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 Foreword 
 
 This year in the Republic of Macedonia were held various competitions in the field of 
mathematics on all levels in primary and secondary school: school, municipality, regional, state 
competitions and Olympiads, as it is a tradition for many years in the past. Also, Macedonia was 
one of the participating countries on some world famous math competitions abroad. 
 On December 11, 2015, the European Mathematical Cup was held in the Faculty of Mechanical 
Engineering and the Faculty of Electrical Engineering and Information Technologies, Skopje. 
Students from all over the country were competing in two categories Junior and Senior.  
 In March 2016, a team of four girls was selected regarding their success on the previous 
competitions, who participated later in April 10-16, 2016 to the 5-th European Girls Mathematical 
Olympiad which was held in Bushteni, Romania. 
 On April 9, 2016 the 23-rd Macedonian Mathematical Olympiad, MMO 2016, was held in the 
Faculty of Electrical Engineering and Information Technologies, Skopje, for the students from 
secondary school. After all rigorous selection processes which raised from the complete system of 
the competitions in the Macedonia, the BMO team was formed, to participate on the 33-rd Balkan 
Mathematical Olympiad, BMO 2016, which was held in Tirana, Albania in May 5-10, 2016.  
 On May 6, 2016, the Mediterranean Mathematical Olympiad, MMC 2016, was held in the 
Faculty of Electrical Engineering and Information Technologies, Skopje. 50 students from all over 
the country, best in their categories, were competing. 
 On May 28, 2016 the 20-th Junior Macedonian Mathematical Olympiad, JMMO 2016, was held 
at FON University, Skopje on which the Macedonian team of the best 6 contestants under 15,5 
years, was elected. They were participants in the 20-th Junior Balkan Mathematical Olympiad, 
JBMO 2016, which was held in June 24-29, 2016 in Slatina, Republic of Romania.      
 Then after the IMO team selection test on May 15, 2016, the IMO team was formed. This year 
the International Mathematical Olympiad, IMO 2016, will take place in Hong Kong, in  July 06-16, 
2016. 
 
 The content of this book is consisted of the mathematical competitions that already took place in 
Macedonia, the Balkan region and wider abroad, as well as their solutions. 
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     4th EUROPEAN MATHEMATICAL CUP,  
         5th  December 2015 – 13th December2015 

                                                           Senior Category 

 
Problem 1. { , , }A a b c  is a set containing three positive integers. Prove that we can sind a 

set B A , { , }B x y  such that for all odd positive integers ,m n  we have  

  10 | m n n mx y x y  
 

Problem 2. Let , ,a b c  be positive real numbers such that 1abc . Prove that  

  3 1 1 1
4

a b c
a b b c c a

        .  

 

Problem 3. Circles 1k  and 2k  intersect in points A  and B , such that 1k  passes through the 

center O  of the circle 2k . The line p  intersects 1k  in points K  and O  and 2k  in points 

L  and M , such that the point L  is between K  and O . The point P  is orthogonal 

projection of the point L  to the line AB . Prove that the line KP  is parallel to the M -
median of the triangle ABM .  
 

Problem 4. A group of mathematicians is attending a conference. We say that a 
mathematician is k -content if he is in room with at least k  people he admires or if he is 
admired by at least k  other people in the room. It is known that when all participants are 
in a same room then they are all at least 3 1k  -content. Prove that you can assign 
everyone into one of 2 rooms in a way that everyone is at least k -content in his room and 
neither room is empty. Admiration is not necessarily mutual and no one admires himself.  

 
Time alowed: 240 minutes   Each problem is worth 10 points    Calculators are not alowed 
 

 

Solutions 
 

Problem 1. { , , }A a b c  is a set containing three positive integers. Prove that we can sind 

a set B A , { , }B x y  such that for all odd positive integers ,m n  we have  

  10| m n n mx y x y  

Solution. Let ( , ) m n n mf x y x y x y  . If n m , the problem statement will be fulfilled no matter how we 

choose B  so from now on, without loss of generality, we consider n m .  

 Since m  and n  are both odd, we have that n m  is even and we get  

  ( , ) ( )m m n m n mf x y x y y x    

  2 2( , ) ( ) ( , )m mf x y x y y x Q x y   

  ( , ) ( )( ) ( , )m mf x y x y y x y x Q x y    

where 2 4 2( , ) ....n m n m n mQ x y y y x x         .  
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 Now if one of ,x y  is even, ( , )f x y  is even. If both are odd, then ( , )f x y  is again even since x y  and 

x y  are even in that case. This shows that we only need to consider divisibility by 5 .  

 If A  contains at least one element divisible by 5 , we can put it in B  and that will give us the solution 

easily.  

 Now we consider the case when none of the elements in A  is divisible by 5 . If some two numbers in A  

give the same remainder modulo 5 , we can choose them and then x y  will be divisible by 5   which solves 

the problem. 

 Now we consider the case when all remainders modulo 5  in A  are different. Take a look at the pairs 

(1,4)  and (2,3) .  

 Since we have three different reamainders modulo 5 , by pigeonhole principle one f these pairs has to be 

completely in A (when elements are considered modulo 5 ). Then if we pick the numbers from A  that 

correspond to those two remaindes we get  that x y  is divisible by 5  so the problem statement is fulfilled 

again. This completes the proof.  
 

Problem 2. Let , ,a b c  be positive real numbers such that 1abc . Prove that  

  3 1 1 1
4

a b c
a b b c c a

        .  

 Solution 1. Rewrite the left hand side of inequality in following way: 

  3 3 1 1 1
4 4 4 4 4

a b c a b c a b c
abc abc abc abc

             

Rewrite denominators: 

  1 1 1 1 1 1
4 4 4 2 2 2 2 2 2
a b c a b c

abc abc abc ab c ac b ba c bc a ca b cb a
          

        
 

and then by arithmetic mean-geometric mean inequality, we have  

  

1 1 1 1 1 1
( 1)( ) ( 1)( ) ( 1)( )

1 1 1 1 1 1 .

a b c a b c
ab c ac b bc a ba c ca b cb a a b c b a c c b a

b c a c b a a b b c c a

                         

          

 

 Solution 2. We introduce change of variables: 3 3 3, ,x a b y c z   . We now have the condition 1xyz .  

 We apply Schur inequality(with exponent 1r ) to the numerator of the left hand side: 

  3 3 3 2 2 2 2 2 23x y z xyz x y x z y x y z z x z y          

to obtain inequality  

  
2 2 2 2 2 2

3 3 3 3 3 3
1 1 1

4
x y x z y x y z z x z y

x y y z z x
       

  
.  

We apply arithmetic mean-geometric mean inequality for the denominators of the right hand side: 

  3 3 3/2 3/22x y x y      2
3 3 3/2 3/2

1 1 1
22

z xy
x y x y

 


  

and similarly to the other terms. We now have to prove  

  
2 2 2 2 2 2

2 2 21 1 1
4 2 2 2

x y x z y x y z z x z y
x yz y xz z xy

         

  
2 2 2 2 2 2

2 2 2
2

x y x z y x y z z x z y
x yz y xz z xy

        .  

 We apply arithmetic mean-geometric mean inequality in pairs on the left hand side  

  
2 2

2
2

x y x z
x yz

   

  
2 2

2
2

y z y x
y xz
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2 2

2
2

z x z y
z xy

  .  

 Summing up ineqailities from above finishes the proof.  
 

 Problem 3. Circles 1k  and 2k  intersect in points A  and B , such that 1k  passes through 

the center O  of the circle 2k . The line p  intersects 1k  in points K  and O  and 2k  in points 

L  and M , such that the point L  is between K  and O . The point P  is orthogonal 
projection of the point L  to the line AB . Prove that the line KP  is parallel to the M -

median of the triangle ABM .  
 Solution. Let the point C  be the midpoint of the 

line segment AB . We have to prove ||MC KP .  

 Let us introduc angle BKA . Notice that  

  

1180 180
2

1 1180 (180 ) 90
2 2

BLA BMA BOA

BKA 

      

    

 

  
. 

 Also, notice that the point O  is midpoint of the arc 

AB . Thus the line KO  is bisector of the angle 

BKA .  From the two calims above, we deduce that 

L  is incenter of the triangle ABK .  
 Moreover, notice that ML  is diameter of the circle 

2k , thus 90ABM   . Since BL  is angle bisector of the angle ABK  we deduce that BM  is exterior 

angle bisector of the same angle.  
 

 Thus, since M  lies on angle bisector KM  and exterior angle bisector BM , M  is the center of the 
excircle for the triangle ABK .  
 Thus, we have to prove that the line passing though the incenter L  of the triangle ABK  and point of the 
tangency of incircle of the same triangle is parallel to the line passing through the center of the excircle M  and 

the midpoint C  of the line segment AB . This is a well known lemma, which completes the proof.  
 

Problem 4. A group of mathematicians is attending a conference. We say that a 
mathematician is k -content if he is in room with at least k  people he admires or if he is 
admired by at least k  other people in the room. It is known that when all participants are in 
a same room then they are all at least 3 1k -content. Prove that you can assign everyone 
into one of 2 rooms in a way that everyone is at least k -content in his room and neither 
room is empty. Admiration is not necessarily mutual and no one admires himself.  
 

 Solution. We will for simplicity and clarity of presentation use some basic graph theoretic terms, this is in 
no way essential.  
 

 We represent the situation by a directed graph (abbr. digraph) ( , )G V E where each vertex ( )v V G  

represents a mathematician and each edge ( )e E G  represents an admiration relation. Given ( )v V G  we 

define out-degree of v  denoted ( )o v  as the number of edges starting in v (so the number of mathematicians v  

admires) and in-degree ( )i v  as the number of edges ending in v (so the number of mathematicians who admire 

v ). Given X V  by ( )G X  we denote the induced subgraph (a graph with vertex set X  and edges inherited 

from G ). We say that a digraph is a k -digraph if for every ( )v V G  we have ( )i v k  or ( )o v k .  
 

 So the question can be reformulated as: Given G  is a 3 1k -digraph we can split its vertices into 2 vertex 

disjoint classes such that each induced subgraph on class is a k  digraph.  

2k

O

LP

A
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 We call a subset X  of vertices of G  k tight  if for any Y X  we have a vertex v Y  such that 

( )( )G Yi v k  and ( )( )G Yo v k . A partition of V , 1 2( , )A A  is feasible if 1A  is k -tight and 2A  is k -tight.  
 

 We first assume there are no feasible partitions.  
 

 In this case consider a minimal size subset 1 ( )A V G  subject to 1( )G A  being a k -digraph, we define 

2 1( )A V G A  . Given a subset 1X A , ( )G X  is not a k -digraph so there is a vertex v X  such that 

( )( )G Xo v k  and ( )( )G Xi v k  which shows that any proper subset of 1A  satisfies the condition of k -tightness. 

For the case of 1X A  by  removing any vertex 1v A  the graph 1' ( { })G G A v  , by minimality assumption 

on 1A , must contain a vertex w  such that '( )Go w k  and '( )Gi w k  so as there is only one extra vertex in 

1( )G A , namely v  
1( )( )G Ao w k , 

1( )( )G Ai w k . In particular this shows 1A  is k -tight.  
 

 This implies 2A  is not k -tight by our assumption so there exists an 2 2'A A  such that  2 'A  is a 1k  

digraph. Now applying the following proposition to extend the pair 1 2( , ')A A  to a full partition which satisfies 

the condition of the problem.  
 

 Given disjoint subsets , ( )A B V G  we say ( , )A B  is a solution pair if both ( )G A  and ( )G B  are k -

digraphs.  
 

 Proposition. If a 2 1k  digraph G  admits a solution pair it admits a partition with both induced graphs of 

both classes being k -digraphs.  
 

 Proof. Take a maximal solution pair ( , )A B , the condition in the lemma guaranteeing it exists. Let 

( ) ( )C V G A B   , if C  is empty we are done so assume | | 0C  . By our assumption ( , )A B C  is not a 

solution pair so there is some x C  such that ( ) ( )( ), ( )G B C G B Co x i x k    so as G  is 2 1k  digraph 

( ) 2 1Gi x k   or ( ) 2 1Go x k   so either ( { })( ) 1G A xo x k    or ( { })( ) 1G A xi x k    so in particular ( { }, )A x B  

is a solution pair contradicting maximality and completing our argument.  
 

 Hence we are left with the case in which we have at least one feasible partition. We pick the feasible 

partition ( , )A B  maximizing ( ) | ( ( )) | | ( ( )) |w A B E G A E G B   . The fact that A  is k -tight implies there is an 

x  with ( )( )G Ao x k , ( )( )G Ai x k  so x  needs to have at least 1k  edges in or out of B  so | | 1B k   and by 

simmetry | | 1A k  .  
 

 We now prove that there exist an X A  such that ( )G X  is a k -digraph, by contradiction. Assuming the 

opposite we notice that for any x B , { }B x  is still k -tight while B  being k -tight implies there is an x B  

such that ( )( )G Bo x k ,  ( )( )G Bo x k  so for this x  we have { }A x  is also k -tight. Hence, for ' { }A A x   and 

' { }B B x  , ( ', ')A B  is a feasible partition. We considering the change in edges which moving x  causes we 

have ( ', ') ( , ) 3 1 1w A B w A B k k k k        as we know ( ) 3 1G Xi k   or ( ) 3 1G Xo k   so moving x  from 

B  to A  increases number of edges in A  by at least 3 1k k   while the choice of x  in B  means we lose at 

most k k  edges in B . This is a contradiction to maximality of ( , )A B .  
 

