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Problem 1. For a positive integer m let m? be the product of first m prime numbers,
Determine if there exist positive integers m and n with the following property:
m?=n{n+1)(n+ 2)(n+ 3).
(Matho Ljulj)

Problem 2. Let P be a point inside a triangle ABC. A line through £ parallel to AB meets BC and C'A
at points L and F, respectively. A line through P parallel to BC meets CA and BA at points M and D
respectively, and a line through P parallel to CA meets AB and BC at points N and F respectively. Prove

(PDBL)-(PECM) . (PFAN) =8.(PFM).(PEL).-(PDN},

where (XY Z) and (XY ZW) denote the area of the triangle XY Z and the area of gquadrilateral XY ZW.
(Steve Dinh)

Problem 3, We are given a combination lock consisting of 6 rotating discs. Fach disc consists of digits
0,15 200545 9, in that order (after digit 9 comes 0). Lock is opened by exactly one combination. A move consists
of turning one of the discs one digit in any direction and the lock opens instantly if the current combination is
correct. Discs are initially put in the position 000000, and we know that this combination is not correct.
a) What is the least number of moves necessary to ensure that we have found the correct combination?
b) What is the least number of moves necessary to ensure that we have found the correct combination, if we
know that none of the combinations 000000, 111111, 222222 ... 999999 is correct?

{Ognjen Stipetié, Grgur Valentic)

Problem 4. Let a.b, ¢ be positive real nnmnbers satisfving

@ l b . ¢ . ab . be ) e
I1+b4+c¢c l14c+a l1+a+b” 1+a+b 14+b+c 14c+a

Prove

1 b 4 . —
: 2 : tat+bte+222(Vab+ Vbe+ Jea).

ab | be 4 ca

{ Dimitar Trenevski)

Time allowed: 240 minutes.
Each problem is worth 10 points.

Calewlators are not allowed.,
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Problems and Solutions

Problem 1. For a positive integer m let m? be the product of first m prime numbers.

Determine if there exist positive integers m and n with the following property:

m? =mn(n+ 1)(n+2)(n+ 3).

{Matko Ljulj)

Solution. Such numbers don’t exist

Let’s assume the cantrary 1., there are such m and n

We can note that there is only one prime divisible by 2 and that it 2 itsell thus m7 isn’t divisble by 4, On the other
hand, the product n(n+ 1{n+2){(n+ 3) is product of 4 consecutive integers so two of them are even making the product

divisble by 4

Thus equality m? = n(n+ 1)(n+2)(n 4+ 3) gives us a contradiction as LIS is not divisble by 4 while RIS is

Problem 2. Let P be a point inside a triangle ABC. A line through P parallel to AB meets BC and CA

at points L and F, respectively. A line through P parallel to BC meets CA and BA at points M and D

respectively, and a line through P parallel to CA meets AB and BC at points N and E respectively, Prove
(PDBL)-(PECM).(PFAN)=8.(PFM).(PEL)-(PDN),

where (XY Z) and (XY ZW) denote the area of the triangle XY Z and the area of quadrilateral XY ZW.
(Steve Dinh)
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— (BID) = %-m.r =

WO -

This gives U? = X - Z. Analogously we get W* = Y- Z and V¥ = X - Y., Multiplying all three equalitios we get the
desired equation.

Second solution, Let's denote the areas of trinngles PEL, PFM, PDN as Py, Pp, Pe respectively and let’s denote the
areas of quadrilaterals PFAN, PDBL, PECM as Q. Qr. Qo respectively, We want to prove QaQuQle = 8P Pule.
Triangles PEL, PFM, and PDN wre similar to the trinngle ABC (they have respective paars of sides on paradlel lines),
Let's denote the respective similarity coefficients as k4, kp, koo As triangles PEL, PFM, and PDN are in the interior
of ARC, all those coeflicients are less than 1.

Triangle EN B is similar to the triangle ABC. Tts similarity coefficient is

EN _EF{FN u FN
AC - ac _ ac T ac

From all these similarity relations we get area relations. N nnmly:

= ka + ke.

