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FOR A CORRELATION BETWEEN A CLASS OF SECOND ORDER
LINEAR DIFFERENTIAL EQUATIONS AND A CLASS OF SYSTEMS

OF FIRST ORDER DIFFERENTIAL EQUATIONS

UDC: 517.926
Boro M. Piperevski®, Biljana Zlatanovska®

Abstract. In this paper, a class of second order linear differential equations and
a class of systems of first order differential equations are considered. By a
method of transformation, the results for a correlation between them are
obtained.

1. INTRODUCTION

In this paper, we consider the second order linear differential equations
(—a)t—b)x"+ (oyt +ay)x+Px=0,a#=b (A)
and the system of first order differential equations
(t—a)x{ + Ax; + Bx, =0

B
(t=b)xy +Cx;+Dxy =0 ®)
By replacing xj = £x3,%] = £.x3,C #0in the system (2), the system
(t—a)xy + Axz + BCx» =0
©

({t—b)x5 +x3+Dxy =0
is obtained.

On the 7th Macedonian symposium of the differential equations, Professor
Boro Piperevski gave the following dilemma “Can a second order lincar
differential equation (A) transform in one or in more systems of first order
differential equations (B)?” Sure, the second order linear differential equation
(A) can transform in systems of differential equations from the type which is
different from the systems (B). In mathematical literature until this moment
does not have some result which is an answer to this question. In this paper, this
dilemma will be solved. The consequence of this result is a sequence of
differential equations of type (A) whose integrality depends on only one of
them. An interesting case is when the class systems of differential equations
from first-order of type (B) are considered as a linear matrix differential
equation from first-order. This case is presented in more papers as
[6,7,8,9,10,11,12]. Finally, a new dilemma for interpretation of the term
reductability is presented.

2010 Mathematics Subject Classification. 34A30.
Key words and phrases. Second order linear differential equation, Systems of
first order differential equations.
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Considering a second order homogeneous linear differential equation of type
B(x)y"+B(x)y'+A,, By(x)y=0 where P(x),(i=0,1,2) are polynomials and
Ay, 1s a parameter. According to Brenke [4], this equation will have polynomial
solutions of degree n for each n e N with an appropriate value of the parameter
A, > if Py(x),A(x), and Ry(x) are polynomials of the second, first and zero

degrees respectively. Also, the general formula for the series of polynomial
solutions for the equation as well as certain conditions for their orthogonality
with appropriate weight is shown.

Note that in the case when all members of the sequence (A,,),n=0,1,2,...,

are different, then A,, are called their own values, and the polynomials y, own
functions.

Special cases of such known orthogonal polynomials are the polynomials of
Legendre, Jacobi, Tschebyscheff, Hermite, Laguerre and others which are used
in numerical mathematics.

Let us mention the classic results regarding polynomial solutions of the very
important hypergeometric differential equation, as an equation with polynomial
coefficients. Its solutions are special functions, especially the Jacobi, Legendre,
Tschebyscheff polynomials, which belong to the class of classical orthogonal
polynomials for which there are corresponding formulas, based on Rodrigues'
famous formula.

In fact, this formula was obtained by Rodrigues O. in 1814 for a polynomial
solution of a special differential equation of Legendre, but there are the other
classical polynomials that are expressed in a similar way.

This special class of differential equations (1) is obtained when Laplace's
partial differential equation is transformed into spherical coordinates and
afterward, it is required its solution to be a product of functions that depend on
only one variable.

In the theory of partial equations, the classical results for the solution of the
internal problem of Dirihle for the contour problem for the Laplace's partial
differential equation in the sphere are known. By transforming in spheres'
coordinates and by using the Fourier method to the separation of the variables,
the differential equations are obtained. Their solution is the classes of
orthogonal

Legendre polynomials which are the own functions for the appropriate
Sturm-Lowville task. Therefore, the solutions of the Laplace's partial
differential equations in a type of homogeneous polynomials from the same
degree are obtained. Spherical harmonic functions are called.

Remark 1.1. The term reductability of linear homogeneous differential
equations has two interpretations. Reduction in a wider interpretation is a
reduction of an equation of a system of linear homogeneous differential
equations of lower order and that reduction can be more significant, i.e. it can be
reduced to multiple classes of linear homogeneous differential equations
systems from a lower order.
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Definition 1.1. (Frobenius): A linear homogeneous differential equation
whose coefficients are unambiguous functions is called more predictable
according to Frobenius if there is no common solution with a linear
homogeneous differential equation with coefficients unambiguous lower order
functions. Otherwise, it is called reductive according to Frobenius. for example
[1,2,3,4,5].

2. MAINS RESULTS

Let the system is given
(t—a)x;+Ax; +Bxy =0

, (D
(t—b)X2 +x + DX2 =0
The equations which correspond to this system are
(t—a)t—b)x;" +[(A+D+1)t—(A+1)b—Dalx{ +(AD - B)x; =0 2)
(t—a)(t—b)xy" +[(A+D+1)t—(D+1)a— Ab]xs +(AD—B)x, =0 3)
The equation (2) is equivalent to equation
(f - a)(t —b)xl" + (0.1[ + 0y )x{ + lel =0,a#b (4)
if the relations
a:a,bzb,A+D+l=a1,—(A+l)b—Da=a2,AD—B=B1 (5)
are satisfied. The equation (3) is equivalent to equation
(t—a)t—b)xy" + (o)t +05)xy +Pixy =0,a#b (6)
if the relations
a:a,bzb,A+D+1=aT,
. . D
~(D+1)a—Ab=05, AD—B =P
are satisfied. The equation (3) or the equation (6) can be written in the form
(t—a)t—b)xy" +(oyt +b—a+ay)xh +Bix, =0,a#b (6)

if an equation (4) is given.

Therefore, a system of type (1) corresponds to two differential equations (2)
and (3) of type (4) i.e. (6). Therefore, if the coefficients of the system (1) with
the relations (5) and (7) are known, then the equations (4) and (6) can be found,
with the help of the connections (5) and (7).

Let, us ask the opposite question: how many systems of type (1) (if exist)
suit the equation (4)?

Let the coefficients of equation (4) are known. From the relations (5), the
equations

a:a,b:b,A:b_a+aa1+a2,D=

—az—bal
,B=AD- 8
— p— B (®

and the system
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(t—a)x] + Ax; + Bxy =0

' ®
(l—b)JC2 +x+ sz =0
are obtained i.e. the system (1).
From the relations (7), the equations
a:a,b:b’ D* _ b—a—botl ) ’ A* _ Oy +aoy ,B* :A*D* —Bl (10)
a-b a-b
and the system
(t—a)yl'+A*y1+B*y2=O (11

(t=b)s+ 3 +D yy =0
are obtained.
Let us see which two equations correspond to this new system (11).
By using (1), (2) and (3), the equations

(t—a)t—b)y, +[(A"+D* +1)t—=(A +Db—D"alyj +(4'D =B )y =0 (12)
(t—a)t—b)yy" +[(A" +D" + ) =(D" +Da—Ablys +(A' D =B )y, =0 (13)
are obtained or according to (10), the equations

(t—a)t—b)y" +(oyt+a—b+ay)y] +By =0,a=b (14)

(t=a)(t=b)yy" +(oyt +ap)y +Pryy =0,a#b (15)
are obtained.
So, the equation (4) corresponds to two systems: the system (9), which is the
same as the system (1), and the system (11).
The equation (4) is the same as the equation (15) for y, =x;. Equation (14)

appears as a new equation.

By using (10) and (8) the system (11) can be write as
t-a+(A+D)y +(-A+D—-1+B)y, =0 ar
(t=b)yy+y+(D=Dy, =0

Let, the same procedure for the system (11%*) is repeated i.e. for the new

equation (12), i.e. (14), putting 4" = 4+1,B° =—4+D-1+B,D =D—1. By
the same procedure is obtained the following system
(t—a)z} +(A" + 1)z + (=4 +D" =1+ B")zy =0
(t=b)zh+z+(D —1)zy =0
The following equations correspond to the system (16),
(t—a)t—b)z{ +[(A +D" +1)t = (4 +2)b—(D" =Dalz| + (4 D =Bz =0 (17)
(t—a)t—b)zy+[(4 +D +1)t—(A4 +D)b=Dalzy +(A D =B )z, =0 (18)
Obviously y; =z, , but a new equation is an equation (17) for the function z .
In accordance with the corresponding shifts, the equations (17) and (18) are

(16)
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(t—a)t—b)z" +[(A+D+1)t—(4+3)b—(D-2)alz| +(AD—-B)z;=0 (17"

(t—a)t—b)zy" +[(A+D+1)t—(A+2)b—(D-Dalzy +(AD-B)z, =0 (18"
ie.
(t —a)t—b)z] + (ot +2a—2b+0y)z| +PByz; =0, a = b (177
(t—a)t—b)zh +(oyt +a—b+0,)zh +P1zy =0,a#b (187
The equations (17) and (18) correspond to the system
(t—a)zj+(A+2)51 +(2D-24+B—-4)z, =0
(t=b)z5+z1+(D—-2)zp =0

Theorem 1. Let equation (4) be given. Then the equation (4) is reductive to
only two systems of first order differential equations of type (1).

