAJb-
noctu 6.3.d.

3. YpaBHeHus 3-ii cteneHn, pa3pelnnuMbie 3a OJIUH pPaauKaJl

3
3.1. (b) Yucio /2 + /3 nonyuaerca 3a 1npa oans. OcTauoch 3aMETHTD, YTO
1

:m:( 2+/3)" - (2-V3).

(Iocsreniee paBeHCTBO MO3BOJISIET Jlazke 0OONTHCH 6e3 JlesleHnsT Ha UpPaInoHaIbHbIE THCIIA. )
(¢) Cwm. perrerne 3amaun 2.1.a".

w
[\

|
pa

3.2. (b) fcHo, aT0 JF060E OMUCAHHOE THCIIO MOZKHO TIOJIYIUTh 3a I0aHb. [{J1s joKasarebeTBa
00paTHOIO YTBEPKJICHUS, AHAJIOITIHO TPEJIBIIYIIEMY IIYHKTY MbI TOKa3bIBAEM, YTO BCE YUCJIA,
nosydennble Yebypalnkoii, uMmeioT Buj a + br + cr?, rae r = /s — Kybuueckuii KopeHb, Ha
KOTOPBI# ObLI IOTpadeH TPyaoBoii 0anb. Ceityac, mpaBia, HECKOJIBKO CJIOKHEEe MOKa3aTh, 9TO

HHC/I0 ——————— UMeeT TpebyeMblil B (B crydae, Korfa r = /s ¢ Q). Ilokaxewm xe 310,
a+br+cr s s

[To stemme 0 HETPUBOAUMOCTU, MHOTOWICH x° — r° HernpuBouM HaJl (Q, a 3HAYUT, B3AUMHO
pocT ¢ MHOrouIeHOM a + bx + ca?. IloaToMy cymIecTBYIOT MHOTOYIEHB ¢ U N, JIs KOTOPBIX

h(z)(a+bx+cx®)+g(z)(x® —r®) = 1. Torga h(r) = , OTKYJIa U CJIeJyeT TpedyeMoe.

a -+ br+ cr?
3.3. (a) Hanpumep, romurest ypasnenne z° —3z+2 = 0, KOpHEM KOTOPOTO ABJISI€TCA YUCIIO 1.
(a’) Hamnpumep, rogurcs ypashenue x° — 6z — 6 = 0, KopHEM KOTOPOTO SIBJAETCS UUCJIO

V2 + V/4 (w3 3amaun 3.1.b). DTo ypaBHEHEE MOYKHO MOJTYYHTH, HAIIPUMED, aHAJOIMYHO TOKa-

3aTeJIbCTBY JIEMMBI O PallMOHAJIBHOCTH 2.7.a.

(b3, b2) Omeemui: 1a.

MeTO,ILOM JeJIb CDeppo noJjrydaeM, 94TO OJJHUM M3 KOpHeﬁ YpaBHEHUA ABJIAETCA 9IUCIO

{’/—3+\/E+\3/—3—\/1_=\3/—3+\/1_—;.

v —3 4+ /10

(b1) OTpuraresbHblil OTBET cienyeT u3 perienus nyHKTa (d), T.e. u3 Teopemsl 6.7.

(c) Cormacno 3amade 1.1.a, MOXKHO CUMTATh. YTO ypaBHeHHe uMeeT BuJ x° + pr + q = 0.
Ecim p = 0, yrBepxkjenue ouesuno. MHade, NOCKOILKY ypaBHEHUEe MMEET POBHO OJIMH Be-
IECTBEHHDI KOPEeHb, 3 pemtennst 3agadun 1.3 ciemyer, uro Dy, > 0. 3maunt, qmcio u =

3 q
—3 — /Dpq m3 Teopembl B pemennu 3agaun 1.6.a nonyvaercs 3a jaBa oans. [lociae storo

— 3 q — p
aucyio v = \/ —2 + y/Dpg = — . mojtydaercst 6ecrIaTHO. 3HAYUT, U KOPEHb UCXOJIHOTO ypaBHe-

HUA, PaBHBIA U + ¥ 1O BBIIIEYIIOMAHYTOI TeopeMe, IoJydaeTcd 3a JiBa I0aHd.
(d) Cwm. Teopemy 6.7.

4. YpaBHeHus 4-ii cTerieHn, pa3peninmbie 3a OJUH PaauKaJl

4.1. (b) MoxXKHO BBIpa3uTh KOPEHb Ty MHOTOYJEHA Yepe3 P U S, a 3aTeM IPUPABHATHL Tg K
br 4+ cr? +dr3, rne b,c,d,r* € Q, r € R.

(¢) Iunomesa: uer. IlonpobyiiTe mOKa3aTh, YTO ypaBHEHUE 4-ii CTEIEHH, Pe30JIbBEHTa KOTO-
POTO UMeeT POBHO TPU BEIECTBEHHBIX KOPHsI (MJIM OTPUIIATEIbHBIN QUCKPUMUHAHM,), HE SBJISIET-
cg 10000-paspemmmbiM. Dopmyra f1j1d HaX0XKIeHN KOPpHS ypaBHeHUd 4-1f cTeneHn, pe30IbBeH-
Ta KOTOPOrO UMeeT He DoJiee JBYX Pa3/IMYHbIX BEIECTBEHHBIX KOPHE(l (MM HeOTPHUIATe IbHbII
JMCKPUMUHAHT), 38 YeThIPe U3BJEUCHUsS KOPHsI, SBJSETCS Tesbio 3a1a4au 6.1.a.
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4.3. (a) Hanpumep, muorousen x* — 1222 — 24z — 14 us 3agaun 1.7.d umeer KopeHb V2 +
V2 + /8. (Ioiimure, Kax MOCTPOUTH STOT MHOIOWICH 110 ero KOpHio!)
(b) Ha, cormacuo 3amade 6.14.a.

5. q)OpMyJ'IbHaﬂ BbIPa3MMOCTDb B Be€III€CTBEHHbBIX paJMnKaJiaX

5.1. (b) Pacemorpure tpoitku z =0,y =1,z =—-1lux =0,y =—1,2=1.
r+y+(@—y

5 :
5.3. Otsernl: (a) 0 — 209; (b) 0100 — 303;  (¢) 02 — 30109 + 303.
(d) Ucnomssyiite 5.4.c.

5.2. (b) x =

5.4. (¢) Uaaykiyst 0 MyJIBTUCTEIIEHH MHOTOUYJIEHA (C JIEKCUKOTPaDUUECKUM HOPSIIIKOM ).
s cummerpuaeckoro muorouwinena f wmysabrucrenenu (k,¢,m) (T.e. co cTapimM MOHOMOM

axzFy’z™), k > 1, BospMuTe Muorowten f — aok ‘ot "ol

5.5. (a) (x —y)*(y — 2)?(2 — x)* — cummerpuyeckuit muorodien. [TyHKT (a) MOKHO Tak:Ke
cecru K (b).

(b) O6osnauum M = z?y+y?z+2z%z u N = y*x+ax?2+2%y. Torna muorounenst M+N u MN
CUMMeTPHUYECKHe. 3HAYUUT, OHU SBJISIOTCS MHOTOYJIEHAMU OT 3JIEMEHTAPHBIX CUMMETPUUYECKIX
MHOTOYJIEHOB 071, 09, 03. (KOHKpeTHOE BhIpazkeHue mpuBejieHo B peniennn 3a1a4au 6.8.) Camo xke
M Boipaxkaercd depe3s M + N u M N 1o dhopmysie KopHell KBaJIpaTHOIO YPaBHEHU.

YKa3zaHusd 1 pelaieHnd K BblJa49€ Ha (1)I/IHI/IH_Ie

1. Pemenue ypaBHeHuit 3-ii m 4-ii cTereHu

1.6. Joxazamervcmeo meopemov, us n. (a). Oboznaunm u = — /2 4+ \/Dyynv = ¢/ =1 + /D,

Nmeem uv = —p/3 u u® + v* = —¢. 3naunT, 1o dpopmyse u3 pemenus 3a1a4u 1.5.a 11t a = ,
b= —u, c = —v 9ncy0 U + v ABJIAeTCa KOpHeM MHOrowIeHa T° 4 px + ¢ = x° — 3uvy — ud — v3.
Tak kak 2(z? +u? +v* —zu— v —ww) = (x —u)*+ (r —v)? + (u—v)?, o upn D,, > 0 apyrux
Kopeii ner, a ipu D,,, = 0 ecTb emme ojuH Kopenb u = v = —+/q/2.

Jokasameavcmeo meopemuvi us n. (b). Uneem uv = —p/3 n u® +v* = —q. 3naqut, reopema
BepHa 110 hopmyJsie u3 perrenud 3aga4qu 1.5.b g a =z, b = —u, ¢ = —v.

6.1. Eciit ¢ = 0, To ypaBHeHue OMKBaJIpaTHOE U peIaeTcsd Jerko. byjeM cauTaTb, 9TO
q#0.

(a) Teopema. ITycmwv p,q,s € R u q# 0. Tozda cywecmeyem o > p/2, das xomopozo q* =
4(2a — p)(a® — ). Jas mobozo maxozo o obosnavum A = \/2a — p. Tozda 6ce sewecmeenvle
KopHu ypashenus xt+ pr? +qr +s=0 —

(Hem wopneti, 200 +p > 2|q|/A;

vsi= (—A% /20— p+B) /2, —2/A<20+p < /A
poi= (A% y/-20—p—2%) /2. 2/A<20+p< -2/4

(T4, Y+ 2a 4+ p < —2]q|/A.

Jokasameavcmeo. Obosnaunm R(x) := 4(2z—p)(22—s)—q¢?. Torna R(p/2) = —¢* < 0. llpu
J0CTATOIHO Gostbmnx  uMeeM R(z) > 0. 3HaunuT, M0 T€opeMe O MPOMEKYTOIHBIX 3HAUEHUIAX
MHOTOUJIEHA CYIIEeCTBYeT o > p/2, nyig koroporo R(a) = 0.

@ _ . 2_

Tak Kak p = 2o — A% 1 @ — KOpeHb Pe30JIbBEHTHI, TO § = o — Mo =@ —im Torna

4 2 2 q 2 q
— — A _>( A __).
T+ px°+qgr+s (x x+a+2 r°+ Az + o 5
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Teneps, pemast 2 KBaJIpaTHBIX ypPaBHEHU, MOJIy4daeM TpedyemMble (pOPMYIIbI.

(b) Teopema. IIycmv p,q,s € C u q # 0. Obosnavwum wepez o 410000 KOpeHs YPaGHEHUA
¢* = 4(2a—p)(a® —s). Obosnanum wepes A aoboe us snanenuti K6adpammo2o KOPHA U3 200 — p.
Tozda ece xopru ypasrernus x* + pr? +qr +s=0 —

A+\/—2a—p—% /2 u —A—l—y/—Zoz—p—i—% /2,

2de \Jy — MHO203HAUHAA PYHKUUA, 660AI0UAA 000 ZHAMEHUA KOPHA U3 Y; NOCKOALKY ¢° =
4A%(a® —8) #0, mo A#0.

JlokazaTesbcTBO AHAJIOTHYHO JTOKA3aTEIBCTBY T€OPEMBI U3 II. (a).

Samevanue. Bece KOMIIEKCHBIE KOPHU 9TOIO YPABHEHUSI — 3TO

++/200 — p* \/2a2—p:i: \/2043—1%

TJIe (1, Qig, (k3 — BCE KOPHU KyOMYIECKO pe30JIbBEHTHI, YMC/I0 MUHYCOB Y€THO, & 3HaUeHI KOPHe
BBIOMPAIOTCA TaK, 9YTO UX MPOU3BEJICHUE PABHO —(.

2. IIpeacraBUMOCTD C MUCIIOJIB30BAHUEM OJHOIO paJauKaJjia

2

2.1. (a') Iycrs upencrasumo. Kopusyu muorownena P(z) := (x? — 2)? — 2 gapystiores 4 uuncia

+1/2 + /2, rie 3HAKN + 1 — He 06s3aTeILHO COIIACOBAHBL. Hec0KHO poBepuTh, 9T0 P(7)
He UMeeT PalMOHAJbHBIX KODHE(l, 1 9To Mpon3Be/ieHne JII00BIX JIByX KOpHel MHorousteHa P(x)
upparnuonaibio. 3uaunt, P(z) wenpusomnm Hajg Q. Temeps us yrBepxkaenus 2.4 mosrydaem
IPOTHBOPEYHE.

(h) (1. Bpayne-3omorapes) U3 pasenctsa 1+ 7 + €2 + - - - + €% = 0 momywaem cos(2m/7) +
cos(4m/7) + cos(6w/7) = —1/2. Ucnonb3ys dbopMysbl I €OS2cv W COS 3¢, MOIyIaeM, 9TO
quciio cos(2m/7) aBjisteTcss KopHeM ypasHenust 8t3 +4t? — 4t — 1 = 0. 3amenum u = 2t, noryIum
u? 4+ u? — 2u — 1 = 0. DTo ypaBHEHHE He MMeeT PAIMOHAILHBIX KOpPHEH. 3HAYHT, ypaBHEHIe
8t3 + 4t? — 4t — 1 = 0 Toxe. 3HaunuT, 110 3a1a4e 2.3.f MOIyUaeM OTBeT.

2.5. (d) O6osnaumm r = /2. Amamormuno (a), (b) momydgaeMm, 9TO KOMILIEKCHbBIE KOPHE
MHOTOUJIeHa T — 3 eCTh Ynca Tg, 1, T2, BBeIeHHbIE B hopMympoBKe caeactus 2.6.e. [losromy
(@ + br + cr¥)e = a + breg + cre? ana nekoroporo s € {1,2}. Orcioga no cuIbLHON JieMMe
o juHeiHON Hesapucumoctu 2.6.b" @ = 0 u be = 0. ITosromy Jsmbo /3 = br, mbo /3 = cr?.
[IporuBopeyne.

(e) Ananoruusro (b).

(f) D10 ypaBHeHUe UMeET KOPEHb /2 + /4.