 Analogously we can find Y B  with ( )G Y  a k -digraph. Now applying the above proposition yet again 

we are done.  
 

 Remark. The same argument slightly modified weight function can be used to show the result for non 

symmetric rooms, in particular if the graph is a max( , ) 1k l k l    digraph it can be partitioned into k -

digraph and l  digraph parts.  
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4th EUROPEAN MATHEMATICAL CUP,  
  5th  December 2015 – 13th December2015 
                                                          

Junior Category 
 

Problem 1.We are given an n n  board. Rows are labeled with numbers 1 to n  downwards and 

columns are labeled with numbers 1 to n  from left to right. On each field we write the number 
2 2x y  where ( , )x y  are its coordinates. We are given a figure and can initally place it on any 

field. In every step we can move the figure from one field to another if the other field has not 
already been visited and if at least one of the following conditions is satisfied: 

 the numbers in those 2 fields give the same remainders when divided by n  

 those fields are point reflected with respect to the center of the board 
Can all the fields be visited in case: 

a) 4n  

b) 5n  

Problem 2. Let , ,m n p  be fixed positive real numbers which satisfy 8mnp . Depending on 

these constants, find the minimum of  

  2 2 2x y z mxy nxz pyz      

where , ,x y z  are arbitrary positive real numbers satisfying 8xyz . When is the equality attained? 

Solve the problem for: 

a) 2m n p    

b) arbitrary (but fixed) positive real numbers , ,m n p . 

Problem 3. Let ( )d n  denote the number of positive divisors of n . For positive integer n  we 

define ( )f n  as  

  1 2 3( ) ( ) ( ) ( ) ... ( )mf n d k d k d k d k     ,  

where 1 21 ... mk k k n      are all divisors of the number n . We call an integer 1n  almost 

perfect if ( )f n n . Find all almost perfect numbers.  

Problem 4. Let ABC  be an acute angled triangle. Let ', 'B A  be points on the perpendicular 

bisectors of ,AC BC  respectively such that 'B A AB  and 'AB AB . Let P  be a point on the 

segment AB  and O  the circumcenter of the triangle ABC . Let ,D E  be points on ,BC AC  

respectively such that DP BO  and EP AO . Let 'O  be the circumcenter of the triangle 

CDE . Prove that ', 'B A  and 'O  are collinear.   

 
Time alowed: 240 minutes,        Each problem is worth 10 points     Calculators are not alowed 
 

Solutions 
 Problem 1.We are given an n n  board. Rows are labeled with numbers 1  to n  
downwards and columns are labeled with numbers 1  to n  from left to right. On each field 

we write the number 2 2x y  where ( , )x y  are its coordinates. We are given a figure and can 
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initally place it on any field. In every step we can move the figure from one field to another 
if the other field has not already been visited and if at least one of the following conditions 
is satisfied: 

 the numbers in those 2 fields give the same remainders when divided by n  

 those fields are point reflected with respect to the center of the board 
Can all the fields be visited in case: 

a) 4n  
b) 5n  
Solution.a) The answer is NO. 
 

 1 2 3 4   1 2 3 4 
1 2 5 10 17  1 2 1 2 1 
2 5 8 13 20  2 1 0 1 0 
3 10 13 18 25  3 2 1 2 1 
4 17 20 25 36  4 1 0 1 0 

                
On the left we have the board from the problem, on the right we have the same board, but with remainders 

of the values from the board instead of the values themselves.  
We will denote field i  for a field with number i  written on it in the right table. Let’s assume that we can 

visit all of the fields. That means that at some point we will visit a field i . Obviously, when using the first type 

of move, we can visit any other field 1 which hasn’t yet been visited. Also, it easy to notice, that for field 1, the 
reflection of that field is also a field 1. That means that both types of moves lead to another field 1. Also, in 
same fashion we conclude thatfor the each step, if the figure is on the field 1, then in the step after(if that 
wasn’t the last one) and in the step before(if that wasn’t the first one) should be field 1.  

Now we conclude that the first visited field 1 must be the field visited in the first step. Same way we 
conclude that the last visited field 1 must be the field visited in the last step. But, we know that all of fields 1 
are visited consecutively, in exactly 8 moves(because there are 8 fields 1), while there are exactly 16 moves 
that we have to make. This leads to contradiction.  

b) The answer is YES.  
 

 1 2 3 4 5   1 2 3 4 5 
1 2 5 10 17 26  1 2 0 0 0 1 
2 5 8 13 20 29  2 0 3 3 0 4 
3 10 13 18 25 34  3 0 3 3 0 4 
4 17 20 25 36 41  4 2 0 0 2 1 
5 26 29 34 41 50  5 1 4 4 1 0 

 

Again, on the left we have the board from the problem, on the right we have the same board, but with 
remainders of the values from the board instead of the values themselves.  

We can move from any field to another with the same number written n the field in the right table by using 
the second move.  
 One idea to visit all the fields is the following:  

  find the 4 pairs of the fields of types field i  and field j , such that all 8  fields are different, in each pair 

i j , those two field in one pair are symmetric, and the second member of the n -th pair has the same value 

on the right board as the first member of the ( 1)n -th pair. Also, we want that all the values of the right table 

are mentoined through members of those pairs. For example: 
  ((2,2),(4,4)),((1,4),(5,2)),((3,5),(3,1)),((2,1),(4,5))  

  Now, the algorithm is: after second member of n -th pair and before the first member of the ( 1)n -th 

pair visit all fields by using the first step. Of course, before first pair and after fourth pair move in similar way. 
Jump from the first member of the pair to the second member of the pair by using second step.  
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 This is one of the ways to do it: We start with the field (3,3) . Then we visit all of the field 3 , using the 

first move, in any way as long as the last visited field is (2,2) . Then, using the second move, we wisit the field 

(4,4) . Again, using the first move we wisit all fields 2  in any way as long as the last visited field is (1,4) . 

Using the second move we visit the field (5,2) . Then, using the first move we visit all fields 4  in any way as 

long as the last visited field (3,5) . In same fashion, using the second move we visit the field (4,5)  using the 

second move. We conclude by visiting all  fields 1  in any way.  

Problem 2. Let , ,m n p  be fixed positive real numbers which satisfy 8mnp . Depending 

on these constants, find the minimum of  2 2 2x y z mxy nxz pyz      where , ,x y z  are 

arbitrary positive real numbers satisfying 8xyz . When is the equality attained? 

Solve the problem for: 
c) 2m n p    

d) arbitrary (but fixed) positive real numbers , ,m n p . 
Solution 1.a)Use AM-GM and 8xyz  to get  

  2 2 2 9 6 6 69 36x y z xy xy xz xz yz yz x y z          .  

We have equality for 2x y z   . 

b) Using 8xyz , we can transform the given expression: 

  2 2 2 2 2 28 8 8p n mx y z mxy nxz pyz x y z
x y z

           .  

 Since all numbers are positive reals, we can apply AM-GM inequality to get: 

  2 2 3 28 4 4
6

p p p
x x p

x x x
     .  

When we apply the same procedure for , ,x y z  and sum the inequalities, we get:  

  
3 332 2 2 2 2 2 2 2 3 28 8 8 6 2( )

p n mx y z mxy nxz pyz x y z m n p
x y z

              .  

 In order to get equality, we must have equality in all above inequalities and that happens for  

  3 33 4 , 4 , 4x p y n z m   . 

 Desired minimum is therefore 
3 33 2 2 3 26 2( )m n p  .  

 Solution 2. We only present solution for b) part here, marking sheme for a) part is the same as in first 
solution. We use weighted AM-GM: 

23 3 32 2
3 32 2 23

3 2

22 2
3 3 3 32 2 2 2 2 2 2 2 23 3

3 3 3 32 2 2 2 2 23 3

22 2
3 3 3( )2 2 23

3 32 2 23

23 3

2 2 2
2 2 2

3( )

2 2

p n m
m n p

m

y mxy pyzx z nxzx y z mxy nxz pyz p n m m n p
p n m m m p

yx zm n p
p n m

mxy nxz

 

           

                        

      

233 2
3 32 2 23

3 32 2 23
3 32 2 23

22 3
3( )

2( )
3( )3 32 2 23

2
3 32 2 23 3

33 3 3 332 2 2 2 2 2 23 3

2

3( )
2

3( )
2

3( ) 4 6 2( )

pn
m n p

m n p
m n p

pyz

xyzm n p

xyzm n p

m n p m n p
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We have shown that the minimum value the expression can take is 3 33 2 2 236 2( )m n p  . Equality can 

only be achieved when 3 33 4 , 4 , 4x p y n z m   .  
 

Problem 3. Let ( )d n  denote the number of positive divisors of n . For positive integer 

n  we define ( )f n  as  

  1 2 3( ) ( ) ( ) ( ) ... ( )mf n d k d k d k d k     ,  

where 1 21 ... mk k k n      are all divisors of the number n . We call an integer 1n  almost 

perfect if ( )f n n . Find all almost perfect numbers.  
Solution 1.Alternative way to define ( )f n  is  

  
| , 1

( ) ( )
k n k

f n d k


 .  

Let 1 2
1 2 ... r

rn p p p    be the prime factorization of n . We have 
1

( ) ( 1)
r

i
i

d n 


  .  

 We prove the function f  is multiplicative, inparticular, given coprime ,n m  we have ( ) ( ) ( )f mn f m f n .  

 Using ,n m  are coprime for the second ineqiality and the fact that function d  is multiplicative we get:  

  
1 2 1 2 1 2

1 2 1 2 1 2

| | , | | , | | |

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
k mn k n k m k n k m k n k m

f mn d k d k k d k d k d k d k f n f m
                        . 

If 1r  we have 1
1n p . We note that divisors of n  are 12

1 1 11, , ,....,p p p , so  

1

1 1

0

( 1)( 2)( ) ( 1)
2

i

f n i


 


    .  

Combining this with the multiplicativity result for f  we deduce 
1

( 1)( 2)
( )

2

n
i i

i

f n
 



  .  

We now prove that for primes 5p  and 3p  provided 3a  we have ( 1)( 2) 2( )
2 3

a aa a
f p p

    by 

induction on a . As a basis 2
3

3
p  for 5p  and 326 3

3
  . For the step it is enough to notice that 

3 2
1

a p
a
    in both cases.  

 Similarly we can prove for 2p  that ( )a af p p  provided 4a . By explicitly checking the remainig 

cases 2p  and 1,2,3a  and 3, 1,2p a   we conclude 2( )
3

a af p p  for all ,p a  and ( )a af p p  for all 

3p  and 2, 4p a  .  

 Assuming ( )f n n  we would have 
1

( )
1

i

i

k
i

i

f p
p






  so the above considerations imply that only possible 

prime divisors are 2,3 . If 1k  the only possible solution is 3n . If 2k  we have 1 22, 3p p   and 

11 2a   and 21 2a   which give 4 cases to check giving the other 2 solutions 18,36n .  

 So, all almost perfect numbers are 3,18,36 .  
 

Solution 2. We hereby present one similar but different solution which does not use a lot of properties of 
the function f .  

Firstly, we will prove the following lemma: 

 Lemma. For any positive integer 1n  and prime p  we have  
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  ( ) 3 ( )f pn f n .  

The equality holds if and only if ( , ) 1GCD p n  .  

 Proof. For every integer m  we have that the set of divisors of the number pm  is the union of the 

following two sets: 
   set of divisors of m  

  set of divisors of m  multiplied by p .  

 Also those two mentioned sets are disjoint if and only if ( , ) 1GCD p m  (if we have that ,p m  are disjoint, 

then it is obvious that none of the divisors of pm  are in both sets; if they are not coprime, then the number p  

belongs to both sets).  
 This is why we have ( ) 2 ( )d pm d m  and  

  
| | | |

( ) ( ) ( ) ( ) ( ) 2 ( ) 3 ( )
k pn k n k n k n

f pn d k d k d pk f n d k f n         .  

In both inequalities equality holds if and only if sets from before are disjoint, i.e. when ( , ) 1GCD p n  .  

 Also, we simply see that ( 1)( 2)
(2 ) (1) (2) ... (2 ) 1 2 3 ... ( 1)

2
k k k k

f d d d k
            .  

 Notice that if for some positive integer n  we have ( )f n n , then for every 3p  we have 

( ) 3 ( ) ( )f pn f n pf n pn   . Consequently, if ( )f n n , then for every odd m  we have ( )f mn mn .  

 Because of this, we will introduce new terms. Number n  is nice multiple of m  if |m n  and m
n

 is odd 

number. Analogously, we define nice divisor. Our statement from above is: if for some n  we have ( )f n n , 

then neither of its nice multiplies is almost perfect number.  
 Our strategy will be the following: check the cases of the small numbers and see ratio of numbers n  and 

( )f n . When we have that ( )n f n , conclude that there are not almost perfect numbers among their nice 

multiplies. With formula for (2 )kf  conclude that for sufficiently big k (when (2 ) 2k kf   this is enough to 

conclude that there are no more almost perfect numbers.  

 By induction, it is simple to prove that (2 ) 2k kf   for 4k . Thus, there are no almost perfect numbers of 

the form 2k m , where 4k  and m  is odd, since they all have 2 k  as their nice divisor. We only have to 

check the numbers of the form 2k m , where 3k  and m  is odd.  

 First case: 0k  

 For any odd prime p  we have ( ) (1) ( ) 3f p d d p p    . From that we see that 3n  is solution. 

