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Problem 1

Let f : [1,00) — (0,00) be a continuous function. Assume that for every a > 0, the
equation f(x) = ax has at least one solution in the interval [1,00).

(a) Prove that for every a > 0, the equation f(x) = ax has infinitely many solutions.

(b) Give an example of a strictly increasing continuous function f with these prop-
erties.

Problem 2

Let Py, P1, P>, ... be a sequence of convex polygons such that, for each k > 0, the vertices
of Pyy+1 are the midpoints of all sides of Py. Prove that there exists a unique point lying
inside all these polygons.

Problem 3

Let M, (R) denote the set of all real n x n matrices. Find all surjective functions f :
M, (R) — {0,1,...,n} which satisfy

fXY) < min{f(X), f(Y)}

for all X, Y € M, (R).

Problem 4

Let n be a positive integer and f :[0,1] — R be a continuous function such that

/1:ckf(:z:)d:v:1
0

for every k € {0,1,...,n —1}. Prove that
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Answers

Problem 1

Solution. (a) Suppose that one can find constants a > 0 and b > 0 such that f(z) # az
for all x € [b,00). Since f is continuous we obtain two possible cases:

1.) f(x) > ax for x € [b,0). Define

Then, for every x € [1,00) one should have

f(z) > min(a, C)a:,
2
a contradiction.
2.) f(z) < az for x € [b,00). Define
C = max /@) = f(xo).
z€[l,b] T Zo

Then,
f(z) < 2max(a,C)x

for every x € [1,00) and this is again a contradiction.

(b) Choose a sequence 1 = x1 < 29 < -+ < T} < -
xy is also increasing. Next define f(z) = yr and extend f linearly on

yp = 2kcosk7r

such that the sequence

each interval [z_1,xk]: f(x) = arx + b for suitable ay, bx. In this way we obtain an

increasing continuous function f, for which lim % = 00 and lim £&n=1) — o g

n—0o00 2n
f(z)

now follows that the continuous function =

Problem 2

n—oo ¥2n—1

takes every positive value on [1, 00).

Solution. For each k£ > 0 we denote by Af = (mf,yf), 1 =1,...,n the vertices of Pj.
We may assume that the center of gravity of Py is O = (0,0); in other words,
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k+1

i

— ko gk k+1
= z; + i, and 2y,

Since 2x g

and nyH = y;“) we see that

=ykF +yF | for all k and i (we agree that xﬁﬂ =7

1
(@ 4 +af) =0 and —(f+---+y2) =0.
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Fr.o 42k =0 and ﬁ(y’f+---+y7’§):0

for all £ > 0. This shows that O = (0,0) is the center of gravity of all polygons Pj.

In order to prove that O is the unique common point of all Pg’s it is enough to prove

the following claim:

Claim. Let R} be the radius of the smallest ball which is centered at O and contains P;.

Then, lim R; = 0.
k—o00



Proof of the Claim. Write || - || for the Euclidean distance to the origin O. One can
easily check that there exist (1,...,0, > 0and §1 +--- + 8, = 1 such that

n
k+n __ Ak
Aj = E :ﬁlAj—&-i—l
=1

for all k and j. Let A = r{un Bi. Since O =1, A] +i_1, we have the following:

n

> B —NAE,
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Ry ) (B = A) = Ri(1—n)).
i=1
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This means that Py, lies in the ball of radius Ri(1 — n)\) centered at O. Observe that
1—nA<1.

Continuing in the same way we see that P, lies in the ball of radius Ry(1 — n\)™
centered at O. Therefore, R,,, — 0. Since {R,} is decreasing, the proof is complete.

Problem 3

Solution. We will show that the only such function is f(X) = rank(X). Setting
Y = I, we find that f(X) < f(I,) for all X € M,(R). Setting Y = X! we find
that f(I,) < f(X) for all invertible X € M,,(R). From these facts we conclude that
f(X) = f(I,) for all X € GL,(R).

For X € GL,(R) and Y € M,,(R) we have

)= f(X~ 1XY)<J”(XY)SJ“( );
J) = fY XX < f(YX) < f(Y).
Y

Hence we have f(XY) = f(YX) ) for all X € GL,(R) and Y € M,(R). For

k=0,1,...,n, let
(I O
(5 9).

It is well known that every matrix Y € M, (R) is equivalent to Ji for k = rank(Y").
This means that there exist matrices X,Z € GL,(R) such that Y = XJ;Z. From
the discussion above it follows that f(Y) = f(Jr). Thus it suffices to determine the
values of the function f on the matrices Jy, Ji,...,Jn. Since Jp = Ji - Jp+1 we have
f(Jk) < f(Jky1) for 0 < k < m — 1. Surjectivity of f imples that f(J;) = k for
k=0,1,...,n and hence f(Y) = rank(Y) for all Y € M, (R).

Problem 4

Solution. There exists a polynomial p(z) = aj + azx + - - - + a,2™ ! which satisfies

1
(1) / a*p(z)dr =1 forallk=0,1,...,n—1.
0



It follows that, for all K =0,1,...,n — 1,

and hence

Then, we can write
1 1
/ (f(x) - p(a))?dz = / (@) (f(2) - ple)) da
0 0

1 n—1 1
= A fQ(x) dx — kzz()ak+1/o l'kf(l') dz,

and since the first integral is non-negative we get

1
/ fQ(x)dxzal—l—ag—i—---—i-an.
0

To complete the proof we show the following:
Claim. For the coefficients aq, ..., a, of p we have

ap +ag + -+ a, =n’

Proof of the Claim. The defining property of p can be written in the form

a1 a9 an
kel kre T E4an

=1, 0<k<n-—1.

Equivalently, the function

al a9 (07%%
= -1
(@) 1:—|—1+x+2+ +x—|—n
has 0,1,...,n — 1 as zeros. We write r in the form

q(z) = (@ +1)(x+2)---(x+n)

A e ) Y Peaey

where ¢ is a polynomial of degree n — 1. Observe that the coefficient of z"~

1

in q is

equal to a1 + ag + - -+ + a,. Also, the numerator has 0,1,...,n — 1 as zeros, and since

lim r(x) = —1 we must have
T— 00

gz)=(z+1)(z+2)---(x+n)—z(x—1)---(z — (n—1)).

n(n+1)

This expression for ¢ shows that the coefficient of 2”1 in ¢ is 5= @ It follows

2
that

a1+a2+---+an:n2.