(2) EAMHCTBEHHbIH BEIECTBEHHbIH KOPEHb 9T0ro ypasnenus — v/3 + v/9. Ilycrs, nanporus,
9TO YKCJIO BhIpaxkaercsi B TpedyemoM Bujie. Toryia 1o ciegcTBuio 2.6.€ KOPHIME JIAHHOIO yPaB-
HEHUS SIBJISIOTCS IHUCIA T, T1, Tg, BBEJEHHbIE B (bopMyupoBke cieacrsus 2.6.e. Tlo cubHOl
JIeMMe O JIMHeHHON HezaBucumocTu 2.6.b" 9Ti KOpHU pas3mIHbl. 3HAUUT, 9TO BCe KOPHU JIAHHO-
ro ypasaerus. C JApyroit CTOPOHBI, 110 TeopeMe U3 perneHus 3a1a4qu 1.6.b Bce KOpHU JaHHOIO
yDaBHEHUST —

Yo = V3 + \?75, Y1 = \3/583 + \3/5537 Y2 = \3/553 + \3/553-

[TocKoJIbKY JIAHHOE ypaBHEHHE MMeeT DOBHO OJIMH BEIeCTBEHHBIH KOPEeHb, TO Ty = Yo U JHOO
T1 = Y1, T3 = Y2, OO, HAOOOPOT, T2 = Y1, T1 = Ya.

O6oznaunm P(x) := /3x + v/922. O6osnaunm S(z) := a+bre+cr?z? u S(x) == a+bra? +
cr?x JIst epBOro W BTOPOro cJiydast, cooTBercrienno. Torma muorownen P(x) — S(z) umeer 3
pasamIHBIX KOopH# 1, €3, 3. Ho ero crenens ne Boime sropoit. [lostomy P = S. 3nauur, V3 =br
w3 = cr?. Tlporusopeune.
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2.7. (b) Tlo silemMme 0 panuoHaJBLHOCTH 2.7.a CYIIECTBYET MHOTOYJIEH CTEIeHU He Bbille 3 ¢
kopreM a + br + cr?. 13 aroro u nenpusoauMoctu Haj Q gamnoro muorodiena P 1osydaem,
yro deg P < 3. Ilo ciesicrBuio 2.6.e Muorowien P uMmeeT Tpu KOPHSA X, L1, T2, BBEJICHHBIX B
dopmysmpoBke ciencTBust. Tak kKak P HenpuBoanm Ha st Q, To HM OfWH U3 KOpHEH He parmoHa-
JieH, osToMy b = ¢ = () HeBO3MOXKHO. 3HAYNT, 110 CHJIBLHOM JIeMMe O JIMHEHHOW He3aBUCHMOCTH
2.6.b" s Kopuu pazsmyanbl. 3uauut, deg P = 3.

Tak Kak e = &3 ¥ 10 T3 = 1. BHAUNT, Ty U T HE MOTYT OBITH BEIIECTBEHHBIMU U PA3/INI-
HBIMH. 3HAYUT, T2, 1 € C\ R. [Tosromy P umeer pOBHO OJIMH BEIIECTBEHHBIN KOPEHb.

6.2. Omeemai: ne npedcmasumor. O6oznasnM 1 := v/2 u A(z) := ag+a12+asx?+- - -+aga.

(a) Ilycrs npeacrasumo. Torma 1o TeopeMe o conpsizkenuu 6.3.c MHOrowsien w2 — 3 umeer
KOPHH A(ra’?) g k= 0,1,2,...,6. Tak KaK 9TOT MHOTOYWIEH HE UMEET PaIlMOHAJILHBIX KOP-
Hell, TO 10 CUJIbHOI JieMMe O JIMHEHOI He3aBUCUMOCTU 6.5.b 9TH KOpHH MOTApHO Pa3JINYHbI.
[IpoTuBopeune.

(b’) Ilycrb npeacrasumo. Janubiii MHOrOWIEH P He mMMeeT paruoHasbHbIX KopHeii. Toria
10 TeopeMme O colpsizkenuu 6.3.c U CHJILHOI JieMMe O JInHelHo# HezaBucumoctu 6.5.b P umeer
ronapHo pazauanbie Kopuu xy, := A(rek) nna k= 0,1,2,...,6. Tak kak P(0) > 0, P(1) <0 n
P(2) > 0, To P uMeer BelecTBEHHBI KOPEHb Ty, OTJIIMIHBII 0T zo. ViMeem 5’? =& k, [TosTomy
T = T = x7_p. lIpoTuBopeune.

(b) IIycrs npencraBumo. O6o3HAYIMM Yepe3 P MHOro4JIeH, Juist KoToporo cos 7x = P(cos )
(mokazkure, uro on cymiectsyer!). Kopusmu muorowrena 2P(x) + 1 sBISIFOTCS BelleCTBEHHbIE
23k + 1)m

21

JlokazkeM, 9TO 9HUCJIO Yy UPPAIMOHATBHO.

(deiicTBuresibao, nnaue 5%1 —2ygea1 +1 = 0 Bever €97 = a+ ivb JIJIsI HEKOTOPBIX a, b € Q.
Torya 1 4UC/IO €7 = €3, TOXKe BhIpazKaeTcss B TakoM Bujie. Ho €7 ABjIsleTcst KOpHEM HelpUBOJIH-
moro? muorounena 1+ o + -+ + 2%, 9T0 mpoTHBOpeunNT aHaIOTy yTBepIKIACHNA 2.4 I8 "nces

Bujia a + ivb.)

qUCJIa Yi 1= COS upu k =0,...,6. OnHO U3 HUX, & UMEHHO Y = —1/2, paruoHaIbHO.

2P(z) +1
Nrak, naie 9ucjio 1y MPPaIMoOHAIBHO U SABJIIETCI KOPHEM MHOTOYJIEHA L crerre-
T — Y2
nu 6. Ho Tora 1o Teopeme o comnpsizkenuu 6.3.c U CUJIBHON JIEeMMe O JIMHEHHOW HE3aBUCUMOCTH

6.5.b 3TOT MHOTrOWIEH UMEET CeMb MONAapHO PA3JINIHBIX KOPHEH, YTO HEBO3ZMOXKHO.

(¢) Mycrs upegacrasumo. Torya uz jeMMbl 0 paruoHabaoctu 6.3.d mojaydaem, 9ro cyiie-
CTBYeT HEHyJIeBOIl MHOTOUJICH CTEIICHH He BBIIIE CebMOM ¢ KopHeM V3. IIporusopeune ¢ Hempu-
BOJMMOCTBIO MHOrouYIeHa 2! — 3 Hag Q.

(d) Iycrs mpeacrasumo. Anasornano (a), (b') mosydaem, 9mo KOMILIEKCHBIE KODHU MHOTO-
wirena 7 — 3 ectb A(rek) nna k = 0,1,2,...,6. [losromy A(r)es = A(rey) mis HEKOTOPOro
s € {1,2,3,4,5,6}. Orciofa 110 cujIbHOI JiemMe o JinHeliHoi HezaBucumoctu 6.5.b mosryuaem
ap, = 0 gust moboro k # s. Tlosromy v/3 = agr®. TporuBopene.

6.3. (a) Bce xopun muorowiena x¢ — r? ectb 1, 1e,, 7’53, e ,regfl. [IycTh on mpuBo MM HaJT
Q. Moyyib ¢BOGOIHOIO YJIeHA OJHOTO M3 YHUTAPHBIX COMHOMKUTEEN Pa3jIioxkKeHnsl palioHajeH
U paBeH IIPOM3BEICHHUIO MOJYyJeil HeKOTOPLIX Ak m3 »Tux KopHeil, 0 < k < ¢. 3naunr, r* € Q.
Tax kak ¢ mpoctoe, To kx + qy = 1 Jy1 HEKOTOPBIX HebIX x,%y. Torma 78 = r(r4)~Y, orxyma
r € Q. IIporuBopeune.

(b) Ipeamosoxum nporusHoe. Paccmorpum MuOrowien A(xr) HaUMEHbIIEH CTereHu, st
KOTOPOTO JieMMa He Bbinosasiercs. [logemnm x7 — 9 wa A(zx) ¢ ocratkom R(x). Torma deg R <
deg A, R(r) = 0 u, o nyukry (a), R(z) menynesoii. [Iporusopetne ¢ Boibopom A.

(¢) Ananornano 3agadam 2.3.cd, 2.6.cd u 6.12. Vcnomssyiite (b).

YHenpuBoIMMOCT MHOTOWJIEHA, gy =142+ -+ 2% MOKHO TOKa3aTh, HAIPUMED, IPUMEHNUB IPU3HAK
Qitzenmreiina k Muorowneny g(z + 1). Bupouem, 3/1ech Z0CTATOYHO JOKA3aTh, YTO y HErO HET PAIUOHAJIBHBIX
nejmTeseil cremenu 1 u 2.
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(d) Iepsoe pewerue. Ilponssenenne
(z — A(zo))(z — A(z1)) . .. (x — A(2g-1))

ABIACTCA CHUMMETPHYECKUM MHOTOWJIEHOM OT X, ZL1,...,&Lq—1. SHAUNT, OHO fABJIAETCA MHOI'O-
YJIEHOM OT & U OT 3JIEMEHTAPHBIX CHMMETPHICCKIX MHOTOUJICHOB OT g, T1, . . . , Tg—1. SHAUCHUST
9TUX 3JEMEHTAPHBIX CUMMETPUYECKUX MHOI'OUJIEHOB IIPU Tj = 7“5’;, k=201,...,q — 1, pas-
Hbl KO3 durmenTam Muorowiena x? — r?, Koropble paruoHasbHbI. [losTOMy paccmorpenHoe
IIPOU3BE/IEHNE SIBJISIETCS NCKOMBIM MHOTOYJIEHOM.

Bmopoe pewerue moBTOPsieT BTOPOE PelieHne JIeMMbI O parioHaabHocTH 2.7.a. HykKH0 To/Ib-
KO Be3Jle 3aMeHUTh 3 Ha ¢ (HampuMmep, BO BTopoii crpouke k = 0,1,2,...,q).

6.4. (a) ITycrs npusoanm. CBOGOIHBIN WIEH OIHOTO U3 YHUTAPHBIX COMHOYKUTEJIE pasIozkKe-
k_-m k
aug texut B Q[e,] n pasen £} nst mexoroporo m. Iosromy 7 € Q[e,]. Jlanee anamormano
aemme 6.3.a moaygaem r € Q[g,]. Ilporusopeune.
[Tyukrst (b) u (¢) BbIBoAgATCSH U3 (&) AHAJIOIUYHO COOTBETCTBYIOMINM IIyHKTaM 3ajaadn 6.3.
Wcnonb3yiiTe pesyabrar 3aga4n 6.9.

6.5. (a) Ilycrp npuBojuM. AHAJIOTUYHO JIOKA3ATE/ILCTBY JIEMMbBI O HEIpUBOJMMOCTH 6.4.a
(max Qle,]) momyqaem r € Qle,]. Hosromy 72,73, ... 117t € Q[e,].

JlokazkeMm, 9TO MMeeTCsi MHOTOUJIEH CTeIleHN MEHBINe ¢ ¢ KOPHEM 7. DTO OyJIeT IpOoTUBOpPe-
YUTH HEIPUBOAUMOCTH MHOrowiena x? — r? max Q.

PazsoxumM uncsio rF o cremenam gmcia ggmnak=0,1,...,q—1:

k —2
T =ago+ ag1€q+ ...+ ak7q_2€g .
HocraTouno HaiiTu anucia Ao, ..., A\;—1 € Q, He paBHbBIe OHOBPEMEHHO HYJIIO, JJId KOTOPBIX
Ao@om + -+ Ag—1Gg—1,m = 0 1pummobom m =0,1,...,q—2.

Kax u3BecTHO, 0iHOPO/HAsA (T.€. ¢ HYJIEBBIMU [IPABBIMU YACTSAME) CUCTEMA JUHEHHBIX ypaBHEe-
HUl ¢ paluoHAJbHBIME KoM dUIMEeHTaMU, B KOTOPOl ypaBHEHUIT MEHbINE, €M ePeMEeHHbIX,
BCerjla MMeeT HeTPUBUAIBLHOE PAIMOHAJIBHOE PelleHne. 3HAYNUT, TpedyeMble Tuc/ia Hall Ty TCs.
(MabiMu cotoBaMu, cocTaBUM TabJIHILY Gx; U3 PAIMOHAJIBHBIX drces pazmepa ¢ X (¢—1). Ilpu
MIOMOTIM NTpUOABJ/IEHN K OJIHON CTPOKE JIpYTroil, YMHOXKEHHOH Ha paloHAIbHOE TUCJI0, MOXKHO
HOJIyYUTH TabJIMILy ¢ HYJIEBOIl CTPOKOIA. )
(b) Beirekaer u3 (a).

6.6. (a) Vkasanue. AHAJIOTHYHO JIOKA3aTeIbCTBAM yTBepxKIAeHui 2.4, 2.7.b u perierusm
zaja4a 6.2.ab’c. Vcnonbayiite TeopeMy o comnpsizkennu 6.3.c, jiemmy o parmoHaibHocT 6.3.d u
CUJIbHYIO JIEMMY O JIMHeWHO# HezaBucumoctu 6.5.b.

Pewenue. Tpeamonoxkum nporusroe. Obo3HauuM jraHHbIil MHOTOWIEH depe3 P. Ilpu ¢ <
deg P moJtydaem mpotuBopedne ¢ jeMMoit o parmonasibnoctu 6.3.d. [Ipu ¢ > deg P 1o Teopeme
o conpsizkeHun 6.3.c ¥ CUJIBHOI JieMMe O JiuHeiiHO# HezaBucuMocTu 6.5.b MHOrOWIeH P uMmeer
MONAPHO PAa3JIMYHbIE KOPHU T = A(rs’;) mig k= 0,1,2,...,q — 1. Ilpu ¢ > deg P nosyua-
eMm nporusopeune. Ilpu ¢ = deg P u3 ¢ # 2 u T, = x4 # Tp HOIydaeM eJIUHCTBEHHOCTH
BEIeCTBEHHOI'O KOPHS.

(b) Omeem. ner. Bozemure ¢ = 6 u r = v/2. Torma A(r) = r3 — kopenb MHOrOUIeHA 12 — 2.

