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21-th Junior Macedonian Mathematical 
Olympiad, ЈММО 2017 

 

Faculty for mechanical engineering-Skopje 
03.06.2017  

 
 

1. Let p  is a prime number and let 3 10p  is the sum of the squares of six 

consecutive positive integers. Prove that 36| 7p . 
Solution. From the conditions of the problem, we have that 

2 2 2 2 2 2 23 10 ( 2) ( 1) ( 1) ( 2) ( 3) 6 6 19p n n n n n n n n               ,  

so, we have that 
23 6 6 9p n n   , 

and 
22 2 3 2 ( 1) 3p n n n n      . 

If one of the numbers n  or 1n  is divisible with 3 , then we have a contradiction with the 
condition that p  is a prime number. So, 3 1n k  . Then,  

22(3 1)(3 1 1) 3 2(3 1)(3 2) 3 2(9 9 2) 3 18 ( 1) 7p k k k k k k k k                . 

Since ( 1)k k  is an even number, we have that 36| 7p . 
 

2. Let be given ABC  and let 1AA , 1BB  and 1CC  are the medians in the 

triangle which intersect in the point T  and 1 1BA A T . On the continuation of 

1CC  we choose a point 2C  such that 1
1 2 3

CCC C  , and on the continuation of 

1BB  we choose a point 2B  such that 1
1 2 3

BBB B  . Prove that the quadrilateral 

2 2TB AC  is a rectangle. 
 Solution. Since 1AA  is a median in the 

ABC  and  1 1BA A T , we get that 1 2
BCA T   i.e. 

1A  is the circumcenter of the circumcircle of 

BCT . So according to the Thales theorem 

90BTC   . We have 2 2 90B TC    (as 

vertically opposite angles). Since T  is the 

barycenter of ABC  we have 1
1 1 23

CC
C T C C  . 

From 1 1BC C A  we get that the quadrilateral 

2BTAC  is a parallelogram. Then 2||BT AC , so 

2 2 2 2180 90TC A CTB B TC       (as angles 
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on the transversal). 
 With analogy, we can prove that the quadrilateral 2TCB A  is a parallelogram i.e. 

2 2 2 90TB A C TB     (as angles on the transversal). So, we get that 2 2 360 270 90C AB       

i.e. the quadrilateral is a rectangle. 

 Second proof for the statement that 2 90TB A   . 

  We look at the 2 1BB C . Since 1C T  is a median and an altitude in the triangle, we get that 

2 1BB C  is an isosceles triangle, so 1 1 2BC C B  (it can be proven with the SAS sign: 1C T  is a 

common side, 1 2 1 90BTC B TC     and 2BT TB ). We get that the point 1C  is a circumcenter 

of the circumcircle of 2BB A , so according to the Thales theorem 2 90BB A   . We have 

2 2 360 270 90C AB       i.e.  the quadrilateral is a rectangle. 
 

3. Let , ,x y z be positive real numbers such that 1xyz . Prove that 
2 2 2 2 2 2

2 2 2
3.

2 2 2
x y z y z x z x y

x y z
           

When does the equality holds? 
Solution. From the AM-GM inequality and the condition of the problem, we have that  

2 2 2 2 2 2

2 2 22 2 2
x y z y z x z x y

x y z
       
   2 2 2

2 2 2
2 2 2

xy z yz x zx y
x y z

    
    

             
2 2 2

2 2 2
2 2 2

2 2 2
xyz z xyz x xyz y

z x x y y z
     
        

22 2

2 2 2
22 2

2 2 2
yz x

z x x y y z
   

    

         
22 2

3
2 2 2

22 23
2 2 2

yz x
z x x y y z

    
  

3 13
xyz

 3 . 

 

4. Let be given the ABC . On the arc BC  of the circumcircle of ABC , 
which does not contain the point A, points X  and Y are chosen, such that 

BAX CAY  . Let M  be the middle point of the chord AX . Prove that 

BM CM AY  .  
Solution. Let O  be the circumcenter of the 

circumcircle of ABC . Then OM AX . We 
draw a normal line from the point B  at OM  
and let it intersect the circumcircle in the point 
Z . Since BZ OM  we have that OM  is a line 
of symmetry of BZ . According to this, 

MZ MB . Now, from the triangle inequality 
we have that   

BM MC ZM MC CZ    .  
But, ||BZ AX , so  

  AZ BX CY   
where from we get  

     ZAC ZA AC YC CA YCA      
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i.e. CZ AY . That is why BM CM AY  .  

 5. Find all positive integers n  such that n  has number of ciphers which is 
the same as the number of its different prime divisors and the sum of the 
different prime divisors is equal to the sum of their powers. 

Solution. Let 1 21 2 ... kkn p p p   . From the condition of the problem  

1 2 1 2... ...k kp p p          .  

We discuss the number of ciphers of the number n . If n has 4 ciphers, then he has 4

different prime divisors. Then 14 42 3 5 7 10n     which is not possible. If n has 4k ciphers, 

then  
   5 52 3 5 7 . .. 1 . .. 414

5 5

4 4

2 3 5 7 ... 2 3 5 7 2 ...

10 10 10

k kp p k p p k
k k

k k

n p p p p           


             
  

 

which again is not possible. 
So, we get that n has at most three ciphers.  

Let n have three ciphers. Then 1 2 31 2 3n p p p   . If 5|n , then 8 32 3 5 10n    . 

We get that the prime divisors of the number n  are 3 . But, prime numbers 3  are 2

and 3 , and in the factorization of the number n  there are 3 prime numbers, which is a 
contradiction.  

Let n  has two ciphers. Then 1 21 2n p p  . If 5|n , then 6 22 5 10n   . Remains 1 22 3n  

where 1 2 5   . With direct checking we get that 4 3 22 3 48, 2 3 72n n       are solutions 

of the problem. 

Let n  has one cipher. Then only 22n  fulfils the condition of the problem. 

 
 

24-th Macedonian mathematical olympiad  
Faculty for electrical engineering and 

information technologies - Skopje  
08.04.2017  

 
 

1. Determine all functions :f    such that for every positive integer 1n  

and every ,x y  

















1

1

)()()(
n

k

kkn yx
k

n
yfxfyxf . 

 

2. Determine all positive integers n  such that 3( 39 2) ! 17 21 5nn n n      is a 

full square.  
 