Moreover, we do not have any more solutions: if some odd number has a prime divisor different from 3, since 

( )f p p  this number can not be almost perfect number; if it is a power of 3  bigger than 3 , since 

(9) 3 (3) 9f f  , there are no more solutions as well (9 is nice divisor of every power of 3  bigger that 3).  

 Second case: 1k . 

 For any odd prime we have (2 ) 3 (2) 9f p f  . If 5p  thenwe have 2 (2 )p f p , so for all almost 

perfect numbers of the form 12 m  number m  has to have prime divisors 3  and/or 5 .  

 We directly see that neither 6  or 10  is almost perfect. SO, in this case, almost perfect numberhas to a nice 

divisor of the form 2 9,2 15  or 2 25 . For 18n  we have another solution, in other two cases we have 

inequality ( )f n n . If we want to seek new solution in this case, since they cannot be nice multiplies of 30  

and 50 , the only possibility is that almost perfect number has nice divisor 2 27 . But we have(equality case in 

lemma) that (2 27) 3 (2 9) 2 27f f     . So, there are no more solutions in this case.  

 Third case: 2k  

 For any odd prime we have (4 ) 3 (4) 18f p f  . If 5p  then we have 4 (4 )p f p , so for all almost 

perfect numbers of the form 12 m  number m  has to have prime divisors 3  and/or 5 .  
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 We directly see that neither 12  or 20  is almost perfect. So, in this case, almost perfect number has to have 

a nice divisor of the form 4 9,4 15    or 4 25 . For 36n  we have another solution, in other two cases we have 

inequality ( )f n n . If we want to seek new solution in this case, since they cannot be nice multiplies of 60  

and 100 , the only possibility is that almost perfect number has nice divisor 4 27 . But we have (equality case 

in lemma(, that (4 27) 3 (4 9) 4 27f f     .  

 So, there are no more solutions in this case.  

 Fourts case: 3k  

 For any odd prime we have (8 ) 3 (8) 30f p f  . Similarly to other cases, we only observe candidates of the 

form 8 3l . Number 8 3  is not almost perfect, all other candidates have nice divisor 8 9 . But, we have 

(72) 60 72f   . As we always concluded, we do not have any new solutions.  

 So allalmost perfect numbers are 3,18,36 .  
 

Problem 4. Let ABC  be an acute angled triangle. Let ', 'B A  be points on the 

perpendicular bisectors of ,AC BC  respectively such that 'B A AB  and 'AB AB . Let P  be 

a point on the segment AB  and O  the circumcenter of the triangle ABC . Let ,D E  be points 

on ,BC AC  respectively such that DP BO  and EP AO . Let 'O  be the circumcenter of the 

triangle CDE . Prove that ', 'B A  and 'O  are collinear.   
Solution. Remark. We first start by giving some intuition on how the problem canbe approached. We 

won’t go into detail here but do give partial marks for correct ideas. We believe that any essential correct 
solution should have them in the background so we don’t require them to be written down explicitly. 

 We notice that if P A  then ' 'O B  while if P B  we have ' 'O A . So the problem is equivalent to 

showing that as P  varies on the segment AB  respective 'O  map to a segment and we are now interested in 

identifying this segment.  
 

 It is hence natural to draw a picture not containing anything dependent on P and try to identify the line 

' 'A B . Which turns out to be perpendicular to CM  where M  is the midpoint of AB .  

 Furthermore we note that 2 2 2 2 2' ' ' 'B M B C AM A M A C     and this defines the line uniquely (and 

shows ' 'A B CM ).  

 The following sketch represents the problem setting when we do include the elements depending on P .  
 We now start with the formal proof.  

 It is enough to show that 2 2 2' 'O M O C AM   for all 

P , including ,P A B  which allows us to draw the 

following sketch omitting ', 'B C .  

 We first prove that 'O EPD  is a cyclic quadrilateral. 

This follows as ' 2EO D ABC APE BPD EPD     as 

ABC APE BPD  . This in turn implies 'PO  is an 

angle bisector of the angle EPD  and 'PO AB .  

 We now have all the ingredients to show 
2 2 2' 'O M O C AM  . The following sketch illustrates 

the last part of the proof.  
 We introduce the point 'D  as the second intersection 

of the line PE  and the circumcircle of CDE  so that 2 2' ' 'O P O C PE PD   .  

 Now as 'PO  is the angle bisector of EPD  we have 'PD PD  by the extended S S K   congruency 

theorem and the following observation. There is some care needed here, mainly the options we get by 

S S K   are 'PD PD  or PD PE  but if PD PE  triangles ' 'P EO  and ' 'P DO  are congruent by 

C

'O
'B

OE
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S S S   congruency theorem so in particular ' 'EO P DO P CAB   while ' '
2

EPO DPO CAB    so PD  

and PE  are tangents os in fact 'D E  so the above claim is still true.  
 Now noticing triangles APE  and BPD  are 

similar we get PE PB
AP PD

  implying 

'AP BP PE PD PE PD     .  

 As 'PO AB  by using Pythagoras theorem we 

get  
2 2 2

2 2 2 2

' '

' '

' 0

O M O C AM

O P O C PM AM

PD PE AP PB

  
    
    

. 

Where we used 2 2' ' 'O P O C PE PD    by the 

power of the point P  to the circumcircle of CDE  

and  
2 2 ( )( )AM PM BM PM AM PM AP PB      .   

This completes the proof. 
 
 

C

O

'O
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European girl’s Mathematical Olympiad 
Bushteni, Romania, April 10.04-16.04.2016 

 

___________________________________________________________________ 
 

Day 1 
Tuesday, April 12 , 2016 

 

 Problem 1. Let n  be an odd positive integer, and let 1 2, ,..., nx x x  be non-negative real 

numbers. Show that    

     2 2
1 1

1,2,..., 1,2,...,
min ( ) max 2i i j j

i n j n
x x x x 

 
  ,  

where 1 1nx x  . 
 

 Problem 2. Let ABCD  be a cyclic quadrilateral, and let diagonals AC  and DC  
intersect at X . Let  1 1,C D   and M  be the midpoint of segments ,CX DX  and CD  

rspectively. Lines 1AD  and 1BC  intersect at Y , and line MY  intersect diagonals AC  and 

BD  at different points E  and F , respectively. Prove that line XY  is tangent to the circle 
through ,E F  and X .  
 

 Problem 3. Let m  be a positive integer. Consider a 4 4m m  array of square unit cells. 
Two different cells are related to each other if they are in either the same row or in the 
same column. No cell is related to itself. Some cells are coloured blue, such that every cell 
is related to at least two blue cells. Determine the minimum number of blue cells.  
____________________________________________________________________________ 

Solutions 
 Problem 1. Let n  be an odd positive integer, and let 1 2, ,..., nx x x  be non-negative real numbers. 

Show that    

     2 2
1 1

1,2,..., 1,2,...,
min ( ) max 2i i k k

i n k n
x x x x 

 
  ,  

where 1 1nx x  . 

 Solution. In what follows, indices are reduced modulo n . Consider the n  differences 1k kx x  , 

1,2,...,k n . Since n  is odd, there exists an index j  such that 1 2 1( )( ) 0j j j jx x x x     . Without loss of 

generality, we may and will assume both factors non-negative, so 1 2j j jx x x   . Consequently,  

  2 2 2 2 2
1 1 1 1 2 1

1,2,3,..., 1,2,3,...,
min ( ) 2 2 min 2i i j j j j j k k

i n k n
x x x x x x x x x      
      .  

 Remark. If 3n  is odd, and one of the kx  is negative, then the conclusion may no longer hold. This is 

the case if, for instance, 1x b , and 2kx a , 2 1kx b  , 11,2,...,
2

nk  , where 0 a b  , so the string of 

numbers is  
  , , , , ,..., ,b a b a b b a .  

 If n  is even, the conclusion may again no longer hold, as shown by any string of alternate real numbers: 

, , , ,..., ,a b a b a b , where a b .  
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 Problem 2. Let ABCD  be a cyclic quadrilateral, and let 

diagonals AC  and DC  intersect at X . Let  1 1,C D   and M  

be the midpoint of segments ,CX DX  and CD  rspectively. 

Lines 1AD  and 1BC  intersect at Y , and line MY  intersect 

diagonals AC  and BD  at different points E  and F , 

respectively. Prove that line XY  is tangent to the circle 
through ,E F  and X .  

 Solution. We are to prove that EXY EFX  ; alternatively, 
but equivalently,  

  AYX XAY BYF XBY    .  

 Since the quadangle ABCD  is cyclic, the triangles XAD  and 

XBC  are similar, and since 1AD  and 1BC   are corresponding 

medians in these triangles, it follows that 

1 1XAY XAD XBC XBY    .  

 Finally, AYX BYF  , since X  and M  are corresponding points in the similar triangles ABY  and 

1 1C DY : indeed, 1 1XAB XDC MC D    , and 1 1XBA XCD MDC   .  
 

 Problem 3. Let m  be a positive integer. Consider a 4 4m m  array of square unit cells. Two 

different cells are related to each other if they are in either the same row or in the same column. No 
cell is related to itself. Some cells are coloured blue, such that every cell is related to at least two 
blue cells. Determine the minimum number of blue cells.  
 Solution 1.(Israel) The required minimum is 6m  and is achieved by a diagonal string of m  4 4  blocks 

of the form below*bullets mark centers of blue cells):  

In particular, this configuration shows that the reqired minimum does not exceed 6m .  

 We now show that any configuration of blue cells satisfying the condition in the statement has cardinality 

at least 6m .  

 Fix such a configuration and let 1
rm  be the number of blue cells in rows containing exactly one such, let 

2
rm  be the number of blue cells in rows containing exactly two such, and let 3

rm  be the number of blue cells in 

rows containing at least three such; the numbers 1 2,c cm m  and 3
cm  are defined similarly.  

 Begin by noticing that 3 1
c rm m  and similarly, 3 1

r cm m . Indeed, if a blue cell is alone in its row, 

respectively column, then there eare at least two other blue cells in its column, respectively row, and the calim 
follows.  

 Suppose now, if possible, the total number of blue cells is less than 6m . We will show that 1 3
r rm m  and 

1 3
c cm m  and reach a contradiction by the preceding: 1 3 1 3 1

r r c c rm m m m m    .  

 We prove the first inequality; the other one is dealt with similarly. TO this edn, notice that there are no 

empty rows-otherwise, each column would contain at least two blue cells, whence a total of at least 8 6m m  

blue cells, which is contradiction. Next, count rows to get 32
1 4

2 3

rr
r mmm m   , and count blue cells to get 









C

D

Y

1C

M
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1 2 3 6r r rm m m m   . Subtraction of the latter from the former multiplied by 3
2

 yields 2
1 3 0

2

r
r r mm m   , and 

the conclusion follows.  
 

 Solution 2. To prove that a minimal configuration of blue cells satisfying the condition in the statement has 

cardinality at least 6m , consider a bipartite graph whose vertex parts are the rows and the columns of the 

array, respectively, a row and a column being joined by an edge if and only if the two cross at a blue cell. 
Clearly, the number of blue cells is equal to the number of edges of this graph, and the relationship condition in 
the statementreads: for every row r  and every column c , deg deg ( , ) 2r c r c   , where ( , ) 2r c   if r  and 

c  joined by an edge, and ( , ) 0r c   otherwise.  

 Notice that there are no empty rows/columns, so the graph has no isolated vertices. By the preceding, the 

cardinalty of every connected component of the graph is at least 4 , so there are at most 42 2
4
m m   such and 

consequently, the graph has at least 8 2 6m m m   edges. This completes the proof.  

 Remarks. The argument in the first solution shows that equality to 6m  is possible only if 

1 3 1 3 3r r c cm m m m m    , 2 2 0r cm m  , and there are no rows, respectively columns, containing four blue cells 

or more.  
 Consider the same problem for an n n  array. The argument in the second solution shows that the 

corresponding minimum is 3
2
n  if n  is divisible by 4 , and 3 1

2 2
n  if n  is odd; if 2 (mod 4)n , the minimum 

in question is 3 1
2
n . To describe corresponding minimal configurations nC , refer to the minimal 

configuration 2 3 4 5, , ,C C C C  below: 

The case 0(mod 4)n  was dealt with above: a nC  consists of a diagonal string of 
4
n  blocks 4C . If 

(mod 4)n r , 2,3r , a nC  consists of a diagonal string of 
4
n   

 blocks 4C  followed by a rC , and if 

1(mod 4)n , a nC  consists of a diagonal string of 1
4
n   

 blocks 4C  followed by a 5C .  

 Minimal configuration are not necessary unique(two configurations being equivalent if one is obtained 

from the other by permuting the rows and/or the columns). For instance, if 6n , the configurations below are 

both minimal:  
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European girl’s Mathematical Olympiad 
Bushteni, Romania, April 10.04-16.04.2016 

 

___________________________________________________________________ 
 

Day 2 
Wensday, April 13 , 2016 

 

 Problem 4.  Two circles, 1  and 2 , of equal radius intersect at different points 1X  and 2X . 

Consider a circle   externally tangent to 1  at a point 1T , and internaly tangent to 2  at a point 

2T . Prove that lines 1 1X T  and 2 2X T  intersect at a point lying on  .       

 Solution 1. Let the line k kX T  and   meet again at 

'
kX , 1,2k , and notice that the tangent kt  to k  at 

kX  and the tangent 'kt  to   at '
kX  are parallel. Since 

the k  have equal radii, the kt  are parallel, so the 'kt  

are parallel, and consequently the points 1 'X  and 2 'X  

coincide(they are not antipodal, since they both lie on 
the same side of the line 1 2T T . The conclusion follows.  