Proof. Let the differential equation (4) is given. By the method of
transformations of a unique way from the formulas (5) and (7), the two systems
(1) and (11) i.e. (11%*) arc obtained.

It is interesting that the free member of the polynomial coefficient before the
first derivative of the equations (4), (6°), (14), (17**) changes with changing of
the systems and that

—(a-b)+oy, oy, a—b+ay, 2a-b)+a,,. nla—b)+o,,nekZ
After a series of transformations, we can obtain an equation of type
(t—a)t—b)x"+[oyt+n(a—b)+a,]x'+Px=0,a#b (19)

Theorem 2. Let the differential equation (4) is given. Then there is a
sequence of differential equations of type (19).

Proof: Let a differential equation is given that is reductive on the systems (1)
and (11%*). The system (1) corresponds to the differential equation of type (6¥).
By the method of transformations from equation (4) with the formulas (7), we
obtained the system (11*) to which corresponds the equation (14). By
continuing the method of mathematical induction, the sequence of differential
equations of type (19) is obtained.

We summarize: Let the equation

(16)

(t — a)(t —b)xlﬂ + (alt + az)xi + lel = O, a#zb
is given.
Let x( be one of its particular solutions. From the system (9)
Bxyg =t —a)xjg + 4x1p]
is obtained, where x, is a particular solution to the equation
(t—a)t—b)xy" +(oyt+b—a+o,)xh +Px,; =0,a#b

and
b—a+aoy +a,

—0y—b
7D: (&%) alsB:AD_Bl

a=a,b=b, A=
a-b a-—

From the system (11%)
yio =1 =b)xjo +(D—1Dxy0]
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is obtained, where y,( is a particular solution to the equation

(t—a)t—=b)y" + (gt +a—b+ay)y] +By; =0,a=b
From the system (16%*)
z10 == =b)¥ip +(D—=2)»0]
is obtained, where z| is a particular solution to the equation
(t—a)t—b)z{ +(ayt +2(a—b)+0y)z + Pz =0,a #b
By continuing the procedure, the following result is obtained.
A particular solution to an equation of type
t—a)t—b)x"+(oyt+n(a—b)+ay)x +Bx=0,a=b
will be obtained by the formula
xo ==t =b)xy1 0 +(D=n)x, 0]
where x,_; o is a particular solution to the equation
(t—a)t—=byx,_ +(ogt+(n=)(a—b)+ay)x, 1 +Pix,_1 =0,a=bneZ.
Lemma. Let the sequence of differential equations of type (19) is given and
let a particular solution x;_; o of the equation
(t—a)t—b)xj_y +(oyt +(k—1(a—b)+0y)x)_ +PBi1x_y =0,a=bkcZ
is known. Then by formula
X0 =t =b)xp_1 0 +(D=K)x)_1 0. k€ Z
the particular solution of the equation
t—a)t—b)x"+ (gt +k(a—b)+o0,)x' +Bix=0,a#b,keZ
is given.
Proof. By the principle of mathematical induction, the result is obtained.

3. EXAMPLE

The result obtained for correlation between a class of second order linear
differential equations and a class of systems of first order differential equations,
we will shows via example.

Let the second order differential equation

—-D@E—-2)x"+ (3t +1)x"+3x=0 (1)
and the system of first order differential equations
(t=Dx{ +x +2x, =0 @)
(t—2)xh —4x; —5x, =0
ie.
(t-Dx +x-8x,=0
(t—2)x5+x;—5x, =0
are given. By corresponding transformations of (2'), the equations arc obtained

2
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—D(@=2)x]{ + (3t +1D)x{ +3x, =0 (3
(t—D(t—2)x5 + (3t +2)x5 +3x, =0 4)
where x; =x. The solution is the functions x; =12¢—4,x, =3¢—2.The new
system from (3°) is
=Dy +2y =15y, =0

, (5%
(1=2)y2+ 1 -6y, =0
The equations which suit the system (5”) are
(t=1)(t=2)){ =3t y{ +3y, =0 (6)
(t=D(=2)y5 +(=3t+1) 13 +3y, =0 ()
where y, = x;. The solution is the functions
vy =12t—4,y; =60t or y, =3¢t-1, 3 =15¢.
By the same procedure, a new system from the system (5°) is obtained
(t—Dz{+321 24z, =0 &)

(t-2)z5+21—72, =0
The equations which suit the system (8°) are
—D(—-2)z{ =Bt +1)z{ +32,=0
(t—1D)(t—2)z5 —3tz5 +32, =0
where z, =y;. The solution is the functions z =360¢+120,z, =60t or
71=6t+2,zy =t.

4. CONCLUSIONS

We concluded that exists a correlation between the class of second order
linear differential equations (A) and the class of systems of first order
differential equations (C). That means that the second order linear
differential equation (4) is reductive with two systems of first order
differential equations of type (1). But also for the second order linear
differential equation (4) exists a sequence of differential equations of type
(19).
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THREE THEOREMS ABOUT FIXED POINT FOR
CONTRACTIONS IN A COMPLETE METRIC SPACE

UDC: 515.126.4
Risto Malcheski', Samoil Malcheski?

Abstract. In this paper are presented some generalizations of the R. Kannan, S.
K. Chatterjea and P.V. Koparde and B.B. Waghmode theorems about common
fixed points in a complete metric space (X,d). In doing so, we defined a

continuous, injection and subsequentially convergent mapping 7, and a
function f . The function belongs to class @ continuous monotony non-
decreasing functions f :[0,+o0) —[0,+0) such that f_l(O):{O}. In some
results f is additionally defined as sub additive.

1. INTRODUCTION

The Banach principle for fixed point is well known in the literature. That is:
Let (X,d) be a metric space. The mapping S:X — X is said to be a

contraction if there exists A € (0,1) such that for all x, y € X holds that
d(Sx,Sy)<hd(x,y). )
If the metric space (X,d) is a complete metric space, then the mapping 7 for

the condition (1) is satisfied has a unique fixed point.
R. Kannan, 1968 ([4]) generalized the Banach principle about a fixed point,
as the following:

Theorem 1. If the mapping S: X — X for a complete metric space (X,d),
satisfies the inequality
d(Sx,S8v) < Md(x,Sx)+d(y,Sy)), 2)
for L e (O,%) and x,y € X, then S has a unique fixed point. 0
If S satisfies the condition (2), then S is said to be Kannan type mapping.

S. K. Chatterjea, 1972 ([7]), defined similar conditions for contraction as the
following:

Theorem 2. If the mapping S: X — X for a complete metric space (X,d)

satisfies the inequality
d(8x,8y) SMd(x,8y) +d(y,5x)) , @

2010 Mathematics Subject Classification. Primary: 47TH10 Secondary: 54H25.
Key words and phrases. subsequentially convergent mapping, fixed point
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for Ae(0,4) and x,y e X, then S has a unique fixed point. O

If S satisfies the condition (2), thenS is said to be Chatterjea type of
mapping.

P. V. Koparde and B. B. Waghmode, 1991 ([3]), presented a new generalize-
tion of the Banach principle for a fixed point as the following:

Theorem 3. If the mapping S: X — X for a complete metric space (X,d)
satisfies the inequality
d?(Sx,8y) < Md*(x,5%) +d* (1,50)) » 3)
for A e(0,4) and x,y e X, then S has a unique fixed point. 0

If § satisfies the condition (3), then § is Koparde-Waghmode type of
mapping.

S. Moradi and D. Alimohammadi [9] generalized the R. Kannan result, using
the sequentially convergent mappings. Some generalizations of The Kannan,
Chatterjea and Koparde-Waghmode theorems are proven in [1], by using the
sequentially convergent mappings, defined as the following:

Definition 1 ([8]). Let (X,d) be a metric space. A mapping 7: X —> X is
said sequentially convergent if we have, for every sequence {y,}, if {Ty,} is
convergence then {y,} also is convergence. A mapping 7" is said sub-sequen-
tially convergent if we have, for every sequence {y,}, if {Ty,} is convergence
then {y,} has a convergent subsequence.

S. Moradi u A. Beiranvand, [8] introduce the concept for T contractive
mapping, by using @ class of continuous monotony non-decreasing functions
f:[0,+0) —[0,+0) such that f _1(0) ={0}, defined as the following.

Definition 2 ([8]). Let (X,d) be a metric space, S,7: X —>X and f€®.
A mapping § is said 7y —contraction if there exist A € (0,1) such that
SIS TSY) <A (T, 1)),
forall x,yeX.

We must notice that, if f€®, then f _1(0) ={0} implies that f(¢r)>0, for
all £>0. S. Moradi and A. Beiranvand proved that if S is Ty contractive
mapping, then S has a unique fixed point. Then, M. Kir and H. Kiziltunc, [2]
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generalized the S. Moradi and A. Beiranvand result, for Kannan and Chatterjea
type of mapping.

In our further consideration we will generalize the Kir and Kiziltunc results
and will elaborate its application to the Koparde-Waghmoden type of mapping.