3. ¥YpaBHeHus 3-ii cteneHn, pa3pelnnuMbie 3a OJIUH PaaUKaJl

3.2. (¢) HerpuBuaabHO TOJBKO JOKA3aTh, YTO
wucno 1/d npedemasasemea 6 mpebyemom cude, ecau 0 # d = ag+ ayr + -+ + ap_ 17" u
gy -y U1, 7" PAYUOHANDHDL.
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Paccyxnenust u3 mynkra (b) me paboraror HanpsiMyto, nb0 MHOTo4UIeH x" — 1 yKe He
obsizarenbuo HenpuBoauM Hal Q. Vx MoxkHO MOmudUIMpoBaTh, 3aMEHUB STOT MHOTOYICH HA
HEIPUBOJIUMBI, 711 KOTOPOTO 7 SBJISIETCSI KOPHEM.

[IpuBesieM Takxke Ipyroe J0Ka3aTeabCTBO TOTO Ke yTBepzKjeHus mpo 1/d. Bocmosbsyem-
¢ pe3yabTaToM, aHAJOTHIHBIM 2.7.a: Fcau ag,...,a,_1,7™" € Q, mo wucio d = ag + a;r +

st a7 asasemes (me 06azamensno eQUHCTNGEHHBLM) KOPHEM HEKOTNOPO2O MHO20UAEHA,
cmenens Komopoz2o ne npesocrooum n.

I[IycTs d sBIseTcs KOpHeM MHOTOUIeHa Prd® + - - - + po; MOXKHO cumTaTh, 9T0 po # 0. Torma

1 Po _ —pd— — prd® b1 — prd!

d- pod pod Do
3.4. Cm. [S, . 1.2 m 5.3].
(\/Dpq € Q) = (1-paspewusmocmyv). Obozmaunm r := {/—4 + /D,y Torma mo dop-

mysie Kapnano (cm. perrerne 3aja4u 1.6.a) e MHCTBEHHBIN BEIIECTBEHHBIN KOPEHb yPABHEHUS
22 + px 4+ ¢ = 0 paBen

S S SR S D,y) -1
3r 3r3 3(—1
(a+br+cr?) = (\/Dp, €Q). Ecqim r € Q uim b = ¢ = 0, T0 ypaBHeHUE UMeET PAIOHAb-
HBIII KOpeHb. B mporuBHOM citydae, obo3HauuM € = €3. llo ciencreuto 2.6.e aucia xg, T1, T,
BBeJICHHBbIE B (DOPMYJIMPOBKE CJIEJICTBUS, SIBJISIOTCS KOPHAMHU Hamero ypasHenus. [To cuibnoit
JIleMMe O JIMHeRHOi HezaBucumoctn 2.6.b’ 9Tu Tpu KOpHS pasiamydHbl. SHAYAT, T, T1, Ty — BCE
KOpHH ypaBHeHHdA. Tora mo 3ajade 6.8 mmeem

— 108D,y = (79 — 1)? (xl — 10)*(w — x2)* =
= (br(e — &%) + er” )2 br(l —e) +cr?(1 — 52))2(197“(1 —eH) +er?(l - 5))2 =
= (1 —¢&)S(br — )2(b7“+cr2(1+5))2(b7"(1—|—6)—I—cr2)2.
Mockombky (14 €)(1+€?) = (—)(—€?) = 1 u (¢ — 1)* = 3¢ — 3¢? = 3/3i, nonyuaem

—108D,, = —27e*(1 4 &)*(br — er®)*(br(1 + &%) + cr2)2(br(1 +e)+ cr2)2 =
= —27(e + )*(br — cr?)?(0*r” + br - cr” + 02r4)2 = —27((br)® — (cr2)3)2,
OTKY/Ia 1 CJIeJyeT TpebyeMoe.

(1-paspewumocmy) = (a + br + cr?). Ecaiu MHOTOY/IEH IPUBOIUM, TO OH UMEET PAI[MOHAb-
HBIIl KOPeHb. DTOT KOPEHb UMeeT Hy KHbII BuJ. IHave nMIIMKAIUS 110JIydaeTcs U3 yTBEPXK le-

aug 6.10.b.

6.8. O603HaUUM

M =ydyi+yiye +y5v0 1 N =y0ys + yiyo + y3u1-
Torma (yo — y1)(y1 — ¥2) (Yo — y2) = M — N. Snauurt,
(Yo—11)* (1 —2)*(yo—y2)* = (M+N)*—4MN = (39)° —4(p*+9¢°) = —4p> —27¢> = —108D,,.
3/1ech BTOpoe PaBeHCTBO CIPaBeJINBO, IOCKOJIbKY 110 TeopeMe Buera yo +y1 +y2 =0 n

M+ N = (yo + v1 + v2)(Yoy1 + v1y2 + y2y0) — 3yoy1y2 = 0 - p+ 3¢ = 3¢,

MN = (yoyr + y1y2 + y2%0)” + yovrv2(yo + 1 + ¥2)* — 6Yoy112 Z iy — Weyiys =

i
=p° —q-0°+6q(p-0+3q) — 9¢* = p* + 9¢°.
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6.9. Anajiornano 3aja4e 3.1.c u Teopeme 0 KaJabKyasaTope 3.2.C.

6.10. (a) Yucsio r siBJIsieTcss KOPHEM HEHYJIEBOrO MHOrOWwIeHa =™ — r" ¢ koaddurmentamu
u3 Q[a]. M3 Beex Takux MHOrOWIeHOB BbibepeM MHOrouwieH f(x) HaumMenbleil crenenu k.

[Tockosnbky HO/JI muorowienos 2" —r" u f(x) Takzke nmeeT KOpeHb ', Koaddunuentsr B Q[
U CcTeleHb, He npeBocxosmtyio k, To stor HOJl paBen f(x). S3HaunT, Bce KOMILIEKCHBIE KOPHH
MHOrOWIeHa f(z) — 9T0 umesna Buga rel’ s neasix m. Torma, mo teopeme Buera, momynb
cBOGOIHOTO 1jieHa MHOrodsieHa f(x) ecTh r#. Tak Kak 5TOT CBOOOJHBIN WIEH BeIIeCTBEHHBII,
To r* € Q|a].

Ocrasioch okazathb, uro o € Q[r*]. Tak xak a € Q[r], To

o = bo(r®) +rby (rF) + .+ (rF)

JJIsl HEKOTOPBIX MHOTOYJIEHOB by, . .., by_1 € Q[z]. Eciu ue Bce muorowienst by, . .., by_1 Hyse-
BbI€, TO 7" SIBJIAETCA KOPHEM HEHYJIEBOIO MHOTOUJICHA

(bo(%) — @) + zby (™) + ...+ 2" b (F)

crenenn Menblne k u ¢ koadbdunuenramu B Q[a] (mockonbky a, % € Q[a]). ro nporusopeunT
BbIGOPY MHOrOusena f(x). 3uaunut, by = ... = by = 0, orkyma a = by(r*) € Q[r*].

(b) ITo Teopeme o KabKysIsaTOpe 3.2.C JAHHBI MHOIOWIEH MMeeT KOpeHb Yy € Q[R] ms
rexotoporo R € R taxoro, aro RP € Q mpn mexoropom D. Cormacro (a), Q[yo] = Q[R*] npn
nexoTopoM k. O6osnaunm r := RF. Tak xax R” € Q, To cymecrByer HamMensinee d > 0, s
koroporo 14 € Q. Torma r, 72, ..., 741 ¢ Q. Bnauut, muorounen z¢—r? nenpusoaum naj Q (160
CBODOHBIN YJIeH JIIOOOT0 €ro HeTPUBUAIBLHOIO YHUTAPHOIO JEJIUTE TSI MEeeT UPPAIUOHABHBIN
Moy b 1, 0 < t < d; 9TO aHAJIOTUYHO JIOKA3aTeIbCTBY 3a1a41 6.3.2).

Haxowner, u3 pasencrsa Q[yo] = Q[r] u coobpaxkenuii pasmepHOCTH (aHATOTUYHBIX [TPUBE-
JIEHHBIM B JIOKA3aTEIHCTBE CHJIBHON JIEMMBI O HEPHBOAUMOCTH 6.5.a) CJIe/IyeT, 9T0 HEIPUBO/IH-
Mble HaT Q MHOTOY/IEHBI ¢ KOPHSMHE Yo U 7" UMEIOT OJMHAKOBBIE CTEIICHN. SHAYUT, 1 = d, OTKY/Ia

u cienyer Tpebyemoe.

6.11. (a) Cuenyer u3 dhopmynbl Kapmano (Tounee, u3 Teopembl B pemenun 3aaaun 1.6.b)
aHaJIOTUIHO 3ajiade 3.3.c.

(b) Tumoresa. /[as muozounena 2 + px + q ¢ p,q € Q xavicdoe us ycaosudi meopemovi 6.7
IKBUBANEHMHO KOMNACKCHOT 1-paspewumocmau.

B sr0it runorese Bce UMILIHKAIIANA, KPOME CJIEIYIONIEl, OUeBUIHBI UM JTOKA3bIBAIOTCA aHAa-
JIOTUIHO Teopeme 6.7.

Tunotesa. Ecau mrozousen 22 +pr+q ¢ p,q € Q xomnaexcro 1-pazpewum, mo on umeem
Kopens a + br 4 cr? das nexomopwx a,b,c,m® € Q, r € C.

(c) Cremyer u3 Teopembl B perernn 3aa4an 6.1.b.

4. YpaBHeHud 4-ii crerneHn, pa3pemnMble 3a OANH paanuKaJl

4.2. (4,1) Omeem: Henpusomumbrii nag Q muorownen z* + pzr? + qr + s 1-paspermum Torja u
TOJILKO TOIJIA, KOTJIa

(4) oquu u3 ero Kopueit umeer U a + br + cr? + dr3 npu a,b,c,d,r* € Q u r? ¢ Q.

B tepmunax koadpdunnenToB 310 ycaoBue (hopMyupyeTcsa Tax.

(41) cymectyer a € Q Takoe, uro 2a > p u ¢* — 4(p — 2a)(s — a?) = 0, u nupu 3TOM

(4ii) aucio T = 16(a? — s)? — (a? — 5)(2a+ p)? aBigerca KBajpaToM parUoHAILHOTO YUCIA.

¢lcno, 9TO yCJIOBHS, IPEbIABICHHbBIC BBIIIE, MOIAI0TCI aJrOPUTMHIYIECKOI IIPOBEPKE.

YTBep:KeHne O Buje (4) KOpHsI pa3permMoro MHOro4IeHa JoKasbiBaeTcs B 3a1ade 6.10.b.
JlokazaresibcTBO TOro, 9TO (4) paBHOCUILHO (41) u (411), npusejeno B [A, Theorem 2].

4.4. Tlo Teopeme n3 pemrenns 3agaquu 6.1, muorownen z* + px? 4+ gr + s MMeeT KopeHb

Ty = (A + \/—%q — 2« —p) /2, e A? = 2a—p u Aq < 0. Tlo yciosuio, 2a — p > 0, 103TOMY
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3a MEePBOE M3BJIEUEHUE KOPHS MOXKHO moryauTh ducyio A. Takke —%q —2a—p > —2a—p>0.
SHAYUT, T MOXKHO IOJIy9IUTDh 33 J[Ba U3BJICUCHUS KODHSI.

4.5. Tlo Teopeme 0 KaJbKyssaTope 3.2.¢, JJAHHbIH KOPeHb HaIero Muorowiena f(x) = xt +
px? 4+ qr + s umeet BUJ To = a + br + cr? + dr?, rne a,b,c,d,r* € Q. MoXKHO CUHTATDL, YTO
r? ¢ Q (unaue Moo samenutn 1 ma \/|r| wim {/|r|). Torma o Teopeme o conpsukenuu 6.12,
KOPHSIMI MHOTOYJIEHA f TaKyKe ABJISIOTCS UUCIa X1, To U T3.

Tak Kax f HEIPUBOIMM, TO T UPPAIUOHAIBHO U T(, Ly HE MOT'YT OBITh PA3JUIHBIMUA KOP-
HMM KBaJPATHOTO TpeXdjeHa ¢ palMoHaJIbHbIMU Koddduimentamu. 3Hadut, b = d = 0
nesosmozkto. Torma b + dr? # 0 cornacuo 2.3.b. IlosToMy BelecTBeHHBIC YUCIA To U Ty
pas3auvHbl. AHAJOMMYHO YHMCAa Ty W T3 HE BemecTBeHHbl u pazmuunbl. Otcrioma 1 f(z) =
(x — zo)(x — z1)(x — 22) (2 — x3).

Tolo + T1T3
[To 3azaue 6.13.a, Kybuaeckasi pe3osibBeHTa MHOTOUIeHa f (&) nMeer KopeHb o = —————————.

2

[Tockonbky xg + 1 + 9 + 3 = 0, umeem a = 0. Torma

200 = Toxg + T1T3 = ((07“2)2 — (br + dr3)2) + ((cr2)2 — (bri — drgi)Q) =
=22 — 2 (b4 dr®)? + r2(b — dr?)? = 2¢%r* — dbdr* = r*(2¢% — 4bd) € Q.

4.6. Anasior nyukros (d) 3BydnT Tax.

Teopema. ITycmv mrozounen umeem xopensv r € R, npuuem r* € Q, no r* ¢ Q. Tozda
KOPHAMU IMO20 MHO2OUAEHA ABAAOMCA MAKHCE wucaa ir, —r u —ir. (3aMeTuM, 94To i = £4.)

Jlemma o nenpucodumocmu. Ecmm r € R, npudem r* € Q, no r* ¢ Q, To muorownen x4 — 7t
nernpusoanm Hag Q.

JTokazaTe/IbCTBO JIeMMBI TIOJTHOCTBIO aHAJIOTHYHO JI0Ka3aTe beTBy 6.3.a, ubo r,r? r® ¢ Q.
JlokazaTeIbCTBO TeOpeMbI MOJTHOCTHIO aHAJOTUYHO JIOKA3aTeTbCTBY JAPYTUX TEOPEM O CO-
NPAKEHUN.

Ananorom nyHKTOB (€) siBisieTcst 3aaada 6.12.

6.12. O6oznaunm uepes P gannbiii muorowien u G(t) := P(a + bt + ct* + dt?). Torna, kak
u B caeacTBun 2.6.e, J0CTATOYHO TPUMEHNTh K (G TeopeMmy n3 perneHns 3aaa9u 4.6.