 Solution 2. The circle   is the image of k  under a 

homothety kh  centred at kT , 1,2k . The tangent to   

at ' ( )k k kX h X  is therefore parallel to the tangent kt  to 

k  at kX . Since the k  have equal radii, the kt  are parallel, so 1 2' 'X X  and since the points 

,k kX T  and 'kX  are collinear, the conclusion follows.  

 Solution 3. Invert from 1X  and use an asterisk to 

denote images under this inversion. Notice that *
k  is 

the tangent from *
2X  to *  at *

kT , and the pole 1X  

lies on the bisektrix of the angle formed by the *
k , 

not containing * . Letting *
1 1X T  and *  meet again 

at Y , standard angle chase shows that Y  lies on the 

circle * *
1 2 2X X T  and the conclusion follows.  

 Remarks. The product 1 2h h  of the two homotheties in the first solution is reflexion across the 

midpoint of the segment 1 2X X , which lies on the line 1 2T T .  

 Various arguments, involving similarities, radical axes, and the like, work equally well to prove 
the required result.  

 Problem 5. Let k  and n  be integers such that 2k  and 2 1k n k   . Place rectangular tiles, 

aech of size 1 k  or 1k , on an n n  chessboard so that each tile covers exactly k  cells, and no 

two tiles overlap. Do this until no further tile be placed in this way. For each such k  and n , 

determine the minimum number of tiles such an arrangement may contain.  
 Solution. The required minimum is n  if n k , and it is min{ ,2 2 2}n n k   if 2k n k  . 

1 2



1t

2t

1X

2X

1T

2T

*
1X

*
2X

Y

*
1T

*
2T
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 The case n k  being clear, assume hence forth 2k n k  . Begin by describing maximal 

arrangement of the board [0, ] [0, ]n n , having the above mentioned cardinalities.  

 If 2 1k n k   , then min{ ,2 2 2} 2 2 2n n k n k     . To obtain a maximal arrangement of this 

cardinality, place four tiles, [0, ] [0,1]k  , [0,1] [0, 1]k  , [1, 1] [ , 1]k k k    and [ , 1] [0, ]k k k   in the 

square [0, ] [0, ]k k , stack 1n k   horizontal tiles in the rectangle [1, 1] [ 1, ]k k n   , and erect 1n k   

vertical tiles in the rectangle [ 1, ] [1, 1]k n k   .  

 If 2 1n k  , then min{ ,2 2 2} 2 1n n k n k     . A maximal arrangement of 2 1k  tiles is 

obtained by stacking 1k  horizontal tiles in the rectangle [0, ] [0, 1]k k  , another 1k  horizontal 

tiles in rectangle [0, ] [ ,2 1]k k k  , and ading the horizontal tile [ 1,2 1] [ 1, ]k k k k    .  

 The above examples show show that the required minimum does not exceed the mentoined 
values.  
 To prove the reverse inequality, consider a maximal arrangement and let r , respectively c , be 

the number of rows, respectively columns, not containing a tile.  
 If 0r  or 0c , the arrangement clearly contains at least n  tiles.  

 If r  and c  are both positive, we show that the arrangement contains at least 2 2 2n k   tiles. To 

this end, we will prove that the rows, respectively columns, not containing a tile are consecutive. 
Assume this for the moment, to notice that these r  rows and c  columns cross to form an r c  

rectangular array containing no tile at all, so r k  and c k  by maximality. Consequently, there are 

1n r n k     rows containing at least one horizontal tile each, and 1n c n k     columns 

containing at least one vertical tile each, whence a total of at least 2 2 2n k   tiles.  

 We now show that the rows not containing a tile are consecutive; columns are dealt with 
similarly. Consider a horizontal tile T . Since 2n k , the nearest horizontal side of the board is at 

most 1k  rows away from the row containing T . Thee rows, if any, cross the k  columns T  

crosses to form a rectangular array no vertical tile fits in. Maximality forces each of these rows to 
contain a horizontal tile and the claim follows.  
 Consequently, the cardinality of every maximal arrangement is at least min{ ,2 2 2}n n k  , and 

the conclusion follows.  
 Remarks.(1) If 3k  and 2n k  the minimum is 1 2 1n k    and is achieved, for instance, by 

the maximal arrangement consisting of the vertical tile [0,1] [1, 1]k   along with 1k  horizontal tiles  

stacked in [1, 1] [0, 1]k k   , another 1k  horizontal tiles stacked in [1, 1] [ 1,2 ]k k k   , and two 

horizontal tiles stacked in [ ,2 ] [ 1, 1]k k k k   . This example shows that the corresponding minimum 

does not exceed 1 2 2 2n n k    . The argument in the solution also applies to the case 2n k  to 

infer that for a maximal arrangement of minimal cardinality either 0r  or 0c , and the cardinality 

is at least n . Clearly, we may and will assume 0r . Suppose, if possible, such an arrangement 

contains exactly n  tiles. Since there is no room left for an additional tile, some tile T  must cover a 

cell of the leftmost column, so it covers the k  leftmost cells along its row, and there is then room 

for another tile along that row-a contradiction.  
 (2) For every pair ( , )r c  of integers in the range 2 ,..., 1k n k  , at least one of which is positive, 

say 0c , there exists a maximal arrangement of cardinality 2n r c  .  

 Use again the board [0, ] [0, ]n n  to stack k r  horizontal tiles in each of the rectangles 

[0, ] [0, ]k k r   and [ ,2 ]k c k c  , erect k c  vertical tiles in each of the rectangles 

[0, ] [ ,2 ]k c k r k r     and [ ,2 ] [0, ]k k c k  , then stack 2n k r   horizontal tiles in the rectangle 

[ ,2 ] [2 , ]k c k c k r n    , and erect 2n k c   vertical tiles in the rectangle [2 , ] [1, 1]k c n k   .  
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 Problem 6. Let S  be the set of all positive integers n  such that 4n  has a divisor in the range 
2 2 21, 2,..., 2n n n n   . Prove that there are infinitely many elements of S  of the forms 

7 ,7 1,7 2,7 5,7 6m m m m m     and no elements of S  of the form  7 3m  or  7 4m  , where m  

is an integer.  
 Solution. The conclusion is a consequence of the lemma below which actually provides a 
recursive description of S . The proof of the lema is at the end of the solution.  

 Lemma. The forth power of a positive integer n  has a divisor in the range in the range 
2 2 21, 2,..., 2n n n n    if and only if at least one of the numbers 22 1n   and 212 9n   is a perfect 

square.  

 Consequently, a positive integer n  is a member of S  if and only if 2 22 1m n   or 
2 212 9m n   for some positive integer m .  

 The former is a Pell equation whose solutions are 1 1( , ) (3,2)m n   and  

  1 1( , ) (3 4 ,2 3 )k k k k k km n m n m n     , 1,2,3,....k .  

 In what follows, all congruences are modulo 7 . Iteration shows that 3 3( , ) ( , )k k k km n m n   . Since 

1 1( , ) (3,2)m n  , 2 2( , ) (3, 2)m n    and 3 3( , ) (1,0)m n   it follows that S  contains infinitely many integrs 

from each of the residue classes 0  and 2  modulo 7 .  

 The other equations is easily transformed into a Pell equation, 2 2' 12 ' 1m n  , by noticing that m  

and n  are both divisible by 3 , say 3 'm m  and 3 'n n . In this case, the solutions are 1 1( , ) (21,6)m n   

and  
  1 1( , ) (7 24 ,2 7 )k k k k k km n m n m n     , 1,2,3,....k  

This time iteration shows that 4 4( , ) ( , )k k k km n m n   . Since 1 1( , ) (0, 1)m n   , 2 2( , ) ( 3,0)m n   ,  3 3( , ) (0,1)m n   

and 4 4( , ) (3,0)m n  , it follows that S  contains infinitely many integers from each of the residue 

classes 0  and 1  modulo 7 .  
 

 Finally, since the kn  from the two sets of formulae exhaust S , by the preceding no integer in the 

residue classes 3  modulo 7  is a member of S .  
 

 We now turn to the lemma. Let n  be a member of S , and let 2d n m   be a divisor of 4n  in 

the range 2 2 21, 2,..., 2n n n n   , so 1 2m n  . Consideration of the square of 2n d m   shows 

2m  divisible by d , so 2 /m d  is a positive integer. Since 2 2( 1)n d n   , it follows that d  is not a 

square; in particular, 2 1m d , so 2 2m d . On the other hand, 1 2m n  , so 
2 2 2

2 2
4 4

1
m m n
d n m n
  

 
 

. Consequently, 
2

2m
d
  or 

2
3m

d
 ; that is, 

2

2 2m
n m




 or 
2

2 3m
n m




. In the former case, 

2 22 1 ( 1)n m   , and in the latter, 2 212 9 (2 3)n m   .  

 Conversely, if 2 22 1n m   for some positive integer m , then 2 21 4m n  , so 1 2m n  , and 
4 2 2( 1)( 1)n n m n m     , so the first factor is the desired divisor.  

 

 Similarly, if 2 212 9n m   for some positive integer m , then m  is odd, 6n , and 

  4 2 23 3
2 2 2 2
m mn n n     , and again the first factor is the desired divisor.  
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23-rd Macedonian mathematical 
olympiad  

Faculty of Electrical Engineering and 
Information Technologies-Skopje 

09.04.2016 
___________________________________________________________________ 
 1. Solve the equation 1 lcm( , )z z z zx y x y     in the set of natural numbers. 

 2. A magical square of dimensions 33  is a square with side 3 , consisting of 9  
unit squares, so that the real numbers written in the unit squares (one number in 
each unit square) satisfy the property: the sum of the numbers in the unit squares in 
any row is equal to the sum of the numbers in the unit squares in any column and is 
equal to the sum of the numbers in the unit squares in the two diagonals. 

A rectangle of dimensions nm , 3,3  nm  is given, which consists of mn

unit squares. If in each unit square one number is written in such a way that each 
square of dimensions 33  is magical, then how many different numbers can be 
used at most to fill the rectangle? 
 3. Solve the equation 3 xyztxytxztyztxyz  in the set of natural numbers. 

 4.  A segment AB  and its midpoint K  are given. An arbitrary point C  , different from 
K  is chosen on the perpendicular to AB  through K . Let N  be the intersection of AC  
and the line passing through B  and the midpoint of the segment CK . Let U  be the 
intersection of AB  with the line that passes through C  and the midpoint L  of the segment 
BN . Prove that the ratio of the areas of the triangles CNL  and BUL  doesn’t depend on 
the choice of point C . 

 5. Let 3n   and 1 2, ,..., na a a  be positive real numbers for which 

4 4 4
1 2

1 1 1
... 1

1 1 1 na a a
   

  
 holds. Prove the inequality   /4

1 2 ... 1
n

na a a n    . 

___________________________________________________________________ 
 

Solutions 
 
 1. Solve the equation 1 lcm( , )z z z zx y x y    in the set of natural numbers. 

Solution. Let gcd( , )d x y . Then | ( , )z zd lcm x y , | zd x  and | zd y , from where we get 1d  . 

The equation is transformed into 1 z z z zx y x y   , or, equivalently   1 1 2z zx y   . We get 

1 1, 1 2z zx y     or 1 2, 1 1z zx y    , from where it follows that 2, 3, 1x y z    or 

3, 2, 1x y z   . 

M M

O
 

2016

      23 -t a Makedonska

mat emat i ~ka ol i mpi jada
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2. A magical square of dimensions 33  is a square with side 3 , consisting of 9  
unit squares, so that the real numbers written in the unit squares (one number in 
each unit square) satisfy the property: the sum of the numbers in the unit squares in 
any row is equal to the sum of the numbers in the unit squares in any column and is 
equal to the sum of the numbers in the unit squares in the two diagonals. 

A rectangle of dimensions nm , 3,3  nm  is given, which consists of  mn

unit squares. If in each unit square one number is written in such a way that each 
square of dimensions 33  is magical, then how many different numbers can be 
used at most to fill the rectangle? 

Solution. We consider the magical square:  
 
 
 
 
 

Then  

1 2 3 1 2 3 1 2 3 1 1 1

2 2 2 3 3 3 1 2 3 1 2 3 ,

A A A B B B C C C A B C

A B C A B C A B C C B A S

          
            

  

or, equivalently 

       
 

1 2 3 2 2 2 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 2 2

4

( ) ( ) 3 3 3 .

S B B B A B C A B C C B A

A A A B B B C C C B S B

           
           

 .  

We get 23S B .  In what follows we will denote the central element 2B  by x. 

 We have proven that if the central element in a magical square is x , then 3S x .………..….(1) 

 If the rectangle is of dimensions 3 3 , then it is a magical square and we can fill it with 9 

different numbers, for example 
. 
 
 
 
 
We will show that a rectangle of dimensions 3, 3n m   has to be filled with a single number. Let 

3, 3n m   and let x  be the number in the first central unit square (Picture 1). 
 

          

 x         

          

Picture 1. 
 

From (1) we get that if the unit square from the rectangle is filled as in Picture 1, then S  of the 
designated square is 3x . We consider the square designated in Picture 2.  
 

1A  2A  3A  

1B  2B  3B  

1C  2C  3C  

1 10 4 

8 5 2 

6 0 9 
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 x x        

          

Picture 2. 
 

Then its central unit square has to be x  again, because the second column has sum equal to 3x . 