2. MAINS RESULTS

Theorem 4. Let (X,d) be a complete metric space S: X — X, fe€® and

the mapping 7:X — X Dbe continuous, injection and subsequentially
convergent. If there exist o >0,3>0 such that a.+23 €(0,1) and

S(d(TSx,TSy)) < (ou+B) f(d(Tx,TSx)) +Bf (d(Ty, TSy)) “4)
forall x,y e X, then S has a unique fixed point.
Proof. Let x; be any point on X and let the sequence {x,} be defined as

X, =5x,, n=0,1,2,3,.... For A= 2_‘?;?;[3) and since a+2B(0,1), o,p>0,

we get that A €(0,1). The inequality (4) implies
J(d(Txy41,Txy)) = f(d(TSx,, TSx,1))
< (o +B)f(d(Tx, 1, TS, 1)) + B (d(Tx,, TSx,))
= (0 +B) S (d(Txy1, Txp)) + Bf (d (T, Ty 1))

Analogously,
Sd(Txy 41, Tx,) < Bf(d (T, Tx,)) + (04 B) f(d (T, TX41)) -
By adding the last two inequalities , we get the following

f(d(Txn+] 9T-xn )) < kf(d(Tx” 9T-xn—] )) > (5)
for each n=1,2,3,.... The inequality (5) implies that
.f(d(Tx)1+laTx11) ) < A'n.f(d(TxlaT-x() )) 5 (6)

for each n=1,2,3,.... Further, the inequalities (4) and (6) imply that for all
mneN n>m

S@d(Tx,,Tx,,)) = f(d(TSx,_1,TSx,,_1))

< (a+PB) f(d(TSx, 1, T, 1)) + B (d(TSX,y 1, T 1))
=(a+PB) f(d(Tx,, Tx,, 1))+ Bf (d(Tx, Ty 1))
<[(a+BN"™ +BA" ] £(d (T, Txp))

holds true. Analogously,

S (T, Tx)) <o+ B +BA" 1 £(d (Toxy, Tg))]
By adding the last two inequalities, we get that
F(d(Tx, T )) < S22 407 £ (T3, T )
The last inequality implies that
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lim f(d(Tx,,Tx,,))=0,

m,n—»0

and since fe€® we get that lim d(7x,,Tx,,)=0. Therefore, the sequence

m,n—>0
{Tx,,} is Caushy sequence. But, X is complete metric space, and therefore the
sequence {7x,} is a convergent sequence. The mapping T:X —>X is
subscquentially convergent, therefore the sequence {x,,} consists a convergent

subsequence {x,(;}, i.e. it exists u € X so that lim x,) =u . The continuity
k—
of T implies that lim Tx, ;) =Tu . Further, {Tx,)} is a subsequence of the
k—>0

convergent sequence {7, }, therefore lim Tx, = lim Tx,) =Tu.
n—0 k—>o0

It will be proven that u € X is fixed point for the mapping S . Now,
fd(TSu,Tx,,1)) = f(d(TSu,TSx,)) < (o.+B) f(d(TSu,Tu)) +pf (d(TSx,,,Tx,))

=(o+P)f(d(TSu,Tu)) + Bf (d(Tx,41,Tx, )
holds true. Analogously,
S(d(TSu,Tx,, 1)) < Pf (d(TSu,Tu)) + (o +P) f(d(Tx,41,1x,))
therefore

F(d(TSu, Ty 1)) < 2B £(d(TSu, Tu)) + £(d(Tx, 1. T, )]

For n— 00, in the inequality above, lim Tx, =Tu and the properties of f/* and
n—o0

the metrics imply that
f(d(TSu,Tu)) < %m[f(d(TSu,Tu)) + £(0)]

holds true. But 1—%23 >0 and f _1(0) ={0} . Therefore, the above inequality

implies that d(7Su,Tu)=0,i.e. TSu=Tu. Finally, T is injection, and therefore
Su =u , that is the mapping S has a fixed point.
Let u,ve X be two fixed points for §, i.e. Su=u and Sv=v. So, (4)
implies that
f(d(Tu,Tv)) = f(d(TSu,TSv)) < (oo + B[ (d(Tu,TSu)) + pf (d(1v,TSv))]=0,
holds true, that is d(7u,7v)=0. Therefore, Tu=Tv. But, T is injection, and
therefore u=v, thatis 7 has a unique fixed point. m

Corollary 1. Let (X,d) be a complete metric space, S: X - X and f€®.
If there exist a,3 >0 such that o+ 2 €(0,1) and

Sd(Sx,8y)) < (a+P).f(d(x,50)) +Bf (d(»,5)) ,

for all x,ye X, then S has a unique fixed point and for cach x; e X the

sequence {S"xq} converges to the fixed point.
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Proof. The mapping 7x=x, for each xe X is continuous, injection and
sequentially convergent. Therefore, the corollary is directly implied by Theorem
4for Tx=x.m

Corollary 2. Let (X,d) be a complete metric space, S: X — X and the

mapping 7: X — X is continuous, injection and subsequentially convergent. If
there exist o, >0 such that a+2f3 €(0,1) and

d(TSx,TSy) < (o + P)d(Tx, TSx) + Bd(Ty, TSy)
forall x,y e X, then S has a unique fixed point.
Proof. The function f(f)=¢, ¢>0 1is monotony increasing and

f _1(0) ={0} . Therefore, the corollary is a direct implication of Theorem 4 for
JSO=t.m

Comment 1. 1) For =0 u B=A, the Theorem 4 is transformed as the
Theorem?2.1 [2].

2) If we take into a consideration that the mapping 7x=ux, for all xe X is
continuous, injection and subsequentially convergent, the Corollary 2 implies
that if for the mapping S: X — X exist o, >0 such thato +23 €(0,1) and

d(Sx,8y) < (a+P)d (x,8x) +Bd(y,Sy) , (7
forall x,y e X, then S has a unique fixed point.
3) For =0 and B=A in (7) , we get that the Theorem 4 implies the
Theorem 1.

Theorem 5. Let(X,d) be a complete metric space S: X > X, fe® and

the mapping 7: X — X be continuous, injection and subsequentially conver-
gent. If it exist o> 0,8>0 such that a+ 2B €(0,1) and

F(d*(TSx,TS)) < (o +B) f(d* (Tx, TSx)) + B (d* (T, TSY))
for all x,y e X, then S has a unique fixed point.

Proof. It is obvious that g(¢)= t2, t >0 is a function of the @ class. Further,
if f,g€®,then foge@, therefore the truth of the theorem is implied by the
Theorem 4. m

Corollary 3. Let ()X,d) be a complete metric space, S: X — X and f€6®.
If there exist a,3>0 such that a+2p €(0,1) and

F(@*(Sx,Sv)) < (au+PB) £ (d? (x,5)) + Bf (d* (v, V) ,
for all x,ye X, then § has a unique fixed point and for each x;e.X the

sequence {S"xy} converges to the fixed point.
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Proof. The mapping Tx=x, for each xe X is continuous, injection and
sequentially convergent. Therefore, the corollary is directly implied by Theorem
Sfor Tx=x.m

Corollary 4. Let (X,d) be a complete metric space, S: X — X and the
mapping 7: X — X is continuous, injection and subsequentially convergent. If
there exist o, >0 such that a+2f3 €(0,1) and

d*(TSx,TSy) < (o +B)d > (Tx, TSx) + Bd > (Ty, TSy)
for all x,ye X, then S has a unique fixed point.

Proof. The function f(¢f)=¢,¢>0 is monotony increasing and f -1 0)=1{0}.
Therefore, the corollary is a direct implication of Theorem 4 for f(¢)=¢.m

Comment 2. 1) For =0 and B=A, in the Theorem 5 we get that in a
complete metric space (X,d) if S:X—>X, fe® and the mapping
T:X — X is continuous, injection and subsequentially convergent and if it
exists A e(0,1) is such that

S (TS, TSy) <Mf(d> (T, TSX) + £ (d* (T, TS)))
for all x,y e X, then § has a unique fixed point.

2) If we take consideration that the mapping 7x=x, for all xe X is
continuous, injection and subsequentially convergent, the Corollary 4 implies
that if for the mapping S: X — X there exist a,3>0 such that o.+23 €(0,1)

and
d”(Sx,5) < (a+B)d” (x,50) +Bd> (1.5). @®)
for all x,y e X, then S has a unique fixed point.
3) For a=0 and B=A in (8) we get that the Theorem5 implies the
Theorem3.

Theorem 6. Let (X,d) be a complete metric space S: X — X, the mapping
T : X — X be continuous, injection and subsequentially convergent and f € ®
is such that f(a+b)< f(a)+ f(b), for all a,b>0. If there exist a>0,>0
such that oo +23 (0,1) and

S(d(TSx,TSy)) < (o +PB) f(d(Tx, TSy)) + Bf (d (Ty, TSx)) €]
forall x,y e X, then S has a unique fixed point.