6.13. (a) IIpumensss reopemy Buera um yuwurbiBas, uro y ,y; = 0, nposepum, 4ro ¢? =
(you1 + voyz — p) (o1 + yoy3)? — 4s). Tderanu cm. B [A, Statement 2].

(b) AnasormdHo (a), 9TH TPU YUCIIA ABJISIOTC KOpHaIME. VIMeeM yoys + Y1Ys — Yoy1 — Yoz =
(Yo — y3)(y2 — y1). HosTomy, ecim 4y, Y2, Y3, Ys TOMAPHO PABJIUIHBI, TO ITU TPU UUCJIA ITOTAPHO
paszimunbl. Cilydail KpaTHBIX KOpHell TakzKe pasbupaeTcs HECJIOKHO.

Apyeoe pewenue nynxmos (a,b). Ilpumenssa reopemy Buera u yumreiBas, uro » . y; = 0,
uMeeM

(20 — (yoyr + y2u3)) 2 — (yoyz + y1y3)) (20 — (yoys + y1y2))

= 8053 _ 4042 Z Yilj + 2« Z y?y]yk — H (yly] + ykyf)
i< <k, ig{j;k} 0<j<k, i¢{0,j,k}
=8a® —dpa® + 20 | Yy Y vk — dyonivays | — | vomioeys D ui 4+ D vivini
@ [{i.5,k}=3 i i<j<k

= 8a® — dpa® — 8sa — (¢* — 4ps) = —Ry(a),

OBor mpyroe obocroBanme pasenctsa f(x) = g(x) = (v — x¢)(x — x1)(z — 22)(x — 23). NMeem
g9(x) = (x—z0)(x—22) (2 —21) (T —23) = [(x—a—cr?)>—r2(b+dr®)|[(x—a+cr?)? +r2(b—dr?)] € Q[r!][z] = Q[x].

(ParuonaibHOCTD KO (DUIUEHTOB MHOTOYIEHA § TAKYKE IMOJYYACTCA AHAJOTUIHO BTOPOMY JOKA3ATE/ILCTBY
JieMMbl 0 panuonaibnoctu 6.3.d.) Tax kax f(z) nenpuBoaum u umeer ot Kopennb ¢ ¢(x), IpUYeM CTeleHd 1
crapiime Ko3(MQUIUEHTDl ITUX MHOIOWIEHOB paBHbl, TO f(x) = g(x).
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OTKYJIa U cJiejiyeT Tpebyemoe.

6.14. (a) Tak xax ¢> = 2p(4s — p?), To Kybuueckas pesonbbenTa ¢°> — 4(2a — p)(a? — s)
numeer Kopeb « := —p/2. Tak kak p < 0, 10 20 — p = —2p > 0. Bnauut, coryacuo 6.1, Har
MHOTOYJIEH UMeeT KOPEeHb

e

4 _Qp‘

—200—p=—+/-2p+

2q
200 — -2
« p+\/ B0 —p

(b) Omeem: Hesepno. Muorounen z* — 1222 — 24z — 14 u3 pemenust 3aja4u 4.3.a umeer
KopeHb v/2 + /2 + v/8, Ho umcio 2 - (—24) = —48 He sBJIsIeTCS KBAJPATOM PAIMOHATBHOIO
qucia.
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SOLVING EQUATIONS USING ONE RADICAL

presented by D. Akhtyamov!', I. Bogdanov?, A. Glebov?,
A. Skopenkov?, E. Streltsova®, and A. Zykin®

This project is devoted to several classical results and methods in pure mathematics which
are also interesting from the point of view of computer science (related to symbolic computa-
tions). The main problems of the project are 3.3.d, 4.2, 5.5.c, 6.7, and 6.17.bc. The principal
difference of this set of problems from standard textbooks in this topic is that we do not use
the notion of the Galois group (and even the notion of group). Despite of the lack of these
words, the ideas of the proofs presented below are starting points for the Galois theory [S09]
and the constructive Galois theory [E].

We suggest to all the students working on the project to consult with the jury on any
questions on the project, or on ideas of the solutions. Their results may be used as sources of
talks on the students’ conferences, e.g., [M].

The students who work on the project well enough will get several extra problems.

A student (or a group of students) working on this project get a “star” for every solution
which has been written down and marked with either ‘+’ or ‘4.”. The jury may also award
extra stars for beautiful solutions, solutions of hard problems, or (some) solutions typeset in
TEX. The jury has infinitely many stars. One may submit a solution in oral form, but he loses
a star with each attempt.

We will tell the solutions of 1.1.ab, 1.2.ab, 1.4.ab, 1.5.a, 2.1.a"f, 2.3.abcd, 3.1.a, 3.2.a, 4.1.a,
5.1.a, 5.2.a, and 5.4.ab at the initial presentation; thus you may submit the solutions of these
problems only before this presentation (but you may make this in oral form without loss of
stars).

If a problem looks just like a statement, a proof of this statement is required in this problem.
If you are stuck on a certain problem, we suggest to try looking at the next ones. They may
turn out to be helpful.

We denote the set of rational numbers by Q. A ‘polynomial with rational coefficients’ is
referred to merely as polynomial. A polynomial is irreducible over a set F', if it cannot be
decomposed as a product of polynomials of lower degrees with coefficients in F'.

Problems before the Semifinal

1 Solving equations of degree 3 and 4

1.1. (a) Solving an equation az® 4+ bz* + cx + d = 0 can be reduced by substitution of
variable to solving an equation of the form x® + pz + ¢ = 0.

(b) Solving an equation az* + bx® + cx? + dx + e = 0 can be reduced by a substitution of
variable to solving an equation of the form x* + px? + qz +r = 0.

In the next two problems, we allow to use without proof the Intermediate value theorem for
polynomials: If a polynomial P satisfies P(a) > 0 and P(b) < 0 for some a < b, then there
exists a real number ¢ € [a,b] such that P(c) = 0.

1.2. Find the number of real roots of the equation
(a) 23+ 22 +7=0; (b) 23 —4x — 1 =0.
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1.3. (a) Which relations on p and ¢ are equivalent to the condition that the equation
2% + px 4+ ¢ = 0 has exactly two roots?

(b) Under these relations, express the roots in terms of p and g.

(¢) Find the number of real roots of 2® + px + ¢ = 0 in terms of the values of p and gq.

Hereafter, ‘to solve an equation’ always means ‘to find all its real roots’. However, we
recommend also to find all the complex roots as well.

1.4. (a) Prove that v/2++v5 — V6 —-2=1.

(b) Find at least one root of the equation 2® — 3v/2x + 3 = 0.

Hint: del Ferro’s method. Since (b+c)* = b+ ¢* 4 3bc(b+ ¢), the number x = b+ ¢ satisfies
the equation 23 — 3bcx — (b* + ¢*) = 0.

(c) Solve the equation z* — 3v/2x + 3 = 0.

(d)* Solve the equation z* — 3z — 1 = 0.

1.5. (a) Factor the expression a® + b* + ¢* — 3abc.

(b) Decompose a® + b® + ¢ — 3abe into a product of linear factors with complex coefficients.

1.6. (a) Formulate and prove a theorem describing all real roots of the equation z3+px+q =
0 in a case when del Ferro’s method (see problem 1.4) allows to obtain all of them. Under which
relations on p and ¢ this method it applicable, if we allow taking square roots only of positive
numbers?

(b) The same question for finding all complex roots.

1.7. Solve the equation  (a) (2% +2)? = 18(x — 1)?;

)zt +42—1=0; (c¢)2*+222—-8r—4=0; (d)2*—122%—242r—14=0.

Hint to 1.7.b: Ferrari’s method. Find numbers «, b, ¢ such that

vt +d4r — 1= (2% + a)? — (bz + )%

For this purpose, one may search for a value of  such that the trinomial (z2+«a)?— (2% +42—1)
is a square of a linear function. To that end, find the discriminant of this trinomial. (This
discriminant is a cubic polynomial in «; it is called the cubic resolution of the polynomial
i+ 4r—-1=0.)

2 Representability with use of only one radical

2.1. Determine whether the following number can be represented in the form a 4+ v/b with

a,beqQ:
1 t
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(¢) V7+5v2; (d)cos(2n/5); (e) v/2; (F) vV2+v/2; (g)cos(2r/9);  (h)* cos(27/7).

2.2. The number cos(27/9) is a root of the polynomial 82% — 6z + 1.

2.3. Assume that r € R\ Q is chosen so that r* € Q.

(a) Irreducibility Lemma. The polynomial z? — r? is irreducible over Q.
b) Linear Independence Lemma. If a + br = 0 with a,b € Q, then a = b = 0.
c) If r is a root of some polynomial, then this polynomial is divisible by z? — r2.
d) Conjugation Theorem. If r is a root of a polynomial, then —r is also its root.
e) Corollary. If a polynomial has a root a 4 br with a,b € Q, then a — br is also a root of
this polynomial.

(f) Corollary. If a cubic polynomial has a root of the form a + br with a,b € Q, then this
polynomial has a rational root.

(
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2.4. Proposition. If a polynomial of degree at least 3 is irreducible over Q, then none of
its roots has the form a + /b with a,b € Q.



2.5. Determine whether the following number can be represented in the form a+ b/2 4 /4
with a,b,c € Q:
1
a) V3, (a - (b) cos(27/9); (c) ¥/3; (d) V/3;
(a) ()1+5€/§+\ﬁ (b) cos(27/9); () (d)

(e) the least positive root of =3 — 4z + 2 = 0;
(f)* the unique real root of x3 — 6x — 6 = 0;
(g)* the unique real root of x* — 9z — 12 = 0.

Hereafter, we use the notation

2r .. 27w
€g = COS — +18In —.

q q
2.6. Assume that r € R\ Q is chosen so that r* € Q.
(a) Irreducibility Lemma. The polynomial z® — 73 is irreducible over Q.
(b) Linear Independence Lemma. If a + br + cr? = 0 with a,b,c € Q, then a = b = ¢ = 0.
(c) If r is a root of a polynomial, then this polynomial is divisible by 2% — r3.
(d) Conjugation Theorem. Ifr is a root of a polynomial, then the numbers e3r and &3r

are also its roots.

(e) Corollary. If a polynomial has a root x; = a+br+cr? with a,b, ¢ € Q, then the numbers
To = a + besr + ce%rQ and x3=a+ bagr + ceqr?

are also its roots.

(a’) Strong Irreducibility Lemma. The polynomial 2% — r?

is irreducible over

Qles] = {z + yes: 2,y € Q.

(b") Strong Linear Independence Lemma. If k, ¢, m € Qles] satisfy k + fr + mr? = 0, then
k=0=m=0.

2.7. Assume that r € R\ Q and a,b, ¢, 73 € Q.

(a) Rationality Lemma. The number a + br + cr? is a root of some cubic polynomial.

(b) Proposition. Assume that an irrational number a + br + cr? is a root of a polynomial
which is irreducible over Q; then this polynomial is cubic and it has exactly one real root.

3 Equations of degree 3 solvable using one radical

Initially, Cheburashka gets a number 1. To the numbers he already has got before, he can apply
addition, subtraction, multiplication, and division (by a non-zero number) for free. Moreover,
for one yuan Cheburashka can extract an arbitrary degree root of a positive number which
he already has got during the calculations. All other operations are out of his reach. But he
performs the allowed operations with absolute precision, and he has an unbounded memory.

3.1. (a) Help Cheburashka in obtaining v/2 + v/4 for 1 yuan.
(b) Help Cheburashka in obtaining V2+V3+ V2 — /3 for 2 yuans.

1
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prohibited, but he may use all rational numbers for free.

(c) Help Cheburashka in obtaining for 1 yuan, if the operation of division is

3.2. (a) A number can be obtained for 1 yuan paid for extracting a square root, if and only
if the number has the form a + v/b with a,b € Q.

(b) A number can be obtained for 1 yuan paid for extracting a cubic root, if and only if the
number has the form a + br + ¢r? with » € R and a,b,c,7® € Q.

(c) Calculator Theorem. A number can be obtained for 1 yuan, if and only if the number
has the form A(r), where A is a polynomial and r is a real number such that r™ € Q for some
positive integer n.



3.3. (a) Present some nonzero rational numbers p and ¢ such that Cheburashka can obtain
one of the roots of 23 + pxr + ¢ = 0 for 1 yuan.

(a’) Present some nonzero rational numbers p and ¢ such that the polynomial z* + pz + ¢
has no rational roots, but Cheburashka still can obtain one of its roots for 1 yuan.

(b3) Can Cheburashka obtain at least one root of 2* + 3z + 6 = 0 for 3 yuans?

(b2) ...for 2 yuans?

(b1)* ...for 1 yuan?

(c) If an equation of degree 3 with rational coefficients has exactly one real root, then
Cheburashka can obtain this root for 2 yuans.

(d)* Main problem. Given rational p and ¢, determine whether Cheburashka can obtain
at least one root of the equation 2® + px 4+ ¢ = 0 for 1 yuan.

3.4. * (a) Does there exist a cubic equation with rational coefficients such that Cheburashka
cannot get any of its roots for 2 yuans?
(b) The same question about 10000 yuans.

Let us reformulate the previous problems using mathematically precise language. Consider
a calculator with the following buttons:

L, 4+ — X, : and g/ foreveryn.

The calculator has absolute precision and unlimited memory. It returns an error if division by
0 is carried out.

Assume first that the calculator is real, i.e. that it works only with real numbers; so
extracting an even degree root of a negative number results in an error.

Here are mathematically rigorous (and slightly modified) statements of the problems 3.3.cd
and 3.4.

Proposition on Solvability in real radicals. If a cubic polynomial with rational coeffi-
cients has precisely one real root, this root can be obtained using the real calculator.

Moreover, this can be done by extracting roots only twice, once of the second and once of
the third degree.

Theorem on Insolvability in real radicals. There exists a cubic polynomial with rational
coefficients (e.g. x3—3x+1) such that none of its roots can be obtained using the real calculator.

Moreover, if a cubic polynomial with rational coefficients has three distinct real roots, then
none of these roots can be obtained with the real calculator.

Notice here that if there are exactly two roots, then they are both rational (cf. prob-
lem 1.3.ab).

Question. How can one decide whether the cubic polynomial with rational coefficients has
a root which can be obtained on the calculator using the radical sign only once? Is there an
algorithm deciding whether a polynomial belongs to the described class?

