

7th Iranian Geometry Olympiad Intermediate level

October 30, 2020

The problems of this contest are to be kept confidential until they are posted on the official IGO website: igo-official.ir

Problem 1. A trapezoid ABCD is given where AB and CD are parallel. Let M be the midpoint of the segment AB. Point N is located on the segment CD such that $\angle ADN = \frac{1}{2} \angle MNC$ and $\angle BCN = \frac{1}{2} \angle MND$. Prove that N is the midpoint of the segment CD.

Problem 2. Let ABC be an isosceles triangle (AB = AC) with its circumcenter O. Point N is the midpoint of the segment BC and point M is the reflection of the point N with respect to the side AC. Suppose that T is a point so that ANBT is a rectangle. Prove that $\angle OMT = \frac{1}{2} \angle BAC$.

Problem 3. In triangle ABC, point H is the orthocenter and point M is the midpoint of the segment BC. The median AM intersects the circumcircle of triangle ABC at X. The line CH intersects the perpendicular bisector of BC at E and the circumcircle of the triangle ABC again at F. Point F lies on circle F0, passing through F1, such that F2, such that F3 at trapezoid F3. Prove that F4 and F5 meet on F5.

Problem 4. Triangle ABC is given. An arbitrary circle with center J, passing through B and C, intersects the sides AC and AB at E and F, respectively. Let X be a point such that triangle FXB is similar to triangle EJC (with the same order) and the points X and C lie on the same side of the line AB. Similarly, let Y be a point such that triangle EYC is similar to triangle FJB (with the same order) and the points Y and B lie on the same side of the line AC. Prove that the line XY passes through the orthocenter of the triangle ABC.

Problem 5. Find all numbers $n \ge 4$ such that there exists a convex polyhedron with exactly n faces, whose all faces are right-angled triangles.

(Note that the angle between any pair of adjacent faces in a convex polygon is less than 180°.)

Time: 4 hours and 30 minutes. Each problem is worth 8 points.