Analogously, by moving the square to the right we get a rectangle that has to be filled in the 
following way: 

          

 x x x ... ... x x x  

          

 From the colored squares, it follows that the entire second row it filled with x.  
Let’s assume that the rectangle is filled in the following way: 
  

а c         

x x x x ... ... x x x x 

b d         
 

Since the sum of the numbers in the first row of the colored square is equal to the sum of the 
numbers in the diagonals, the rectangle has to be filled in the following way 

а c а        

x x x x ... ... x x x x 

b d b        

Picture 3. 
Next we consider the colored square in Picture 4. Because 2 3a c x  and 2 3b d x  we get that 
the rectangle is filled in the following way: 
 

а c а а       

x x x x ... ... x x x x 

b d b b       

Picture 4 
 Analogously to the way the colored square was filled in Picture 3, we get that ,c a b d  .  But 

then   

а a а а       

x x x x ... ... x x x x 

b b b b       

, from where a b c d x     i.e. all elements of the rectangle have to be equal. 
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 Let 3, 3n m  . Then, because of the previous discussion, the rectangle of width 3 and length m

has to be filled with one number (Picture 5). 
 

        

        

        

        

        

Picture 5. 
For the same reasons, the same holds for the colored rectangle 
and every rectangle obtained by vertical translation. 
 Finally, if 3n m  , then the rectangle can be filled with 9 

different numbers. If 3n  or 3m , then the rectangle can be 

filled only with a single number. 
 
 
 
 

 3. Solve the equation 3 xyztxytxztyztxyz  in the set of natural numbers. 

 Solution. After dividing the equation by xyzt  we get 1 1 1 1 31
x y z t xyzt
     . Because of 

symmetry, without loss of generality, we can assume that 
  x y z t    ...                     (1)  

from where it follows that 1 1 1 1
x y z t
   . We get 4 1 1 1 1 31 1

x x y z t xyzt
       , from where we 

have 4x .   

 Case 1. Let 3x . Then the equation is of the form 3 3 3 3 3yz yzt zt yt yzt     , or, 

equivalently  3 2 3yz zt yt yzt    . After dividing this equation by yzt  we get 

   1 1 1 3 93 2 2, 2,
y z t yzt y
       from where we have 4y . 

 The possible values for y  are 3 and 4. 

 а) For 4y  we get  

       1 1 3 243 4 4 8 3,12 5 3,12 5 5, 5z zt t zt z t zt
z t zt z

            ,  

from where we have 4z . From (1) it follows that 4z  and the equation gets the form 

 12 4 20 3,t t    or, equivalently 8 45t , which implies that t  is not a natural number. 

 б) For 3y , we get 

       1 1 1 63 3 3 6 3, 3 1,3 1 1, 1, 6z zt t zt z t zt z
z t zt z

             .  

 The possible values for z are 3,4,5 .  
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 -Let 3z . Then  3 3 3 1t t    which is impossible.  

 -If 4z , then  3 4 4 1, 11t t t    .  

 -If 5z , then  3 5 5 1, 7t t t    . 

We get that the quadriples  3,3,4,11 ,  3,3,5,7  are solutions. 

 Case 2. Let 2x .  

 Then the equation is if the form 
  2 2 2 2 3yz yzt zt yt yzt     , 

or, equivalently, 

   2 3yz zt yt yzt    ....                  (2).   

Then each of the numbers , ,y z t  is odd.  After dividing this equation by yzt  we get 

 1 1 1 32 1 1
y z t yzt
      from where we have 6 1

y
 , or, equivalently 6y .  

 а) If 5y  then (2) is of the form  2 5 5 5 3z zt t zt    , or, equivalently 10( ) 3 3z t zt   . 

Hence  1 1 310 3 3
z t zt
     , therefore 1 3

20z
 , or equivalently 6z . The only possibility is 5z . 

We get 10(5 ) 15 3t t   , or, equivalently 5 47t  which implies that t  is not a natural number.   

  б) If 3y , (2) is of the form  2 3 3 3 3z zt t zt    , or equivalently  6 3z t zt   . Then 

 1 1 36 1 1
z t zt
    , from where 12 1

z
 , or, equivalently 12z . The possibilities for z are 

3,5,7,9,11 .  

 -If 3z , then  6 3 3 3t t   , from where we have 3 15t , or equivalently 5t  .  

 - If 5z , then  6 5 5 3t t   , 27t  .  

 - If 7z , then  6 7 7 3t t   , 39t .  

 - If 9z , then  6 9 9 3t t   , from where we have 3 51t , or, equivalently 17t .  

Therefore in this case the solutions are the quadriples  2,3,7,39 ,  2,3,9,17 . 

 Case 3. The case remains when 1x . Then the equation is of the form 

3yz yzt zt yt yzt     , or, equivalently 3yz zt yt   . From (1) we get 3 3yz , or 

equivalently 1yz , from where 1y  and 1z . Then 1 2 3t  , or equivalently 1t . The 

quiadriple  1,1,1,1  is a solution. 

 Finally, the solutions to the initial equation are all permutations of  3,3,4,11 ,  3,3,5,7 , 

 2,3,7,39 ,  2,3,9,17 ,  1,1,1,1 . 
 

 4.  A segment AB  and its midpoint K  are given. An arbitrary point C  , different from 
K  is chosen on the perpendicular to AB  through K . Let N  be the intersection of AC  
and the line passing through B  and the midpoint of the segment CK . Let U  be the 
intersection of AB  with the line that passes through C  and the midpoint L  of the segment 
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BN . Prove that the ratio of the areas of the triangles CNL  and BUL  doesn’t depend on 
the choice of point C . 

 Solution. Let M  be the midpoint of the segment CK . 

From Menelaus’ theorem for the triangle AKC  and the line 

BN  we have 

  1CN AB KM
NA BK MC

   . 

From this we get 2NA NC , from which it follows that 

3AC NC . Hence 1
3BNC ABCP P . From Menelaus’ 

theorem for the triangle ABN  and the line CU  we have 

  1AU BL NC
UB LN CA

   . 

Therefore we get 3AU UB . Therefore U  is the midpoint 

of the segment BK . It follows that 1
4BUC ABCP P . Let CNLx P  and BLUy P . Since L  is the 

midpoint of BN , we have BLCP x . Now 

  1
4BLC BLU BUC ABCx y P P P P     , 

on the other hand we have 

  12
3CNL BLC BNC ABCx P P P P    . 

If we divide these two equalities we get 

  1 3
2 2 4

y
x

  , hence 1
2

y
x
 , 

from where we get the required statement.  

 5. Let 3n  and 1 2, ,..., na a a  be positive real numbers for which 

4 4 4
1 2

1 1 1... 1
1 1 1 na a a

   
  

 holds. Prove the inequality   /4
1 2 ... 1 n

na a a n    . 

 Solution. Let 2 tan , 0, , 1,2,..., .
2i i ia x x i n  

 Then 2

1
cos 1

n

i
i

x


 . 

From the inequality between the arithmetical and the geometrical mean it follows that 

  
 2/ 1

2 2

1,
sin 1 cos 1 cos , 1,2,...,

nn

i i ј
j j i

x x n x i n


 

          . 

By multiplying the n  inequalities above, we get  2 2

1 1
sin 1 cos .

n n
n

i i
i i

x n x
 

    The last inequality is 

equivalent to the inequality 

    /2

1
tan 1 .

n
n

i
i

x n


   

 Finally,  
1/2

/4

1 1
tan 1 ,

n n
n

i i
i i

a x n
 

        which was to be proven.  

C

N



Mathematical olympiads 2016-Union of mathematicians of Macedonia-ARMAGANKA 

28 

 
33-th Balkan mathematical Olympiad 

05.05.-10.05.2016, Tirana Albania 
 
___________________________________________________________________ 
 

 Problem 1 
 Find all injective functions :f    such that for every real number x  and every 

positive integer n ,  

  
1

( ( 1) ( ( )) 2016
n

i

i f x i f f x i


      

 Problem 2 
 Let ABCD  be a cyclic quadrilateral with AB CD . The diagonals intersect at the point 
F  and lines AD  and BC  intersect at the point E . Let K  and L  be the orthogonal 
projections of F  onto lines AD  and BC  respectively, and let ,M S  and T  be the 
midpoints of ,EF CF  and DF  respectively. Prove that the second intersection point of the 
circumcircles of triangles MKT  and MLS  lies on the segment CD .  
 

 Problem 3 
 Find all monic polynomials f  with integer coefficients satisfying the following 
condition: there exists a positive integer N  such that p  divides 2( ( )!) 1f p   for every  
prime p N  for which ( )f p   is a positive integer.  
 Note. A monic polynomial has leading coefficient equal to 1.  
 

 Problem 4 
 The plane is divided into unit squares by two sets of parallel lines, forming an infinite 
gird. Each unit squares is coloured with one of 1201  colours so that no rectangle with 
perimeter 100  contains two squares of the same colour. Show that no rectangle of size 
1 1201  or 1201 1  contains two squares of the same colour.  
 Note. Any rectangular is assumed here to have sides contained in the lines of the gird.  
_________________________________________________________________________ 
 

Solutions 
 

 Problem 1 
 Find all injective functions :f    such that for every real number x  and every 

positive integer n ,  

  
1

( ( 1) ( ( )) 2016
n

i

i f x i f f x i


      

 Solution. From the condition of the problem we get  

  
1

1

( ( 1) ( ( )) 2016
n

i

i f x i f f x i



     .  

Then  

  1

1 1

| ( ( 1) ( ( )) |

( ( 1) ( ( )) ( ( 1) ( ( )) 2 2016 4032
n n

i i

n f x n f f x n

i f x i f f x i i f x i f f x i
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implaying  

  4032| ( 1) ( ( ))|f x n f f x n
n

      

for every real number x  and every positive integer n .  
 Let y  be arbitrary. Then there exists x  such that y x n  . Wwe obtain  

  4032| ( 1) (( ( ))|f y f f y
n

    

for every real number y  and every positive integer n . The last inequality holds for every positive 

integer n  from where ( 1) ( ( ))f y f f y   for every  y  and since the function f  is an 

injection, then ( ) 1f y y  . The function ( ) 1f y y   satisfies the required condition.  
 

 Problem 2 
 Let ABCD  be a cyclic quadrilateral with AB CD . The diagonals intersect at the point 
F  and lines AD  and BC  intersect at the point E . Let K  and L  be the orthogonal 
projections of F  onto lines AD  and BC  respectively, and let ,M S  and T  be the 
midpoints of ,EF CF  and DF  respectively. Prove that the second intersection point of the 

circumcircles of triangles MKT  and 
MLS  lies on the segment CD .  
 Solution. Let N  be the midpoint of 
CD . We will prove that the circumcircles 
of the triangles MKT  and MLS  pass 
through N .(1) 
 First will prove that the circumcircle of 
MLS  passes through N . (2) 
 Let Q  be the midpoint of EC . Note 

that the circumcircle of MLS  is the Euler 
circle(2) of the triangle EFC , so it passes 
also through Q  (*)(3) 

 We will prove that  
 SLQ QNS      or  

180SLQ QNS    .     (4) 

Indeed, since FLC  is right-angled and LS  
is its median, we have that SL SC  and  

  SLC SCL ACB   .  (5) 
In addition, since N  and S are the midpoint of DC  and FC  we have that ||SN FD  and similarly, 

since Q  and N  are the midpoints of EC  and CD , so ||QN ED .  

 It follows that the angles EDB  and QNS  have parallel sides, and since AB CD  they are 

acute, and as a result we have that  

  EDB QNS    or  180EDB QNS    .           (6) 

 But, from the cyclic quadrilateral ABCD , we get that  

  EDB ACB  .                     (7) 
Now, from (2), (3) and (4) we obtain immediately (1), so the quadrilateral LNSQ  is cyclic. Since 

from (*), its circumcircle passes also through M , we get that the points , , , ,M L Q S N  are cocyclic 

and this means that the  circumcircle of MLS  passes through N .  
 

 Similarly, the circumcircle of MKT  passes also through N  and we have the desired.  
 

A

E
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 Problem 3 
 Find all monic polynomials f  with integer coefficients satisfying the following 
condition: there exists a positive integer N  such that p  divides 2( ( )!) 1f p   for every  
prime p N  for which ( )f p   is a positive integer.  

 Note. A monic polynomial has leading coefficient equal to 1.  
 Solution. If f  is a constant polynomaila then it’s obvious that the condition cannot hold for  

  5p  since ( ) 1f p  .                   (1) 

From the divisibility relation |2( ( ))! 1p f p   we conclude that: 

  ( )f p p  for all primes p N   (*)              (2) 

In fact, if for some prime number p  we have ( )f p p , then | ( ( ))!p f p  and then |1p  which is 

absurd.  

 Now suppose that deg 1f m  . Then ( ) ( )mf x x Q x  , deg 1Q m   and so ( ) ( )mf p p Q p  . 

Hence for some large enough prime number p  holds that ( )f p p , which contradicts (*). Therefore 

we must have deg ( ) 1f x   and ( )f x x a   for some positive integer a . (3) 

 Thus the given condition becomes: 
  |2( )! 1p p a  .                    (4) 

But we have(using Wilson theorem) 
  2( 3)! ( 3)!( 2) ( 2)! 1(mod )p p p p p         

  |2( 3)! 1p p  .                    (5) 

From (1) and (2) we get  
  2( 3)! ( 3)!( 2) ( 2)! 1(mod )p p p p p        

  ( 3)!( 1) ( 1)! ( 1)!( 1) ( 1)!(mod )a ap a p a p        

  ( 3)!( 1) ( 1)! 1(mod )ap a p    . 