Proof. Let x, be any point on X and the sequence {x,} be defined as the
following x,,; =Sx,, n=0,1,2,3,.... The inequality (9) and the property of 1
imply the followings

Jd(Txp gy, Ty)) < Bf (A (D1, T, ) + B (d (T, T 1))
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and
Sd(Txypi1, 1)) < (04 B)f (AT, T)) + (04 B) F(d (T, T 1) -
By summarizing the last two inequalities we obtain the following

.f(d(Txn+1>Txn )) < %f(d(TxnaTxn—l )) 5 (10)
_ _ o+2B . . .
for each n=1,2,3,..., for A= =@r2p) <1. Further, by applying the inequality

(10), analogously as the proof in theorem 4, we get that the sequence {7x, } is
convergent. Therefore, the sequence {x,} consists of convergent subsequence,
Le. it exists u €.X and a subsequence {x,)} of the sequence {x,} such that
lim x, ;) =u. The continuity of 7' implies that lim 7x, ) =7Tu, that is
k—o k—

lim Tx, = Tu . Further, the inequality (9), analogously as the proof in theorem
n—»o0

4, implies
S(A(TSu,Tx,1) < 2 £(d(Tu, Ty ) + £ (d(T,, TS0))]
For n—in the above inequality, the continuity of f and 7 and the
properties of the metric, imply
F(d(TSu, Tu)) < S22 £(d(TSu, Tu)) + £(0)].

Therefore, analogously as the proof in theorem 4, we conclude that Su=u, that
is the mapping S has a fixed point.
Let u,ve X be fixed pointon S,i.e. Su=u and Sv=v. Then, (9) implies
JS(d(Tu,1v)) = [ (d(TSu,TSv))
<(a+B)f(d(Tu,TSv)) +Bf (d(Tv,TSu))

= (+2B) /(d(Tu, Tv)).
Therefore, u=v, i.e. S has a unique fixed point. Finally, if 7 e sequentially
convergent, then by substituting the sequence {n(k)} with the sequence {n}

and arbitrarily of x; € X and the above stated, imply that for cach x, € X the

sequence {S"xq} converges to the unique fixed pointon S.m

Corollary 5. Let (X,d) be a complete metric space, S: X > X and fe®
be such that f(a+b)< f(a)+ f(b), for all a,b>0. If it exist a,f >0 such
that o +23 €(0,1) and

JSd(Sx,8y)) < (a+P)f(d(x,59) +Bf(d(y,5x),

for all x,ye X, then § has a unique fixed point and for each x;e X the

sequence {S"x,} converges to that point.
Proof. For Tx = x, in theorem 6 we get the corollary. m
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Corollary 6. Let (X,d) be a complete metric space, S: X — X and the
mapping 7:L — L be continuous, injection and subsequentially convergent. If
it exists o,3>0 such that a+2p <(0,1) and

d(TSx,TSy) < (a.+B) | d(Tx, TSy) + Bd(Ty, TSx)
for all x,ye X, thenS has a unique fixed point.

Proof. For f(¢)=t,in theorem 6 we get the corollary. m

Comment 3. 1) For ao=0 and B=A, the Theorem6 implies the Theorem
2.2 [2].

When expressing the Theorem 2.2 [2] is missing the condition of sub-
additivity of the function f € ® which is applied at the beginning of the proof
of the Theorem.

2) Having in mind that 7x=x, for all xe X is continuous, injection and
subsequentially convergent, the Corollary 6 implies that if for the mapping
S:X > X exist a,3>0 such that a+2 €(0,1) and

d(8x,8y) < (o.+P)d(x,5¢) +Bd(y,5) , (1D
forall x,y e X, then S has aunique fixed point.
3)For ao=0 and =X in(11), the Theorem6 implies the Theorem?2.
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N-TUPLE ORBITS TENDING TO INFINITY
UDC: 517.984.3
Sonja Mancevska, Marija Orov¢anec

Abstract. In this paper we prove some results on the existence of a dense set of
vectors cach having an n-tuple orbit tending to infinity for sequences of
mutually commuting bounded linear operators acting on an infinite
dimensional complex Banach space.

1. INTRODUCTION

Let X be a complex infinite-dimensional Banach space and B(X) the
algebra of all bounded linear operators acting on X . For an operator 7 € B(X),
o(T), op(T), 64p(T) and r(T) will denote the spectrum, the point spectrum,

the approximate point spectrum and the spectral radius of the operator T,
respectively.
If 1,,T5,...,1, € B(X) are mutually commuting operators, the n-tuple orbit

(or the orbit under the n-tuple T=(7{,75,...,T,,) ) of the vector x € X is the set
Orb({T}",,x) = Orb(T, x) = {Tl"sz"z o Thixk 201<i< n} : (.1

The n-tuple orbit tends to infinity if
tim 7975 T =0, forall k;20, j=i, 1<ij<n.
k;—o0

For n=1, the n-tuple orbit (1.1) reduces to a simple sequence of form
Orb(T, x) = {T”x ‘n= 0,1,2,...} .

usually referred as single orbit (or simply orbit) of the vector x € X under the
operator T . Regardless of the dimension of the space, single orbits tending to
infinity may exist only when T 1is power unbounded operator, i.e. when
sup,, "T " ":oo. In this case, by the Banach-Steinhaus theorem, the space will

contain a dense Gy -set of vectors each having an unbounded orbit under 7' (i.e.
orbit with sup,, "T "x" =o0). But, unlike the case of an operator 7 acting on a

finite-dimensional space where the only unbounded orbits for 7' are those
tending to infinity and may exist if, and only if, 7(7)>1, in the case of an

2010 Mathematics Subject Classification. Primary: 47A05; Secondary: 47A11,
47A25.

Key words and phrases. Banach spaces, orbits tending to infinity, n-tuple orbits,
sequences of operators
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infinite-dimensional space, the structure of the set of all vectors with orbits
tending to infinity can be quite different. Clearly, if o, (T') contains a point A
such that [A|>1, this set will contain all the elements of Ker(Z —iJ)\ {0}.
Furthermore, the set of all vectors with orbits tending to infinity can be dense in
the whole space, even if the point spectrum of the operator is empty. The results

obtained by B. Beauzamy for operators on infinite-dimensional Hilbert or
reflexive Banach space X (cf. [1, Ch. III]) imply that for any operator

T e B(X) for which 6,,(T)\o,(T) contains a point A with |\l >1, the space
will contain a dense set D such that "T”x" —o0 as n—>oo, forall xeD. The
results obtained by V. Miiller ([7] and [8]) imply that such set exists for any
operator T on arbitrary infinite-dimensional Banach space as long as r(T) >1.
In general, this set is not a Gg-set since the space may contain another dense
Gy -set of vectors with unbounded orbits: vectors for which Orb(7',x) itself is
dense in the whole space (cf. [9, Theorem 1] or [1, I11.0.C]).

Under the assumption that 7} and 7, are bounded linear operators on
infinite-dimensional Hilbert or reflexive Banach space satisfying

(Gap(T)\op () N ke Tl > 1} 2 D,
(Gap(T)\ () NikeC: N> 1= 2.

in [2] and [3] the authors have shown that the space contains a dense set D such
that

"Tl"x" — o0 and ||T2nx|| — oo, forall xeD.

If, in addition, 7} and 7, are commuting operators, each bounded bellow,

then for every xe D the corresponding 2-tuple orbit tends to infinity ([10,
Theorem 1.4]):

“lel T2k2 x” — 0 as k > o, forevery k, 20,

and

kl 2
"Tl T)*x
Using the following three results, in the next section we are going to

generalize this result for n-tuple orbits and sequences of mutually commuting
operators each bounded bellow.

— 0 as ky > oo, for every &y 20.

Theorem 1.1. ([8, Theorem V.37.14]) Let X and Y be Banach spaces and
let (1,),>1 be a sequence of operators in B(X,Y). Then for every sequence of

positive numbers (a,),>| with Y, - a, <o, in every open ball in X with
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radius strictly larger than ) . a, <o, there is a vector xe X satisfying
||Tnx|| >a, ||Tn||,f0r all n>1.

Lemma 1.2. ([8, Lemma V.37.15]) Let €>0 and (a,),> be a sequence of
positive numbers satisfying . 190 <€. Then there is a sequence of positive

numbers (b,),> such that b, —o as n— and Y . a,b, <t.

-1
Corollary 1.3. ([8, Corollary V.37.16]) If T € B(X) satisfies Y= || <o,
then there is a dense set D < X such that Orb(T,x) tends to infinity for every
xeD.

2. MAIN RESULTS

Throughout the rest of this paper we assume that the spaces are complex and
infinite-dimensional.

Lemma 2.1. Let X be a Banach space and T,,T,...T,, € B(X) are mutually
commuting operators with at least one of the following properties:

(P.1) the operator T; is bounded bellow, for every i;
(P.2) (Z}k -T /k)kz() is a norm bounded sequence, for every i and j.