3. Let , ,x y z  are positive real numbers such that 1xyz . Prove that 
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   2 22 2 2 2
4 4 4

2 2 2
1 1 1

y yz x x zx y z
y z x y z x

                                    . 
 4. Let O  is the circumcenter of the circumcircle of the acute triangle 

 ABC AB AC . Let 1A  and P  are the intersection points of the normal lines 

through the points A  and O  and the side BC , correspondingly. The lines BO  
and CO  intersect with the line 1AA  in the points D  and E , correspondingly. The 
circumcircles of the triangles ABD  and ACE  again intersects in the point F . 
Prove that the symmedian of the FAP  passes through the center of the incircle 
of the triangle ABC .  
 

5. Let 1n is a positive integer and 1 2, ,..., nа а а  is a sequence of n  positive 

integers. Let   

1 2 1 12 1 2 1
1

... ...... ...
, ,1 , .

1 1 1
i i nn n

i n

a a a a aa a a a a
b b i n b

n n n
                                 

 

Let f  is a mapping such that    1 2 1 2, ,..., , ,...,n nf a a a b b b .  

a) Let the function :g N N  is defined such that  1g  is the number of 

different elements in the sequence  1 2, ,..., nf a a a  and  g m  is the number of 

different elements in the sequence     1
1 2 1 2, ,..., , ,..., , 1m m

n nf a a a f f a a a m  . Prove 

that there is a positive integer 0k  such that for 0m k  the function  g m  is 

periodical. 

b) Prove that  
 1 1

k

m

g m
C

m m
  for any positive integer k , where the constant C  

does not depend on k .  
 

SOLUTIONS 
 

1. Determine all functions :f    such that for every positive integer 1n  

and every ,x y  

















1

1

)()()(
n

k

kkn yx
k

n
yfxfyxf . 

Solution. From the condition of the problem we have that 
1

1
( ) ( ) ( )

n
n k k

k

n
f x y x y f x f y

k






         

0
( ) ( ) ( )

n
n k k n n

k

n
f x y x y f x f y x y

k




           

 ( ) ( ) ( )n n nf x y x y f x x f y y       . 

Let 1 :f  0   is a mapping defined with 1( ) ( ) nf x f x x  . Then 

1 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )n n nf x y f x y x y f x x f y y f x f x           .  
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Using the induction method can be proven that 1 1( ) ( )f nx nf x  for every n . For 1x  

we have 1 1( ) (1)f n nf n   for every n , where 1(1)f . So, ( ) nf x x x  .  
 

2. Determine all positive integers n  such that 3( 39 2) ! 17 21 5nn n n      is a 

full square.  
Solution. Lets denote 3( 39 2) ! 17 21 5n

na n n n      . 

If 4n , then 8| !n . Moreover, 

5 5 (mod8)n
na   .  

If n  is an even number, then 5 1(mod8)n , so 6(mod8)na  . But, all full squares have 

remaining 0,1  or 4  when divided with 8 . So, if 4n  and n  is even, then na  is not a full 

square. 

Let 7n . It is clear that 7| !n . Then 5 (mod7)na  . On the other side, the remainings of the 

full  squares when divided with 7  are 0,1,2  or 4 . So, na  is not a full square for 7n . Having 

in mind the previous discussion, it remains to check for 1n , 2n , 3n  and 5n . 

If 5n , 5
5 2 1 5 2 (mod5)a     . 

Since the remainings of a full square when divided with 5  are 0,1  or 4 , 5a  is not a full 

square. 

For 3n , we have 3 3 (mod7)a  , so 3a  is not a full square. 

For 2n , we have 2 1 5 2 (mod4)a    , so 2a  is not a full square. 

For 1n , 1 (1 39 2) 1 17 21 5 400a         . 

This means that only for 1n , na  is a full square.  
 

3. Let , ,x y z  are positive real numbers such that 1xyz . Prove that  

   2 22 2 2 2
4 4 4

2 2 2
1 1 1

y yz x x zx y z
y z x y z x

                                    . 

Solution. Using the Cauchy-Schwartz inequality, we get 

 
2 2

2 2 2 2 2 2 2 2 1( ) ( )z x z xx y x y x y
y z y z xy
                             

 
22

2 2 2 2 2 2 2 2 1( ) ( )
y yx xy z y z y z

z x z x yz
                             

 
2 2

2 2 2 2 2 2 2 2 1( ) ( )
y yz zx z x z z x

y x y x xz
                            . 

If we multiply the last three inequalities, we get that, 

   22 2
4 4 4 2 2 2 2 2 2

2 2 2
1 1 1yz xx y z x y z y z x
xy yz xzy z x

                                    

   2 22 2 2 2
3( ) 1 1 1 1 1 1

y yz x x zxyz
z x y y z x

                               ,  

which we had to prove. 
 

 4. Let O  is the circumcenter of the circumcircle of the acute triangle 
 ABC AB AC . Let 1A  and P  are the intersection points of the normal lines 
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through the points A  and O  and the side BC , correspondingly. The lines BO  
and CO  intersect with the line 1AA  in the points D  and E , correspondingly. The 
circumcircles of the triangles ABD  and ACE  again intersects in the point F . 
Prove that the symmedian of the FAP  passes through the center of the incircle 
of the triangle ABC .  
 

Solution 1. We need to prove that BAF CAP  . Since OP  is perpendicular to BC  and 
O  is the circumcenter, then P  is the midpoint of BC . Since AP  is the median from A , we 
need to prove that AF  is the symmedian from A .  

Let the line AF  intersect the side BC  at X  and let the circumcircles of ABD  and 
ACE  meet the line BC  again at Y  and Z , respectively. Then, by the intersecting secant 
theorem, we have: 

       

 XB XY XF XA XZ XC      
 

       

 (1)XB XZXB XZ BZ
XC XY XC XY CY

  


  

 

   

 
   

1 1

1 1180 180 2 90
2 2

90

ACE ACO AOC ABC ABC

ABA BAA BAE

       

   

  



    

  
 

 

so BA  is tangent to the circumcircle of ACE . 
Similarly, CA  is tangent to the circumcircle of ABD . By the tangent-secant theorem, we 
have: 

2
BA BZ BC   

2
CA CB CY   
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By dividing these two equations and using (1), we get: 
2

2
BA BZ XB

CY XCCA
   

We proved that AX  divides the side BC  in the ratio of the squares of the sides AB  and 
AC , so by Lemma 1 we get that AF AX  is the A symmedian in the triangle ABC .   

Solution 2. We need to prove that BAF CAP  . Since OP  is perpendicular to BC  and 
O  is the circumcenter, then P  is the midpoint of BC . Since AP  is the median from A , we 
need to prove that AF  is the symmedian from A .  
 