Since 2( 3)! 1(mod )p p   , it follows that  

  ( 1) ( 1)! 2 (mod )a a p   .                 (6)  

Taking ( 1)!p a  , we conclude that 3a , we conclude that 3a  and so ( ) 3f x x  , for all x .  

 The function ( ) 3f x x   satisfies the required condition.  
 

 Problem 4 
 The plane is divided into unit squares by two sets of parallel lines, forming an infinite 
gird. Each unit squares is coloured with one of 1201  colours so that no rectangle with 
perimeter 100  contains two squares of the same colour. Show that no rectangle of size 
1 1201  or 1201 1  contains two squares of the same colour.  
 Note. Any rectangular is assumed here to have sides contained in the lines of the gird.  
 Solution. Let the centers of the unit squares be the integer points in the plane, and denote each 
unit square by the coordinates of the center.  
 Consider the set D  of all unit squares ( , )x y  such that | | | | 24x y  . Any integer translate of D  

is called a diamond.  
 Since any two unit squares that belong to the same diamond also belong to some rectangle of 
perimeter 100, a diamond cannot contain two squares of the same colour. Since a diamond contains 

exactly 2 224 25 1201   unit squares, a diamond must contain every colur exactly once.  
 Choose one colur, say, green, and let 1 2, ,...a a  be all green unit squares. Let iP  be the the 

diamond of center ia . We will show that no unit square is covered by two P ’s and that every unit 

square is covered by some iP .  
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 Indeed, suppose first that iP  and jP  contain the same unit square b . Then their centers lie 

within the same rectangle of perimeter 100, a contradiction.  
 Let, on the other hand, b  be an arbitrary unit square. The diamond of center b  must contain 

some green unit square ia . The diamond iP  of center ia  will then contain b .  

 Therefore, 1 2, ,...P P  from a covering of the plane in exactly one layer. It is easy to see, through, 

that, up to translation and reflection, there exists a unique such covering.(indeed, consider two 

neighbouring diamonds.Unless they fit neatly, uncoverable spaces of two unit squares are created 
near the corners: see Fig.1.) 

Figure 1 
 Without loss of generality, then, this covering is given by the diamonds of centers ( , )x y  such 

that 24 25x y  is divisble by 1201. (See fig.2 for an analogous covering with smaller diamonds.) It 

follows from this that no rectangle of size 1 1201  can contain two green unit squares, and 
analogous reasoning works for the remaining colours.  
 

Figure 2 
 
 

iP
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Селекционен тест за учество на ИМО 2016 
Факултет за електротехника и информациски технологии-Скопје 

             15.05.2016 година 
____________________________________________________________________ 

 

Problems and solutions 
 
 
 

 Задача 1. Нека ABC  е остроаголен триаголник и нека H  е неговиот ортоцентар. Точката 
G  припаѓа на рамнината на триаголникот при што ABGH  е паралелограм. Точката I  
припаѓа на правата правата GH  така што правата AC  ја полови отсечката HI . Правата 
AC  ја сече опишаната кружница околу триаголникот GCI  по вторпат во точката J . 
Докажи дека IJ AH . 
 
 

 Решение 1. Бидејќи ||HG AB  и ||BG AH , добиваме дека BG BC  и CH GH . Според тоа, 

четириаголникот BGCH  е тетивен. Бидејќи H  е ортоцентар на триаголникот ABC , добиваме дека 

90HAC ACB CBH    . Бидејќи BGCH  и CGJ I  се тетивни четириаголници, добиваме дека  
 

  CJI CGH CBH HAC    .  
 

 Нека M  е пресечна точка на AC  и GH , и нека D A  е точка од правата AC  така што AH HD . Тогаш 
MJI HAC MDH   .  

 

 Бидејќи MJI MDH  , IMJ HMD   и IM MH , добиваме дека триаголниците IMJ  и HMD  се 
складни, па според тоа IJ HD AH  , што требаше да се докаже.  
 
 

 Решение 2. Равенството CGH CGB   го добиваме на потполно ист начин како и во претходното 
решение. Во паралелограмот ABGH  имаме BAH HGB  . Од таму добиваме дека  

  HMC BAC BAH HAC HGB CGB CGB       . 
 
Според тоа  правоаголните триаголници CMH  и CGB  се слични. Исто така од опишаната круница околу 
триаголникот GCI  лесно се добива дека триаголниците MIJ  и MCG  се слични. Но, тогаш  
 

  IJ MI MH GB AH
CG MC MC GC CG

    ,  
 

од каде го добиваме равенството IJ AH .  
 

A B

G
HMI

J

D

C
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 Problem2.  Let a square scheme 2 2n n , made of unit white squares be given. Allowed move is to 
change the color of three consecutive unit squares in a particular row or three consecutive unit squares in a 
particular column - unit square with white color goes to unit square with black color and vice versa. 
 Find all nonnegative integers, 2n , for which with allowed moves  the given square scheme can be 
colored like chess table.                 (Belorusian mathematitical olympiad 2016) 
 

 Solution.We will call black unit squares which one when the square scheme is colored like a chess table are black 
and white unite squares those which will not change their color. It is not difficult to see when the square scheme is 

colored like chess table, we will have 22n  black and 22n  white unit squares, i.e. we will have even number of black 
and white unit squares.   
 

 Let the square scheme is colored like a chess table with finite number of moves. Every black unit square it must be 
recolored odd number times and every white unit square must be recolored even number times (some of the white unit 
squares can be not colored at all, i.e. to be colored zero times). According to that, the number of recoloring of the unit 
squares must be even number, hence the number of the moves need for the recoloring is even number, since in each 
allowed move three unit squares are recolored.   
 

 We will show that if 0 (mod 3)n , the number of moves with which we can make recoloring is an odd number. 

Such a contradiction for us will show that for all such nonnegative integers it is not 
possible to made such recoloring, i.e. the square scheme to be colored like a chess table.  
The vertices of the square scheme, starting from the left upper vertex and moving in 
clockwise direction we will denote with , , ,A B C D (see the image). 
 

     Let we consider the unit square which has a side which is a part of the sides AB  and 
BC  on the given square scheme. We will say the diagonal of the square scheme which 
starts from such a unit square and all the unit squares in which one can pass the chess 
bishop, starting from up going down, or from left to right which is same as previous 
(square scheme with dimensions 6 6  has 11 diagonals, on the given image are denoted 
only four of them). It is obvious that the square ABCD has 4 1n  diagonals and each 

diagonal is consisting only of white unite squares or only of black unit squares. Diagonal consisting only of white unite 
squares we will call white diagonal and diagonal consisting only of black unit squares we will call black diagonal.    

    Without loss of generality we can assume that the unit square containing the vertex A as its own vertex is a black 
square. The unit squares which are on the sides AB  and BC , starting with the vertex A , we will denote with the 
numbers from1  to 4 1n  continuously (the case 2n  and 3n  is given on the following image). Next we will 
consider the diagonals of the square scheme starting with unit square which has an ordinal number divisible with 3 . 
In every unit square of such diagonal we will write *  (on the image bellow, the cases 2n  and 3n  are given). 
On that way we will obtain even or odd number of black unit squares in which one is written * in general case. 
 

 It is obvious that a diagonal which has ordinal number divisible with 3 will be black diagonal and if his ordinal 
number is not divisible with 2. It will be white in every other case.     
It is obvious that the diagonal starting with odd ordinal number will has an odd number of unit squares. 
Hence the parity of the black unit squares in which ones we have * is the same as the parity of the number of all odd 
numbers which are divisible with 3, between 1  and 4 1n . We will find that number.  
 

 a) 0 (mod 3)n  
 

 In this case 3 ,n k k  , so 4 1 12 1n k    and between the numbers from 1  to 4 1n  which are odd and are 

divisible with 3, are the numbers 3 1,3 3,...,3 (4 3),3 (4 1)k k      . The number of such numbers is an even number, i.e. 

that number is 2k .  

 b) 1(mod 3)n  
 

A B

C
D

A B

CD

*

*

*

*

*

*

*

*

* *

*

*

1 2 3 4 5 6

7

8

9

10

11

A B

CD

1 2 3 4

5

6

7

*

*

* *

*
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In this case 3 1,n k k   , so 4 1 12 3n k    and between the numbers from 1  to 4 1n  which are odd and 

divisible with  3  are the numbers 3 1,3 3,...,3 (4 1),3 (4 1)k k      . The number of such numbers is an odd number, i.e. 

that number is 2 1k .  
 c) 2 (mod 3)n  
 

 In this case 3 2,n k k   , so 4 1 12 7n k    and between the numbers from  1  to 4 1n  which are odd and 

divisible with 3 are the numbers 3 1,3 3,...,3 (4 1),3 (4 1)k k      . Hence the number of such numbers is an odd number, 

i.e. that number is 2 1k .  
 

 Hence, * will be written in odd number odd black unit squares if 0 (mod 3)n , and if 0 (mod 3)n , * will be written 

in even number of black unit squares.    

 Now, let the square scheme is colored like a chess table. Let we note that when we recolor in one allowed move we 
recolor only one unit square in which one is written *. So all the allowed moves are divided in two cases: 
 

1) Allowed moves in which one we recolor white unit square with written symbol * 
 

2) Allowed moves in which one we recolor black unit square with written symbol * 
 

 Moves like in case 1) which have to be made is even number, since each white unit square in which one is written * 
must be recolored even number times. Moves like in case 2), in case when 0 (mod 3)n  is an odd number since the 

number of black unit squares is odd and each of them must be recolred odd number times. Hence, to have a coloring in 
these cases like a chess table it must be odd number of colorings. But, this is a contradiction with the fact that the 
recoloring will be made if are made only even number of recolorings, i.e. even number of allowed moves. 
Hence, if 0 (mod 3)n , recoloring of the square scheme like a chess table with allowed moves is not possible.  
 

 If 0 (mod 3)n , such a coloring of the square scheme with allowed moves is possible. In that case 2n  is divisible 

with 3  and the square scheme can be divided on squares 3 3  and each one can be recolored with allowed moves in 
one of the given cases on the image below.     
 

 3. Нека m  и n  се позитивни цели броеви такви што m n . Дефинираме k
m kx
n k
   за 

1,2,..., 1k n  . Докажи дека ако 1 2 1, ,..., nx x x   се цели броеви, тогаш 1 2 1... 1nx x x    е делив со 
барем еден прост непарен број.  
 

 Решение. Нека препоставиме дека 1 2 1, ,..., nx x x   се цели броеви. Ги дефинираме целите броеви  

  1 1 0k k
m k m na x
n k n k
        ,  

за 1,2,..., 1k n  .  
 

 Нека 1 2 1... 1nP x x x   . Потребно е да докажеме дека P  е делив со барем еден непарен прост број, или дека 

P  не е степен на бројот 2 . За таа цел, ќе ги испитаме степените на 2 кои ги делат броевите ka .  
 

 Нека 2d  е најголем степен на 2  кој го дели m n , а нека 2c  е најголем степен на 2  кој не го надминува 

2 1n . Тогаш 12 1 2 1cn    , па 1 2cn  . Значи, добиваме дека 2c  е еден од броевите 1, 2,...,2 1n n n   , и 

дека единствен степен на 2  е 2c  кој се наоѓа меѓу тие броеви. Нека l  природен број таков што 2cn l  . 

Бидејќи m n
n l

  е цел број, добиваме дека d c . Според тоа 12 |d c

l
m na
n l

     , додека 12 |d c
ka

   за секој 

{1,2,3,..., 1}\{ }k n l  .  
 

 Ќе пресметаме конгруенција по модуло 12d c  , при што добиваме  

  1
1 2 1( 1)( 1)...( 1) 1 ( 1) 1 1 0 (mod 2 )n d c

n l lP a a a a a  
           .  

Според тоа 12 |d c P   .  
 

 Од друга страна, за секој {1,2,..., 1}\{ }k n l   имаме 12 |d c
ka

  . Според тоа 12d c
kP a    , за некое k  од каде 

следува дека P  не е степен на бројот 2 .   
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19th Meditarranean mathematical olympiad 

Fakultet za elektrotehnika i informaciski tehnologii 
06.05.2016, Skopje, Republic of Macedonia 

 
 

 

 
 

 Problems  and solutions 
 

Problem 1 

Determine all integers 1n  for which the number 8 6 4 4n n n    is prime.  
 Solution. We use factorization  

  8 6 4 4 3 2 4 3 24 ( 2 2)( 2 2)n n n n n n n n n n n            .  

The first factor ( )f n  satisfies  

  4 3 2 3 2( ) 2 2 ( 1) ( 1) 1f n n n n n n n n           

and hence satisfies ( ) 2f n   for all 2n . The second factor 4 3 2( ) 2 2g n n n n n      is 

strictly greather than 2  for all 2n . This only leaves the case 1n  as a potential candidate for a 

prime, and indeed (1) (1) 1 7 7f g     is prime.  

 
 Problem 2 
 Let ABC  be a triangle . D  is the foot of the internal bisector of the angle A . The 

perpendicular from D  to the tangent AT (T  belong to BC ) to the circumscribed circle of ABC  

intersect the altitude aAH  at the point I ( aH  belong to BC ).  

 If P  is the midpoint of AB  and O  is the circumcircle, TI  intersect AB  at M  and PT
intersect AD  at F , prove that MF  is perpendicular to AO .  

