

MATHEMATICAL OLYMPIADS

Macedonian Mathematical Olympiads Balkan Mathematical Olympiads

Aleksa Malcheski, Ph.D.
Daniel Velinov, Ph.D
Risto Malcheski, Ph.D
Slagjana Brsakoska, Ph.D.

Armaganka-Library olympiad

Union of Mathematicians of Macedonia-Armaganka

Macedonian Mathematical Olympiad 2017

Balkan Mathematical Olympiad 2017
Mediterranean Mathematical Olympiad 2017

Aleksa Malcheski	Risto Malcheski
Slagjana Brsakoska	Velinov Daniel
Tomi Dimovski	Pavel Dimovski
Vesna Andova	Dimitar Trenevski
Sanja Atanasova	Samoil Malcheski
Methodi Glavche	

Skopje, Januari 2017

Publisher: Union of mathematicians od Macedonia-Armaganka President: Aleksa Malcheski
Adrees: Ul. 2 br. 107A
Naselba Vizbegovo, Butel, Skopje, Macedonia

Contests

1. Junior Macedonian Mathematical Olympiad 20173
2. Macedonian Mathematical Olympiad 20175
3. Junior Balkan Mathematical Olympiad 201717
4. Balkan Mathematical Olympiad $2017 \quad 19$
5. Mediterranean Mathamatical Olympiad 201723

21 - ва ЈММО

21-th Junior Macedonian Mathematical Olympiad, JMMO 2017

Faculty for mechanical engineering-Skopje

 03.06.20171. Let p is a prime number and let $3 p+10$ is the sum of the squares of six consecutive positive integers. Prove that $36 \mid p-7$.

Solution. From the conditions of the problem, we have that

$$
3 p+10=(n-2)^{2}+(n-1)^{2}+n^{2}+(n+1)^{2}+(n+2)^{2}+(n+3)^{2}=6 n^{2}+6 n+19,
$$

so, we have that
$3 p=6 n^{2}+6 n+9$,
and

$$
p=2 n^{2}+2 n+3=2 n(n+1)+3 .
$$

If one of the numbers n or $n+1$ is divisible with 3 , then we have a contradiction with the condition that p is a prime number. So, $n=3 k+1$. Then,

$$
p=2(3 k+1)(3 k+1+1)+3=2(3 k+1)(3 k+2)+3=2\left(9 k^{2}+9 k+2\right)+3=18 k(k+1)+7 .
$$

Since $k(k+1)$ is an even number, we have that $36 \mid p-7$.
2. Let be given $\triangle A B C$ and let $A A_{1}, B B_{1}$ and $C C_{1}$ are the medians in the triangle which intersect in the point T and $\overline{B A_{1}}=\overline{A_{1} T}$. On the continuation of $C C_{1}$ we choose a point C_{2} such that $\overline{C_{1} C_{2}}=\frac{\overline{C C_{1}}}{3}$, and on the continuation of $B B_{1}$ we choose a point B_{2} such that $\overline{B_{1} B_{2}}=\frac{\overline{B B_{1}}}{3}$. Prove that the quadrilateral $T B_{2} A C_{2}$ is a rectangle.

Solution. Since $A A_{1}$ is a median in the $\triangle A B C$ and $\overline{B A_{1}}=\overline{A_{1} T}$, we get that $\overline{A_{1} T}=\frac{\overline{B C}}{2}$ i.e. A_{1} is the circumcenter of the circumcircle of $\triangle B C T$. So according to the Thales theorem $\angle B T C=90^{\circ}$. We have $\angle B_{2} T C_{2}=90^{\circ}$ (as vertically opposite angles). Since T is the barycenter of $\triangle A B C$ we have $\overline{C_{1} T}=\frac{\overline{C C_{1}}}{3}=\overline{C_{1} C_{2}}$. From $\overline{B C_{1}}=\overline{C_{1} A}$ we get that the quadrilateral $B T A C_{2}$ is a parallelogram. Then $B T \| A C_{2}$, so $\angle T C_{2} A=\angle C T B_{2}=180^{\circ}-\angle B_{2} T C_{2}=90^{\circ}$ (as angles
on the transversal).
With analogy, we can prove that the quadrilateral $T C B_{2} A$ is a parallelogram i.e. $\angle T B_{2} A=\angle C_{2} T B_{2}=90^{\circ}$ (as angles on the transversal). So, we get that $\angle C_{2} A B_{2}=360^{\circ}-270^{\circ}=90^{\circ}$ i.e. the quadrilateral is a rectangle.

Second proof for the statement that $\angle T B_{2} A=90^{\circ}$.
We look at the $\triangle B B_{2} C_{1}$. Since $C_{1} T$ is a median and an altitude in the triangle, we get that $\Delta B B_{2} C_{1}$ is an isosceles triangle, so $\overline{B C_{1}}=\overline{C_{1} B_{2}}$ (it can be proven with the SAS sign: $C_{1} T$ is a common side, $\angle B T C_{1}=\angle B_{2} T C_{1}=90^{\circ}$ and $\overline{B T}=\overline{T B_{2}}$). We get that the point C_{1} is a circumcenter of the circumcircle of $\triangle B B_{2} A$, so according to the Thales theorem $\angle B B_{2} A=90^{\circ}$. We have $\angle C_{2} A B_{2}=360^{\circ}-270^{\circ}=90^{\circ}$ i.e. the quadrilateral is a rectangle.
3. Let x, y, z be positive real numbers such that $x y z=1$. Prove that

$$
\frac{x^{2}+y^{2}+z}{x^{2}+2}+\frac{y^{2}+z^{2}+x}{y^{2}+2}+\frac{z^{2}+x^{2}+y}{z^{2}+2} \geq 3 .
$$