2 s N8
Pa: Ps = {Pa: (ABG)) : (Pa : (ABC)) = (’n) e P.-l?(k—'i) FPa.

k_L; ko
ke \? ke \*
e Py = (P (ABC)) : (P : (ABC)) = (IZ) i P = (Z;) Py

Using this we get:

(Pa+ Pe +Qg)t Pa=(ENB): (PFM) = (ka + ke)? : (ka)?

CRNTIL) | Sy A 2 2
=3 Pa+FPo+Qn= ’l’_-_‘{!’\( bk Py = A; Pu “ ‘_,‘ Py é‘y”u = Pa+ ..6..'.‘.‘.:.[', + Po
7 52 L k3 kg
— Qg = 2k,|lkf_°P£‘
K

Similary by the ame process applied to FLC and MDA we get Qo = 55-“?-41"(' Q4 = i%ml Y Multiplving what
A

'.)k("\' 2k ‘; 2huk k A
H ‘G l‘ BRA 1,_

QuQuQe = St A= P =gt be MJ“ & paPuPe = 8PAPg Pe

QE.D,

Problem 3. We are given a combination lock consisting of 6 rotating discs. Each disc consists of digits
0,1.2,....9, in that order (after digit 9 comes 0). Lock is opened by exactly one combination. A move consists
of turning one of the discs one digit in any direction and the lock opens instantly if the current combination is
correct. Dises are initially put in the position 000000, and we know that this combination is not correct.

a) What is the least number of moves necessary to ensure that we have found the correct combination?

b) What is the least number of moves necessary to ensure that we have found the correct combination, if we
know that none of the combinations 000000, 111111, 222222 ..., 999994 is correct?

{Ognjen Stipetié, Grgur Valentic)

Solution. We will solve the subproblems seperately.

a) In order to ensure that we have discovered the code we need to check all but one of the combimations (as otherwise
all imehecked codes can be the correct combination), ‘Total number of combinations is 10° (as each of the 6 dises
consists of 10 digits), As we are given that 000000 is not the correct combination we requtire &t least 10% —2 maoyes.
We will now prove that there is a sequence of 10° — 2 moves ench checking a different combination. We will prove
this by induction on the number of wheels where the cage n = 6 i5 given in the problem,

Crame: For a lock of # wheels and for any starting cormbination of the wheels (a162 .. .0, ) there is a sequence of
moves checking all 10° combinations exactly onee, for all n € 1
Basis: For n = 1 and for the starting combination (@), we consider the sequence of moves

a—=ag4+1—=a4+2—=,.. +9=0=1=...—+a~1



Assumprion: The induction claim is valid for some n € [

SteP: We will prove that the claim holds for 4 1 as well. We consider an arbitrary starling state (agag .. 0q0,41 )
By the induction hypothesis there is a sequence of moves such that starting from this state we can check all the
states showing a0y on the last dise. Let this sequence of moves end with the combination (byba .. bia, 1),

Now we make the move (byby . buay o) = (biby. . bya, o+ 1) (if a, oy is 9, then we turn the dise to show 0),
We contim in the same way applying the mduction hypothesis on first ndiscs and the rotation the n | 1-st disc,
This way we get the sequence of moves

(“l“’l ---anan+l) g U’lbl-'-bnanf-l) - (blb? ---bn“n-#l 1 l)

= (162, .. cnttnin + 1) =5 (Q1020, . Caltnoy +2)

- (JIJ"J---J‘nUuH —2} o, Ul]ﬂ---]nunol - 1)

This sequence checks each combination exactly once finishing the induction and proving our claim,

b) As in the a) part. we conclude that we have to check all the combinations apart from 000000, T11111. ..., 090059
and we can be sure as to what is the solution before the move checking the last combination.
We denote the combination as black il the sum of 11 digits 35 even and whete i that sum s odd. We can notice
that all the combinations 000000, TLLLLT, ..., 999099 are black and by each move we swap the color of the cnrrent
combination.
Number of black combinations all of which we ned to check at least onee is % = 10 while mumber of such white
combinations is %
As we are checking white combinations svery second move, In order to check oll %i white combinntion swe nesd
at least 2‘—2’3 — 1 = 10" — 1 moves, thus we need at least 10° — 2 moves to find the eorrect combination.
An example doing this in 10° — 2 moves has heen given in part a),