 

 Solution. Let Q  be the midpoint of AC  and N  the intersection of AD  and PQ . Then N  

is the midpoint of AD . As DE  is perpendicular to AT , being E  the intersection point of DI  

A

B CDaH

M
I

P
F

N

O

Q

T

E
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and AT , and as OA  is perpendicular to AT , we get that DE  is parallel to OA , and so the 

angles OAN  and ADE   are equal. As a consequence, triangles ADE  and aDAH  are 

congruent.  

 In particular angle DAT  equals to angle aH AD , that is, ATD  is isosceles and point I  is 

the orthocenter of ABC .  
 So, TI  is perpendicular to AD , and the intersection point of TI  and AD  is the midpoint of 

AD ( N , say).  

 The four points , , ,M N I T  are collinear.  

 We will apply the Ceva theorem in the triangle APT  with the cevians ,PN AD  and TM . 

We get  

  1 1FP MA
FT PM

        
PF MP
TF MA

 . 

(Observe that NP  cut AT  in its midpoint).  

 So, MF  is parallel to AT , and form this MF  is perpendicular to AO , as claimed.  
 

Problem 3 
 Let , ,a b c  be positive real numbers such that 3a b c   . Prove that  

  4
2 2 2

3 1
23 3 3

b c a
abca b c

     .  

 Solution. Putting 
2 2 2

1 1 1, ,
3 3 3

u
a b c

      


 and ( , , )v b c a


 in CBS 

inequality, we get  

  
 
 

2

2 2 2 2 2 2

2 2 2

1 1 1 ( )
3 3 3 3 3 3

1 1 13
3 3 3

b c a a b c
a b c a b c

a b c

                 

    

 

on account of the constain relation.  
 We have  

  42 23 1 1 1 4 4a a a a       .  
Likewise, we get  

  
2

2

3 4

3 4 .

b b

c c

 
 

 

 Therefore,  

  

2 2 2
2 2 2
1 1 1 1 1 1 1

43 3 3 4 4

4

a b b c c aab bc ca
a b c a b c abc abc

a b c
abc

                 
 

 

on account of AM-GM inequality.  
 Combining the proceeding results, we get  
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2

2 2 2
93

3 3 3 4 4
b c a a b c

a b c abc abc

            
 

from which the statement follows. Equality holds when 1a b c    and we are done.  
 

Problem 4 
 Consider a 25 25  chessboard with cells ( , )C i j  for 1 , 25i j  . Find the smallest possible 

number n  of colors with these cells can be colored subject to the following condition: For 

1 25i j    and for 1 25s t   , the three cells ( , ), ( , ), ( , )C i s C j s C j t  carry at least two 

different colors.  
 Solution. The forbiden is given by  

 
For a 3 3  chessboard, the minimum number is given by 2. Indeed:  
 

1     1     2      
1 2 2 
2 2 1 

 

If we deal with a 5 5  chessboard, it is sufficient to consider 3  colours:  
 

1     1     2     2     3     
1 2 2 3 3 
2 2 3 3 1 
2 3 3 1 1 
3 3 1 1 2 

 

 It seems that 1
2n

nm   colurs is sufficient for an n n  chessboard for any odd n . So we will 

prove that 13  colours are sufficient for the 25 25  chessboard. We consider the colurs 
{1,2,3,...,11,12,0}  and the chessboard coloured as:  

   
1 1 2 2 3 ..... 11 11 12 12 0 
1 2 2 3 3 ..... 11 12 12 0 0 
2 2 3 3 4 ..... 12 12 0 0 1 
2 3 3 4 4 ..... 12 0 0 1 1 

..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... 
11 12 12 0 0 ..... 8 9 9 10 10 
12 12 0 0 1 ..... 9 9 10 10 11 
12 0 0 1 1 ..... 9 10 10 11 11 
0 0 1 1 2 ..... 10 10 11 11 12 

 

which satisfies the condition at first sight. In fact, it is easy that [ , ] (mod13)
2

i jC i j
     

 for any 

1 , 25i j  . So if the condition fails, then [ , ] [ , ] [ , ]C i s C j s C j t   for some 1 25i j    and 

1 25s t   , which implies that  

 (mod13) (mod13) (mod13)
2 2 2

j s j ti s                     
.  
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From [ , ] [ , ]C i s C j s  it is clear that 
2 2
j s i s          

 since  

    240 1 1 1 13
2 2 2 2 2 2
j s j s j ii s i s                     

,  

so 12
2 2

j si s            
 and the remainders must coincide. Analogously, from [ , ] [ , ]C j s C j t C we 

have that 
2 2
j s j t             

 so we conclude that 
2 2

j ti s           
, so we conclude that 

2 2
j ti s           

, 

which is impossible since 1
2 2 2 2

j t j ti s i s               
.  

 

 Now we prove that 13 colours are necessary. Fix a 25 25  chessboard with a configuration 
sastifying the condition. We fix any color, for instance colour number 2 . We will call 2 -cells that 

ones which are coloured with colour number 2 . The total number of 2 -cells will be denoted by 2c . 

We delete all the colours and only remain 2 -cells. From any 2 -cell, we draw horizontal arrows 
from left to right and vertical arrows from down to up joining consecutive 2 -cells. These arrows 
will be called 2 -arrows.  
 Any 2 -cell cannot have two or more out-going 2 -arrows since otherwise the forbidden 
configuration would occur: 

Therefore, the total number of 2 -arrows satisfies 2 2c a . It is clear that in any row, if there are k  

2-cells, then there are 1k  2-arrows in that row, so the total number of horizontal 2 -arrows equals 
to 2 25c   because there are 25 -rows. Analogously, looking at the columns, the total number of 

vertical 2 -arrows also equals to 2 25c  . So the total number of 2 -arrows is 2 22( 25)a c   and 

we obtain 2 2 22 50c a c   , so 2 50c  . Since there are 25 25 625   cells and 625 12
50

 , we need 

at least 13  colours to get the configuration.  
 

2

2 2

2

2 2

… … … … …

…

…

…

2

2

2
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20-th Junior Macedonian Mathematical Olympiad 
 FON University - Skopje 

28.05.2016 
 

_________________________________________________________________________ 
 

1.Solve the equation  
4 4 4 3
1 2 14... 2016 1x x x     . 

in the set of integers. 
2. Let ABCD  be a parallelogram and let , ,E F G  and H  be the midpoints of the sides 

, ,AB BC CD  and DA , respectively. If BH AC I  , BD EC J  , AC DF K   and 

AG BD L  , then prove that the quadrilateral IJKL  is a parallelogram. 

3. A square of dimension 44  is given, which consists of 16 squares of side 1. Non-
negative integers are filled in each square of dimension 11  from the square, so that the 
sum of any five of them which can be covered with one of the figures in the picture (the 
figures can be translated and turned over) is 5 . How many different numbers can be used 
to fill in the square?  
 

 

 
4. Let zyx ,, be positive real numbers. Prove that 

.
2

3

222 222222222








 yxz

zx

xzy

yz

zyx

xy
 

 When does equality hold? 
5. Solve the equation  

 22 gcd( , ) gcd( , )x y x y xy x y    . 

in the set of natural numbers. 
_________________________________________________________________________ 

 

Solutions 
1.Solve the equation  

4 4 4 3
1 2 14... 2016 1x x x     . 

in the set of integers. 
 

Solution. For 2x k , 4 416 0(mod16)x k  . 

For 2 1x k  ,   4 21 8 1 2 2 1 0(mod16)x k k k k      , i.e. 4 1(mod16)x  . Since 32016 1 15(mod16)  , 

and the sum of the numbers on the left-hand side never gives a remainder 15 when divided by 16, it 
follows that the given equation has no solution in the integers. 

 

    
      

    
    

M M

O
 

2016
J

20 та  ЈММО
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2. Let ABCD  be a parallelogram and let , ,E F G  and H  be the midpoints of the sides 

, ,AB BC CD  and DA , respectively. If BH AC I  , BD EC J  , AC DF K   and 

AG BD L  , then prove that the quadrilateral IJKL  is a parallelogram. 

Proof. Let AC BD O  . Clearly, AO  and BH  are medians in the triangle ABD , hence I  is the 

centroid of ABD . Similarly K  is the centroid of BCD . If IO x , then 2AI x . Similarly, if KO y , then 

2CK y . Therefore 3 3x AO CO y   , i.e. x y . We analogously prove that JO LO . It follows that 

IJKL  is a parallelogram. 
3. A square of dimension 44  is given, which consists of 16 squares of side 1. Non-

negative integers are filled in each square of dimension 11  from the square, so that the 
sum of any five of them which can be covered with one of the figures in the picture (the 
figures can be translated and turned over) is 5 . How many different numbers can be used 
to fill in the square?  
 

 

 
Solution. For each rectangle of dimension 3 4  
  

a b c d 

e f g h 

i j k l 

 
it holds that ( ) ( ) ( ) ( )a e f g h d e f g h i e f g h l e f g h                   , i.e. 
a d i l   .  
Let the square be filled as in the picture.  
 

a b c d 

е f g h 

i j k l 

m n o p 

 
Then from the previous discussion it follows that a c m o   , b d n p   , a d i l    and 
e h m p   . Therefore, a b c d h l p o n m i e X            , the square is of the form 
 

    
      

    
    

D G

H

K
L

O
x

y

2y
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X X X X 

X f g X 

X j k X 

X X X X 

 
and 5 5X  , i.e. 1X  .  
On the other hand, 3 3 3 3 5f g X j k X f j X g k X X            , i.e. 2f g j k f j g k X        . 
From the first and fourth, and the second and fourth equation, respectively, it follows that f k Y   
and j g Z  . According to that, the square is of the form 
 

1 1 1 1 

1 Y Z 1 

1 Z Y 1 

1 1 1 1 
 

and 2Y Z  .  
The following cases are possible: 

1) 0, 2Y Z  , 
2) 1, 1Y Z   and 
3) 2, 0Y Z  . 

Therefore, at most 3 different numbers can be used to fill in the square (case 1 or case 3). 
 

4. Let , ,x y z be positive real numbers. Prove that 

2 2 2 2 2 2 2 2 2
3.
22 2 2

xy yz zx
x y z y z x z x y

  
     

 

When does equality hold? 
 

Solution: We have 

2 2 2 2 2 2 2 2 22 2 2
xy yz zx

x y z y z x z x y
  

     
 

2 2 2
xy yz zx

xy yz zx z xy yz zx x xy yz zx y
  

        
 

( )( ) ( )( ) ( )( )
xy yz zx

z x y z x y z x y z x y
         

2 2 2

y yx z z x
z x y z x y z x y z x y

           

2

x y y z z x
x y y z z x
       3.

2
 

Equality holds if and only if x y z  . 
 

5. Solve the equation  

 22 gcd( , ) gcd( , )x y x y xy x y    . 

in the set of natural numbers. 
 

Solution. We introduce the substitution ( , )z НЗД x y  and we get the equation 2 2x y z xyz   . 
There exist natural numbers a  and b  such that x az  and y bz . Then the equation gets the form 

2 2 2 3az b z z abz   , i.e.  2 2a b z z abz   . Since the right-hand side is divisible by z  and two of 
the summands on the left-hand side are divisible by z , it follows that a  is divisible by z . 
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Therefore, there exists a natural number c  s.t. a cz . By substituting in the equation, the equation 

gets the form 2 3cz b z z cbz   , or 2 21c b cbz   . Hence we get 2 21 ( 1)b c bz   . It is clear that 
2 1bz  , since if that was not the case we would get 2 1 0b   , which is impossible. Then we have 

2

2
1
1

bc
bz



. By multiplying the equation by 2z , we get 
2 2 2 2

2
2 21 1

b z z b zcz b
bz bz

   
 

. Since 2cz  is a 

natural number 
2

2 1
b z
bz



is also a natural number. Therefore, 2 21bz b z   , i.e. 

 2 1 ( 1) 2z b   ..........(1) 

If 1b , then 
2
2

1
c

z



 and hence 2 2z   or 2 3z  , which is impossible. If 2b , then 

2
5

2 1
c

z



. If 

22 1 1z   , then 1z . It follows that 5c , 5a , i.e. 5x  and 2y . If 22 1 5z   , then 2 3z  , 

which is impossible. If 3b , then 
2
10

3 1
c

z



. The cases 23 1 1z   , 23 1 5z    and 23 1 10z    are 

impossible. If 23 1 2z   , then 1z . It follows that 5c , 5a , i.e. 5x  and 3y . If 3b  then 

from (1) it follows that 1z . Then 
2 1 21

1 1
bc b
b b
     , from where we have 2b  or 3b , 

which contradicts the assumption that 3b . Therefore the solutions to the equation are 
( , ) {(5,2),(5,3)}x y  .  
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20-th Junior Balkan mathematical Olympiad 
24.06.-29.06.2016, Slatina, Romania 

 
 
 
___________________________________________________________________  

Problem 1 
 A trapezoid ABCD ( ||AB CD , AB CD ) is cicumscribed. The incircle of the triangle 

ABC  touches the lines AB  and AC  at the points M  and N , respectively. Prove that the 
incenter of the trapezoid ABCD  lies on the line MN .  
 

 Problem 2 
 Let ,a b  and c  be positive real number. Prove that  

  2 2 2
2 2 2
8 8 8 8 8 8

3 3 3( ) 4 ( ) 4 ( ) 4
a b c

a b ca b abc b c abc c a abc
              

.    