When does the equality holds?
Solution. From the AM-GM inequality and the condition of the problem, we have that

$$
\begin{aligned}
& \frac{x^{2}+y^{2}+z}{x^{2}+2}+\frac{y^{2}+z^{2}+x}{y^{2}+2}+\frac{z^{2}+x^{2}+y}{z^{2}+2} \geq \frac{2 x y+z}{x^{2}+2}+\frac{2 y z+x}{y^{2}+2}+\frac{2 z x+y}{z^{2}+2}= \\
& \quad=\frac{2 x y z+z^{2}}{z\left(x^{2}+2\right)}+\frac{2 x y z+x^{2}}{x\left(y^{2}+2\right)}+\frac{2 x y z+y^{2}}{y\left(z^{2}+2\right)}=\frac{z^{2}+2}{z\left(x^{2}+2\right)}+\frac{x^{2}+2}{x\left(y^{2}+2\right)}+\frac{y^{2}+2}{y\left(z^{2}+2\right)} \geq \\
& \quad \geq 3 \sqrt[3]{\frac{z^{2}+2}{z\left(x^{2}+2\right)} \cdot \frac{x^{2}+2}{x\left(y^{2}+2\right)} \cdot \frac{y^{2}+2}{y\left(z^{2}+2\right)}}=3 \sqrt[3]{\frac{1}{x y z}}=3 .
\end{aligned}
$$

4. Let be given the $\triangle A B C$. On the arc $\overparen{B C}$ of the circumcircle of $\triangle A B C$, which does not contain the point A, points X and Y are chosen, such that $\measuredangle B A X=\measuredangle C A Y$. Let M be the middle point of the chord $A X$. Prove that $\overline{B M}+\overline{C M}>\overline{A Y}$.

Solution. Let O be the circumcenter of the circumcircle of $\triangle A B C$. Then $O M \perp A X$. We draw a normal line from the point B at $O M$ and let it intersect the circumcircle in the point Z. Since $B Z \perp O M$ we have that $O M$ is a line of symmetry of $B Z$. According to this, $\overline{M Z}=\overline{M B}$. Now, from the triangle inequality we have that

$$
\overline{B M}+\overline{M C}=\overline{Z M}+\overline{M C}>\overline{C Z} .
$$

But, $B Z \| A X$, so

$$
\overparen{A Z}=\overparen{B X}=\overparen{C Y}
$$

where from we get

$$
\overparen{Z A C}=\overparen{Z A}+\overparen{A C}=\overparen{Y C}+\overparen{C A}=\overparen{Y C A}
$$

i.e. $\overline{C Z}=\overline{A Y}$. That is why $\overline{B M}+\overline{C M}>\overline{A Y}$.
5. Find all positive integers n such that n has number of ciphers which is the same as the number of its different prime divisors and the sum of the different prime divisors is equal to the sum of their powers.

Solution. Let $n=p_{1}{ }_{1}^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \ldots p_{k}{ }^{\alpha_{k}}$. From the condition of the problem

$$
p_{1}+p_{2}+\ldots+p_{k}=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{k} .
$$

We discuss the number of ciphers of the number n. If n has 4 ciphers, then he has 4 different prime divisors. Then $n \geq 2^{14 \cdot 3 \cdot 5 \cdot 7}>10^{4}$ which is not possible. If n has $k>4$ ciphers, then

$$
\begin{aligned}
n & \geq 2^{2+3+5+7+\cdot p_{5}+. .+p_{k}-(k-1) \cdot 3 \cdot 5 \cdot 7 \cdot p_{5} \cdot \ldots \cdot p_{k}=2^{14} \cdot 3 \cdot 5 \cdot 7 \cdot 2 \cdot p_{5}+. .+p_{k}-(k-4)} p_{5} \cdot \ldots \cdot p_{k} \\
& >10^{4} \cdot 10^{k-4}=10^{k}
\end{aligned}
$$

which again is not possible.
So, we get that n has at most three ciphers.
Let n have three ciphers. Then $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} p_{3}{ }^{\alpha_{3}}$. If $5 \mid n$, then $n \geq 2^{8} \cdot 3 \cdot 5>10^{3}$.
We get that the prime divisors of the number n are ≤ 3. But, prime numbers ≤ 3 are 2 and 3 , and in the factorization of the number n there are 3 prime numbers, which is a contradiction.

Let n has two ciphers. Then $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}}$. If $5 \mid n$, then $n \geq 2^{6} \cdot 5>10^{2}$. Remains $n=2^{\alpha_{1} 3^{\alpha_{2}}}$ where $\alpha_{1}+\alpha_{2}=5$. With direct checking we get that $n=2^{4} \cdot 3=48, n=2^{3} \cdot 3^{2}=72$ are solutions of the problem.

Let n has one cipher. Then only $n=2^{2}$ fulfils the condition of the problem.

24_та MMO

24-th Macedonian mathematical olympiad

 Faculty for electrical engineering and information technologies - Skopje 08.04.20171. Determine all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for every positive integer $n>1$ and every $x, y \in \mathbb{N}$

$$
f(x+y)=f(x)+f(y)+\sum_{k=1}^{n-1}\binom{n}{k} x^{n-k} y^{k} .
$$

2. Determine all positive integers n such that $\left(n^{3}+39 n-2\right) n!+17 \cdot 21^{n}+5$ is a full square.
3. Let x, y, z are positive real numbers such that $x y z=1$. Prove that

$$
\left(x^{4}+\frac{z^{2}}{y^{2}}\right)\left(y^{4}+\frac{x^{2}}{z^{2}}\right)\left(z^{4}+\frac{y^{2}}{x^{2}}\right) \geq\left(\frac{x^{2}}{y}+1\right)\left(\frac{y^{2}}{z}+1\right)\left(\frac{z^{2}}{x}+1\right)
$$

4. Let O is the circumcenter of the circumcircle of the acute triangle ${ }_{A B C}(\overline{A B}<\overline{A C})$. Let A_{1} and P are the intersection points of the normal lines through the points A and O and the side $B C$, correspondingly. The lines $B O$ and $C O$ intersect with the line $A A_{1}$ in the points D and E, correspondingly. The circumcircles of the triangles $A B D$ and $A C E$ again intersects in the point F. Prove that the symmedian of the $\angle F A P$ passes through the center of the incircle of the triangle $A B C$.
5. Let $n>1$ is a positive integer and $a_{1}, a_{2}, \ldots, a_{n}$ is a sequence of n positive integers. Let

$$
b_{1}=\left[\frac{a_{2}+\ldots+a_{n}}{n-1}\right], b_{i}=\left[\frac{a_{1}+a_{2}+\ldots+a_{i-1}+a_{i+1}+\ldots+a_{n}}{n-1}\right], 1<i<n, b_{n}=\left[\frac{a_{1}+a_{2}+\ldots+a_{n-1}}{n-1}\right] .
$$