4 Equations of degree 4 solvable using one radical

We say that a polynomial is k-solvable if one of its roots can be obtained by using the real
calculator with extracting at most k roots.

4.1. (a) Assume that a biquadratic polynomial (of degree 4) has a real root. Is this poly-
nomial necessarily 2-solvable?

(b)* Given rational p and s, determine whether the polynomial z* 4 px? + s is 1-solvable.

(c)* Is every quartic polynomial having a real root 4-solvable?

4.2. Main problem. (4,1) Given a polynomial z* + pz? + gz + s = 0 with rational
coefficients, determine whether it is 1-solvable.

Is there an algorithm for deciding 1-solvability?
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(4,2) (The jury does not know a solution) The same question for 2-solvability.

(n) (The jury does not know a solution for any n > 4) Given a polynomial of degree n with
rational coefficients, determine whether it is co-solvable?
Is there an algorithm for deciding oo-solvability?

(n,k) (The jury does not know a solution) Given a polynomial of degree n with rational
coefficients, determine whether it is k-solvable?
Is there an algorithm for deciding k-solvability?

4.3. (a) Present rational numbers p, ¢, and s such that ¢gs # 0 and that the polynomial
2t + pa® + qr + s is irreducible over Q and 1-solvable.
(b) Determine whether the polynomial z* — 622 + 72z — 99 is 1-solvable.

4.4. Assume that p < 0 and that the cubic resolution of the polynomial z* + px? + qz + s
has a root @ € Q such that —p > 2« > p. Prove that this polynomial is 2-solvable (on the real
calculator).

4.5. If a degree 4 polynomial irreducible over Q has a root that can be obtained using real
calculator by extracting only one root, and this extraction provides a root of degree 4, then the
cubic resolution of the polynomial has a rational root.

4.6. Formulate and prove the analogues of the Conjugation Theorems 2.3.d and 2.6.d for
degree 4 polynomials.

5 Formal expressibility in real radicals

The priority goal of the first problem in this section is to formalize the notion of 'to determine’.
We give such a formalization after the problem statement. So you have a chance to approach
the basic definition starting from simple examples. The solutions themselves should not be
difficult for you.

5.1. (a) Given x + y and xy, is it always possible to determine x — y? To determine 7

The primary formalization of the notion 'to determine’ in the problem above can be given
in the following way: does there exist a mapping f : R? — R such that f(x +y,vy) = x —y for
allz,y e R

(b) Given x+y+z, xy-+yz—+zz and xyz, is it always possible to determine (z—y)(y—z)(z—z)?
(The formalization is similar to that in (a).)
The basic definition in this text is yet another formalization of the notion 'to determine’.

Definition. A polynomial f € Rzy,...,z,]| is expressible in real radicals via the
collection of polynomials ay,...,a; € R[xy, ..., 2,], if one can append f to this collection
by a sequence of operations of the following types:

e if several polynomials by,...,b; are already in the collection and F € Rlty,... ] is
an arbitrary polynomial, then it is allowed to append the polynomial F'(by,bs,...,b) to the
collection;

e if some polynomial in the collection has the form p* for some p € R[zy,...,z,] and
integer £ > 1, then one may append p to the collection.

"Another formalization of the notion ’to determine’ which is not further used is as follows: does there exist
a mapping f from R? to the set QH}M of all finite subsets of R such that f(x +y,zy) > x —y for all x,y € R?
Let us show that this question (together with its generalizations to several variables) is trivial.
Mappings f : R? — 2H§m (i.e. real finite-valued functions of R?) may be defined by formulae. For example, the
formula f(z) = +x is a reduction of the formula f(x) = {x, —z} which defines the (at most)-2-valued mapping

+
f. (Ezercise: Establish how-many-valued mapping is defined by the formula f(z) = i—x) Denote by f(p, q) the
z

(finite) set of (real) solutions of the equation t2+pt+¢q = 0. Then the formula x —y = f(z+y, zy) — f(x +y, vYy)
defines the desired mapping (Why?).



For example, if a collection contains 22 + 2y and = — y?, then one may apply the first
operation in order to append the polynomial —5(x? + 2y)? + 3(22 + 2y)(z — 3*)%; moreover, if a
collection already contains 22 — 2zy + 32, then applying the second operation one may append
r—yandy—x.

5.2. Determine if the following polynomial is expressible in real radicals via x + y and zy:

(a) z—y; (b) z.

The answer to 5.2.b shows that the root of a quadratic equation is expressible in real radicals
via its coefficients. The formalization of this statement will be given later in problem 6.17.

5.3. (a,b,c) Represent
P+ PPyt r i+ Py 4y, 2Py 428
as polynomials in
oyo=x+4+y+z, oy=xy+yz+zxr and o3=TY2.

(d) Is (2®y + %2 + 282) (282 + 28y + yBx) representable as a polynomial in oy, 09, 037

5.4. (a) The multi-degree of the product of polynomials (in several variables) is the sum of
their multi-degrees.

(b) We say that a polynomial f in two variables x,y is symmetric if the polynomials f(z,y)
and f(y,z) are equal. Prove that every symmetric polynomial in two variables x,y is a poly-
nomial in x + y and xy.

(c) We say that a polynomial f in three variables z, vy, z is symmetric if the polynomials
f(z,y,2), f(y,z x) and f(y,x,z) are equal. Prove that every symmetric polynomial in three
variables x,y, z is a polynomial in oy, o9 and o3.

(d) Formulate and prove the main theorem about symmetric polynomials in n variables.

5.5. Determine whether the following polynomial is expressible in real radicals via o1, 09, 03:
(@) (x—y)ly—2)(z—2); (b) 2Py +y’z 42z (c)*a?



Hints and Solutions for the initial presentation

1.1. Use the substitution (a) y =z + £ and (b) y =2 + .

1.2. (a) Answer: 1. Since the degree is odd, the polynomial has a real root. Since the
polynomial is monotonous, this root is unique.

(b) Answer: 3. Let f(x) = 23 —4x—1. We have f(—2) <0, f(=1) >0, f(0) <0, f(3) > 0.
By the Intermediate value theorem, the equation has three real roots.

1.3. (c) Hint: Determine the intervals of monotonicity of f(z) = x® + pz + ¢. Find the
points of local extrema and the values of f at these points. For this purpose, explore the sign

£ f(z1) — f(x2)
of LN/ S\
T1 — T2

1.4. (b) Answer: v = —1 — /2.

Hint: 23 — 3322 + 3 = 2% — 3bcx + (b° + ¢*), where b =1, ¢ = /2.

1.5. (a) The given polynomial vanishes at a = —b — ¢, which means that it is divisible by
a+b+c=a—(=b—c). Now one may divide a® — 3abc + (b*> + ¢) by a + b+ ¢ in a usual way.
1 7—-5V2
e e 7+ 5v2.

(or, if you are educated enough, take a derivative of f).

2.1. (a") Answer: Yes.

(f) Answer: No.

Arguing indirectly, we assume v/2 4 v/2 = a + /b for some a,b € Q. This number is a root
of the polynomial P(z) = ((z —v/2)% — 2)((x + v/2)® — 2) having rational coefficients. Applying
Conjugation Theorem 2.3.d to r = v/b and polynomial P(a + t) (or applying Corollary 2.3.e
to r = v/b and polynomial P(t)), we obtain P(a — v/b) = 0. By the rational roots theorem,
the polynomial P has no rational roots. Therefore, b # 0, so the roots a + v/b are distinct.
However, the polynomial P has only two real roots, namely V2 4+ /2 and —v/2 + /2. Thus
a+vVb=v2+2and a — Vb= —V2+ \3/5, whence V2 =a € Q. This is a contradiction.

2

2.3. (a) If the polynomial z? — r? is reducible over Q, then it has a linear factor with
rational coefficients. Thus it has a rational root, which is impossible since +r ¢ Q.

(b) If b # 0, then r = —a/b € Q which is impossible. Hence b = 0, and thus a = 0 as well.

(c) Divide our polynomial by z? — r? with residue; this residue is linear, and it vanishes
at x = r. By (b), the residue is 0, as required.

(d) Follows from (c), since the polynomial x* — 72 has roots +r.

3.1. (a) For 1 yuan we get v/2, which allows us to obtain v/2 + v/4 = v/2 + (v/2)2.

3.2. (a) Clearly, each number of required form can be obtained for 1 yuan. It remains to
prove that all such numbers are of this form. Surely, it would suffice to prove that the set of
all numbers of the form a + v/b is closed under arithmetical operations; but this is obviously
false. So we act in a bit different way.

Let r = /s be a square root which has been obtained for 1 yuan (so s € Q). If r € Q,
then the result is trivial since all obtained numbers are rational. Otherwise, we show that all
the obtained numbers have the form a + br with a,b € Q). It suffices to prove that the result of

an arithmetical operation applied to two numbers of this form also has the same form. This is
1 a— br
trivial for all operations except division, for which the claim holds due to = .
a+br a?—b%s
4.1. (a) Answer: yes. Since the squares of a real root of a biquadratic polynomial is a roots
of a quadratic equation, this square may be obtained for one extraction. Thus the root itself

can be obtained in two extractions.
5.1. (a) Consider the pairs (z,y) = (1,2) and (x,y) = (2, 1).
5.2. (a) (z —y)? = (z +y)* — day.
5.4. (b) We use the lexicographical induction on the multi-degree of the polynomial. Given

a symmetric polynomial f of multi-degree («, §) with a >  (i.e. with the lexicographically
leading monomial of the form kz“y?), one may reduce it to the polynomial f —k(zy)?(z+y)*~".




6 Additional Problems at the Semifinal

1. Solving equations of degree 3 and 4

6.1. * (a) Formulate and prove the theorem describing all real roots of the equation % +
px? + gx + s = 0. In the formulation and proof, you may use a root « of the cubic resolution
of this equation.

Hint. Use Ferrari’s method (see problem 1.7.ab). Do not forget to treat all possible cases!

(b) The same for all complex roots of this equation.

2. Representability with use of only one radical

6.2. Determine whether the following number can be represented in the form ag + a3 v2 +
&2\7?%- +a6\7/2_6 with o, A1,Q9,...,06 € Q:

(a) V/3; (b) cos(2m/21); (b") any of the roots of the equation 7 — 4z + 2;

(c) V3 (d) V3.

Hint: Apply lemmas formulated below.

6.3. Let ¢ be a prime number, and let » € R\ Q be a number such that r? € Q.

(a) Irreducibility Lemma. The polynomial 9 — r? is irreducible over Q.

(b) Linear Independence Lemma. If r is a root of a polynomial A whose degree is less than ¢,
then A = 0.

(c) Conjugation Theorem. If r is a root of a polynomial, then all the numbers of the
form 7“6];, k=1,2,3,...,q — 1, are also roots of this polynomial.

(d) Rationality Lemma. If A is a polynomial, then the number A(r) is a root of some
nonzero polynomial of degree at most q.

In the sequel, we use the notation
Qleg) = {ao + are, + azﬁg + e+ aq_geg_2 | ag,...,a.2 € Q}.

6.4. Let ¢ be a prime number, and let r € C\ Q[g,] be a number such that r? € Q[g,].

(a) Prove that the polynomial 27 — r? is irreducible over Qlg,].

(b,c) Prove the analogues of the parts (b,c) of the previous problem for the polynomials
with coefficients in Q|e,].

6.5. * Let ¢ be a prime number, and let » € R\ Q be a number such that 77 € Q.

(a) Strong Irreducibility Lemma. The polynomial 27 — r? is irreducible over Qle,].

(b) Strong Linear Independence Lemma. If A is a polynomial of degree less than ¢ with
coefficients in Q[g,] and A(r) = 0, then A = 0.

6.6. (a) Proposition. Assume that a polynomial (of degree greater than 1) is irreducible
over Q and has a root of the form A(r), where A is a polynomial and r is a real number such
that r4 € Q for some prime q. Then this polynomial has degree q; moreover, if ¢ # 2, it has no
other real root.

(b) Does the statement still hold if we replace the primality condition for ¢ by the condition

r2, . it g QY
3. Equations of degree 3 solvable using one radical

- 5"+ (2)

We regard every implication in the next problem as a separate problem for which you may
submit solution.

Set



6.7. Theorem. For a cubic equation x®+px+q = 0 with rational coefficients, the following
conditions are equivalent:

(1-solvability) at least one of its roots can be obtained on the real calculator with extracting
at most one root;

(a+br+cr?) this equation has a root of the form a+br+cr?, wherer € R and a,b,c,r® € Q;

(\/Dpq € Q) either it has a rational root, or Dy, > 0 and \/D,, € Q.

6.8. If Yo, y1, y2 are the three complex roots (with multiplicity) of the polynomial 2%+ px+q,
then

—108Dp = (Y0 — 1)* (Y1 — ¥2)* (Yo — v2)*.
Assume that p € C. We introduce the following notation:
Q[p] = {P(u) | P is a polynomial with rational coefficients}.

Notice that this notation agrees with the particular case introduced above.

6.9. Assume that p is a root of some nonzero polynomial. Prove that 1/t € Q[u| for every
nonzero t € Q[u].

6.10. (a) Assume that » € R\ Q and 7 € Q for some integer n > 1. Take any a € Q[r].
Then there exists a positive integer k such that o € Q[r*] and r* € Q|a] (in other words,
Qlr*| = Qla)).

(b) Proposition. Assume that a polynomial of degree n is irreducible over Q; moreover,
assume that this polynomial is 1-solvable. Then this polynomial has a root of the form A(r),
where A is a polynomial, and a number r € R satisfies r™ € Q.

The complex calculator has the same buttons as the real one, but it operates with complex
numbers, giving all the complex values of the root when the button {L/’ is pressed. We say that
a number can be obtained using the complex calculator, if the calculator can be used to get a
set of numbers containing the given one.

We say that a polynomial is k-solvable in the complex sense if one of its roots can be obtained
on the complex calculator using only k root extractions. The main problem 4.2 (as well as other
problems in this section) remains interesting if we replace the real k-solvability by the complex
one. The complex versions of these problems may turn out to be easier than the real ones.

6.11. (a) Every cubic polynomial is 2-solvable in the complex sense.

(b) Given rational p and ¢, decide whether the polynomial 23 + px + ¢ is 2-solvable in the
complex sense.

(c) Every polynomial of degree 4 is 4-solvable in the complex sense.