If xe X is such that Orb(I;,x) tends to infinity for every ie{l,2,...,n}, then
for every 1<m<n and every 1<i<ip<...<i

Orb({7}i }j:1 ,X) tends to infinity.

im SN the m-tuple orbit

Proof. 1f the operators 77,75,...T, have the property (P.1), then there are
positive numbers Cj,C;,...C, such that

Tx|=Cllxll, forall xe X, 1<i<n.
|7 = ¢

Hence, if 1<m<n, 1<i <iy <...<i, <n and k]-ZO,je{l,Z,...,m},thenfor

every s €{1,2,...,m} and fixed values for kj , je{l,2,...m}\{s}

”Tk‘ Tk T >

e s

,as kg >0,

l:ts
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Now, assume that the operators 77,75,...7, have the property (P.2). For

i,j €{,2,....n}, let M; ;>0 is such that “T[-k—T}‘“SM- for every k>0.

i,j»
We continue by induction. Let m =2 and 1<i <iy <n. Then

”T]q +ky X
4

<|rfex—Thrk o
it i i

+ “T.k‘ Tk
h

- “T"l aTh -rh )x“ + ”T.k‘ Th2y
i 1 ) h I

<l i |

I ,iz

S ‘

Tkl
[l

T/(Z _ Tk2
L)

b

-||x||+“T.k1T.k3x
hon

Thrk
i iy

Since “7;"3(“%00 as n—oo (and hence ”7;.](1%%
1 |

—o as k, > oo, for all
kq =2 0), the above inequalities imply that
”Tk‘ TRy
i iy

— o, as ky oo, forall &y >0.

Similarly, the following inequalities

rhith S‘Tkﬁkzx_Tlekzx ki,
5} I L) h I
=tk (rh —7h )x“ + ”Tk‘ T2y
ip Vi i i iy
< “T.k2 Ak — 7k ‘ el + HT."' Tk
] L i L)
k- ky -k
<7 "2 - M. . - 1752
_"T’Z” M’2>’1 ||x||+”7;1 Tl'z ok
imply that
”7;_’{17;762)6 — o, as kj >, forall k) 20.
| b

To complete the proof, it is enough to show the claim for m=n, under the
assumption that Orb( {]}/}

n—1

jj=1,X) tends to infinity for all 1<ij <...<i, ;<n.

For afixed i e{l,...,n}, arbitrary je{l,...,n}\{i} and ky,...,k, 20 we have

why =
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ko pkikirki ok
“Tl LT ...Tnan

K ki pk; ok k, ky e k.. Ik k
S”Tl LTSRS T~ T T ...Tnu“+HT1 kT

Norky ki k, ooki ok kimky ok
_“Tl1...Tl._lllrigl.,.T,ZH(TJ.’—Tl.t)x“+HT1 \T)2 . Tinx

< “lel . _7}liil—lTki+l 'TI’{("

k; k; oy ke
poa ‘-“Tjt—Tl.l“-||x||+||T11T22...Tn"nx

Tk ley ke ;
< THAIE | M I+ [ro e s .
I=1
1#i
Since je{l,2,...,n}\{i},

ki ki ki ok k,
LT T Tyrx € Oto({T . Ty Thyy . Ty .

and, by assumption, this (n-1)-tuple orbit tents to infinity,

ki ki ki ok k,
“Tl CLTETHTE Ty

— o0 as k; > oo, forall kj >0, j#i.
This, together with the above inequalities implies that

“YIk'sz...Tnk"x“—)oo as k; > oo, forall kj >0, j#i,

which completes the proof. o

Theorem 2.2. If X is a Banach space and 1,,T5,...T,, € B(X) are operators
with ¥(I;)>1, 1<i<n, then there is a dense set Dc X such that Orb(T},x)

tends to infinity for every x € D and every 1<i<n. If, in addition, the operators
are mutually commuting and have at least one of the properties (P.1) and (P.2)

in Lemma 2.1, then the m-tuple orbit Orb({Tl-j };(Ll,x) tends to infinity for every

xeD, 1<m<nand 1<ij<iy<...<i, <n.

Proof. By Lemma 2.1, it is sufficient to prove the first assertion in the

theorem.

Let ze X and €>0. Since r(7;)>1 there is A; €c(7;) such that |k[|>1,

1<i<n.If q,CeR are chosen such that
1< g <min{ji].[rs]... o[}
and

2
0<C<M’
2(n+1)

then the sequences of positive numbers {(a;  )i>1 :1<i<n} defined with
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a; k :Cq_(Hk), 1<i<n, k>1,
will satisfy
€
2 D a <5 2.1
1<i<nk>1
If the sequence of operators (S;);>) and the sequence of positive numbers

(a;) > are defined with

Stk—yn+i = Tik and a_1y,q =a; ., for 1<i<n, k21, 2.2)
then
2 a; = D ai i
j21 1<i<nk>1

and hence, by Theorem 1.1 (applied on (S;);>; and (a;);»), the Spectral

Mapping Theorem and (2), the open ball with center z and radius ¢ will contain
a vector x € X such that for every 1<i<n and k21,

"Tikx" = ||S(k—l)n+ix|| 2 A(j—lyn+i ||S(k—1)n+i|| =ajk "Tik "
> Cq_(Hk) |7\.l-|k = Cq_i |q_1ki|k .

Since, by the choice of ¢, |q_1ki |k—>ooas k— oo, for every 1<i<n, the
above inequalities imply that

"]}kx"—)oo as k—oo, forall 1<i<n,
which completes the proof. |

By Theorem 1.1 and Lemma 2.1 alone we can obtain similar result for
sequence of operators (7});» in B(X).

Theorem 2.3. If X is a Banach space and (T});»1 is a sequence of operators
in B(X) for which there is B> 0 such that ¥(T;) >1+B, for all i 21, then there
is a dense set D X such that Orb(T},x) tends to infinity for every x e D and

i>1. If, in addition, the operators are mutually commuting and have at least
one of the properties (P.1) and (P.2) in Lemma 2.1, then for every n>1 and

every positive integers iy <iy <...<i, the n-tuple orbit Orb( {7}/_ };’-:] ,X) tends to

infinity for every xe D.

The proof of the first assertion in Theorem 2.3 is given in [6].
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The requirement “there is >0 such that r(T;)>1+pB, for all i=21” in
Theorem 2.3 can be replaced with the following one: “r(1;) >1, for all i21”. In

order to show this, first we are going to give an appropriate generalization of
Corollary 1.3.

Theorem 2.4. If X is a Banach space and 1,,T5,...T, € B(X) are operators

-1

satisfying fo:]"]}" || <o, for all 1<i<n, then there is a dense set Dc X
such that Orb(T;,x) tends to infinity for every x € D and every 1<i<n. If, in
addition, the operators are mutually commuting and have at least one of the
properties (P.1) and (P.2) in Lemma 2.1, then the m-tuple orbit Orb({]}j }'}1:1 ,X)
tends to infinity for every xe D, 1<m<n and 1<ij <iy <...<i, <n.

Proof. Once again, by Lemma 2.1, it is sufficient to prove the first assertion
in the theorem. Let ze X and €>0. For 1<i<n, let g; >0 be such that

5 [é"T"k | _lJ S

By Lemma 1.2 there are a sequences of positive numbers (b; 4 )i>; so that

by —> 0 as k —>o0 and

-1
Zenultl <555

-1

For 1<i<n and keN, let a;; =¢;b;; ||7;k|| . If the sequence of operators
(8;) 21 and the sequence of positive numbers (a;) ;> are defined with (2.2),
then Z 214 < €/2 . Hence, by Theorem 1.1, there is a vector x € X satisfying

lx—zll< e and for every 1<i<n and k>1,
75 = [Sta-symsiv]
2 A(k—1ynti ||S(k—1)n+i || =4\ "T;k" =&b; i "Tzk" B "Tzk" =gb; ).
This implies that

"]}kx"—)oo as k —>oo, forall 1<i<n,

which completes the proof. |
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Theorem 2.5. If X is a Banach space and (I});» is a sequence of operators

-1
in B(X) such that Zleuﬂk" <o, for all i>1, then there is a dense set

Dc X so that Orb(1;,x) tends to infinity for every xe€D and i>1. If, in

addition, the operators are mutually commuting and have at least one of the
properties (P.1) and (P.2) in Lemma 2.1, then for every n>1 and every positive

integers iy <Iy <...<i, the n-tuple orbit Orb({Y}j }?:l,x) tends to infinity for

every xeD.
The proof of the first assertion in Theorem 2.5 the is given in [6].

Corollary 2.6. If (1;);» is a sequence in B(X) such that r(1;)>1 for all
i21, then there is a dense set D X such that Orb(T;,x) tends to infinity for

every xeD and i>1. If, in addition, the operators are mutually commuting
and have at least one of the properties (P.1) and (P.2) in Lemma 2.1, then for
every nx1 and every positive integers i <iy<...<i, the n-tuple orbit

Orb( {Z}j }_’;1'=1 ,X) tends to infinity for every xe D.
Proof. Let i eN. Since r(7;)>1 there is A; eo(7;) so that |Ki| >1. By the
Spectral Mapping Theorem, for every ne N, A" e (7") and hence,
il <y <]
This would imply that

_1 n
Z‘,’f:1||Ti" " <Yl <o
Now the conclusion follows from Theorem 2.5. O

Having in mind that every invertible operator is bounded bellow, we have the
following corollary.