By some angle chasing: 

   
1 1

1 1180 180 2 90
2 2

90

ACE ACO AOC ABC ABC

ABA BAA BAE

       

   

  



    

  
 

we get that BA  is tangent to the circumcircle of ACF . 
Similarly, CA  is tangent to the circumcircle of ABF . 
 

Now, we use the fact that the angle between a tangent and a chord is equal to any inscribed 
angle over the same chord: 

BAF ACF   
ABF CAF   

 

So, the triangles BAF  and ACF  are similar which gives: 
2

2

BF AF BA ACBF AB
CF CF AF AC AB AC

    

Also, 180 180BFX BFA AFC CFX         , so FX  is an angle bisector in 
BFC , so: 

BF BX
CF CX

  

From these two equalities, we get that  
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2

2
BX AB
CX AC

  

So, the line AX  divides the side BC  in the ratio of the squares of the sides AB  and AC , 
so by Lemma 1 we get that AF AX  is the symmedian from the vertex A   in the triangle 
ABC .   

Solution 3. We need to prove that BAF CAP  . Since OP  is perpendicular to BC  and 

O  is the circumcenter, then P  is the midpoint of BC . Since AP  is the median from A , we 
need to prove that AF  is the symmedian from A .  

By some angle chasing: 

   
1 1

1 1180 180 2 90
2 2

90

ACE ACO AOC ABC ABC

ABA BAA BAE

       

   

  



    

  
 

we get that BA  is tangent to the 
circumcircle of ACF . 
Similarly, CA  is tangent to the 
circumcircle of ABF . 

Now, we use the fact that the angle 
between a tangent and a chord is equal to 
any inscribed angle over the same chord: 

BAF ACF   
ABF CAF   

So, the triangles BAF  and ACF  are 
similar. 
 Let 1F and 2F  be the feet of the 
perpendiculars from F  to the sides AB  
and AC , respectively. Then, from the 
similarity we have: 

1

2

FF AB
FF AC
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which means that the distances from F  to the sides AB  and AC are proportional to the 
lengths AB  and AC , so by Lemma 2b, F  lies on the symmedian from the vertex A   in the 
triangle ABC .  
 

Solution 4. We need to prove that BAF CAP  .  
Since OP  is perpendicular to BC  and O  is the circumcenter, then P  is the midpoint of 

BC . Since AP  is the median from A , we need to prove that AF  is the symmedian from A .  
 

By some angle chasing: 

   
1 1

1 1180 180 2 90
2 2

90

ACE ACO AOC ABC ABC

ABA BAA BAE

       

   

  



    

  
 

we get that BA  is tangent to the 
circumcircle of ACF . 

Similarly, CA  is tangent to the 
circumcircle of ABF . 

Now, we use the fact that the angle 
between a tangent and a chord is equal 
to any inscribed angle over the same 
chord: 

BAF ACF   
ABF CAF   

 

So, the triangles BAF  and ACF are 
similar and: 
    

 (1)BA AC
BF AF

   

Let AX  intersect the circumcircle of 
ABC  again at G . 

180BFG BFA FBA FAB       
 

FAC FAB BAC        
 

BGF BGA BCA       
 
So, the triangles ABC  and FBG  are 
also similar and: 

     (2)AB AC
FB FG

   

From (1) and (2) we get that AF FG  and because O  is the circumcenter, we get that 
90OFG  . 

 

Now, let’s draw the tangents at B  and C  to the circumcircle of ABC and let them 
intersect at T . The quadrilateral OBTC  is a cyclic quadrilateral with diameter OT . 

Earlier in this solution, we proved that BFG  . Similarly, CFG  . 
2BFC BFG CFG BOC           , so F  lies on the circumcircle of BOC  

(with diameter OT ). Because 90OFG   and OT  is the diameter of the circle, then T  
must lie on the line FG AF . 
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In conclusion, AF  passes through the intersection of the tangents at B  and C to the 
circumcircle of ABC , so by Lemma 3b we get that AF is the symmedian from the vertex A  
in the triangle ABC    
 

Lemma  1: The line AX  divides the opposite side BC in the ratio of the squares of the 
sides AB  and AC  if and only if AX  is a symmedian in the triangle ABC . 

2

2
BX AB
CX AC

  

Proof: Let AM  and AX , be the median and symmedian from the vertex A , respectively. 
 
 

Area BAXBX BA AX
Area MACMC AM AC

 


 

 
 

Area BMABM BA AM
Area CXAXC AX AC

 


 

By multiplying these equalities we get: 
2

2
BX AB
CX AC

  

 

Since there is only one point on the 
line segment BC  that divides it in a 
given ratio, the “only if” part is also 
true   
 

 

Lemma 2a: The Amedian is the locus of the points M  in the interior of BAC such that  
    

  
 

,
,

d M AB AC
d M AC AB

 . 

Proof: 
Let M  be a point in the interior of 

BAC . Let AM  meet BC  at 1M . Then, 
  

  
 

 
 

1

1

, ,
, ,

d M AB d M AB AC
d M AC d M AC AB

   

 
   1 1, ,d M AB AB d M AC AC     

    1 1Area ABM Area ACM   

 1 1BM M C     
 

Lemma 2b: The A is the locus of the points L  in the interior of BAC such that: 
 
 

,
,

d L AB AB
d L AC AC

 . 
 

Proof: The symmedian is the reflection of the median with respect to the angle bisector, 
so by symmetry: 

   
 

 
 

, ,
, ,

d L AB d M AC AB
d L AC d M AB AC
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which means that the A symmedian is the locus of the points L  in the interior of BAC
such that: 

   
 

,
,

d L AB AB
d L AC AC

   

 

Lemma 3a: A symmedian drawn 
from a vertex of a triangle divides the 
antiparallels to the opposite side in 
half. 
 

Proof: Let AS  and AM  be the 
symmedian and the median from the 
vertex A , respectively. Then, by the 
definition of symmedian, 

(1)BAS CAM    
 

Let D  be the intersection of the 
lines AS and 1 1B C . By definition of 
antiparallel lines, the triangles ABC  
and 1 1 1A B C  are similar. Using (1) we get that the similarity maps AM  to AD , so the 
symmedian AS  passes through the midpoint of the side 1 1B C  which is antiparallel to BC  
(with respect to the lines AB and AC   
 

Lemma 3b: A symmedian 
through one of the vertices of a 
triangle passes through the point of 
intersection of the tangents to the 
circumcircle at the other two vertices. 
 