Problem 4. Let a.b, ¢ be positive real numbers satisfving

@ b ¢ ab be ca
l+b+c+ 1+c+a+l+o+b # l+a+b+l+b+c+l+c+a'
Prove
a? + b &2
m+a+b+c+2;2(\/a_b+\/b_c+\/m_a),

(Dimitar Trenevski)
Solution. We start with the given condition:

a ' b N S - ab . be N o p_—
l+bte 14+eda  14a+b™ 1tatd 14+bte 1tetu

a+¢de«.‘_ bibetba c+eatch  abtact+be  betabtbe  ca+bet ab

1+b+4¢ 1+eta l+at+b l+a+t+bd 14+6+¢ l+ecta
all tb+e) blteta) el tath) abibetea abibetoa abtbeton
1+hic I+cta Lta+h =~ lLiaibh I+bte Ilteta
. 1 1 1
a+btez{aby In.+c-a)(l —l—nib+l+h~|c+l |-Nn)'

Now using Canchy-Schwarz inequality we gei:

(l|lob+|rzoc+|:i;a)kn+a+m+"“+b+d+“l+c+ﬂyﬁwﬁ+vz+¢a{

Combining the Iast two inequalities we gol:
(a4 bt eMatbted2ab it be | ca)) =

) 1 1 L y g =
= (ab+ be Hn)(l +u+h+l+b+r+l+r+n)(" Fh4 e+ 2ab+ be + ca)) =
1 | 1
= (ab -+ be +m)(l Ty b Thee Tt -l»r{n) feft +a+b) +all +b+c)+b(1 +c+4a))

> (ab+ be+ ca)(va + Vb + VB,



which now by some algebraic manipulation gives:
(@ +b+c)(a+b+c+ 2ab+be+ ca)) > (ab+ be+ o) (Va+ Vb 4 V0 =
(@ +b+e)” +2(a+b+ e)lab+ be+ o) = (ab+ bo+ ca)la + b+ e+ 2(Vab + Vhe + Voa)) +=»
{(a® 45"+ ) 4 (2a + b+ ¢) +2)(ab + be + ca) > (ab + be + ca){a + b+ ¢+ 2(Vab + Ve + Vi) =

a® b et

m tatbtet 2= 2(\/0_04 Vbe § fea).

where the last iequality s exactly the one we wanted to prove.

Time allowed: 240 minutes.
Each problem is worth 10 points.
Caleulators are not allowed.
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Problem 1, In each field of a table there is a real number. We call such n x n table silly if each entry equals
the product of all the numbers in the neighbouring fields.

a) Find all 2 x 2 silly tables.

b) Find all 3 x 3 silly tables.

(Two fields of a table are neighbouring if they share a common side.) (Borna Vukorepa)

Problem 2. Palindrome is a sequence of digits which doesn’t change if we reverse the order of its digits. Prove

that a sequence (x,, )", defined as

ry, = 2013+ 31Tn

contains infinitely many numbers with their decimal expansions being palindromes.

{Stijn Cambie)

Problem 3. We call a sequence of n digits one or zero a code. Subsequence of a code is a palindrome if it is
the same after we reverse the order of its digits. A palindrome is called nice if its digits occur consecutively in
the code.(Code (1101) contains 10 palindromes, of which 6 are nice.)

a) What is the least number of palindromes in a code?

b) What is the least number of nice palindromes in a code?

(Ognjen Stipetic)

Problem 4. Given a triangle ABC let D, E, F' be orthogonal projections from A, B.C' to the opposite sides
respectively. Let X, Y, Z denote midpoints of AD, BE, CF respectively. Prove that perpendiculars from D to
YZ, from Eto XZ and from I to XY are concurrent.

(Matija Bueié)

Time allowed: 240 minutes,
Each problem is worth 10 poinis.

Caleulators are not allowed,
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Problems and Solutions

Problem 1. In each field of a table there is a real nunber. We call such n x n table silly if each entry equals
the product of all the mumber in the neighbouring fields.

a) Find all 2 x 2 silly tables.
b) Find all 3 x 3 silly tables.