Let f is a mapping such that $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$.
a) Let the function $g: N \rightarrow N$ is defined such that $g(1)$ is the number of different elements in the sequence $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $g(m)$ is the number of different elements in the sequence $f^{m}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=f\left(f^{m-1}\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right), m>1$. Prove that there is a positive integer k_{0} such that for $m \geq k_{0}$ the function $g(m)$ is periodical.
b) Prove that $\sum_{m=1}^{k} \frac{g(m)}{m(m+1)}<C$ for any positive integer k, where the constant C does not depend on k.

SOLUTIONS

1. Determine all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for every positive integer $n>1$ and every $x, y \in \mathbb{N}$
$f(x+y)=f(x)+f(y)+\sum_{k=1}^{n-1}\binom{n}{k} x^{n-k} y^{k}$.
Solution. From the condition of the problem we have that

$$
\begin{aligned}
& f(x+y)-\sum_{k=1}^{n-1}\binom{n}{k} x^{n-k} y^{k}=f(x)+f(y) \Leftrightarrow \\
& f(x+y)-\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}=f(x)+f(y)-x^{n}-y^{n} \Leftrightarrow \\
& f(x+y)-(x+y)^{n}=f(x)-x^{n}+f(y)-y^{n}
\end{aligned}
$$

Let $f_{1}: \mathbb{N} \rightarrow \mathbb{N}_{\mathbf{0}}$ is a mapping defined with $f_{1}(x)=f(x)-x^{n}$. Then

$$
f_{1}(x+y)=f(x+y)-(x+y)^{n}=f(x)-x^{n}+f(y)-y^{n}=f_{1}(x)+f_{2}(x) .
$$

Using the induction method can be proven that $f_{1}(n x)=n f_{1}(x)$ for every $n \in \mathbb{N}$. For $x=1$ we have $f_{1}(n)=n f_{1}(1)=n \alpha$ for every $n \in \mathbb{N}$, where $\alpha=f_{1}(1)$. So, $f(x)=x^{n}+\alpha x$.
2. Determine all positive integers n such that $\left(n^{3}+39 n-2\right) n!+17 \cdot 21^{n}+5$ is a full square.

Solution. Lets denote $a_{n}=\left(n^{3}+39 n-2\right) n!+17 \cdot 21^{n}+5$.
If $n \geq 4$, then $8 \mid n!$. Moreover, $a_{n} \equiv 5^{n}+5(\bmod 8)$.
If n is an even number, then $5^{n} \equiv 1(\bmod 8)$, so $a_{n} \equiv 6(\bmod 8)$. But, all full squares have remaining 0,1 or 4 when divided with 8 . So, if $n \geq 4$ and n is even, then a_{n} is not a full square.

Let $n \geq 7$. It is clear that $7 \mid n!$. Then $a_{n} \equiv 5(\bmod 7)$. On the other side, the remainings of the full squares when divided with 7 are $0,1,2$ or 4 . So, a_{n} is not a full square for $n \geq 7$. Having in mind the previous discussion, it remains to check for $n=1, n=2, n=3$ and $n=5$.

If $n=5, a_{5} \equiv 2 \cdot 1^{5}+5 \equiv 2(\bmod 5)$.
Since the remainings of a full square when divided with 5 are 0,1 or $4, a_{5}$ is not a full square.

For $n=3$, we have $a_{3} \equiv 3(\bmod 7)$, so a_{3} is not a full square.
For $n=2$, we have $a_{2} \equiv 1+5 \equiv 2(\bmod 4)$, so a_{2} is not a full square.
For $n=1, a_{1}=(1+39-2) \cdot 1+17 \cdot 21+5=400$.
This means that only for $n=1, a_{n}$ is a full square.
3. Let x, y, z are positive real numbers such that $x y z=1$. Prove that

$$
\left(x^{4}+\frac{z^{2}}{y^{2}}\right)\left(y^{4}+\frac{x^{2}}{z^{2}}\right)\left(z^{4}+\frac{y^{2}}{x^{2}}\right) \geq\left(\frac{x^{2}}{y}+1\right)\left(\frac{y^{2}}{z}+1\right)\left(\frac{z^{2}}{x}+1\right) .
$$

Solution. Using the Cauchy-Schwartz inequality, we get

$$
\begin{aligned}
& \sqrt{\left(x^{2}\right)^{2}+\left(\frac{z}{y}\right)^{2}} \cdot \sqrt{\left(y^{2}\right)^{2}+\left(\frac{x}{z}\right)^{2}} \geq\left(x^{2} y^{2}+\frac{z}{y} \cdot \frac{x}{z}\right)=x^{2}\left(y^{2}+\frac{1}{x y}\right) \\
& \sqrt{\left(y^{2}\right)^{2}+\left(\frac{x}{z}\right)^{2}} \cdot \sqrt{\left(z^{2}\right)^{2}+\left(\frac{y}{x}\right)^{2}} \geq\left(y^{2} z^{2}+\frac{x}{z} \cdot \frac{y}{x}\right)=y^{2}\left(z^{2}+\frac{1}{y z}\right) \\
& \sqrt{\left(x^{2}\right)^{2}+\left(\frac{z}{y}\right)^{2}} \cdot \sqrt{\left(z^{2}\right)^{2}+\left(\frac{y}{x}\right)^{2}} \geq\left(x^{2} z^{2}+\frac{z}{y} \cdot \frac{y}{x}\right)=z^{2}\left(x^{2}+\frac{1}{x z}\right) .
\end{aligned}
$$