Corollary 2.7. If (T});> is a sequence of invertible, mutually commuting
operators in B(X) such that r(I;)>1, for all i>1, then there is a dense set
Dc X so that Orb(T},x) such that for every n=1 and every positive integers

ij <iy <...<i, the n-tuple orbit Orb({]}/_ }’}:l,x) will tend to infinity for every
xeD.
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COMMON FIXED POINTS OF TWOT f CHATTERJEA TYPE

CONTRACTIONS IN A COMPLETE METRIC SPACE

UDC: 517.988.5:515.126.4
Samoil Malcheski', Risto Malcheski®, Aleksa Malcheski®

Abstract. The focus in this paper are theorems about common fixed points for
two T, Chatterjea type contractions in a complete metric space (X,d). In

doing so we defined 7 as continuous, injection and subsequentially convergent
mapping, and f as a function of the class @, class of continuous monotony
non-decreasing functions £ :[0,400) —[0,+) such that f - (0)={0}, and
furthermore f is sub additive

1. INTRODUCTION

The Banach fixed-point thcorem, as well as its generalizations presented by
R. Kannan ([4]), S. K. Chatterjea ([7]) and P. V. Koparde, B. B. Waghmode
([3]), are well known. S. Moradi and D. Alimohammadi [9] generalized R.
Kannan results using the sequentially convergent mappings. Using the
sequentially convergent mappings, some generalizations of R. Kannan, S. K.
Chatterjea and P. V. Koparde, B. B. Waghmode are proved [1]. The sequentially
convergent mappings are defined as the following:

Definition 1 ([8]). Let (X,d) be a metric space. A mapping 7: X —> X is
said sequentially convergent if we have, for every sequence{y,}, if {Ty,} is
convergence then {y,} also is convergence. A mapping 7 is said sub
sequentially convergent if we have, for every sequence {y,}, if {Ty,} is
convergence then {y,} has a convergent subsequence.

Further, using sequentially convergent mappings are also proved several
results about sharing fixed point for two R. Kannan, S. K. Chatterjea and P. V.
Koparde, B. B. Waghmode types of mapping [5], 2006.

S. Moradi and A. Beiranvand [8], 2010, introduced the concept of T
contractive mapping, applying the @ class of continuous monotony non-
decreasing functions £ :[0,+00) —[0,+w) such that f -1 (0)={0}, defined as
the following:

2010 Mathematics Subject Classification. Primary: 47TH10 Secondary: 54H25.
Key words and phrases. subsequentially convergent mapping, fixed point
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Definition 2 ([8]). Let (X,d) be a metric space, S,7: X > X and fe®.
A mapping S issaid T r- contraction if there exist o €(0,1) such that

Sd(TSx,TSy)) < of (d(Tx,Ty))
forall x,ye X.

Let us notice that if f €@ then f _1(0) ={0} implies that f(¢)>0, for all
t>0. S. Moradi and A. Beiranvand proved that if § is T, contractive
mapping, and then S has a unique fixed point. M. Kir u H. Kiziltunc, [2], 2014
generalized the S. Moradi and A. Beiranvand result about R. Kannan and S. K.
Chatterjea types of mapping.

In our further observations we will present several results about sharing fixed
points of two Ty Chatterjea type contractions in a complete metric space, such
that the function f ( f is a function of @ class) we will additionally suppose
that it is subadditive, i.e. f(a+b)< f(a)+ f(b), for all a,be[0,+0).

2. MAINS RESULTS

Theorem 1. Let(X,d) be a complete metric space S|,5,: X > X, f€6
is such that f(a+b)< f(a)+ f(b), for all a,be[0,+0) and the mapping

T:X — X be continuous, injection and subsequentially convergent. If there
exist a>0,B>0 such that 2a+B < (0,1) and

J@TSx,TSy) <ol f (d(Tx, TSH»)) + f(d(Ty,I$x)) +Bf (d(Tx,Ty)) (1)
for allx, y € X, then S} and S, have a unique sharing fixed point.

Proof. Let x; be any point of X and let the sequence {x,} be defined as
Xopel =S1X0n > Xopi2 =S2Xop41, 1=0,1.2,3,....
If there exists n>0, such that x, = x,,; =x,,,,, then it is easy to be proven that
u = x,, is a sharing fixed point for S and S, . Therefore, let us assume that there
no exist three consecutive equal terms of the sequence {x,} . Then by applying
the inequality (1), it is easy to prove the following inequalities:

f(d(Tx2n+l d TxZn )< a(f(d(TXZn—l > Tx2n )+ f(d(szn > Tx2n+l )+
+ B (d(T3,. T3 1))

and the above stated implies that for all #=0,1,2,... and x:“—*ﬁe(o,l) it

1-a
holds that:
S d(Tx1,Tx,)) <M (d (T, T 1)) - 2
Further, the inequality (2) implies

S d(Txpy1,Tx,) A" f(d(Txy,Txg)) 3)
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holds for all »=0,1,2,.... Now, the metrics properties, the properties of the
function f and the inequality (3) imply that for all m,neN, n>m holds the
following

S(d(Tx,, Tx) < 25 f(d(Txy, Txg ) -
According to that, the sequence {7x,} is Caushy, and since (X,d) is a
complete metric space, the sequence is convergent. Further, the mapping

T:X —> X is a subsequentially convergent, therefore the sequence {x,}

consists a convergent subsequence {x,)}, ie. it exists ue€X such that

lim x4y =u. Now, the continuity of 7 implies lim Tx,;)=Tu. But,
k—>0 k—o0

{Txp(k)} 18 a subsequence of the convergent sequence {Tx,} , therefore

lim Txn = lim Txn(k) =Tu.
n—>0 k—x

We will prove that » € X is a fixed point for the mapping S; . So:
S(d(Tu, TS1u)) < f(d(Tu, Txzp42)) + f(d(Tx2y42, TS11t))
= f(d(Tu,Txy,12)) + f(d(TS2 X011, TS 1))
< fd(Tu, Ty, 0)) + o f (Txg,41, TS1u) + f(d(Tu, TSy x5,,1))) +
+Bf(d(Tu, Txpp41))
= f(d(Tu,Txy,,2)) + a(f (Txas1, TS W) + f(d(Tu,Txy,,2))) +
B (d(Tu, Ty 1)

The mappings f and 7T are continuous, and therefore the metric space
properties imply that for # — oo, the last inequality is transformed as

S d@u,TSiu)) < of (Tu, TSju) +(1+ o+ B) £(0)
But, 1-a>0 and f - (0)={0}, therefore the last inequality implies that
d(Tu,TSju)=0, that is TSu=Tu. Finally, T is injection, and therefore
Syu =u, that u is fixed point for the mapping S, . Analogously, u is also fixed
point for the mapping §,, i.e. u is common fixed point for the mapping S; and
Ss.

Next, we will prove that S; and S, have a unique common fixed point. Let
ve X be a fixed point for §,,i.e. Spy=v. Then
S(d(Tu,7v)) = f(d(TSiu,TS,v) )
<ol f(d(Tu,TSHv)) + f(d(Tv,TS1u))) +Bf (d(Tu,Tv)
=20 +P) f(d(Tu,Tv).

Now, 2a.+ 3 <1, therefore the last inequality implies d(7u,Tv) =0, i.e. it holds
Tu=Tv. But, T is injection, and therefore u =v, that is §; and S, have a
unique common fixed point. m
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Corollary 1. Let (.X,d) be a complete metric space S|,S,: X > X, f€®
is such that f(a+b)< f(a)+ f(b), for all a,be[0,+0) and the mapping
T:X — X be continuous, injection and subsequentially convergent. If it exists
A €(0,1) such that

S dTSx,TS20) <MY (d(Tx.TS2p) - f(d(Ty.TSx)) - [ (d (Tx, T
for all x,y € X, then S| and S, have a unique sharing fixed point.

Proof. The arithmetic-geometric mean inequality implies that

F@(TSx,TS,0)) < 2 (F(d(Tx,TSp0) + £ (d(Ty,TSo0) + f(@d(Tx.Tv))

for all x,ye X. Applying the Theorem 1 for OL:B:% we get the above

corollary. m

Corollary 2. Let (X,d)be a complete metric space S1,5, : X > X, €@
be such that f(a+b)< f(a)+ f(b).for all a,be[0,+0) and the mapping
T:X — X be continuous, injection and subsequentially convergent. If there
exist o> 0,>0 such that 2o+ 3 €(0,1) and

S d(Tx.TS,0)+ 1 2(d(Ty, TS;x)) )
T TS, [ sy + Y dInD),

for all x,y € X, then S; and S, have a unique sharing fixed point.

Fd(TSyx,TS>y) <o

Proof. The inequality (1) is a direct implication of the given inequality. m

Corollary 3. Let (X,d)be a complete metric space S;,S, : X > X, €@
be such that f(a+b)< f(a)+ f(b).for all a,be[0,+0) and the mapping
T:X — X be continuous, injection and subsequentially convergent. If it exists
a €(0,1) such that

S @IS x,TSy)) < o f(d(Tx. TSy ) + f(d(Ty, TS X)) ,
forallx,y € X, then S; and S, have a unique sharing fixed point.
Proof. The proof is directly implied by Theorem 1, for =0. =

Corollary 4. Let (X,d)be a complete metric space 5,5, : X > X, €@
be such that f(a+b)< f(a)+ f(b),for all a,be[0,+00). If there exist
a>0,>0 sothat 2o +p < (0,1) and

Sd(S1x,59) <o f(d(x,50) + f(d(y,510)) +Bf (d (x, 1))
for all x,y € X, then S| and S, have a unique sharing fixed point.