4. Equations of degree 4 solvable using one radical

6.12. Conjugation Theorem. Let a,b,c,d,r* € Q and r* € Q. Assume that the number

xo = a+ br + cr® + dr? is a root of some polynomial. Then the numbers
rr=a+bri—cr® —dr¥i, xo=a—-br4+c?—dr’, x3=a—bri—c?+drdi

are also its roots.

6.13. Let a polynomial of degree 4 (with zero coefficient of z*) have complex roots yo, 1,
Y2, and y3 (regarding multiplicity). Then
Yoy1 + Y23
2

8Recall that the cubic resolution Ry () of a polynomial f(z) = z*+pz?+qx + s is a polynomial in « defined
as the discriminant of the quadratic polynomial (22 + «)? — f(z) with respect to z, i.e.,

(a) the number is a root of the cubic resolution® of our polynomial;

Ri(a) = ¢* — 4(2a — p)(a? — s) = —8a® + 4pa® + 8sa + (¢* — 4ps).



(b) the numbers YoV1 + Y2Us YoY2 + V13 Yoys + Y1Y2
2 ’ 2 ’

resolution (regarding multiplicity).

6.14. Assume that p,q,s € Q and p < 0 < gq.

(a) If ¢* = 2p(4s — p?) and +/2q € Q, then the polynomial x* + px? + gz + s has a root
which can be obtained using the real calculator extracting only one root which is the root of

degree four.
(b) Is the converse true?

are all the complex roots of the cubic

5. Formal expressibility in real radicals

The negative answer to 5.5.c (and to problem 6.17.b below) show that a root of a cubic equation
is not expressible in real radicals via its coefficients. Try to realize why this result does not
contradict the Cardano Formula which expresses the root of a cubic equation via its coefficients
(the clue to the answer is in the expression for discriminant in terms of roots, see problem 6.8).

Definition. The polynomial f in variables xi, 2o, ..., x, is cyclically symmetric if the
polynomials f(x1,xs,...,x,) and f(x9,z3..., 2, 1, T,, 1) are equal.

6.15. Express x1x3 + 375 + T527 + T7T9 + Toxy in radicals via cyclically symmetric poly-
nomials in x1, s, ..., Tg.

The negative answer to 5.5.c can be derived from the following problem.

6.16. Let f, g € Rz, y, z].

(a) If the polynomial f9 is cyclically symmetric for some positive integer ¢, then f itself is
cyclically symmetric.

(b) If fg =0, then f =0 or g = 0.

(c) If fg # 0, then f2+ fg+ g* # 0.

6.17. We say that the generic polynomial equation of degree n is solvable in real radicals if
there exist

e non-negative integers s, k1, ..., ks and
e polynomials pg, p1, . .., ps with real coefficients and in n,n+1,...,n+ s variables, respec-
tively,

such that if ag,...,a,—1,z € R and
"+ a2V 4+ ax+ag =0,
then there are fi,..., fs € R for which
ffl = po(ao; - - -, an-1), f§2 = p1(ao, - -, an-1, f1),

ks __ _
fs - ps—l(a07 e aa'n—lafla .. "f5—1)7 T = ps(a0> s aan—lafb .. '7f5)-

Note that we have defined a property of the number n rather than of a specific equation with
given coefficients like in the Galois Theorem [S].

(a) The generic polynomial equation of degree 2 is solvable in real radicals.

(b)* The generic polynomial equation of degree 3 is not solvable in real radicals.

(¢)* The similar result for each n > 3.

The results of problems 5.5.c and 6.17.b (and the comparison of them with the Cardano
Formula) show that the definition of expressibility in real radicals given above is not a perfect
formalization of the concept of solvability in radicals. On one hand, it is more reasonable to
consider complex numbers instead of reals — this idea is realized in Section 7. On the other
hand, we can work with numbers rather than with polynomials — this leads to the Galois
Theorem [S]. However, investigating this imperfect formalization, one may see the main idea
of the proof of Ruffini’s theorem, see [S].
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Hints and Solutions distributed at the Semifinal
1. Solving equations of degree 3 and 4

1.3. (c¢) Answer: If p = ¢ = 0, then there is one root. Otherwise, if D,, > 0, then there is one
root, if Dp, = 0, there are two roots, and if D,, < 0, there are three roots.

1.4. (c) Answer: © = —1 — v/2.

Hint: By the result of 1.5.a, the equation z°® — 3+v/2x + 3 = 0 is equivalent to the equation

(x4+b+c)(a?4+0®+P —bc—br —cx) =0, where b=1 and c¢= V2.

(d) Answer: 2cos ¥, 2cos I, and 2 cos 13

9 Y

Substituting x = 2y we transform the equation 23 — 3x — 1 =0 to 4y3 -3y = % Using the
identity cos3a = 4cos a — 3cosa we get that all the numbers cos §, cos %”, and cos 137” are

roots of 4y® — 3y = 2
5. (a,b) Answer:

a®+b*4-c* —3abc = (a+b+c)(a® +b*+c* —ab—bc—ca) = (a+b+c)(a+bes+ced)(a+bes+ces).

1.6. (a) Answer: Del Ferro’s method is applicable, if D,, > 0.
Theorem. Let p,q € R.
If Dy, > 0, then the equation z* + px + q = 0 has a unique real oot

q I q
\3/_5’*‘ qu_i/é—i_ Dipg-

If D,, = 0, then all real roots of the equation are —2{/¢/2 and —3/{]/_2 (they are distinct,
provided that ¢ # 0).

(b) Theorem. Let p,q € C and pq # 0. Let

o /Dy, be any of the two values of a square root of Dyy;

e u be any of the three values of a cubic root of —1 — \/qu,

o v=—=L"_ (Since p# 0, we have (q/2) # D,y, whence ul=-1—./D by #0.)

Then the three roots of the equation x® + pxr +q = 0 are u + v, U€3 + ve2, and uel + ves.
(They are not necessarily distinct, even if ¢ #0.)

1.7. Answers:

(@) 3\/_i\/10+12 2 (b) 2+ V42 -2 (C)\/Ei\/S\/E—Q
2 ’ 2 ’

()\fi(\erf)

2. Representability with use of only one radical

1. Answers: (a,a”)b,c,d) — yes; (a’,e,f,g,h) — no

(a,0) V3422 =VT+5V2=1+ 2.

(a”) Notice that (1+5v/2-++/4)(34+v/2—8+v/4) = —75. (This equality can be found easily by
the method of undetermined coefficients. Another way of obtaining it is the Euclid algorithm
used to find the linear representation of the g.c.d. of 3 —2 and 2% +5x + 1, see solution of 3.2.b;
that problem claims in fact that such coefficients can be found always.) Therefore,

1 11 - 8 0
= e (Y22
1+ 532+ /4 25 75 \/—+75 (V2)

by VB2 Fo2—1
(d) cos(2m/5) = (V5 —1)/4.
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() Assume that it is possible. Then we get 2 = (v/2)% = (a® + 3ab) + (3a2 + b)V/b. Since
3a% + b # 0, we have vb € Q. Thus v/2 € Q, which is a contradiction.

Another proofs may be obtained similarly to those of (f,g) or of Proposition 2.4.

(g) Assume that it is possible. By 2.2, our number cos(27/9) is a root of 42® — 3z = —3.
Now by Corollary 2.3.f this equation has a rational root, which is wrong.

Another proof is similar to that of Proposition 2.4.

2.2. By the triple angle formula for cosine we have —1/2 = cos(27/3) = 4cos®*(27/9) —
3 cos(27/9).

2.3. (e) Let P be a given polynomial, and set G(t) = P(a + bt). Then G(r) = 0. By (d),
we get G(—r) = 0.

(f) Follows from (e) combined with the Vieta theorem.

2.4. Arguing indirectly, suppose that the given polynomial P(x) has a root o = a + V.
By corollary 2.3.e and analogously to it, the number z; = a F V/b is also a root of P. If b= 0,
then the statement is obvious; so we assume that b # 0. This implies x¢ # x;. Therefore, P
is divisible by (x — a)? — b. Since the degree of P is greater than 2, it is reducible. This is a
contradiction.

2.5. Answer: (a,b,c,d,e,g) no; (f) yes.

Set r = /2.

(a) First solution. Assume that it is possible. Then
3 = (a® + 4bc) + (2ab + 2¢4)V2 + (2ac + b*) V4.

Since the polynomial 23 — 2 has no rational roots, it is irreducible over Q. Thus, 2ab + 2¢* =
2ac + b* = 0 (cf. 2.6.b). So we have b* = —2abc = 2¢3. It follows that either b = ¢ = 0 or
V2 = b/c. Both cases are impossible.

Second solution. Assume that it is possible. Set P(z) = z®> — 3. Then P has three roots
x1, T9, and x3 defined in Corollary 2.6.e. Since none of them is rational, the equality b = ¢ =0
does not hold. So, by Strong Linear Independence Lemma 2.6.b', all three roots are distinct.
This is a contradiction.

(b) Assume that it is possible. The number cos(27/9) is a root of the equation 42*—3z = —3.
Its other two real roots are cos(87/9) and cos(47/9).

On the other hand, the polynomial 823 — 6z — 1 has three roots 1, 72, x5 defined in Corol-
lary 2.6.e. Since none of them is rational, the equality b = ¢ = 0 is impossible. By Strong
Linear Independence Lemma 2.6.b’, all three roots are distinct.

Since 5§ = 5:;’“, we have T3 = x3. Thus, x5 and x3 can not be both real and distinct. This
is a contradiction.

(c) Assume the contrary. According to Rationality Lemma 2.7.a, there exists a cubic poly-
nomial whose root is a + br + cr?. But the polynomial 2° — 3 is irreducible over Q. This is a
contradiction.

2.6. (a) Suppose that 2 —r?3 is reducible. Then it has a rational root. This is a contradiction.

(b) Assume the contrary. Divide 2® — r® by a + bx + cz® with residue. Due to (a), the
residue is nonzero. Both polynomials 23 — 73 and a + bz + ca? have a root z = r. Hence the
residue has the same root x = r. This implies that the residue is linear and has an irrational
root, which is impossible.

(c) Divide our polynomial by x® — r3 with residue. Substituting x = r and applying Linear
Independence Lemma (b), we get that the residue is zero.

(d) By (c), if R? =73, then R is a root of our polynomial.

(e) Let P be the given polynomial, and set G(t) = P(a + bt + ct*). Then G(r) = 0. By (d)
we get G(res) =0 = G(rel).

(a) If our polynomial is reducible, it must have a root in Q[e3]. Therefore, r € Qles]NR = Q,
which is a contradiction.

12



This part can also be derived from (b').
(b") Consider the real and imaginary parts separately.
This part can also be derived from (a').

2.7. (a) First solution. Due to the substitution x = y + a, it suffices to prove the claim for
the vase when a = 0. Now notice that the number ¢ = br + cr? satisfies t3 = b33 + 3% + 3berst.

(In other words, by the equality from the solution of 1.5.a, the number a + br + cr? is a root
of the polynomial (z — a)® — 3ber®(z — a) — b33 — 3r5.)

Second solution.  Set wg = a + br + c¢r®. Expand the numbers zf with k& = 0,1,2,3 as
polynomials in 7:

xlg = ay, + byr + ¢’

In order to solve the problem, it suffices to find numbers Ay, A1, Ao, A3 € Q, not all zeroes, such
that A\g + Ao + Aea? + Ao = 0. This condition will be satisfied if these numbers satisfy the
system of equations

/\0a0+---—|—)\3a3:O, )\ob0+---+)\3b320, /\OCO+"'+/\3C3:O-

It is known that a homogeneous (i.e. with zero right hand parts) system of linear equations with
rational coefficients has a nontrivial rational solution, provided that the number of equations
is less than the number of variables. This yields the required result.

The obtained polynomial has degree 3 and is irreducible; this follows from problem 2.6.eb’.

Remark. Yet another proof is shown in the first solution of (more general) Rationality
Lemma 6.3.d.

3. Equations of degree 3 solvable using one radical
3.1. (b) Clearly, Cheburashka can obtain v/2 + /3 for 2 yuans. It remains to notice that

1 3 2
:m:( 2+/3)" - (2—V3).

(The last equality shows that one may avoid division by an irrational number in this case.)

(c) See the solution of 2.1.a”.

3.2. (b) Clearly, each described number can be obtained for 1 yuan. To prove the converse,
as before, we show that all the obtained numbers have the form a + br + cr?, where r = /s is
a cubic root obtained for 1 yuan. The only nontrivial step is, however, a bit harder now: we

has the required form (in case r = /s ¢ Q).
3

3

S

2 —

need to prove that a number ——
a+ br + cr?

By the Irreducibility Lemma, the polynomial 23 — 73 is irreducible over Q, so it is coprime
with a + bx + cx?. Therefore, there exist polynomials g and h such that h(z)(a + bz + cx?) +

g(z)(x® —r3) = 1. Then h(r) = , which yields the result.

a-+br+cr?
3.3. (a) As an example one may take the equation z* — 3z + 2 = 0 with root 1.
(a') An example is provided by the equation z* — 62 — 6 = 0 with a root /2 + v/4 (cf.
problem 3.1.b). One may find this equation as in the proof of Rationality Lemma 2.7.a.
(b3, b2) Answer: Yes.
By del Ferro’s method we get that one of the roots of our equation is

1
{’/—3+\/10+€/—3—¢10: Y R VA T a—
—3++/10

(b1) A negative answer follows from the solution of (d), i.e., from Theorem 6.7.
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(c) By 1.1.a we may assume that the equation has the form 23 + px + ¢ = 0. If p = 0, the
statement is trivial. Otherwise, since the equation has only one real root, we obtain hat D,, > 0

due to the solution of 1.3. Therefore, the number u = {/—% — /D,, appearing in the theorem

in solution of 1.6.a can be obtained for 1 yuan. After that, the number v = {/—1 + /Dy, = — %
is obtained for free. By the same theorem, a root u+wv of the initial equation also can be obtained
for 2 yuans.

(d) See Theorem 6.7.

4. Equations of degree 4 solvable using one radical

4.1. (b) Hint: One may express the root xy of the polynomial in terms of p and s, and then
equalize this expression for xy to br 4 cr? + dr3, where b, c,d,r* € Q, r € R.

(¢) Conjecture: no.