{Two fields of a table are neighbouring if they share a common side. ) (Borna Vukorepa)

Solution. We olve the subproblems separately

n) Denote the numbers in the table as on the picture

(7 b

{ [/
By the problem condition we have the following

1 e

{ td

{ ad

i T
From here we can see o I o and b ad ¢. When we apply this to the upper relations we get o 6 and
[/ a’ mnd so u b’ a' == ala—1¥a® +a+1) 0. The real solutions to this 'xr..l-l. 1M AYe 0 and a |

Now we can see that all 2 % 2 silly tables are those with all element equal and farthermore equal to zero or one

b)Y Denote by a, b, ¢, d the elements in the table which have exactly thres neighbours, We denote the remaining elements
m terms of these and pet the following tablk

ah a ad
O (bl ad
I ( e
Let's assume that abod = (00 This implies that the middle element s zero which further implies ol its neighbours

sre Zoro and consequently every element in the table is zore, And thus anly silly table under in this case = all zeres
table

Now assume that abed £ 0, je. none of the table elements is equal to zero, Using the remaiming conditions we get

7} (ab){abod)(ed) = o' b d*c &= a b d |
Analovously we got a~b~c"d 1, a~¢d=b li1 b cda 1 (we are allowed to divide by a. b, ¢, d as they are all
non-zero), Equating the LI Ss of these equations we get o = b = ¢ = o, Inserting this in any of these equations wi

oot @ | > Q |

['hus all 3 x 3 silly tables are all ones and all zeros tables

Problem 2. Palindrome is a sequence of digits which doesn't change if we reverse the order of its digits. Prove
that a sequence (z,),_, defined as
ry, = 2013+ 3170

contains infinitely many numbers with their decimal expansions being palindromes.
(Stiyn Cambie}



First solution. We will prove the following lemma providing two proofs:
Lema 1. There is infinitely many numnbers dovisible with 317 unth thew decimal cxpansions consisting only of ones,
Proof. Considering the ssquence 1, 11, 111, ... consisting of infinitely many mumbers. This mombers hove some residues

modulo 317, By The Pigeonhole Principle there are at least two numbers in this sequence with the same residuae modulo
31T, Let the smaller of these two have [ digits and larger k. Their difference is

11, =111, L= 111 .1 000, .0
L AL IR SASALE J SESSAS R et il

k Simnns 1 tlwes (k1) thmes | tieows

divisible by 317. Tt will also remain divisible by 317 if we divide it by 10" (as 10 and 317 are coprime). This way we get
a number consisting only of ones divisible by 217, Let's denote the monber of its digits by & We get infinitely many
such numbers by considering mmnbers consisting of &, 2k, 3%, ... ones, O

Proof. As 317 is prime, and as it s coprime with 10 by Fermat's Little Theorem
1079 = 1 (mod 317) = T |10 — L ¥ymeZm=1,
As 0 s coprime with 317 as well, numbers of the form (10" — 1), m € Z,m = | have the property we desire, ]

Continuimg with the solution we can note that some imteger ot is in the sequence (o, oo i and only if m > 2013 and
m = 2013 = 111 (maod 317). Let (g )o=g be a sequence of infinitely many positive integers with their decimal expansions
consisting only of ones and each being divisible by 317 (we are using our lernma here), Now numbers

1000, + 111

are in the sequence (as they have the remainder 111 modulo 317) and their decimal expansions are palindromes. Thus
there is imfinitely many members of the sequence {r,, )=y whase decimal expansions are palindromes,

Second solution, We will prove the generalised version of the problem for the sequence (e, )05 defined as ok, = a4 nb,
where a, b are arbitrary positive integers with the property that b is coprimie with 10, The problemn is a special case of
this for a = 2013 1 b = 317,

We define the ssquence (g, )0, in the following way: », = 10%%" Using The Euler's Theorem. iy, = 1 (mod b).
Considering the mumber 1+ y, + ¥7 +. .. 42", its decimal expansion is:

1 000...0 1 000...0 ... 1 000...0 1
e’ N N

nglbl=1 timme  n@(b)—1 tines it =1 Lime=s

where the digit one is repeated @ times, [t s clear now that the decimal expansion of this number is & palindrome, On

a1 —

the other hand |4y + 98 + -9 " =1+ 14...1 = a (mod b), so this number is in the sequemce (£, )50, or each
mumber . Thus we have found infinitely many members of the sequence (2, )7 with their decimal expansions being
palindromes as we wanted,

Problem 3. We call a sequence of n digits one or zero a code. Subsequence of a code is a palindrome if it is
the same after we reverse the order of its digits. A palindrome is called nice if its digits occur consecutively in
the code.(Code (1101) contains 10 palindromes, of which 6 are nice.)

a) What is the least number of palindromes in a code?

b) What is the least number of nice palindromes in a code?