Proof. The mapping 7:X — X determined as 7x=x is continuous,
injection and subsequentially convergent.
Therefore, the proof is directly implied by Theorem 1, for 7x=x. m
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Corollary 5. Let (X,d)be a complete metric space 51,5, : X > X, €@
be such that f(a+b)< f(a)+ f(b), for all a,be[0,4+0). If it exists o € (0,%)
so that

fd(Sx,8)) <a(f(d(x,5y) + f(d(y,5)x))
for all x,y e X it holds, then S; and S, have a unique sharing fixed point.

Proof. Direct implication from the Corollary 3 for 7x = x or the Corollary 4
for f=0.m

Corollary 6. Let (X,d)be a complete metric space 51,5, : X > X, €O
be such that f(a+b)< f(a)+ f(b), for all a,be[0,+0) and the mapping

T:X — X be continuous, injection and subsequentially convergent. If there
exist p,geN anda >0,>0 such that 2o+ €(0,1) and

S@(TSEx,TSTy) <ol f(d(Tx,TS] y)) + f(d(Ty, TSP x))) + B (d (Tx, Ty)
for all x,y e X, then §; and S, have a unique sharing fixed point.
Proof. The Theorem! implies that the mappings Slp and Sg have a unique
common fixed point u € X . So, Slp u =u and therefore
Su =8 (Sfu)=SP (S),
that is Syu is a fixed point for S . Analogously, SJu=u implies that
Sou =S, (S5u) =89 (Syu),
that is S,u a fixed point for qu . But, the proof of the Theorem1 implies that
S{ andS§ have unique fixed points. Therefore Su=u and Su=u.

According to this, # € X is a common fixed point for S} and S,.
For ve X is an arbitrary fixed point for S} and S, , we get that it is also a

common fixed point for S and S§. But the mappings S/ and S§ have a

unique common fixed point, and therefore v=u.m

Remark. The function f:[0,400)—[0,+00) defined as f(#)=t¢, for each
t€[0,1), it is a function of @ class and it is a sub-additive. Morcover, cach
sequentially convergent mapping 7:X — X 1is sub-sequentially convergent
mapping. Therefore the Theorem2 and the Corollaries 7-12 [5], are directly
implied by the above proved the Theoreml and the Corollaries 1-6,
respectively.
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CLASSIFICATIONS OF SYSTEMS OF LINEAR EQUATIONS
BASED ON ITS GEOMETRICAL INTERPETATIONS
UDC: 512.644:514.124

Zoran Misajleski", Daniel Velinov” and Aneta Velkoska®

Abstract. In this paper, a classification of systems of me{l,2,3} linear

equations is given. Also, an idea for generalization of the classification for
arbitrary number of equations is presented. These classes are described trough
the geometric interpretations of the equations. It is proven that the classes are
subclasses of the three classes determined by the generalized Cramer’s rule.

1 CRAMER’S AND GEOMETRIC CLASSES

System of m linear equations with n unknowns (mxn) over the set of the
real numbers is the system of equations:

ap X tapxy .. tayx, = bl
ay1X] +ax Xy +...tay, X, = b2
2
A1 X+ A Xy + ..+ Ay X, = by,
where m and n are positive integers, and g; and b; are real numbers for
1<i<m,1<j<n .

Let A be the matrix and 4 be the augmented matrix of the system mxn,

where m<n.Let D;; ; ,where i,i,...,i,; is a permutation without repetition
ofaclass m of theset /,,, = {1,2,...,n +1} , be a minor of 4 whose columns are

matching with #,i,,...,i,, column of A, respectively. Clearly, Dyj,..i,, #0 if

and only if D; #0, where ji, jp,..., i, is a permutation of {ij,iy,...,, }

12+
such that jj < jp <...<j,,.

The generalized Cramer’s rule [1], divides the systems mxn, m<n, into
the following three classes:
1. There exists Dl'1l'z---im #0 for some i,iy,...,7,, € I,,. Then the system has a
unique solution for m=n, and infinite solutions for m <n, expressed through
n—m parameters.

Parameters can be taken to be x; , k€1, \{il,i2,...,im} and the solutions can
be expressed explicitly by using the Cramer’s formulas:
i iy i,

X; =00/, X; =7, ., X; =
I, I ) L2 > M
! 012-tm - DII’Z---IW "

Dil"Z---"m

39
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2. D;;

Hip el

=0 for every ij,iy,...,i, €1,, and Di1iz---in,—1

I,0,..s 1y € 1, . In this case the system does not have solution.
3. D

Ly dy,

(n+1) #0 for some

=0 for every i,i,...,i,, €1, . Then the system does not have

solution or has infinitely many solutions, expressed through n—r(A)

parameters, where 7(.A4) is the rank of 4 and n—r(A)e{n—m+1,...n—1n}.

These classes will be called Cramer classes.

If m>n the system is equivalent with the system in which the coefficients
before the unknowns of n+ 1,1+ 2,...,m -th column are zeros. In that system the
first class is empty, and for m—1>n the second class is again empty. In that
cases there exist two or one Cramer (nonempty) class.

Linear combinations of m linear equations with » unknowns,

ajxXy +appxy .t Xx, = bl , X HappXy +...tay, X, = % 5 eeey
A1 X) + Ay X + oot Ay Xy = by

with respect to the coefficients A;,X,.,...,A,, , is the linear equation:

7L1 (al 1X1 Ha1xy +...+a1nxn —b] )+}\.2 (6121)C] +anrxy +...+a2nxn —b2)+...

+A,, (amlxl + Xy .t X, —bm): 0.

Definition 1.1. Zero linear equation is the equation in which all coefficients
are zero. Contradictory linear equation is the equation in which all coefficients
of the system (before unknowns) are zero, while the constant term is different
from zero. Zero and contradictory linear equations will be called singular.
Regular (nonsingular) linear equation is an equation in which at least one of the
coefficients of the system is different than zero.

Thus, the zero linear equation is
0-x4+0-xp+..4+40-x,=01e.0=0,
and contradictory linear equations are
0-x+0-x+..40-x,=a, a#0,i.e.0=a, a#0.
We will say that two equations are contradictory to each other (one is
contradictory to the other) if they are regular and do not have a common
solution. Two equations are equivalent if they have same solutions.

Definitions 1.2. One linear equation has rank 1 or is in a general position
if it is a regular. m linear equations are in a general position if they consist a
m—1 linear equations in a gencral position and the m-th cquation is not
equivalent or contradictory to any linear combination of the m —1 equations.

The system of m linear equations has a rank k& if contains &k lincar
equation in a general position, and do not contain k£+1 linear equations in a
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general position. The system of m lincar equations is nonsingular if it has a
rank m .

Clearly kSmjn{m,n}, so for m>n there are no m linear equations in a
general position.

Theorem 1.3. Let be given m linear equations with n unknowns, m<n.
Then:

1. There exists Do 0 #0, for some ilo,ig,...,i,?1 €1, if and only if the m -

1°2-tm
th equations are in a general position.

2. Dy, =0 forevery iy,iy,....i,, €1, and there exists Di?ig...i,%_l(;z+l) #0
for some ilo ,ig ,...,i,(z,_l el, if and only if there exist a m—1 equations in a
general position, and the m-th equation is a contradictory to some linear
combination of the other equations.

3. Dy, =0 forevery iy,is,...,i,, €1,y if and only if there exist a m—1

equations in a general position, and the m -th equation is an equivalent to some
lincar combination of the other equations, or do not exist a m—1 equations in a
general position.

Proof. One lincar equation is a regular if and only if there exists Dl,o #0, for

some i° el,. Let m—1 linear equations are in a general position if and only if

Doy o #0,forsome ilo,ig,...,i,% el,.
hip-by—1

Let be given m linear equations with » unknowns and let the first m—1
linear equations are in a general positions. It follows that Doo o =0, for
152 1

some ilo,ig,...,i,% el,.
Since Dioio ; # 0, the system
112ty

0
m

+ +...+ 0=a_.
’mlalll0 O(2£12i10 oL’””_lam—l,zlo amllo

oa, .0 +0ra,o +...+0 a =a .
1 13 2 120 m—1 0

1 2 m—],ig - miy

0 0 =a .o
Im—1 21771—1 m_l’lm—l miy,

has a unique solution ((x?,(x(z),...,a?n_l) .
If
0 0 0 0 .0 .0 -0
A =0 Q) T 0A0 + ...+ Olp—1%m—1,k +Bk » ke In+1 \{ll s ’“"lm—l} s

then
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all_]() alig ali,%,] alk
(121.10 azl.g a2i,(,)1,1 ar
Doo o , =
ik am—l,ilo am—l,ig am—l,i,?,,l -1k
m=1 m—1 m—1 m—1
Z (l?al.l.lo Z (l?ail.g Z Ot?aii() Z G?Clik +ﬁ2
i=1 i=1 i=1 ml =l
alilo all,g al[r?l—] aik
azl.lo azig (12[,(31_1 ari
= .. =B2Dif)igmi,9,_1
am—l,ilo am—l,ig am—l,i,(;,l -1,k
0 0o . 0 BY

It follows that
Do

i iy ...i,?,_]k

From the last conclusion it follows that 1, 2 and the first statement of 3, are

true. The second statement of 3 is also true, since we consider a cofactor
expansion along the m -th row.m

=0 ifand only if B =0, forevery ke 1, \{i{’,ig,...,ig_l}.