Try to prove the following statement: Assume that a degree 4 polynomial has a cubic
resolution with three real roots (in other words, this resolution has a negative discriminant);
then this polynomial is not 10000-solvable. On the other hand, the formula presenting a root
of a degree four polynomial whose the cubic resolution does not have three distinct real roots
(or it has nonnegative discriminant) using four root extractions is the aim of problem 6.1.a.

4.3. (a) For example, the polynomial z* — 1222 — 24z — 14 from problem 1.7.d has a
root v/2 + v/2 + v/8. (How can one find this polynomial, given its root?)
(b) Answer: yes, due to problem 6.14.a.

5. Formal expressibility in real radicals

5.1. (b) Consider the triples (z,y,z) = (0,1,—1) and (x,y, z) = (0,—1,1).

(r+y) + (= —y)
5 .
5.3. Answer: (a) 07 —209; (b) 0109 — 303;  (c) 02 — 30103 + 303.
(d) Apply 5.4.c.
5.4. (c) Again, we use the lexicographical induction on the multi-degree of the polynomial.
Given a symmetric polynomial of multi-degree (k,¢,m) with k > ¢ > m and k > 1 (i.e., the

lexicographically leading monomial of the polynomial has the form az*y‘2™), one may reduce

it to the polynomial f — aalf_éag_ma?.

5.2. (b) z =

5.5. (a) Notice that the polynomial (z — y)*(y — 2)%(z — z)? is symmetric. One may also
reduce this problem to the next one.

(b) Set M = z?y+y*2+2%x and N = y*x+2%2+2%y. Then M+ N and M N are symmetric
polynomials. Therefore, they are polynomials in elementary symmetric functions oy, o2, 03. (We
present the explicit expressions in the solution of 6.8.) Finally, M itself now can be expressed
via M + N and M N by the formula providing the roots of a quadratic equation.

14



Hints and Solutions distributed at the Final

1. Solving equations of degree 3 and 4

1.6. Proof of the theorem formulated in (a). Set u = —+/4 + /Dy, and v = {/—1 + \/D,,. We

have uv = —p/3 and u?® +v® = —¢. By the formula from the solution of 1.5.a applied to a = z,
b = —u, and ¢ = —v, the number u+v is a root of the polynomial 2®+px+q = 23— 3uve—u®—v3.
Since 2(a? +u? +v? —zu—zv —w) = (x —u)?+ (z —v)*+ (u—v)?, in the case D, > 0 we have
no other roots, and if D,, = 0, then there is an additional (multiple) root u =v = — {/q/_Q
Proof of the theorem formulated in (b). We have uv = —p/3 and u®+v* = —¢. So it suffices

to apply the formula from the solution of 1.5.b to a = =, b = —u, and ¢ = —v.

6.1. If ¢ = 0, then the equation is biquadratic, so it is easy to solve it. Henceforth we
assume that ¢ # 0.

(a) Theorem. Suppose that p,q,s € R and q # 0. Then there exists a > p/2 such that
¢* = 4(2a — p)(a® — 5). For each such value of a define A = \/2a— p. Then all the real Toots
of the equation x* + px® + qx + s = 0 are:

(‘10 roots, if 2a +p > 2|¢|/A;

Ty = (—Aj:@/—Qoa—p—i—%) /2, if —2q/A < 2a +p < 2q/A;
yi:<A:|:\/—2a—p—%>/2, if 2¢/A < 2a+p < —2q/A; '

\le:a Y+, if 20é+p S —2|Q|/A

Proof. Set R(x) = 4(2z — p)(2® — s) — ¢*. Note that R(p/2) = —¢*> < 0. On the other hand,
for large enough values of x we have R(z) > 0. By the Intermediate value theorem, there exists
a > p/2 such that R(a) = 0.

Since p = 2a — A? and « is a root of the resolution, we get s = a? — ﬁ =a? - %.
Therefore,
ot +pr? fqr s = <x2—Ax+oz+i> (x2+Ax+oz—i).
2A 2A

Solving two quadratic equations, we obtain the required formulas.

(b) Theorem. Suppose p,q,s € C and q # 0. Denote by o any of the roots of the equation
¢® = 4(2a — p)(a? — s), and let A be any of two values of square root of 2ac — p. Then all the
roots of the equation x* + px® + qx + s =0 are

(A+\/—2a—p—2—j> /2 and (—A+\/—2a—p—l—2—j> /2,

where \/y is a multi-valued function providing both values of the root of y. Notice that, since
q? = 4A%(a® — 5) # 0, we have A # 0.
The proof is similar to the proof of the theorem in part (a).

Remark. One may also express all complex roots of the equation as

T = (:I:\/Q()gl—pﬂ: \/2042—]9:*: \/20[3—]7),

where a1, aia, and ag are the three roots of the cubic resolution, the number of 'minuses’ in the
formula is even, and the values of the roots are chosen so that their product equals —q.
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2. Representability with use of only one radical

2.1. (a') Assume that this number is representable. The roots of the polynomial P(z) =

(2% —2)? — 2 are four numbers of the form £+/2 4 v/2, where the choices of signs can be made
independently. One can easily check that this polynomial has no rational roots, and moreover,
that the product of any two its roots is also irrational. This means that the polynomial P(x)
has no non-constant factors of degree at most 2, thus P(x) is irreducible. This contradicts
Proposition 2.4.

(h) (I. Braude-Zolotarev) The equality 1 + &7 + 2 + - - - + 5 = 0 implies that cos(27/7) +
cos(4m/7) + cos(6w/7) = —1/2. Applying the formulas cos2a = 2cos>a — 1 and cos3a =
4cos®a — 3cosa we find that cos(27/7) is a root of the equation 8t + 4> — 4t — 1 = 0.
Substituting u = 2t we get u® +u? — 2u — 1 = 0. Since the last equation has no rational roots,
the same holds for 8t3 + 4t> — 4t — 1 = 0. Now the negative answer to the question follows
from 2.3.f.

2.5. As in the previous parts, we set r = 2.

(d) Similarly to (a) and (b), the complex roots of the polynomial x* — 3 have the form
x1, T2, x5 (see Corollary 2.6.e). Thus, (a + br + cr?)e§ = a + breg + cr?ej for some s € {1,2}.
By Strong Linear Independence Lemma 2.6.b’, we have a = 0 and bc = 0. This implies that
either /3 = br or v/3 = cr?, which is a contradiction.

(e) Similar to (b).

(f) This equation has a root V2 + V4.

(g) The unique real root of this equation is /3 + /9. Assume that this number us repre-
sentable in the required form. Then all the numbers x;, x9, and x3 introduced in Corollary 2.6.e
are roots of the given equation. By the Strong Linear Independence Lemma 2.6.b’ these roots
are distinct, so they are all roots of the equation.

On the other hand, by the theorem formulated in the solution of 1.6.b, all roots of the

equation are
g1 = V3+ V9, yy=V3Beg+ V92, ys = V32 + V0es.

Since the equation has exactly one real root, we have zy = yp; then we get either x1 = yi,
Tg = Y2, O Ty = Y1, T1 = Y2.

Donote P(x) = /3z + v/922%. Set also S(x) = a + bra + cr?x? for the former case above,
and S(x) = a + bra? + cr?z for the latter case. Then the polynomial P(z) — S(z) has three
distinct roots 1, e3, and 3. But the degree of this polynomial is at most 2; thus P = S and, in
particular, either ¥/3 = br or ¥/3 = ¢r?. Both cases are impossible.

2.7. (b) By Rationality Lemma 2.7.a, there exists a cubic polynomial having a + br + cr? as
a root. Since the given polynomial P is irreducible over Q and has the same root, we conclude
that deg P < 3.

On the other hand, P has three roots x1,x9,x3 defined in Corollary 2.6.e. Since P is
irreducible, none of its roots is rational. So, the equality b = ¢ = 0 cannot hold. By Strong
Linear Independence Lemma 2.6.b’, all the roots of P are distinct. Hence deg P = 3.

Since ek = 3%, we have T = 3. This implies that 25 and x3 cannot be simultaneously real
and distinct. So, 29,3 € C\ R. It follows that P has a unique real root.

6.2. Answers: no (in all parts).

We use the following notation: r = v/2 and A(z) = ag + a1z + agx® + - - - + aga®.

(a) Assume that it is possible. By the Conjugation Theorem 6.3.c, the polynomial 22 —3 has
roots A(rek) for k = 0,1,2,...,6. Since this polynomial has no rational roots, Strong Linear
Independence Lemma 6.5.b yields that these roots are distinct. This is a contradiction.

(b’) Assume that it is possible. The given polynomial P has no rational roots by Eisenstein’s
criterion. Therefore, Conjugation Theorem 6.3.c and Strong Linear Independence Lemma 6.5.b
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imply that P has distinct roots z := A(rek) with k =0,1,2,...,6. Since P(0) > 0, P(1) <0,
and P(2) > 0, the polynomial P has a real root zj distinct from .

Notice now that & = 7 k. Therefore, ), = T = x7_x, which is a contradiction.

(b) Assume that it is possible. Let P be a polynomial such that cos7x = p(cosx) (prove
23k + 1)m

that it exists!). The roots of the polynomial 2P(x) 4 1 are real numbers y;, = cos o1

with k = 0,...,6. One of them, namely y, = —1/2, is rational.

On the other hand, we claim that y, is irrational. (Otherwise we would have €2, —2ype2,+1 =
0, whence €2, = a+iv/b for some a,b € Q. Then the number e; = 3, would also have this form.
But the number 7 is a root of the irreducible’ polynomial 1 + x + - - - + 2%, which contradicts
the analogue of Proposition 2.4 for the numbers of the form a + iv/0.)
2P(x)+1

T = Y2
However, Conjugation Theorem 6.3.c combined with Strong Linear Independence Lemma 6.5.b
show that this polynomial has seven distinct roots, which is absurd.

(c) Assume that the number has the required form. Then the Rationality Lemma 6.3.d
yields that there exists a nonzero polynomial of degree at most 7 having V/3 as a root. This
contradicts the rational irreducibility of the polynomial z'' — 3.

(d) Assume that the number has the required form. Similarly to (a) and (b") we obtain
that the complex roots of the polynomial 7 — 3 have the form A(rek) for k = 0,1,2,...,6.
Therefore, A(r)e3 = A(re7) for some s € {1,2,3,4,5,6}. Now, by Strong Linear Independence
Lemma 6.5.b we obtain that a; = 0 for all k # s. Therefore, v/3 = a,r*, which is a contradiction.

6.3. (a) The roots of the polynomial x¢ — r? are precisely r,re,, 7"52, e ,rsgfl. Assume
that x? — r? is reducible over Q. Then the absolute value of a constant term of one of its
irreducible factors is rational and equals to the product of absolute values of k of these roots,
0 < k < q. Therefore, r* € Q. Since ¢ is prime, we get kx 4+ qy = 1 for some integers z,y.
Thus 7%¢ = r(r9)~¥, which implies r € Q. This is a contradiction.

(b) Arguing indirectly, take a polynomial A(x) violating the lemma statement of the minimal
possible degree. Let R(z) be the remainder of 29 — r? divided by A(x). Then we have deg R <
deg A, R(r) =0, and R(x) # 0 by (a). This contradicts the choice of A.

(c) The solution is similar to that of 2.3.cd, 2.6.cd, and 6.12, with the use of (b).

(d) First solution. The product

Thus, the number y, is an irrational root of the polynomial which has degree 6.

= (z = A(xo))(x — A(z1)) ... (x = A(z4-1))

is a symmetric polynomial in xg, x1,...,24—1. This means that II can be expressed as a poly-
nomial in z and the elementary symmetric polynomials in g, x1, ..., 2,-1. The values of these
elementary symmetric polynomials at z; = rs’; (k=0,1,...,q — 1) are the coefficients of the

polynomial x? — 4, thus they are rational. So II is the required polynomial.

Second solution. One may also argue exactly as in the second proof of Rationality Lemma 2.7.a,
with 3 being replaced by ¢ (e.g., the range ‘k = 0, 1,2, 3" in the first line of the proof should be
replaced by ‘k =0,1,...,q").

6.4. (a) Assume that our polynomial is reducible, and consider any its nontrivial unitary
factor. As in proof of Lemma 6.3.a, the constant term of this factor has the form :I:r’“gg"” and
lies in Q[e,]; therefore, r* € Qlg,]. Now, again as in proof of Lemma 6.3.a, we obtain that
r € Qle,). This is a contradiction.

(b,c) The proofs are similar to those of 6.3.bc; one may need to implement problem 6.9.

9The irreducibility of the polynomial g(x) = 1 +z + --- + 2% may be proved, e.g., by applying Eisenstein’s
criterion to the polynomial g(x+1). On the other hand, in ur situation it suffices to prove that g has no divisors
with rational coefficients of degree 1 and 2.
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6.5. (a) Suppose that the polynomial is reducible. Similarly to the proof of Irreducibility
Lemma 6.4.a (over Q[g,]), we establish that r € Q[g,]. Thus r?,73 ..., r7 ' € Qlg,].

We claim that in this case r is a root of some polynomial of degree at most ¢ —1; this clearly
contradicts 6.3.a.

For the proof, we argue similarly to the second solution of 2.7.a. Expand the numbers r
with £ =0,1,...,¢ — 1 as polynomials in &,:

k

Tk — a’k‘,O _I_ ak,lgq + .. + ak7q_2€g—2‘
Now it suffices to find numbers Ao, A1, ..., A\j—1 € Q, not all zeroes, such that all the equations
Noom + -+ Xg-1@g-1m =0  for m=0,1,...,q—2

are satisfied. This is true by the theorem used in the aforementioned solution of 2.7.a.
(b) Follows from (a).

6.6. (a) Hint: Similar to the proofs of Propositions 2.4, 2.7.b and to the solutions of 6.2.ab’c.
Apply Conjugation Theorem 6.3.c, Rationality Lemma 6.3.d, and Strong Linear Independence
Lemma 6.5.b arriving at a contradiction.

Solution: Assume the contrary; let P be the given polynomial. The case ¢ < deg P contra-
dicts Rationality Lemma 6.3.d; so ¢ > deg P. Now, by Conjugation Theorem 6.3.c and Strong
Linear Independence Lemma 6.5.b, the polynomial P has pairwise distinct roots z = A(ra’q“)
for k =0,1,2,...,¢q — 1. This is impossible unless ¢ = deg P; this proves the first assertion.
Finally, if ¢ # 2, then the relations T, = x,—; # x for k =1,2,...,¢ — 1 yield the uniqueness
of the real root.