If we multiply the last three inequalities, we get that,

$$
\begin{aligned}
& \left(x^{4}+\frac{z^{2}}{y^{2}}\right)\left(y^{4}+\frac{x^{2}}{z^{2}}\right)\left(z^{4}+\frac{y^{2}}{x^{2}}\right) \geq x^{2} y^{2} z^{2}\left(y^{2}+\frac{1}{x y}\right)\left(z^{2}+\frac{1}{y z}\right)\left(x^{2}+\frac{1}{x z}\right)= \\
& =(x y z)^{3}\left(\frac{y^{2}}{z}+1\right)\left(\frac{z^{2}}{x}+1\right)\left(\frac{x^{2}}{y}+1\right)=\left(\frac{x^{2}}{y}+1\right)\left(\frac{y^{2}}{z}+1\right)\left(\frac{z^{2}}{x}+1\right),
\end{aligned}
$$

which we had to prove.
4. Let O is the circumcenter of the circumcircle of the acute triangle $A B C(\overline{A B}<\overline{A C})$. Let A_{1} and P are the intersection points of the normal lines
through the points A and O and the side $B C$, correspondingly. The lines $B O$ and $C O$ intersect with the line $A A_{1}$ in the points D and E, correspondingly. The circumcircles of the triangles $A B D$ and $A C E$ again intersects in the point F. Prove that the symmedian of the $\measuredangle F A P$ passes through the center of the incircle of the triangle $A B C$.

Solution 1. We need to prove that $\measuredangle B A F=\measuredangle C A P$. Since $O P$ is perpendicular to $B C$ and O is the circumcenter, then P is the midpoint of $B C$. Since $A P$ is the median from A, we need to prove that $A F$ is the symmedian from A.

Let the line $A F$ intersect the side $B C$ at X and let the circumcircles of $A B D$ and $A C E$ meet the line $B C$ again at Y and Z, respectively. Then, by the intersecting secant theorem, we have:

$$
\overline{X B} \cdot \overline{X Y}=\overline{X F} \cdot \overline{X A}=\overline{X Z} \cdot \overline{X C}
$$

$$
\begin{equation*}
\frac{\overline{X B}}{\overline{X C}}=\frac{\overline{X Z}}{\overline{X Y}}=\frac{\overline{X B}+\overline{X Z}}{\overline{X C}+\overline{X Y}}=\frac{\overline{B Z}}{\overline{C Y}} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \measuredangle A C E \equiv \measuredangle A C O=\frac{1}{2}\left(180^{\circ}-\measuredangle A O C\right)=\frac{1}{2}\left(180^{\circ}-2 \measuredangle A B C\right)=90^{\circ}-\measuredangle A B C \equiv \\
& \equiv 90^{\circ}-\measuredangle A B A_{1}=\measuredangle B A A_{1} \equiv \measuredangle B A E
\end{aligned}
$$

so $B A$ is tangent to the circumcircle of $A C E$.
Similarly, $C A$ is tangent to the circumcircle of $A B D$. By the tangent-secant theorem, we have:

$$
\begin{aligned}
& \overline{B A}^{2}=\overline{B Z} \cdot \overline{B C} \\
& \overline{C A}^{2}=\overline{C B} \cdot \overline{C Y}
\end{aligned}
$$

By dividing these two equations and using (1), we get:

$$
\frac{\overline{B A}^{2}}{\overline{C A}^{2}}=\frac{\overline{B Z}}{\overline{C Y}}=\frac{\overline{X B}}{\overline{X C}}
$$

We proved that $A X$ divides the side $B C$ in the ratio of the squares of the sides $A B$ and $A C$, so by Lemma l we get that $A F \equiv A X$ is the A-symmedian in the triangle $A B C$. \bullet

Solution 2. We need to prove that $\measuredangle B A F=\measuredangle C A P$. Since $O P$ is perpendicular to $B C$ and O is the circumcenter, then P is the midpoint of $B C$. Since $A P$ is the median from A, we need to prove that $A F$ is the symmedian from A.

By some angle chasing:

$$
\begin{aligned}
& \measuredangle A C E \equiv \measuredangle A C O=\frac{1}{2}\left(180^{\circ}-\measuredangle A O C\right)=\frac{1}{2}\left(180^{\circ}-2 \measuredangle A B C\right)=90^{\circ}-\measuredangle A B C \equiv \\
& \equiv 90^{\circ}-\measuredangle A B A_{1}=\measuredangle B A A_{1} \equiv \measuredangle B A E
\end{aligned}
$$

we get that $B A$ is tangent to the circumcircle of $A C F$.
Similarly, $C A$ is tangent to the circumcircle of $A B F$.
Now, we use the fact that the angle between a tangent and a chord is equal to any inscribed angle over the same chord:

$$
\begin{aligned}
& \measuredangle B A F=\measuredangle A C F \\
& \measuredangle A B F=\measuredangle C A F
\end{aligned}
$$

So, the triangles $B A F$ and $A C F$ are similar which gives:

$$
\frac{\overline{B F}}{\overline{C F}}=\frac{\overline{B F} / \overline{A F}}{\overline{C F} / \overline{A F}}=\frac{\overline{B A} / \overline{A C}}{\overline{A C} / \overline{A B}}=\frac{\overline{A B}^{2}}{\overline{A C}^{2}}
$$

Also, $\measuredangle B F X=180^{\circ}-\measuredangle B F A=180^{\circ}-\measuredangle A F C=\measuredangle C F X$, so $F X$ is an angle bisector in $B F C$, so:

$$
\frac{\overline{B F}}{\overline{C F}}=\frac{\overline{B X}}{\overline{C X}}
$$

From these two equalities, we get that

$$
\frac{\overline{B X}}{\overline{C X}}=\frac{\overline{A B}^{2}}{\overline{A C}^{2}}
$$

So, the line $A X$ divides the side $B C$ in the ratio of the squares of the sides $A B$ and $A C$, so by Lemma l we get that $A F \equiv A X$ is the symmedian from the vertex A in the triangle $A B C$.