Proof: Let BT  and CT be the 
tangents to the circumcircle of ABC  
at B  and C . Then, because the angle 
between a tangent and a chord is 
equal to any inscribed angle over the 
same chord, CBT CAB     and 

BCT BAC    , so the triangle 
BCT  is isosceles and therefore 

BT CT .  
 

Let 1 1B C  be an antiparallel line to 
BC  (with respect to the lines AB and 
AC ) that passes through T . Then, 

1 1AB C ABC    . Now, 

1

1 1 1

180

180

TCB ACB BCT

AB C CB T  
   

     



  

 
so the triangle 1TCB  is isosceles and therefore 1B T CT . Similarly, 1C T BT . 
 

In conclusion, 1 1C T BT CT B T   , so T  is the midpoint of 1 1B C . By Lemma 3a, AT  is 
the symmedian from the vertex A    
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5. Let 1n is a positive integer and 1 2, ,..., nа а а  is a sequence of n  positive 

integers. Let   

1 2 1 12 1 2 1
1

... ...... ...
, ,1 , .

1 1 1
i i nn n

i n

a a a a aa a a a a
b b i n b

n n n
                                 

 

Let f  is a mapping such that    1 2 1 2, ,..., , ,...,n nf a a a b b b .  

a) Let the function :g N N  is defined such that  1g  is the number of 

different elements in the sequence  1 2, ,..., nf a a a  and  g m  is the number of 

different elements in the sequence     1
1 2 1 2, ,..., , ,..., , 1m m

n nf a a a f f a a a m  . Prove 

that there is a positive integer 0k  such that for 0m k  the function  g m  is 

periodical. 

b) Prove that  
 1 1

k

m

g m
C

m m
  for any positive integer k , where the constant C  

does not depend on k .  
Solution. а) Let 2n . We will show that for m  big enough,    1g m   . 

Let 1 2, ,..., na a a is a sequence of positive integers. Then  

   2 3 1 3 1 2 1
1 2

... ... ..., ,..., , ,...,
1 1 1

n n n
n

a a a a a a a a af a a a
n n n

                       
,  

where some of the elements in the family can be equal, where from   1g n . By analogy we 

have that  g m n  for every positive integer m .  Let rS  is a sum of the elements in the 

sequence  1 2, ,...,r
nf a a a . For the sum of the elements of the sequences 

   1 1,..., , ,...,n nb b f b b  from n  elements, we have  

 

2 3 1 3 1 2 1
1

2 3 1 3 1 2 1
1 2

... ... ......
1 1 1

... ... ...... ... .... *
1 1 1

n n n
r

n n n
n r

b b b b b b b b bS
n n n

b b b b b b b b b b b b S
n n n






                         
               

 

for every positive integer r . It is clear that 0 ,rS S   for every positive integer r . We get 

that there is a positive integer 0k  such that for 0m k , 1 ...m mк S S      is a number that is 

greater or equal to 0....(1).  Equality in (*) holds only if the numbers in the sequence 

 1 2, ,...,m
nf b b b  are equal between themselves for m  big enough.  

We will prove that 1 1 2 ...r r nS S d d d      , where    1 2 1, ..., ,...,m
n nf а а а d d  for 

m  big enough. Really, in order to have the equality sign, it is necessary that  

1| ,0r in S b i n    . So we get that  

 1 2 ... mod 1nb b b n    ...(2).  

From (2) we get that 1 2, ,..., ,
1 1 1

r nr r S bS b S b
n n n

 
    1 i n   , are positive integers.  Also,  

1 1 1 1 1
r j r j i jr i r i

i j i j
S b S b b bS b S b

c c b b
n n n n n

                      
...(3) 
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 From (1) and (2) we have (3) and that in every step we get smaller and smaller positive 

integer, greater or equal to 0. After a finite number of steps, we get that i jd d . There is a 

finite number of combinations ,i j  where from it follows that there is 0k  greater then the 

maximum of the number of steps for every pair ,i j , where from we have the statement. So, 

there is a positive integer 0k  such that for 0m k , the elements of the sequence  

 1 2, ,...,m
nf а а а  are equal between themselves where from we have that   1g m  .   

Let 2n . It is clear that    1 2 1 2, ,a a f a a , so   2g m  for every positive integer m . 

b) For 2n  and for an arbitrary positive integer k , 

  
 
 

 
 

 
 

 
 

0

01 1 1 11 1 1 1

kk

m m m m k

g m g m g m g m
m m m m m m m m

 

    
          

where 0k  is the positive integer from  а). Then 
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For 2n  
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g m
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21-th Junior Balkan Mathematical 
Olympiad, JBMO 2017 

Varna, Bulgaria, Monday, June 26, 2017 
 

 
 

 
 Problem 1. Determine all the sets of six consecutive positive integers such 
that the product of some two of them, added to the product of some other two of 
them is equal to the product of the remaining two numbers. 
 

 Solution. Exactly two of the six numbers are multiples of 3  and these two need to be 
multiplied together, otherwise two of the three terms of the equality are multiples of 3  but 
the third one is not.  
 Let n  and 3n  denote these multiples of 3 . Two of the four remaining numbers give 
remainder 1when divided by 3 , while the other two give remainder 2 , so the two other 
products are either  1 1 1 mod3   and  2 2 1 mod3   , or they are both  1 2 2 mod3   . 

In conclusion, the term  3n n needs to be on the right hand side of the equality. 

 Looking at parity, three of the numbers are odd, and three are even. One of n  and 3n   is 
odd, the other even, so exactly two of the other numbers are odd. As  3n n is even, the two 

remaining odd numbers need to appear in different terms.  
We distinguish the following cases: 

 I. The numbers are 2, 1, , 1, 2, 3n n n n n n     . 
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The product of the two numbers on the RHS needs to be larger than  3n n . The only 

possibility is        2 1 3 1 2n n n n n n       which leads to 3n . Indeed, 

1 2 3 6 4 5     . 
 II. The numbers are 1, , 1, 2, 3, 4n n n n n n     . 

As        4 1 3 1 2n n n n n n       has no solutions, 4n  needs to be on the RHS, 

multiplied with a number having a different parity, so 1n on 1n . 
       2 1 3 1 4n n n n n n       leads to 3n . Indeed, 2 5 3 6 4 7     .  

       2 1 3 1 4n n n n n n       has no solution. 