(b) Answer: No. Set 7 = v/2; then the number A(r), where A(z) = 2%, is a root of 2% — 2.

3. Equations of degree 3 solvable using one radical

3.2. (c) Similarly to the previous parts, the only nontrivial claim is the following one:

Let 0 £ d=ayg+air+ -+ ap_1r" 1, where ag, ..., a,_1,7™ are rational; then the number
1/d is representable in a required form.

The arguments from part (b) do not apply directly, since the polynomial ™ — r™ may be
reducible over Q. In order to make them work, it suffices to replace this polynomial by its
irreducible factor having r as a root.

We present also a different proof of the claim. We implement the following result similar to
Rationality Lemma 2.7.a: Ifag, ..., a,_1,7" € Q, then the number d = ag+a1r+- -+ ap_ 17"
is a (not necessarily unique) root of some polynomial whose degree does not exceed n.

Suppose that d is a root of a polynomial pyd* + - - - + py; we may assume that py # 0. Then

1 _po _ —pd—-—pd®  —pr— - = ppd™
d  pod Ppod Po .
3.4. See [S, §§1.2 and 5.3].
6.7. (\/Dpq € Q) = (1-solvability). Set r = ¢/ —2 + \/D,,. By Cardano’s formula (see the

solution of problem 1.6), the unique real root of the equation 2 + pz + ¢ = 0 equals

r—ﬁzr—i-ﬁzr— P a2,
3r 3r 3(_%+ qu)

(a+br+cr?) = (/Dp, €Q). If r € Q or b = ¢ = 0, then the equation has a rational
root. In the remaining case, denote ¢ = 3. Each of the numbers z;, x5, and x5 defined in
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Corollary 2.6.e is a root of our equation. By Strong Linear Independence Lemma 2.6.b', these
three roots are distinct. Therefore, x|, x9, and x3 are all the roots of our equation. Now, by 6.8
we have

— 108D,y = (w9 — x3)*(71 — 23)* (21 — 9)?
— (br(e — %) + (2 — €))* (br(1 — &) + (1 — £2))* (br(1 — £2) + (1 — €))”
=*(1—¢)%(br — er?)*(br + er*(1 + 5))2(b7’(1 +e)+ cr2)2.

Since (1 +¢)(1 +¢€?) = (—¢)(—€?) =1 and (e — 1)? = 3¢ — 3¢2 = 31/3 1, we obtain

—108D,, = —27e*(1 4 ¢)*(br — er®)*(br(1 + &%) + cr2)2(br(1 +e)+ crz)2
= —27(e + &)*(br — cr?)?(0*r” + br - cr” + 02r4)2 = —27((br)® — (cr2)3)2.
This yields the required result.

(1-solvability) = (a + br + cr?). If the given polynomial is reducible, then it has a rational
root which has the required form. Otherwise the result follows directly from Proposition 6.10.b.

6.8. Set

M =ydy +yiys +yayo and N = yoys + yivo + Y31
Then (yo — y1)(y1 — y2)(yo — y2) = M — N. Therefore,

(Yo—41)* (1 —32)*(yo—12)* = (M+N)*~4MN = (3¢)* —4(p’+9¢*) = —4p® —27¢* = —108D,,;

the second equality above follows from the relations yo+y; +y2 = 0 (due to the Vieta theorem)
combined with

M+ N = (yo + 11 + v2) (Yoy1 + v1¥2 + y2v0) — 3Yoy1y2 = 0 - p + 3¢ = 3q,

MN = (yoy1 + y1y2 + y2%0)” + yoyrv2(yo + y1 + ¥2)° — 6yoy1v2 Z YLy — Weyiys =

i#]
=p* —q-0°+6q(p-0+3q) —9¢* = p* + 9¢°.

6.9. Similarly to the proof of Calculator theorem 3.2.c.

6.10. (a) The number r is a root of some nonzero polynomial with coefficients in Q[a] (e.g.,
™ — r™. Choose such polynomial f(z) of the minimal possible degree k.

Consider the g.c.d. of 2" — r" and f; it also has r as a root, its coefficients lie in Q[«], and
its degree does not exceed k; this means that this g.c.d. is f itself. So all the complex roots
of f have the form r¢!”. Then, by the Vieta theorem, the absolute value of the constant term
of f equals ¥ for some k < n — 1. Since this constant term is real, we obtain that r* € Q[a].

Now it remains to prove that a € Q[r*]. Since o € Q[r], we have

o = bo(r®) +rby (rF) 4+ . rF T (rF)

for some polynomials by, ..., bx—1 € Q[z]. If not all polynomials by, ...,bx_; are zeroes, then r
is a root of a nonzero polynomial

(bo(T%) — @) + zby (™) + ...+ 2" (F)

whose degree is k, and whose coefficients lie in Q[a] (since «, 7% € Q[a]). This contradicts the
choice of f(x). Thus we arrive at by = --- = b,_; = 0, whence o = by(r*) € Q[r"].

(b) By Calculator Theorem 3.2.c, the given polynomial has a root yy € Q[R] for some R € R
and some positive integer D satisfying R” € Q. By (a), we have Q[y,] = Q[RF] for some k.
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Denote r = R*. Since RP € Q, one may choose the minimal positive integer d such that
rd € Q; then r,r%, ... 791 ¢ Q. Therefore, the polynomial z¢ — r¢ is irreducible over Q
(since the constant term of any its nontrivial unitary factor has an irrational absolute value r*
0 <t<dctf 6.3.a).

Finally, the equality Q[yo] = Q[r], combined with the dimension argument similar to that
in the solution of Strong Irreducibility Lemma 6.5.a, yield that any two irreducible (over Q)
polynomials, one with root y, and the other with root r, have equal degrees. This shows that
n = d, as required.

6.11. (a) Follows from the Cardano formula (or, more exactly, from the theorem in the
solution of problem 1.6.b) in a way similar to that in 3.3.c.

(b) Conjecture. For a polynomial p(x) = z° + px + q with p,q € Q, each of the conditions
in Theorem 6.7 is equivalent to the complex 1-solvability of p.

In this conjecture, one may prove almost all implications in a way similar to the proof of
Theorem 6.7. The remaining implication is the following one.

Conjecture. If a polynomial x* + px + q with p,q € Q is 1-solvable in the complex sense,
then it has a root of the form a + br + cr?, where a,b,c,r®> € Q and r € C.

(c) Follows from the theorem in the solution of 6.1.b.

4. Equations of degree 4 solvable using one radical

4.2. (4,1) Answer: An irreducible over Q polynomial of the form z* + paz? + qx + s is 1-solvable
if and only if

(4) one of its roots has the form a + br + cr? + dr3, where a,b,c,d,r* € Q but r* ¢ Q.
This condition is equivalent to the following one, formulated by means of the coefficients:

(4i) there exists a € Q such that 2a > p and ¢* — 4(p — 2a)(s — a?) = 0, and moreover
(4ii) the number T' = 16(a® — s)? — (a® — s)(2a + p)? is a square of a rational number.

Clearly, the conditions (4i) and (4ii) are algorithmically decidable.
The statement (/) on the form of a root of a 1-solvable polynomial is proved in 6.10.b. The
proof that (4) is equivalent to (4i) together with (4ii) is proved in [A, Theorem 2].

4.4. By the theorem from the solution of 6.1, the polynomial 2* + px? + gz + s has a root

Ty = (A + \/—% — 20 — p) /2, where A? = 2a — p and Ag < 0. By the problem condition,

we have 2a — p > 0, so the number A can be obtained using one extraction of a square root.
Moreover, we have —%q — 20— p > —2a — p > 0. Therefore, the number x, can be obtained

using two root extractions.

4.5. By the Calculator theorem 3.2.c, the given root zy of our polynomial f(x) = z* +
px? + qv + s has the form 2y = a + br + cr? + dr3, where a,b,c,d,r* € Q. We may assume
that r2 ¢ Q (otherwise we may replace r by either \/|r| or ¥/|r]). Then, applying Conjugation
theorem 6.12, we obtain that the numbers 1, 25, and 3 (defined in the cited theorem) are
also roots of our polynomial.

Since f is irreducible, the number x is irrational, and moreover the numbers zy and x»
cannot appear to be the two roots of a quadratic trinomial with rational coefficients. This
excludes the case b = d = 0. Therefore, b + dr? # 0 due to 2.3.b. Hence the real numbers
xo and xo are distinct. Similarly, the numbers z; and 3 are non-real and distinct. Thus!®

f(x) = (x — 20)(z — 71)(x — 2) (7 — 3).

10Here is another proof of the fact that f(z) coincides with g(z) = (x — z0)(x — z1)(x — z2)(x — z3). We have
g(z) =[x —a—cr®)? —r2(b+ dr?)|[(x — a + cr?)? + r?(b — dr?)] € Q[r*][z] = Q[z]. (One may also prove that
¢ has rational coefficients similarly to the second proof of Rationality Lemma 6.3.d.) Now, f(z) is irreducible
and has a common root xo with g(x), and these two polynomials have the same degrees and leading terms; thus

f(x) = g().
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ToXo + 173

By problem 6.13, the cubic resolution of f(z) has a root a = 5

. Since xg + x1 +
ro + x3 = 0, we have a = 0. Therefore,

200 = 2oy + 2123 = ((cr®)? — (br + dr®)®) + ((er®)? — (bri — dr®)?)
= 2¢%* — 2 (b4 dr®)? + (b — dr?)? = 2¢%r* — 4bdr* = r*(2¢% — 4bd) € Q.

4.6. An analogue of parts (d) looks as follows.

Theorem. Assume that a polynomial has a root r € R such that r* € Q but r* ¢ Q. Then
the numbers ir, —r and —ir are also roots of this polynomial. (Notice here that i = ¢,.)

Irreducibility Lemma. Assume that r € R, r* € Q, but r* ¢ Q. Then the polynomial z* — 74
is irreducible over Q.

The proof of the lemma is similar to the proof of 6.3.a, since 7,7%,1r* ¢ Q. The proof of the
theorem follows the lines of proofs of other Conjugaion Theorems.

Problem 6.12 serves as an analogue of parts (e).

6.12. Let P(x) be the given polynomial. Then, as in Corollary 2.6.e, it suffices to apply
the theorem from the solution of 4.6 to the polynomial P(a + bz + cz? + dz?).

6.13. (a) Applying the Vieta theorem and taking into account that ) .x; = 0, one may
check that ¢* = (yoy1 + yays — p)((Yoy1 + yays)? — 4s). See details in [A, Statement 2].

(b) Similarly to (a), the three given numbers are roots of the cubic resolution. Moreover,
we have yoys + y1ys — Yoy1 — Y2ys = (vo — ¥3)(y2 — y1). Thus, if the roots y1, y2, ys, and yy are
distinct, the obtained roots of the cubic resolution are also distinct, and thus the resolution has
no other roots. The case when our polynomial has a multiple root can also be treated easily.

Alternative solution to both (a) and (b). Applying the Vieta theorem and taking into account
that ) . x; = 0, we get

(2a — (yoy1 + yzy3))(204 — (yoy2 + ylys)) (204 — (yoys + y1y2))

=80® —40” Y w20 D> Yy — T @i+ wewe)
1<J i<k, i¢{jk} 0<j<k, i¢{0,5,k}
=8a® —dpa® +2a- [ > e > vy — Woiyeys | — (yoylyzyg Syt > y?yf-yi)
@ [{i.5,k}=3 i i<j<k

= 8a® — 4pa® — 8sa — (¢* — 4ps) = —Ry(a),

which yields the desired result.

6.14. (a) Since ¢*> = 2p(4s — p?), the cubic resolution ¢* — 4(2a — p)(a* — s) has a root
a = —p/2. Since p < 0, we have 2a — p = —2p > 0. Therefore, by 6.1, our polynomial has a

root
5 2q V'2q
a—p+ 4| — .
V2a —p v/ —2p
(b) Answer: no. For example, the polynomial 2* — 1222 — 242 — 14 from the solution of 4.3.a
has a root v/24+v/2+ {‘/é, but the number 2-(—24) = —48 is not a square of a rational number.

—2a0—p=——-2p+

5. Formal expressibility in real radicals

5.4. (d) Theorem. Every symmetric polynomial can be expressed as a polynomial in elemen-
tary symmetric polynomials.

Proof. We prove the assertion by lexicographical induction on the multi-degree of a given
polynomial f(xy,zs,...,z,). The base case f = 0 is evident.
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To prove the induction step, let u = aa:lflxé” ... 2" be the (lexicographically) leading mono-

mial of the polynomial f.
Suppose that k; < k; 1 for some i. Along with u, the polynomial f must contain a monomial

k1 kiv1 k;

axit .. xalt L ak ) whose multi-degree is greater than that of w, which is impossible. So

ky>ky > >k

According to (a), the leading monomial of the polynomial g = ac™ *2gh>ks | aﬁ’i‘llfk" ohn
is u. Therefore, the multi-degree of the polynomial f — g is less than the multi-degree of f.
Application of the induction hypothesis to f — g finishes the proof. O

6.15. Set M = 2123+ 2325 +T5T7 + X709+ X9x1 and N = Xoxy + T4+ TeTsg + X3T10 + L10T 2.
Now one may proceed as in 5.5.b.

6.16. (a) Denote g(z,y, z) := f(y, z,x). Since f? is cyclically symmetric, we have f? = g1.
If ¢ is odd, we obtain f = g, so f is cyclically symmetric. Otherwise, if ¢ is even, then f = *+¢,
which yields either f = g (and thus the result holds) or f = —g. In the latter case we have

f(xaya Z) = _f(yazax> = f(zaxay) = _f(xaya Z)'

Thus f =0, and f is cyclically symmetric again..
(b) Use the result of 5.4.a.

(c) P+ fog+g* = <¥) + (?9) = (f +e39)(f +€39).

6.17. (a) Take

21— W%

s = 17 kl = 27 pO(y())yl) = y% - 4y07 pl(y()vyla Zl) = and fl =2z + aj.

Check that f2 = po(ag,a;) and x = py(ag, ay, f1).
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