Solution 3. We need to prove that $\measuredangle B A F=\measuredangle C A P$. Since $O P$ is perpendicular to $B C$ and

O is the circumcenter, then P is the midpoint of $B C$. Since $A P$ is the median from A, we need to prove that $A F$ is the symmedian from A.

By some angle chasing:

$$
\begin{aligned}
& \measuredangle A C E \equiv \measuredangle A C O=\frac{1}{2}\left(180^{\circ}-\measuredangle A O C\right)=\frac{1}{2}\left(180^{\circ}-2 \measuredangle A B C\right)=90^{\circ}-\measuredangle A B C \equiv \\
& \equiv 90^{\circ}-\measuredangle A B A_{1}=\measuredangle B A A_{1} \equiv \measuredangle B A E
\end{aligned}
$$

we get that $B A$ is tangent to the circumcircle of $A C F$.
Similarly, $C A$ is tangent to the circumcircle of $A B F$.

Now, we use the fact that the angle between a tangent and a chord is equal to any inscribed angle over the same chord:

$$
\begin{aligned}
& \measuredangle B A F=\measuredangle A C F \\
& \measuredangle A B F=\measuredangle C A F
\end{aligned}
$$

So, the triangles $B A F$ and $A C F$ are similar.

Let F_{1} and F_{2} be the feet of the perpendiculars from F to the sides $A B$ and $A C$, respectively. Then, from the similarity we have:

$$
\frac{\overline{F F_{1}}}{\overline{F F_{2}}}=\frac{\overline{A B}}{\overline{A C}}
$$

which means that the distances from F to the sides $A B$ and $A C$ are proportional to the lengths $A B$ and $A C$, so by Lemma $2 b, F$ lies on the symmedian from the vertex A in the triangle $A B C$.

Solution 4. We need to prove that $\measuredangle B A F=\measuredangle C A P$.
Since $O P$ is perpendicular to $B C$ and O is the circumcenter, then P is the midpoint of $B C$. Since $A P$ is the median from A, we need to prove that $A F$ is the symmedian from A.

By some angle chasing:

$$
\measuredangle A C E \equiv \measuredangle A C O=\frac{1}{2}\left(180^{\circ}-\measuredangle A O C\right)=\frac{1}{2}\left(180^{\circ}-2 \measuredangle A B C\right)=90^{\circ}-\measuredangle A B C \equiv
$$

$$
\equiv 90^{\circ}-\measuredangle A B A_{1}=\measuredangle B A A_{1} \equiv \measuredangle B A E
$$

we get that $B A$ is tangent to the circumcircle of $A C F$.

Similarly, $C A$ is tangent to the circumcircle of $A B F$.

Now, we use the fact that the angle between a tangent and a chord is equal to any inscribed angle over the same chord:

$$
\begin{aligned}
& \measuredangle B A F=\measuredangle A C F \\
& \measuredangle A B F=\measuredangle C A F
\end{aligned}
$$

So, the triangles $B A F$ and $A C F$ are similar and:

$$
\begin{equation*}
\frac{\overline{B A}}{\overline{B F}}=\frac{\overline{A C}}{\overline{A F}} . \tag{1}
\end{equation*}
$$

Let $A X$ intersect the circumcircle of $A B C$ again at G.
$\measuredangle B F G=180^{\circ}-\measuredangle B F A=\measuredangle F B A+\measuredangle F A B=$
$=\measuredangle F A C+\measuredangle F A B=\measuredangle B A C=\alpha$
$\measuredangle B G F=\measuredangle B G A=\measuredangle B C A=\gamma$
So, the triangles $A B C$ and $F B G$ are also similar and:

$$
\begin{equation*}
\frac{\overline{A B}}{\overline{F B}}=\frac{\overline{A C}}{\overline{F G}} \cdots \tag{2}
\end{equation*}
$$

From (1) and (2) we get that $\overline{A F}=\overline{F G}$ and because O is the circumcenter, we get that $\measuredangle O F G=90^{\circ}$.

Now, let's draw the tangents at B and C to the circumcircle of $A B C$ and let them intersect at T. The quadrilateral $O B T C$ is a cyclic quadrilateral with diameter $O T$.

Earlier in this solution, we proved that $\measuredangle B F G=\alpha$. Similarly, $\measuredangle C F G=\alpha$.
$\measuredangle B F C=\measuredangle B F G+\measuredangle C F G=\alpha+\alpha=2 \alpha=\measuredangle B O C$, so F lies on the circumcircle of BOC (with diameter $O T$). Because $\measuredangle O F G=90^{\circ}$ and $O T$ is the diameter of the circle, then T must lie on the line $F G \equiv A F$.

In conclusion, $A F$ passes through the intersection of the tangents at B and C to the circumcircle of $A B C$, so by Lemma $3 b$ we get that $A F$ is the symmedian from the vertex A in the triangle $A B C$

Lemma 1: The line $A X$ divides the opposite side $B C$ in the ratio of the squares of the sides $A B$ and $A C$ if and only if $A X$ is a symmedian in the triangle $A B C$.

$$
\frac{\overline{B X}}{\overline{C X}}=\frac{\overline{A B}^{2}}{\overline{A C}^{2}}
$$

Proof: Let $A M$ and $A X$, be the median and symmedian from the vertex A, respectively.

$$
\begin{aligned}
& \frac{\overline{B X}}{\overline{M C}}=\frac{\operatorname{Area}(B A X)}{\operatorname{Area}(M A C)}=\frac{\overline{B A} \cdot \overline{A X}}{\overline{A M} \cdot \overline{A C}} \\
& \frac{\overline{\overline{B M}}}{\overline{X C}}=\frac{\operatorname{Area}(B M A)}{\operatorname{Area}(C X A)}=\frac{\overline{B A} \cdot \overline{A M}}{\overline{A X} \cdot \overline{A C}}
\end{aligned}
$$

By multiplying these equalities we get: $\frac{\overline{B X}}{\overline{C X}}=\frac{\overline{A B}^{2}}{\overline{A C}^{2}}$