 III. The numbers are , 1, 2, 3, 4, 5n n n n n n     .  
We need to consider the following situations: 
       1 2 3 4 5n n n n n n       which leads to 6n ; indeed 7 8 6 9 10 11     ; 

       2 5 3 1 4n n n n n n       obviously without solutions, and 

       1 4 3 2 5n n n n n n       which leads to 2n  (not a multiple of 3 ). 

 In conclusion, the problem has three solutions: 
 

1 2 3 6 4 5     , 2 5 3 6 4 7       and  7 8 6 9 10 11     . 
 

 Problem 2. Let , ,x y z be positive integers such that x y z x   . Prove that  
  2 9x y z xy yz zx xyz      . 

When does the equality hold? 
 

 Solution. Since , ,x y z  are distinct positive integers, the required inequality is symmetric 
and WLOG we can suppose that 1 2x y z    . We consider 2 possible cases: 
 

 Case 1. 2y z  . Since 1 3x y z     it follows that 

       2 2 21, 4, 9x y y z x z       

which are equivalent to 
  2 2 2 2 2 22 1, 2 4, 2 9x y xy y z yz x z xz          
or otherwise 
  2 2 2 2 2 22 , 2 4 , 2 9zx zy xyz z xy xz xyz x yx yz xyz y          
Adding up the last three inequalities we have 
        6 4 9xy x y yz y z zx z x xyz x y z          

which implies that   2 9 2 7x y z xy yz zx xyz x y z         . 

Since 3x z  it follows that 2 7 0x y z   and our inequality follows. 
 Case 2. 1y z  . Since 1 2x y z     it follows that 2x z  , and replacing 1y z  in 
the required inequality we have to prove 
          1 1 1 2 9 1x z z x z z z zx x z z           

which is equivalent to 
      22 1 2 2 9 1 0x z z zx z x x z z          

Doing easy algebraic manipulations, this is equivalent to prove 
     2 1 2 1 0x z x z z       

which is satisfied since 2x z  . 
 The equality is achieved only in the Case 2 for 2x z  , so we have equality when 
   , , 2, 1,x y z k k k    and all the permutations for any positive integer k . 
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 Problem 3. Let ABC be an acute triangle such that AB AC , with 
circumcircle   and circumcenter О . Let М  be the midpoint of BC  and D  be a 
point on   such that AD BC . Let Т  be a point such that BDCT  is a 
parallelogram and Q  a point on the same side of BC as А, such that 
  BQM BCA   and CQM CBA  . 
Let the line AO  intersect   at Е , ( Е А ) and let the circumcircle of ETQ  
intersect   at point X Е . Prove that the points ,A M  and X  are collinear.   
 

 Solution. Let X   be symmetric point to Q  in line BC . Now since 

,CBA CQM CX M     ,BCA BQM BX M    we have 

180BX C BX M CX M CBA BCA BAC              
we have that X  . Now since AX B ACB MX B      we have that , ,A M X   are 
collinear. Note that since 

90DCB DAB ABC OAC EAC          
we get that DBCE  is an isosceles trapezoid. 

CRTEZ 
 Since BDCT  is a parallelogram we have MT MD , with , ,M D T  being collinear, 
BD CT , and since BDEC  is an isosceles trapezoid we have BD CE  and ME MD . 
Since 
  ,BTC BDC BED CE BD CT       and ME MT  

we have that E  and T  are symmetric with respect to the line BC . Now since Q  and X   are 

symmetric with respect to the line BC  as well, this means that QX ET  is an isosceles 

trapezoid which means that , , ,Q X E T  are concyclic. Since X   this means that X X   
and therefore , ,A M X are collinear. 
 Alternative solution. Denote by H  the orthocenter of ABC . We use the following well 
known properties: 
 (i) Point D  is the symmetric point of H  with respect to BC . Indeed, if 1H  is the 
symmetric point of H with respect to BC  then 1 180BH C BAC     and therefore 

1H D . 
 (ii) The symmetric point of H  with respect to M  is the point E . Indeed, if 2H  is the 
symmetric point of H  with respect to M  then 2BH CH  is parallelogram, 

2 180BH C BAC     and since EB CH  we have 90EBA  . 
 Since DETH  is a parallelogram and MH MD  we have that DETH  is a rectangle. 
Therefore MT ME and TE BC  implying that T  and E  are symmetric with respect to 
BC . Denote by Q  the symmetric point of Q  with respect to BC . Then Q ETQ  is isosceles 

trapezoid, so Q  is a point on the circumcircle of ETQ . Moreover 180BQ C BAC      

and we conclude that Q . Therefore Q X . 
 It remains to observe that CXM CQM CBA     and CXA CBA   and we infer 
that ,X M  and A  are collinear.   
 

 Problem 4. Consider a regular 2n -gon P , 1 2 2nA A A  in the plane, where n  is 
a positive integer. We say that a point S  on one of the sides of P  can be seen 
from a point Е  that is external to P , if the line segment SE  contains no other 
points that lie on the sides of P  except S . We color the sides of P  in 3  different 
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colors (ignore the vertices of P , we consider them colorless), such that every 
side is colored in exactly one color, and each color is used at least once. 
Moreover, from every point in the plane external to P , points of at most 2  
different colors on P  can be seen. Find the number of distinct such colorings of 
P  (two colorings are considered distinct if at least one of the sides is colored 
differently). 
 Solution. Answer: For 2n , the answer is 36 ; for 3n , the answer is 30  and for 4n , 
the answer is 6n .  
 Lemma 1. Given a regular 2ngon in the plane and a sequence of n  consecutive sides 

1 2, , , ns s s  there is an external point Q  in the plane, such that the color of each is can be seen 
from Q , for 1,2, , .i n  . 
 Proof. It is obvious that for a semi-circle S , there is a point R  in the plane far enough on 
the bisector of  its diameter such that almost the entire semi-circle can be seen from R .  
 Now, it is clear that looking at the circumscribed circle around the 2ngon, there is a 
semi-circle S  such that each is  either has both endpoints on it, or has an endpoint that's on 
the semi-circle, and is not on the semi-circle's end. So, take Q  to be a point in the plane from 

which almost all of S can be seen, clearly, the color of each is can be seen from Q . 
 Lemma 2. Given a regular 2ngon in the plane, and a sequence of 1n  consecutive 
sides 1 2 1, , , ns s s   there is no external point Q  in the plane, such that the color of each is can 
be seen from Q , for 1,2, , 1.i n  . 