According to the rank of the systems mxn, m<n, they form m+1
(nonempty) class, systems with rank 0,1,2,...,m. The systems with rank m
form one class matching with the first Cramer class (case 1), systems with rank
m—1 are in the second and third class (case 2 and 3), and all other systems
with rank less then m—1 are in the third class. For m>n the systems form
n+1 (nonempty) class, systems with rank 0,1,2,...,n. If m=n—1 they belong
to the second or the third Cramer class (the first class is empty), and if m>n—1
they belong only to the the third class. We will describe below a finer
classification.

The systems with a rank 0, are divided into m+1 class, determined of the
number of the zero equations [, /e {0,1,...,m}. Then the number of the

contradictory equations is m—1.

The systems with a rank [, contain an equation with rank 1 (the other
equations are regular and equivalent to it, contradictory to it, zero or
contradictory), and are divided into classes determined by ki,%»,...,kg,/ where

Ky ky,.kg, ky=ky>..2k, are the numbers of the groups of maximally
equivalent regular equations, and / is the number of zero equations (the number

of contradictory equations is m—kj —ky —...—kg—1 ).
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Example 1.4. 1) The systems with 3 equations and rank 0, belong to 4
classes: 0, 1,2 u 3.

The systems with 3 equations and rank 1, belong to

3+2-2+1-3=10 classes:
LL1; 2,15 3; ,LLO; LL1; 2,0; 2,1;1,0; 1,1 and 1,2

(we write 1,1,1 for 1,1,1,0 i.e. when the number of zero equations is 0).

2) The systems with 7 equations and rank 0, belong to 8 classes, and from
rank 1 on:

114+11-2+7-3+5-443-54+2-6+1-7=108

classes.

The systems with rank 2 contain two linear equations in a general position
| and %, . The other equations are: equivalent or contradictory to some linear
combination A of the two equations that has 0, 1 or 2 nonzero coefficient i.e.
the other equations are: zero or contradictory; equivalent or contradictory to one
of the two equations; and equivalent or contradictory to a equations of arbitrary
equation of a linear combination different of the two equations. If the system
contains at least 4 regular equations, the other equations can be equivalent or
contradictory to a same or different equation of: the both equations and an
arbitrary equation of the linear combinations different of the two equations (X,

Xy and Xy, X and A, A and A (Xe{2,2}, AN elk(2],25)\
{21,22}, A # Ay, where Ik(2],2,) is the set of all linear combinations of X
and %, ). By combining the cases, a finer classification can be defined.

Then we can classified the systems with rank 3 and etc.

According to the previous criteria, the systems with rank m—1 are divided
into 2m classes:

-The systems that belong to the case 2 are divided into m classes,
depending on m -th equation, which is contradictory to the linear combinations
with 0,1,...,m—1 nonzero coefficients.

- The systems that belong to the first subcase of 3 are divided into m
classes, depending on m-th equation, which is equivalent to the linear
combinations with 0,1,...,m—1 nonzero coefficients.

From the above discussion, it follows that these classes contain all the

systems. In next section, using symbols, we will describe the classes of the
systems with one, two or three linear equations.

The classification is based on geometric interpretations on the equations, and
therefore the classes are called geometric classes.
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2 GEOMETRIC INTERPRETATIONS OF SYSTEMS WITH
ONE, TWO AND THREE LINEAR EQUATIONS

2.1. Geometric_interpretation of the linear equations. The contradictory
linear equation is interpreted by an empty set. For n=1, the zero equation
geometricaly is interpreted by a line, while a regular ax=5b, a#0, by a point
in line. For n=2, the zero equation geometrically is interpreted by a plane,
while a regular ax+by =c, where a =0 or 5= 0 by a line in a plane. For n=3

, the zero equation is interpreted by a space, and a regular ax+ by +cz=d , where

a#0, b#0 or ¢#0, by aplane in a space.
The symbols for an empty set, a point, a line, a plane and a space are,
respectively:

@ .

7

Figure 1
In Figure 2, geometric interpretations of the geometric classes are given.

For n=1, 1. 2. 3.

0 =

For n=2, 1. 2. 3.

= - %)

For n=3, 1. 2. 3.
1. there exists D; # 0 for some iy €1,,;

2. D; =0 forevery iel, and D,y #0;3. D; =0 forevery iel,,.
Figure 2

For n>3. The zero equation with »n unknowns determines the n-

dimensional space (R"), contradictory equation the empty set, while regular an
n—1 dimensional plane. So, we can use the previous interpretation for n=3.



CLASSIFICATIONS OF SYSTEMS OF LINEAR ... 45

2.2. Geometric_interpretation_of systems of 2 linear_equations. For the

systems mxn, m,ne {2,3} , m<n the classification is given in the textbook

[2]. In this paper we will generalize the classification for me{1,2,3} and
arbitrary neN.

2x2. Two regular equations can be: in a general position, contradictory to
each other, or equivalent. Their interpretations respectively are: two intersecting
lines, two parallel lines or two matching lines. Therefore, there exist 8 class of
the interpretations of the equations, given in Figure 3. Namely if the system has
rank 0 then the two equations are zero (8), zero and contradictory (5), or
contradictory (4). If the system has rank 1 and first of the equations is regular
then the second equation is: equivalent to a linear combination of the first
equation i.e. is zero (6) or regular and equivalent to the first equation (7);
contradictory to linear combination of the first equation i.e. is contradictory (2)
or regular and contradictory to the first equation (3). The last case is when the
system has rank 2 or is nonsingular. In this casc the cquations are regular and
have a unique common solution (1).

1. D=0 ; 23. D=0A(D, #0v D, #0);

0, 4

4-5. do not have solution;

6-8. have infinite solutions expressed by: 6-7. one and 8. two paramcters;
4-8. D=D, =D, =0.
Figure 3

2x3. Two regular linear equations in general position, a contradictory to
each other, or an equivalent are interpreted with two intersecting, parallel, or
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coincident planes, respectively. The classification is a restriction of the
geometrical classification of the systems 2x3 that have 8 classes that are
presented in Figure 4. For more visibility, the zero equation instead by a cuboid
is presented by rectangular, a plane is presented by a parallelogram, and the
lines are thickened in matching planes and spaces.

o
< B 7

L. Dy ; #0 for some iy, jo €133

2-3. D;; =0 forevery i, jel3 and D 4, #0 for some iy €3

9, 4]

4-5. do not have solution;

LA o

6-8. have infinite solutions expressed by: 6-7 one and 8 three parameters;
4-8. Dy =0 forevery i,jely, i# ).

Figure 4

2xn, n>3. Two regular linear equations that are in a general position,
contradictory to each other, or equivalent are interpreted with two intersecting
n—1-planes, parallel planes or coincident planes, respectively. There exist 8
mutual positions of the interpretations of the equations, which can be sketched
by using one of the previous interpretations, for example for n=3.

2x1. Two regular equations are contradictory to each other or equivalent are
interpreted with two different points or two coinciding points. There exists 7
mutual positions of the interpretations of the equations (do not exist two
equations in a general position, so the case 1 is not possible)

2.3 Geometric interpretation of the system of 3 linear equations.3x3
Three equations in a general position define three planes intersecting at a point
(Figure 5, 1). Two equations in a general position define two intersecting, in a
line, planes. Their linear combination, depending on the number of non-zero
coefficients, determine: a space (15), a plane that coincides with one of the
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planes (17) or a plane different from the planes passing trough its common line
(16). The contradictory equation to they linear combinations determines an
empty set (2), a plane parallel to one of the planes (3) or a plane that intersects
the planes in a lines parallel to its common line (4). Let the rank of the system
be 1. If the three equations are regular, then the three equations are mutually
equivalent (20), only one pair (14) none (13). If exactly two equations are
regular, then they are equivalent (11,19) or contradictory to each other (10,12).
If exactly one equation is regular, depending of the number of zero equations, 3
case are possible (7,9,18). Let the rank of the system is 0. Then depending of the
number of zero equations, 4 cases are possible (5,6,8,21).

On Figure 5, the interpretations of all classes (a total 21), through symbols,
sorted by Cramer’s classes, and by the number of solutions of the systems are
given. Of these, 8 classes are consisting of regular equations, determining 8
mutual positions of three planes in a space.

1. D#0;2-4. D=0A(D,#0v D, #0v D, #0)

v 22

o | TO A=
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5-11. do not have solution, such that have a contradictory equation

5-14. do not have solution

15-21. have infinite solutions expressed by: 15-17 one, 18-20 two, and 21 three
parameters. 5-21. D=D, =D, =D_ =0.

Figure 5

3xn, n>3 For the systems 3xn, n>3 we can use interpretations for

n=3.

3x1,3x2. If n=2 there exist 20, while for n=1, 14 geometric
interpretations of the geometric classes, which also can be described by words
or can be sketched. Compared to n=3, for n=2 there are not three equations
in a general position (falls out in the case 1), and for n=1 does not exist even
two equations in a general position (falls out in the cases 1-4 and 15-17).
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