Since there is only one point on the line segment $B C$ that divides it in a given ratio, the "only if" part is also true •
 true

Lemma 2a: The A-median is the locus of the points M in the interior of $\measuredangle B A C$ such that

$$
\frac{d(M, A B)}{d(M, A C)}=\frac{\overline{A C}}{\overline{A B}}
$$

Proof:
Let M be a point in the interior of $\measuredangle B A C$. Let $A M$ meet $B C$ at M_{1}. Then,

$$
\begin{gathered}
\frac{d\left(M_{1}, A B\right)}{d\left(M_{1}, A C\right)}=\frac{d(M, A B)}{d(M, A C)}=\frac{\overline{A C}}{\overline{A B}} \\
\Leftrightarrow d\left(M_{1}, A B\right) \cdot \overline{A B}=d\left(M_{1}, A C\right) \cdot \overline{A C} \\
\Leftrightarrow A r e a\left(A B M_{1}\right)=\operatorname{Area}\left(A C M_{1}\right) \\
\Leftrightarrow \overline{B M_{1}}=\overline{M_{1} C} \bullet
\end{gathered}
$$

Lemma 2b: The A - is the locus of the points L in the interior of $\measuredangle B A C$ such that:

$$
\frac{d(L, A B)}{d(L, A C)}=\frac{\overline{A B}}{\overline{A C}}
$$

Proof: The symmedian is the reflection of the median with respect to the angle bisector, so by symmetry:

$$
\frac{d(L, A B)}{d(L, A C)}=\frac{d(M, A C)}{d(M, A B)}=\frac{\overline{A B}}{\overline{A C}}
$$

which means that the A-symmedian is the locus of the points L in the interior of $\measuredangle B A C$ such that:

$$
\frac{d(L, A B)}{d(L, A C)}=\frac{\overline{A B}}{\overline{A C}}
$$

Lemma 3a: A symmedian drawn from a vertex of a triangle divides the antiparallels to the opposite side in half.

Proof: Let $A S$ and $A M$ be the symmedian and the median from the vertex A, respectively. Then, by the definition of symmedian, $\measuredangle B A S=\measuredangle C A M \quad \ldots$ (1)

Let D be the intersection of the lines $A S$ and $B_{1} C_{1}$. By definition of antiparallel lines, the triangles $A B C$
 and $A_{1} B_{1} C_{1}$ are similar. Using (1) we get that the similarity maps $A M$ to $A D$, so the symmedian $A S$ passes through the midpoint of the side $B_{1} C_{1}$ which is antiparallel to $B C$ (with respect to the lines $A B$ and $A C \bullet$

Lemma 3b: A symmedian through one of the vertices of a triangle passes through the point of intersection of the tangents to the circumcircle at the other two vertices.

Proof: Let $B T$ and $C T$ be the tangents to the circumcircle of $A B C$ at B and C. Then, because the angle between a tangent and a chord is equal to any inscribed angle over the same chord, $\measuredangle C B T=\measuredangle C A B=\alpha$ and $\measuredangle B C T=\triangle B A C=\alpha$, so the triangle $B C T$ is isosceles and therefore $\overline{B T}=\overline{C T}$.

Let $B_{1} C_{1}$ be an antiparallel line to $B C$ (with respect to the lines $A B$ and $A C$) that passes through T. Then, $\measuredangle A B_{1} C_{1}=\measuredangle A B C=\beta$. Now, $\measuredangle T C B_{1}=180^{\circ}-\measuredangle A C B-\measuredangle B C T=$ $=180^{\circ}-\gamma-\alpha=\beta=\measuredangle A B_{1} C_{1} \equiv \measuredangle C B_{1} T$

so the triangle $T C B_{1}$ is isosceles and therefore $\overline{B_{1} T}=\overline{C T}$. Similarly, $\overline{C_{1} T}=\overline{B T}$.
In conclusion, $\overline{C_{1} T}=\overline{B T}=\overline{C T}=\overline{B_{1} T}$, so T is the midpoint of $B_{1} C_{1}$. By Lemma $3 a, A T$ is the symmedian from the vertex A
5. Let $n>1$ is a positive integer and $a_{1}, a_{2}, \ldots, a_{n}$ is a sequence of n positive integers. Let

$$
b_{1}=\left[\frac{a_{2}+\ldots+a_{n}}{n-1}\right], b_{i}=\left[\frac{a_{1}+a_{2}+\ldots+a_{i-1}+a_{i+1}+\ldots+a_{n}}{n-1}\right], 1<i<n, b_{n}=\left[\frac{a_{1}+a_{2}+\ldots+a_{n-1}}{n-1}\right] .
$$

Let f is a mapping such that $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$.
a) Let the function $g: N \rightarrow N$ is defined such that $g(1)$ is the number of different elements in the sequence $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $g(m)$ is the number of different elements in the sequence $f^{m}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=f\left(f^{m-1}\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right), m>1$. Prove that there is a positive integer k_{0} such that for $m \geq k_{0}$ the function $g(m)$ is periodical.
b) Prove that $\sum_{m=1}^{k} \frac{g(m)}{m(m+1)}<C$ for any positive integer k, where the constant C does not depend on k.

Solution. a) Let $n>2$. We will show that for m big enough, $g(m)=1$.
Let $a_{1}, a_{2}, \ldots, a_{n}$ is a sequence of positive integers. Then

$$
f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(\left[\frac{a_{2}+a_{3}+\ldots a_{n}}{n-1}\right],\left[\frac{a_{1}+a_{3}+\ldots a_{n}}{n-1}\right], \ldots,\left[\frac{a_{1}+a_{2}+\ldots a_{n-1}}{n-1}\right]\right),
$$

where some of the elements in the family can be equal, where from $g(1) \leq n$. By analogy we have that $g(m) \leq n$ for every positive integer m. Let S_{r} is a sum of the elements in the sequence $f^{r}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. For the sum of the elements of the sequences $\left(b_{1}, \ldots, b_{n}\right), f\left(b_{1}, \ldots, b_{n}\right)$ from n elements, we have