 Proof. Since 1s  and 1ns  are parallel opposite sides of the 2ngon, they cannot be seen at 
the same time from an external point.  
 For 2n , we have a square, so all we have to do is make sure each color is used. Two 
sides will be of the same color, and we have to choose which are these 2 sides, and then 

assign colors according to this choice, so the answer is 
4

3 2 36
2

      
. 

 For 3n , we have a hexagon. Denote the sides as 1 2 6, , ,a a a , in that order. There must 

be 2  consecutive sides of different colors, say 1a  is red, 2a  is blue. We must have a green 
side, and only 4a  and 5a  can be green. We have 3  possibilities: 

 1) 4a  is green, 5a  is not. So, 3a  must be blue and 5a  must be blue (by elimination) and 

6a  must be blue, so we get a valid coloring. 

 2) Both 4a  and 5a  are green, thus 6a  must be red and 5a  must be blue, and we get the 
coloring rbbggr. 
 3) 5a  is green, 4a  is not. Then 6a  must be red. Subsequently, 4a  must be red (we assume 

it is not green). It remains that 3a  must be red, and the coloring is rbrrgr. 
 Thus, we have 2  kinds of configurations: 
 i) 2  opposite sides have 2  opposite colors and all other sides are of the third color. This 
can happen in  3 3 2 1 18    ways (first choosing the pair of opposite sides, then assigning 

colors), 
 ii) 3  pairs of consecutive sides, each pair in one of the 3  colors. This can happen in 
3 6 12  ways ( 2 partitioning into pairs of consecutive sides, for each partitioning, 6  ways to 
assign the colors). 
 Thus, for 3n , the answer is 18 12 30  . 
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 Finally, let's address the case 4n . The important thing now is that any 4 consecutive 
sides can be seen from an external point, by Lemma 1. 
 Denote the sides as 1 2 2, , , na a a . Again, there must be 2  adjacent sides that are of 

different colors, say 1a is blue and 2a  is red. We must have a green side, and by Lemma 1, 
that can only be 1na   or 2na  . So, we have 2  
cases: 
 Case 1: 1na   is green, so an must be red (cannot be green due to Lemma 1 applied to 

1 2, , , na a a , cannot be blue for the sake of 2 1, , na a  . If 2na   is red, so are  3 2, ,n na a  , 

and we get a valid coloring: 1a  is blue, 1na   is green, and all the others are red.  

 If 2na   is green: 

 a) 3na   cannot be green, because of  2 1 2 3, , , ,n na a a a  . 

 b) 3na   cannot be blue, because the 4  adjacent sides 3, ,n na a   can be seen (this is the 
case that makes the separate treatment of 4n  necessary) 
 c) 3na   cannot be red, because of 1 2 2, , ,n na a a  . 
 So, in the case that 2na   is also green, we cannot get a valid coloring. 
 Case 2: 2na   is green is treated the same way as Case 1. 
 This means that the only valid configuration for 4n  is having 2  opposite sides colored in 
2 different colors, and all other sides colored in the third color. This can be done in 3 2 6n n    
ways. 
 

BALKAN MATHEMATICAL OLYMPIAD 
Ohrid, 04.05.2017, Republic of MACEDONIA 
Problem 1. Find all pairs ( , )x y  of positive integers such that  

  3 3 2 242 .x y x xy y     
 

 Solution. Let ( , )d x y  be the greatest common divisor of positive integers x  and .y  

So, , ,x ad y bd   where , ( , ) 1, , .d a b a b     We have 

  

3 3 2 2 3 3 3 2 2 2

2 2 2 2

2 2

42 ( ) ( 42 )

( )( ) 42

( 1)( ) 43 .

x y x xy y d a b d a ab b

d a b a ab b a ab b

da db a ab b ab

        

      

     

 

If we denote 1 ,c da db     then the equality 2 2 43a c abc b c ab    implies the 

relations  

  

2

2

2 2

2 2

2 2 2 2

| |
( ) |

| |

,

( ) 43

( ) | 43

1 or  43.

b ca b c
ab c

a cb a c

c mab m

m a ab b

a ab b

a ab b a ab b
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 If 2 2 1,a ab b    then 2( ) 1 0 1, 2 44, ( , ) (22,22).a b ab a b d x y          

 If 2 2 43,a ab b    then, by virtue of simmetry, we suppose that x y a b   . We 

obtain that 2 2 243 {1,2,3,4,5,6}.a ab b ab b b        

 If 1,b   then 7, 1, ( , ) (7,1)a d x y   or ( , ) (1,7).x y   

 If 6,b   then 
43

7, .
13

a d      

 For {2,3,4,5}b  there no positive integer solutions for .a  

 Finally, we have ( , ) {(1,7), (7 ,1), (22 ,22)}.x y   
 

 Problem 2. Let ABC  be a triangle with AB AC  inscribed into a circle c . The 
tangent of c  at the point C  meets the parallel from B  to AC  at the point D . The 
tangent of c  at the point B  meets the parallel from C  to AB  at the pointE  and the 
tangent of c  at the point C  at the pointL . Suppose that the circumcircle 1c  of the 

triangle BDC  meets AC  at the point T  and the circumcircle 2c  of the triangle 

BEC  meets AB  at the point S . Prove that the lines , ,ST BC AL  are concurrent. 

 Solution. We will prove first that the circle 1c  is tangent to AB  at the point B . In order to 

prove this, we have to prove that BDC ABC  . Indeed, since ||BD AC , we have that 

DBC ACB  . Additionally, BCD BAC   (by chord and tangent), which means that 
the triangles ,ABC BDC  have two equal angles and so the third ones are also equal. It 

follows that BDC ABC  , so 1c  is tangent to AB  at the point B . 

Similarly, the circle 2c  is tangent to AC  at the point C .  

As a consequence, ABT ACB   (by chord and tangent) and also BSC ACB  . 
By the above, we have that ABT BSC  , so the lines ,BT SC  are parallel. 

Now, let ST  intersect BC  at the point K . It suffice to prove that K  belongs to AL .  
From the trapezoid BTCS  we get that  

BK BT

KC SC
       

       (1)  
and from the similar triangles ,ABT ASC , we have that  

  
BT AB

SC AS
 .     

        (2) 
By (1), (2) we get that  

  
BK AB

KC AS
 .     

       (3) 
From the power of point theorem, we have that 
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2
2 AC

AC AB AS AS
AB

    .  

Going back into (3), it gives that  

  
2

2
BK AB

KC AC
 . 

From the last one, it follows that K  belongs to the symmedian of the triangle ABC .  
Finally, recall that the well known fact that since LB  and LC  are tangents, it follows that AL  
is the symmedian of the triangle ABC , so K  belongs to AL , as needed. 
 