(Ognjen Stipetic)

Solution. We will consider the two subproblems separately:
a) Consider any code. Assume there is & digits one and n — & digits zero. We now transform this code into
111...1000,..0
R
k puth  n—k pota

by preserving the order among same digits. Lets note that each palindrome consisting of sane digits is in the imitial
code il and only if it is in the transformed code. The transformed code doesn't have a palindrome not consisting
of same digits and thus the transformed code has less or equal palindromes than the initial one.

Thus we conclude that jt is enough to consider only the codes starting with & digits one and ending in n = k zeros,
for some k€ {0, 1,...n},

2



Let us fix o k€ {0,1,...n). The code consisting of k ones and n — k zeros has 28 = | 42" % 1 =2 2" 4 2
palindromes. We now seek & which minimizes tlis expression.

If 1 is even (n = 2m), by the AM-GM inequality 2% 4 2" =% = 2. y28505F — 2™ L 2™ —  the least passible
number of palindromes in the code with 2m digits is 2" 2 —2 = 2771 — 2 and this number i8 clearly attained
tor the code with m digits one and ending i m digits zero.

I nis odd (= 204 1) wo have the following inequality for each k€ {0,1,...m— 1}

2RVl gt C e et 500
From this we also get 2% 4 2275 T o od=t pon=W Vo all ke (m 4 L,m +2,...2m 4 1), Sa:
4> 2 25 >Nl g ot a1 L L P 4D

Now it is clear that the least nmmber of palindromes in the code with 2m + 1 digits is 2" + 2™ — 2 and this
mamber s attained by the code of m digits one and m | 1 digits zero,
b) For s = 1 we clearly see that the answer i 1, From now on we assume n - 2.

As well for simplicity of the write-up we will not consider the ane-digit palindromes as nice as we know that each
code of n digits consists of 1 one=digit palindromes, each of which is nice. So we will find the smallest passible
number of multi-digit nice palindromes and we will add »n to this number o get the desired solution.
As a last remark: in this part of the solution for brevity we will denote as palindromes only those that are nice by
the definitions in the problem statement.
Code consisting of n digits 1 contains one n-digit palindrome, two (n — 1}-digit palindromes, ..., n = 2 three digit
palindromes and r — 1 two digit palindromes. After smmming up we get that this code has '-'ii‘s_{—'l palindromes,
Analogously the code consisting of i digits 0 contains the same number of palindromes.
We now consider the code which contains at least one digit one and at least one digit zero. Then each digit 1 except
the rightinost one is the start of at least one palindrome (the sequence of digits starting with it and ending in the
first digit one to the right of it is of the form 100, .01 and s thus a palindrome). Analogously we concliude that
each digit () apart from the rightmost ome is a start of at least one palindrome. As we have at least one digit | and
one digit 0 we conclude that each code consists of at least n — 2 palindromes (where we have deducted 2 for the
rightmost digit 1 and D),
By induction on n we will show that for each n € Mln = 2 we can find a code with exactly n = 2 palindromes,
We can note that for n = 2,3, 4 thiz is possible as the éxamples are (10), (101), (1101}, Now let’s assume that the
induetion cloim holds for some n = Thn = 4, and let (g ...y ) be s code with exactly n — 2 palindromes.
That code iz certainly not (011, 1) or (100, 0) (similarly as in the case with all digits equal we conclude that
these codes have S=U=2 5 5 — 2 palindromes),
We now that each of the digits one/zero apart from the rightmost ones i the start of at least one palindrome,
In order for total number of palindromes to be n — 2 all such digits are starts of exactly one palindrome.  As
(ry.comy) # (000 ..01) and (2 <oy ) # (100...0), digit @y is not the rightmost digit one/zero == 1y I8 the
start of exactly one palindrome,
We now show that we can choose a digit g such that (rozges . .ory, ) contains exactly n = | palindromes. As there
are yr — 2 palindromes (ryes .. .xy, ) we need to show that we can choose ry such that ro s o start of exactly one
palindrome i (roey.ooorg ) We know that g s a start of at least one palindrome so we actually only have to show
it is o staret of al maost one palindromes.
Let's consider to which palindromes can g be w start:

e (rory) is a palindrome &= ©p = ry

e (rgrirs) is a palindrome e=+ rq = 1y

o (roryrs. .. rplie1) isa palindrome, for some k£ {2,3,4,... .n—1} = 20 = Ly and (o2 ..rg) &8 a4 palindrome