$$
\begin{align*}
& S_{r+1}=\left[\frac{b_{2}+b_{3}+\ldots b_{n}}{n-1}\right]+\left[\frac{b_{1}+b_{3}+\ldots b_{n}}{n-1}\right]+\ldots+\left[\frac{b_{1}+b_{2}+\ldots b_{n-1}}{n-1}\right] \\
& \leq \frac{b_{2}+b_{3}+\ldots b_{n}}{n-1}+\frac{b_{1}+b_{3}+\ldots b_{n}}{n-1}+\ldots+\frac{b_{1}+b_{2}+\ldots b_{n-1}}{n-1}=b_{1}+b_{2}+\ldots+b_{n}=S_{r} . \tag{*}
\end{align*}
$$

for every positive integer r. It is clear that $0 \leq S_{r} \leq S$, for every positive integer r. We get that there is a positive integer k_{0} such that for $m \geq k_{0}, \kappa=S_{m}=S_{m+1}=\ldots$ is a number that is greater or equal to $0 \ldots . .(1)$. Equality in $\left({ }^{*}\right)$ holds only if the numbers in the sequence $f^{m}\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ are equal between themselves for m big enough.

We will prove that $S_{r+1}=S_{r} \Rightarrow d_{1}=d_{2}=\ldots=d_{n}$, where $f^{m}\left(a_{1}, a_{2} \ldots, a_{n}\right)=\left(d_{1}, \ldots, d_{n}\right)$ for m big enough. Really, in order to have the equality sign, it is necessary that $n-1 \mid S_{r}-b_{i}, 0 \leq i \leq n$. So we get that

$$
b_{1} \equiv b_{2} \equiv \ldots \equiv b_{n}(\bmod n-1) \ldots(2)
$$

From (2) we get that $\frac{S_{r}-b_{1}}{n-1}, \frac{S_{r}-b_{2}}{n-1}, \ldots, \frac{S_{r}-b_{n}}{n-1}, 1 \leq i \leq n$, are positive integers. Also,

$$
\begin{equation*}
\left|c_{i}-c_{j}\right|=\left|\left[\frac{S_{r}-b_{i}}{n-1}\right]-\left[\frac{S_{r}-b_{j}}{n-1}\right]\right|=\left|\frac{S_{r}-b_{i}}{n-1}-\frac{S_{r}-b_{j}}{n-1}\right|=\left|\frac{b_{i}-b_{j}}{n-1}\right|<\left|b_{i}-b_{j}\right| \ldots \tag{3}
\end{equation*}
$$

From (1) and (2) we have (3) and that in every step we get smaller and smaller positive integer, greater or equal to 0 . After a finite number of steps, we get that $d_{i}=d_{j}$. There is a finite number of combinations i, j where from it follows that there is k_{0} greater then the maximum of the number of steps for every pair i, j, where from we have the statement. So, there is a positive integer k_{0} such that for $m \geq k_{0}$, the elements of the sequence $f^{m}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ are equal between themselves where from we have that $g(m)=1$.

Let $n=2$. It is clear that $\left(a_{1}, a_{2}\right)=f\left(a_{1}, a_{2}\right)$, so $g(m) \leq 2$ for every positive integer m.
b) For $n>2$ and for an arbitrary positive integer k,

$$
\sum_{m=1}^{k} \frac{g(m)}{m(m+1)}<\sum_{m=1}^{\infty} \frac{g(m)}{m(m+1)}=\sum_{m=1}^{k_{0}} \frac{g(m)}{m(m+1)}+\sum_{m=k_{0}+1}^{\infty} \frac{g(m)}{m(m+1)}
$$

where k_{0} is the positive integer from a). Then

$$
\sum_{m=1}^{k} \frac{g(m)}{m(m+1)}<\sum_{m=1}^{\infty} \frac{g(m)}{m(m+1)}=\sum_{m=1}^{k_{0}} \frac{g(m)}{m(m+1)}+\sum_{m=k_{0}+1}^{\infty} \frac{1}{m(m+1)} \leq n \sum_{m=1}^{k_{0}} \frac{1}{m(m+1)}+\frac{1}{k_{0}+1}=C .
$$

For $n=2, \sum_{m=1}^{k} \frac{g(m)}{m(m+1)}<2 \sum_{m=1}^{\infty} \frac{1}{m(m+1)}=2$.

21-th Junior Balkan Mathematical Olympiad, JBMO 2017

Varna, Bulgaria, Monday, June 26, 2017

Problem 1. Determine all the sets of six consecutive positive integers such that the product of some two of them, added to the product of some other two of them is equal to the product of the remaining two numbers.

Solution. Exactly two of the six numbers are multiples of 3 and these two need to be multiplied together, otherwise two of the three terms of the equality are multiples of 3 but the third one is not.

Let n and $n+3$ denote these multiples of 3 . Two of the four remaining numbers give remainder 1 when divided by 3 , while the other two give remainder 2 , so the two other products are either $\equiv 1 \cdot 1=1(\bmod 3)$ and $\equiv 2 \cdot 2=1(\bmod 3)$, or they are both $\equiv 1 \cdot 2=2(\bmod 3)$. In conclusion, the term $n(n+3)$ needs to be on the right hand side of the equality.

Looking at parity, three of the numbers are odd, and three are even. One of n and $n+3$ is odd, the other even, so exactly two of the other numbers are odd. As $n(n+3)$ is even, the two remaining odd numbers need to appear in different terms.

We distinguish the following cases:
I. The numbers are $n-2, n-1, n, n+1, n+2, n+3$.

The product of the two numbers on the RHS needs to be larger than $n(n+3)$. The only possibility is $(n-2)(n-1)+n(n+3)=(n+1)(n+2)$ which leads to $n=3$. Indeed, $1 \cdot 2+3 \cdot 6=4 \cdot 5$.
II. The numbers are $n-1, n, n+1, n+2, n+3, n+4$.