 Problem 3. Find all the functions :f    such that:  

  ( )| ( ) ( )n f m f n nf m          

           (1) 
for any ,m n   

 Solution. We will consider 2 cases, whether the range of the functions is infinite or finite 
or in other words the function take infinite or finite values.  
 Case 1. The Function has an infinite range. Let's fix a random natural number n  and let 
m  be any natural number. Then using (1)  we have  

2 2( ) | ( ) ( ) ( ) ( ( ) ) ( ) | ( )n f m f n nf m f n n n f m n n f m f n n         .  

 Since n  is a fixed natural number, then 2( )f n n  is as well a fixed natural number, and 

since the above results is true for any m  and the function f  has an infinite range, we can 

choose m  such that 2( ) | ( ) |n f m f n n   . This implies that 2( )f n n  for any natural 

number n . We now check that it is a solution. Since  

  2( )n f m n m    

 and  

  2 2 2( ) ( ) ( )f n nf m n nm n n m      

it is straightforward that ( ) | ( ) ( )n f m f n nf m  .  

 Case 2. The Function has a finite range. Since the function takes finite values, then it 
exists a natural number k  such that 1 ( )f n k   for any natural number n . It is clear that it 

exists at least one natural number s  (where 1 )s k   such that ( )f n s  for infinite natural 

numbers n . Let ,m n  be any natural numbers such that ( ) ( )f m f n s  . Using (1)  we have  

  2 2| ( ) |n s s ns s s s n s n s s s         .  

Since this is true for any natural number n  such that ( )f n s  and since exist infinite natural 

numbers n  such that ( )f n s , we can choose the natural number n  such that 2n s s s   , 

which implies that 2 1s s s   , or in other words ( ) 1f n   for an infinite natural number 

n .  
 Let's fix a random natural number m  and let n  be any natural number ( ) 1f n  . Then 

using (1)  we have  
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2 2( ) |1 ( ) 1 ( ( )) ( )( ( )) ( ) | ( ( )) 1n f m nf m f m f m n f m n f m f m          

 Since m  is a fixed a random natural number, then 2( ( )) 1f m   is a fixed non-negative 

integer and since n  is any natural nummber such that ( ) 1f n   and since exist infinite 

numbers n  such that ( ) 1f n  , we can choose the the natural number n  such that 

2( ) ( ( )) 1n f m f m   . This implies ( ) 1f m   for any natural number m . We now check 

that it is a solution. Since  
  ( ) 1n f m n    

and  
  ( ) ( ) 1f n nf m n    

it is straightforward that ( ) | ( ) ( )n f m f n nf m  .  

So, all the functions that satisfy the given condition are 2( )f n n  for any n  or ( ) 1f n   

for any n . 
 

 Problem 4. We have n students sitting at a round table. Initially each student 
is given one candy. At each step each student having candies either picks one of 
its candies and gives it to one of its neighbouring students, or distributes all of 
its candies to its neighbouring students in any way he wishes. A distribution of 
candies is called legal if it can be reached from the initial distribution via a 
sequence of steps. 
 Determine the number of legal distributions. (All the candies are udentical.) 

 Solution. The answer turns out to be 2 1( )n
n
  if n is odd and 

3
2

12 1( ) 2( )
n

n
n n

   if n is even. 

 Case 1. Suppose n is odd, say 2 1n m  . In this case we will show that any distribution of 

candies is legal. Thus the number of legal distributions is indeed 2 1( )n
n
 .  

In this case we can achieve the above claim by letting each student to always distribute all of 
its candies to its two neighbouring students in some way. Thus at each step each candy will 
move either one position clockwise or one anticlockwise. 
We now look at the initial distribution of candies and the required final distribution. We 
specify arbitrarily for each candy in the initial distribution, the position we wish this candy to 
end up in the required final distribution. Because n is odd, either the clockwise distance or the 
anticlockwise distance between the initial position of the candy and the required final 
position is even and at most m . 
Thus after an even number of steps (at most m ) we can move each candy to its required final 
position. (Note that if the candy reaches the required position earlier, we can move it back 
and forth until all candies reach their required position.) This completes the proof of our 
claim in this case. 

 Case 2. Suppose n is even, say 2n m . Let 1 2,..., mx x  be the students in this cyclic order. 

Observe that initially the students with even indices (even students) have at least one candy in 
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total, and so do the students with odd indices (odd students). This property is preserved after 
each step. 
We will show that every distribution in which the even students have at least one candy in 
total and the odd students also have at least one candy in total is legal. 
Let us suppose that the required final distribution has a candies in odd positions and b candies 
in even positions. (Where , 1a b  .) It will be enough to reach any position with a candies in 

even positions and b candies in odd positions as then we can follow the same approach as in 
Case 1. 

 To achieve this we will first move all candies to students 1x  and 2x . This is easy by 

specifying that at each step 1x  moves all of its candies to 2x  while for 1 2 1r m    student 

1rx    moves all of its candies to rx . 

 Suppose that we now have a k  candies at 1x  and b k  candies at 2x  where without loss 

of generality 0k  . If 0k   we have reached our target. If not, in the next step 1x  moves a 

candy to 2x  and 2x  moves a candy to 3x . In the next step 1x  (it still has 1 0a k a     

candies) moves a candy to 2x , 2x  moves a candy to 1x  and 3x  moves a candy to 2x . We 

now have 1a k   candies in 1x  and 1b k   in 2x . Repeating this process another 1k   

times we end up with a candies in 1x  and b candies in 2x  as required. 

 It remains to count the total number of legal configurations in this case. This is indeed 
equal to  

3
2

12 1( ) 2( )
n

n
n n

   

as 2 1( )n
n
  counts the total number of configurations while 

3
2

1
( )

n

n


 counts the number of illegal 

configurations where either all n candies belong to the 
2
n  odd positions or all n candies 

belong to the 
2
n  even positions.  

 

XX Mediterranean mathematical olympiad,  
23 april 2017, Faculty of mechanical ingineering 
 

 Problem 1. Determine the smallest integer n , for which there exist integers 

1,..., nx x  and  positive integers 1,..., na a , so that   

 1 ... 0nx x   ,  1 1 ... 0n na x a x   ,  2 2
11 ... 0n na x a x   .  

 

 Solution. The answer is 3n . One possible example for 3n  is 1 2x   and 2 3 1x x 
, with 1 2 34, 1, 6a a a   .  