As there is exactly one palindrome for which ry is the start we conelnde thens is at most one palindrome such that
g 18 its start and it has the form as in the third cage above. Thus there are af most three palindromes to which
an ean be the first digit as we have two options for the choice of 7o € [0,1}. Thus, hy The Pigecnhole Principle
we can choose a digit such that ro s a start of at mest one palindrome, as desired.

Now using this and the remmarks given before we have shown that the smallest possible mumber of nice palindromes
with e digits is | (for e = 1) and 200 = 2 (for n = 2),

Problem 4. Given a triangle ABC let D, E. F' be orthogonal projections from A, B, " to the opposite sides
respectively. Let X.Y, Z denote midpoints of AD. BE, C'I' respectively. Prove that perpendiculars from D to
YZ, from Eto XZ and from F' to XY are concurrent.

(Matija Bucié)



First solution. Let I be the orthocenter of the triangle ABC, We denote the midpoint of EF as P, As PZ 15 a mdline
of the triangle CEF we have PZ||AC, and as Y I is perpendicular to AC, we get that Y I is perpendicular wo PZ.
Analogonsly we conclude that the line ZH is perpendicular to PY, so H has to be the orthocenter of the triangle PY Z.
From this we can deduce that the line P s perpendicular to Y Z, and thas P11 s parallel to the line perpendicular to
Y Z which passes through 1),

Now denote as N the tangency point of the incircle of the triangle DEF with its side FF. Let N’ be the point symmetric
to N owith respect to H and let. M be the tangency point of the D-excircle of the triangle DEF with the side EF. As
P is the widpoint of NAT and s is 21 the midpoint of NN, we have that PH s parallel to N'A As we know that M
is the wap of the point N under the homothety with centre 2 which maps the incircle to excirele of the triangle DEF,
we can conclude that D, N and M are collinear.

We can now conclude that the line perpendicular to Y Z passing through D s parallel to £H while this line 5 parallel
to N'M. As D lies on N'M we conclude that DM is the line through I perpendicular to Y Z,

Analogonsly we ean conclude that perpendiculars from £ o XZ aud from F to XY are lines joining vertices with the
corresponding excircle tangency point of the triangle DEF. Using the Ceva's Theorem gives us the result,

Remark: The mtersection of the lines connecting the vertices of the triangle respective tangency points intersect in the
point. which is ealled Nagel's point of the triangle (so we have proved (hat the three lines in the problem intersect in the
Nagel's point of the triangle DEF).

Second solution. By applying The Carnot’s Theorem to the triangle XY Z and points D EF, three lines in the
problem are concurrent if and only if:

FX2P—FY? DY =D 4 B2 —EX* =0 (1)

In the triangle AFD and EF B lines FX and FY are medians, so

FX? = Yoar porp® — ap?

——

Py =

(2F B + FE? < EB*).



Noting that the other sides on the LIS of (1) are medians in the respective triangles wo deduce:
FX*—FY?4 DY? - DZ* + EZ* —EX® =
%l(ur"‘ 2P AR — (2P B 43P ET— BB+
{208+ 2BET - BB} - (2DC7 4 201 - TR
+2EC? + 3BFF —OFY) — (AEA® + 2807 - APY)| =
%(AI-"" — FB® 4 DB® — DC* 4 EC® — EAY),
From right-angled triangles AFC and F'BC we get:
AF? — FB® = (AC® - FC?) - (BC* - FC?) = AC* - BC*,
Applying this analogonsly to triangles AEB. EBC. ADC, ADB we get:
FX? - PY? 4y DY’ - DZ* 4 EZ? - EX* =
SAF — FB 4 DB~ DC* | BC — EA%) =
%(AC"‘ ~ BC* § AB® = AC* + BG? — ABY) =0,

Q.E.D.