 

 Problem 3 
 Find all the triples of integers ( , , )a b c  such that the number  

  
( )( )( )

2
2

a b b c c a
N

     

is a power of 2016 .  
(A power of 2016  is an integer of the form 2016n , where n is a non-negative integer).  
 

 Problem 4 
 A 5 5  table is called regular if each of its cells contains one of four pairwise distinct 
real numbers, such that each of them occurs exactly once in every 2 2  subtable. The sum 
of all numbers of a regular table is called the total sum of the table. With any four 
numbers, one constructs all possible regular tables, computers their total sums and counts 
the distinct outcomes. Determine the maximum possible count.  

 Solutions 
 

 Problem 1 
 A trapezoid ABCD ( ||AB CD , AB CD ) is cicumscribed. The incircle of the triangle 

ABC  touches the lines AB  and AC  at the points M  and N , respectively. Prove that the 
incenter of the trapezoid ABCD  lies on the line MN .  

 Solution 
 Version 1. Let I  be the incenter of triangle ABC  and R  
be the common point of the lines BI  and MN . Since  

 1( ) 90 ( )
2

m ANM m MAN    and   1( ) 90 ( )
2

m BIC m MAN   

the quadrilateral IRNC  is cyclic.         (1) 

 It follows that ( ) 90m BRC    and therefore  

   1( ) 90 ( ) 90 (180 ( ) ( )
2

m BCR m CBR m BCD m BCD         (2) 

So, ( CR  is the angle bisector of DCB  and R cis the incenter of the trapezoid.      (3) 
 Versions 2. If R  is the incentre of the trapezoid ABCD , then ,B I  and R  are collinear,  (1’) 

and ( ) 90m BRC   .                      (2’) 

 The quadrilateral IRNC  is cyclic.                 (3’) 

A M B

IR

N

D C
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 Then  1( ) 90 ( )
2

m MNC m BAC                    (4’) 

and   1( ) ( ) 90 ( )
2

m RNC m BIC m BAC    ,               (5’) 

so that  ( ) ( )m MNC m RNC  and the points ,M R  and N  are collinear.        (6’) 

 Version 3. If R  is the incentre of the trapezoid ABCD , let ' ( )M AB  and ' ( )N AC  be the 

unique points, such that ' 'R M N  and ( ') ( ')AM AN .            (1”) 

 Let S  be the intersection point of CR  and AB . Then CR RS .         (2”) 
 Consider K AC  such that || ' 'SK M N . Then 'N  is the midpoint of ( )CK .    (3”) 
 We deduce  

  '
2 2 2 2

AK KC AS AC AB BS AC AB AC BCAN AN          .     (4”) 

We conclude that 'N N , hence 'M M , and , ,R M N  are collinear.       (5”) 
 

 Problem 2 
 Let ,a b  and c  be positive real number. Prove that  

  2 2 2
2 2 2
8 8 8 8 8 8

3 3 3( ) 4 ( ) 4 ( ) 4
a b c

a b ca b abc b c abc c a abc
              

.    

 Solution. Since 2 22ab a b  , it follows that 2 2 2( ) 2( )a b a b          (1) 

 and 2 24 2 ( )abc c a b  , for any positive reals , ,a b c .            (2) 

 Adding these inequalities, we find  

  2 2 2( ) 4 2( )( 1)a b abc a b c     ,               (3) 

so that  

  2 2 2
8 4

( ) 4 ( )( 1)a b abc a b c


   
.               (4) 

Using the AM-GM inequality, we have  

  
2 2

2 2
4 2 42

2 1( )( 1) 2( 1)
a b

ca b c c
    

           (5) 

respectively  

  ( 1) 2 2( 1)3
8 8 4

c cc      .                (6) 

We conclude that  

  
2 2

2 2
4 8

2 3( )( 1)
a b

ca b c
   

,               (7) 

and finally 

  2 2 2
2 2 2
8 8 8 8 8 8

3 3 3( ) 4 ( ) 4 ( ) 4
a b c

a b ca b abc b c abc c a abc
              

. (8) 

 
 Problem 3 
 Find all the triples of integers ( , , )a b c  such that the number  

  
( )( )( )

2
2

a b b c c a
N

     

is a power of 2016 .  
(A power of 2016  is an integer of the form 2016n , where n is a non-negative integer).  
 Solution. Let , ,a b c  be integers and n  be a positive integer such that  
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  ( )( )( ) 4 2 2016na b b c c a      .  

We set a b x  , b c y   and we rewrite the equation as  

  ( ) 4 2 2016nxy x y    .                 (1) 

 If 0n , then the right hand side is divisible by 7 , so we have that  
  ( ) 4 0 (mod 7)xy x y                    (2) 

or  
  3 ( ) 2 (mod 7)xy x y                    (3) 

or 

  3 3 3( ) 2 (mod 7)x y x y    .                (4) 

Note that, by Fermat’s Little Theorem, for any integer k  the cubic residues are 3 1,0,1(mod 7)k  . (5) 

 It follows that in (1) some of 3 3( ) ,x y x  and 3y  should be divisible by 7 .  

 But in this case, ( )xy x y  is divisible by 7  and this is a contradiction.      (6) 

 So, the only possibility is to have 0n  and consequently, ( ) 4 2xy x y   , or, equivalently, 

( ) 4 2xy x y   .                      (7) 

 The solutions for this are ( , ) {( 1, 1),(2, 1),( 1,2)}x y      ,         (8) 

so the required triples are ( , , ) ( 2, 1, )a b c k k k   , k , an all their cyclic permutations. (9) 

 Alternative version: If 0n  then 9  divides ( )( )( ) 4a b b c c a    , that is, the equation 

( ) 4 0(mod 9)xy x y    has the solution ,x b a y c b    .          (1’) 

 But then x  and y  have to be 1 modulo 3, implying ( ) 2 (mod 9)xy x y  , which is a 

contradiction.  
 We can continue now as in the first version.  
 Problem 4 
 A 5 5  table is called regular if each of its cells contains one of four pairwise distinct 
real numbers, such that each of them occurs exactly once in every 2 2  subtable. The sum 
of all numbers of a regular table is called the total sum of the table. With any four 
numbers, one constructs all possible regular tables, computers their total sums and counts 
the distinct outcomes. Determine the maximum possible count.  
 Solution. We will prove that the maximum number of total sums is 60 .  
 The proof is based on the following claim.  
 Claim. In a regular table either each row contains exactly two of the numbers, or each column 
contains exactly two of the numbers.  
 Proof of the Calim. Indeed, let R  be the a row containing at least three of the numbers. Then, 
in row R  we can find three of the numbers in consecutive position, let , ,x y z  be the numbers in 

consecutive positions (where { , , , } { , , , }x y s z a b c d ). Due to our hypothesis that in every 2 2  

subarray each number is used exactly once, in the row, above R (if there is such a row), precisely 
above the numbers , ,x y z  will be the numbers , ,z t x  in this order. And above them will be the 

numbers , ,x y z  in this order. The same happens in the rows below R (see at the following figure).  

x y z
z t x
x y z
z t x
x y z

              

 

Completing all the array, it easily follows that each column contains exactly two of the numbers and 
our claim is proven.                      (1) 
 Rotating the matrix (if it is necessary), we may assume that each row contains exactly two of the 
numbers. If we forget the first row and column from the array, we obtain 4 4  array, that can be 



Mathematical olympiads 2016-Union of mathematicians of Macedonia-ARMAGANKA 

47 

divided into four 2 2  subarrays, containing thus each number exactly four times, with a total sum 
of 4( )a b c d   .  

 It suffices to find how many different ways are there to put the numbers in the first row 1R  and 

the first column 1C .                       (2) 

 Denoting by 1 1 1 1, , ,a b c d  the number of appearances of , ,a b c  and respectively d  in 1R  and 1C , 

the total sum of the numbers in the entire 5 5  array will be  
  1 1 1 14( )S a b c d a a b b c c d d            .            (3) 

 In the first, the third and the fifth row contain the numbers ,x y  with x  denoting the number at 

the entry (1,1) , then the second and the fourth row will contain only the numbers ,z t , with z  

denoting the number at the entry (2,1) . Then 1 1 7x y   and 1 3x  , 1 2y  , 1 1 2z t  , and 1 1z t . 

Then 1 1{ , } {5,2}x y   or 1 1{ , } {4,3}x y  , respectively 1 1{ , } {2,0}z t   or 1 1{ , } {1,1}z t  .     (4) 

 Then 1 1 1 1{ , , , }a b c d  is obtained by permuting one of the following quadriples: 

  (5,2,2,0) , (5,2,1,1) , (4,3,2,0) , (4,3,1,1) .              (5) 

There are a total of 4! 12
2!
  permutations of (5,2,2,0) , also 12  permutations of (5,2,1,1) , 24 

permuitations of (4,3,2,0)  and finally, there are 12 permutations of (4,3,1,1) . Hence, there are at 

most 60 different possible total sums.                  (6) 
 We can obtain indeed each of these 60 combinations: take three rows ababa  alternating with 
two rows cdcdc  to get (5,2,2,0) ; take three rows ababa  alternating with one row cdcdc  and a row 

( )dcdcd  to get (5,2,1,1) ; take three rows ababc  alternating with two rows cdcda  to get (4,3,2,0) ; 

take three rows abcda  alternating with two rows cdabc  to get (4,3,1,1) .        (7) 

 By choosing for example 3 210 , 10 , 10, 1a b c d    , we can make all these sums different. (8) 
 Hence, 60  is indeed the maximum possible number of different sums.  
 
 Alternative version. Consider a regular table containing the four distinct numbers , , ,a b c d . The 

four 2 2  corners contain each all the four numbers, so that, if 1 1 1 1, , ,a b c d  are the numbers of 

appearances of , ,a b c  and respectively d  in the middle row and column, then  

  1 1 1 14( )S a b c d a a b b c c d d            .            (1’) 

Consider the numbers x  in position (3,3) , y  in position (3,2) , 'y  in position (3,4) , z  in position 

(2,3)  and 'z  in position (4,3) .  

 If 'z z t  , then 'y y , and in position (3,1)  and (3,5)  there will be the number x .   (2’) 

 The second and fourth row can only contain now the numbers z  and t , respectively the forst 
and fifth row only x  and y .                    (3’) 

 Then 1 1 7x y   and 1 3x  , 1 2y  , 1 1 2z t  , and 1 1z t . Then 1 1{ , } {5,2}x y   or 

1 1{ , } {4,3}x y  , respectively 1 1{ , } {2,0}z t   or 1 1{ , } {1,1}z t  .           (4’) 

 One can continue now as in the first version.  
 
 
 
 
 
 
 
 
 



SEEMOUS REGULATIONS 
http://www.massee-org.eu/images/seemous/SEEMOUS_2016_regulations.pdf 

 
These regulations were approved by the MASSEE (Mathematical Society of South Eastern Europe) 
on April 1, 2006.  
 
1. The aims of the SEEMOUS include: 
a. The challenging, encouragement and development of mathematically gifted higher education 
students in all participating institutions and corresponding countries; 
b. The fostering of friendly relationships among higher education students and educators of the 
participating institutions; 
c. The creation of opportunities for the exchange of information on higher education syllabi and the 
development of partnerships and networks between the participating institutions; 
d. The development of young researchers in mathematics and its applications. 
2. The official language of the SEEMOUS is English. 
3. The SEEMOUS is organized once every year within the first 15 days of the month of March. 
4. Countries or universities interested to host SEEMOUS should apply to MASSEE at least 15 
months before the date of organization. 
5. The SEEMOUS Jury shall consist of all leaders of the participating teams representing an  
institution. 
6. New participants have to be accepted by MASSEE at least three months before participation. 
7. Teams represent institutions but results per country will be computed for teams of six students 
made up by the best six scores of students participating from each country, except if a National 
team is officially participating. The National teams have to be specified, in writing, by the national 
Mathematical Society or the Ministry of Education of the country. 
8. All decisions by the Jury are based on simple majority unless it is otherwise specified. The 
Chairman may vote only when a tie break is needed. 
9. The Jury could decide to suggest changes to the regulations. Suggestions are submitted to 
MASSEE by the chairman of the Jury for changes to be applicable from the next Olympiad. 
Changes in the regulations can only be approved by MASSEE. 
10. Deputy leaders may participate in the Jury and they may also replace their leaders in his/her  
absence. 
11. Each participating institution has one vote regardless of the size of their team. 
12. National teams can participate with students not representing institutions or a mixture. If a 
national team participates with a leader then the leader becomes a member of the jury and has  
one vote. 
13. The minutes of the Jury meeting a re approved at the last meeting of the jury and before the  
closing of SEEMOUS. The Chairman of the Jury of the SEEMOUS is obliged to give the minutes 
of the Jury meetings to all leaders and to send them to the MASSEE Council. 
14. The Jury may consider and decide on any matter raised, which is not covered by any other  
regulation item, provided that such decision does not violate the constitution of MASSEE. 
15. Additional regulations may be added by the Jury, in which case at least two thirds majority is 
needed. New regulations become effective beginning the next SEEMOUS, provided they are  
approved by the MASSEE Council. 
16. The Chairman of the Jury may call as many day meetings as he/she deems necessary during an 
SEEMOUS or when at least one third of the participating in stitutions or national representations 
request an additional Jury meeting. 
17. Proposals to host an SEEMOUS are discussed during a Jury meeting and recommended to 
MASSEE by the Jury in an order of preference. The MASSEE shall always approve the host 
countries/institutions of the next two SEEMOUS. 
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