 For 1n , the fiorst constraint enforces 1 0x  ; this is in contradiction with the other two 

constrains. For 2n , the first constraint enforces 2 1x x . Then the second constraint is 
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equivalent to 1 1 2 1 0a x a x  . If we multiply this inequality by the positive value 1 2a a , we 

get 2 2
1 11 2 0a x a x  ; this is equivalent to 2 2

1 11 2 0a x a x   and contradicts the third constraint.  
  
 

 Problem 2. Let , ,a b c  be positive real numbers such that 1a b c   . Prove 

that  

    3 3 3
2 2 2

2 2 2 2 2 2
1
92 2 2

a b cx y z
x y y z z x
         

,  

holds for all positive real numbers ,x y , z . 
 Solution. On account of the constrain 1a b c    we will prove that it holds the 
equivalent inequality 

   
33 3 32 2 2

2 2 2 2 2 2
( )

92 2 2
a b ca b cx y z

x y y z z x

           
.  

Indeed, Holder’s inequality claims that  

  
3

3 3 3 1/3
1 2 3 1 2 3 1 2 3

1
( )i i i

i
a b c a a a b b b c c c


      

for all positive reals , ,i i ia b c , 1 3i  . Putting in the preceding  

  3 2 2
1 2 3 3 2 2

( , , ) ,1, 2
2

aa a a x y
x y

      
,  

  3 2 2
1 2 3 3 2 2

( , , ) ,1, 2
2

bb b b y z
y z

      
, 

and 

  3 2 2
1 2 3 3 2 2

( , , ) ,1, 2
2

cc c c z x
z x

     
 

yields 

  

1
13 3 3 33 2 2 2 3

2 2 2 2 2 2
3 (3 3 3 ) ( )

2 2 2
a b c x y z a b c

x y y z z x

             .  

Cubing both sides and dividing both sides by 2 2 29( )x y z   we obtain  

  
33 3 3

2 2 2 2 2 2 2 2 2
( )

2 2 2 9( )
a b ca b c

x y y z z x x y z
   

    
 

from which claimed inequality follows. Equality holds when 1
3

a b c x y z      , and the 

proof is complete.  
 

 Problem 3. Let  ABC  be an equilateral triangle, and let P  be some point in 
its circumcircle . Determine, with reasons, all the numbers *n  such that the 
sum   
  ( ) | | | | | |n n n

nS P PA PB PC   , 

is independent of the choice of the point P . 
 Solution. We will take an orthonormal coordinate system, with origin in the point O  
(center of the circumcircle of ABC ), taking moreover the point A  on the Ox  axis, and 
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| | 1OA . In the complex numers , ,A B Cz z z  and z  are respectively the affixes of the points 

, , ,A B C P  we have  

  | | | | | | | | 1A B Cz z z z    ,  

and therefore the first three are the rots of 3 1z  , that is  

  1 3 1 31, ,
2 2 2 2A B Cz z i z i     .  

 For another hand, z a ib  , with 2 2 1a b  . Then we have  

  ( ) | | | | | | | | | | | |n n n n n n
n A B CS P PA PB PC z z z z z z         .    

    (*) 
 But as  

  2| | 2(1 )
n

Az z a   ; | | 2 3Bz z a b    ; | | 2 3Cz z a b    ,  

we get from (*)  

  2 2 2 2( ) 2 (1 ) (2 3) (2 3)
n n n n

nS P a a b a b        .     

       (**) 

 If P A , then 2 2 2( ) 3 3 2 3
n n n

nS A     . If 1
1 3,
2 2

P
     , entonces 1 3

2 2
z i   that is, 

1 3,
2 2

a b   and from (**) we get  

     2 22 21
1 3 1 3( ) 2 2 2 2 2 2
2 2 2 2

n n
n n

n
nS P           .  

 Then, if ( )nS P  must to be independent of P , we get 1( ) ( )n nS A S P    22 3 2 2
n

n      

2n  or 4n .  
 

 Problem 4. A set S  of integers is Balearic, if there are two (not necessarily 
distinct) elements  , 's s S  whose sum 's s  is a power of two; otherwise it is 

called a non-Balearic set.   
 Find an integer n  such that {1,2,..., }n  contains a  99-element non-Balearic set, 

whereas all the 100-element subsets are Balearic.  
 Solution. Let ( )f n  denote the largest cardinality of a non_Balearic set in {1,2,..., }n . One 

easily verifies that (0) (1) 0f f  . Now consider an integer 2n  and write it in the form 

2an b   with 0 2 1ab   . We want to show  

  ( ) (2 ) (2 1)a af n f b f b b      .  

Partition {1,2,..., }n  into {1,2,...,2 1}aX b    and {2 ,....,2 }a aY b b   . A non-Balearic-

subeset S  of {1,2,..., }n  contains at most (2 1)af b   elements from X (by definition of f ) 

and at most b  elements from Y  (as it cannot contain 2a  altogether, and as it contains at most 

one of the two numbers 2a x  and 2a x ). This establishes the first inequality 

( ) (2 1)af n f b b    ).  

 Next consider a non-Balearic set T X  of caridnality (2 1)af b  . We claim that also 

{2 1,...,2 }a aS T b     is a non-Balearic set. Suppose for the sake of contradiction that the 
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sum 's s  of some , 's s S  is a power of two. Then , 's s T  is impossible, as T  itself is a non-

Balearic set. Also , ' {2 1,...,2 }a as s b    is impossible, as  

  12 (2 1) (2 1) ' (2 ) (2 ) 2 2a a a a a as s b b             .  

Hence one of s  and 's  must be in T  and the other one in {2 1,....,2 }a a b  , which yields the 

final contradiction 

  12 ' (2 1) (2 ) 2a a a as s b b         .  

Since the constructed non-Balearic set S  is of cardinality (2 1)af b b   , we have 

established the second inequality ( ) (2 1)af n f b b    . The two established inequalities 

together imply the desired recursive equation ( ) (2 1)af n f b b     displayed above.  

 The rest is computation.  
 It is easy to see (or to determine through the recursive equation) that (4) 1f  .  

 For 2 8a  and 3b , the recursion yields (11) (4) 3 4f f   . 

 For 2 32a  and 20b , the recursion yields (52) (11) 20 24f f   .  

 For 2 128a  and 75b , the recursion yields (203) (52) 75 99f f   .  

 Hence an answer to the problem is 203n  with (203) 99f  .  

 (Similar computations yield (202) 98f   and (204) 100f  . Hence 203n  constitutes the 

unique possible answer for the problem).   
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