As $(n+4)(n-1)+n(n+3)=(n+1)(n+2)$ has no solutions, $n+4$ needs to be on the RHS, multiplied with a number having a different parity, so $n-1$ on $n+1$.
$(n+2)(n-1)+n(n+3)=(n+1)(n+4)$ leads to $n=3$. Indeed, $2 \cdot 5+3 \cdot 6=4 \cdot 7$.
$(n+2)(n+1)+n(n+3)=(n-1)(n+4)$ has no solution.
III. The numbers are $n, n+1, n+2, n+3, n+4, n+5$.

We need to consider the following situations:
$(n+1)(n+2)+n(n+3)=(n+4)(n+5)$ which leads to $n=6$; indeed $7 \cdot 8+6 \cdot 9=10 \cdot 11$;
$(n+2)(n+5)+n(n+3)=(n+1)(n+4)$ obviously without solutions, and $(n+1)(n+4)+n(n+3)=(n+2)(n+5)$ which leads to $n=2($ not a multiple of 3$)$.

In conclusion, the problem has three solutions:

$$
1 \cdot 2+3 \cdot 6=4 \cdot 5, \quad 2 \cdot 5+3 \cdot 6=4 \cdot 7 \quad \text { and } \quad 7 \cdot 8+6 \cdot 9=10 \cdot 11
$$

Problem 2. Let x, y, z be positive integers such that $x \neq y \neq z \neq x$. Prove that

$$
(x+y+z)(x y+y z+z x-2) \geq 9 x y z .
$$

When does the equality hold?
Solution. Since x, y, z are distinct positive integers, the required inequality is symmetric and WLOG we can suppose that $x \geq y+1 \geq z+2$. We consider 2 possible cases:

Case 1. $y \geq z+2$. Since $x \geq y+1 \geq z+3$ it follows that

$$
(x-y)^{2} \geq 1, \quad(y-z)^{2} \geq 4, \quad(x-z)^{2} \geq 9
$$

which are equivalent to

$$
x^{2}+y^{2} \geq 2 x y+1, \quad y^{2}+z^{2} \geq 2 y z+4, \quad x^{2}+z^{2} \geq 2 x z+9
$$

or otherwise

$$
z x^{2}+z y^{2} \geq 2 x y z+z, \quad x y^{2}+x z^{2} \geq 2 x y z+4 x, \quad y x^{2}+y z^{2} \geq 2 x y z+9 y
$$

Adding up the last three inequalities we have

$$
x y(x+y)+y z(y+z)+z x(z+x) \geq 6 x y z+4 x+9 y+z
$$

which implies that $(x+y+z)(x y+y z+z x-2) \geq 9 x y z+2 x+7 y-z$.
Since $x \geq z+3$ it follows that $2 x+7 y-z \geq 0$ and our inequality follows.
Case 2. $y=z+1$. Since $x \geq y+1=z+2$ it follows that $x \geq z+2$, and replacing $y=z+1$ in the required inequality we have to prove

$$
(x+z+1+z)(x(z+1)+(z+1) z+z x-2) \geq 9 x(z+1) z
$$

which is equivalent to

$$
(x+2 z+1)\left(z^{2}+2 z x+z+x-2\right)-9 x(z+1) z \geq 0
$$

Doing easy algebraic manipulations, this is equivalent to prove

$$
(x-z-2)(x-z+1)(2 z+1) \geq 0
$$

which is satisfied since $x \geq z+2$.
The equality is achieved only in the Case 2 for $x=z+2$, so we have equality when $(x, y, z)=(k+2, k+1, k)$ and all the permutations for any positive integer k.

Problem 3. Let $A B C$ be an acute triangle such that $A B \neq A C$, with circumcircle Γ and circumcenter O. Let M be the midpoint of $B C$ and D be a point on Γ such that $A D \perp B C$. Let T be a point such that $B D C T$ is a parallelogram and Q a point on the same side of $B C$ as A, such that

$$
\varangle B Q M=\varangle B C A \text { and } \varangle C Q M=\varangle C B A
$$

Let the line $A O$ intersect Γ at $E,(E \neq A)$ and let the circumcircle of $\triangle E T Q$ intersect Γ at point $X \neq E$. Prove that the points A, M and X are collinear.

Solution. Let X^{\prime} be symmetric point to Q in line $B C$. Now since $\varangle C B A=\varangle C Q M=\varangle C X^{\prime} M, \varangle B C A=\varangle B Q M=\varangle B X^{\prime} M$, we have
$\varangle B X^{\prime} C=\varangle B X^{\prime} M+\varangle C X^{\prime} M=\varangle C B A+\varangle B C A=180^{\circ}-\varangle B A C$
we have that $X^{\prime} \in \Gamma$. Now since $\varangle A X^{\prime} B=\varangle A C B=\varangle M X^{\prime} B$ we have that A, M, X^{\prime} are collinear. Note that since

$$
\varangle D C B=\varangle D A B=90^{\circ}-\varangle A B C=\varangle O A C=\varangle E A C
$$

we get that $D B C E$ is an isosceles trapezoid.
CRTEZ
Since $B D C T$ is a parallelogram we have $M T=M D$, with M, D, T being collinear, $B D=C T$, and since $B D E C$ is an isosceles trapezoid we have $B D=C E$ and $M E=M D$. Since

$$
\varangle B T C=\varangle B D C=\varangle B E D, \quad C E=B D=C T \text { and } M E=M T
$$

we have that E and T are symmetric with respect to the line $B C$. Now since Q and X^{\prime} are symmetric with respect to the line $B C$ as well, this means that $Q X^{\prime} E T$ is an isosceles trapezoid which means that Q, X^{\prime}, E, T are concyclic. Since $X^{\prime} \in \Gamma$ this means that $X \equiv X^{\prime}$ and therefore A, M, X are collinear.

Alternative solution. Denote by H the orthocenter of $\triangle A B C$. We use the following well known properties:
(i) Point D is the symmetric point of H with respect to $B C$. Indeed, if H_{1} is the symmetric point of H with respect to $B C$ then $\varangle B H_{1} C+\varangle B A C=180^{\circ}$ and therefore $H_{1} \equiv D$.
(ii) The symmetric point of H with respect to M is the point E. Indeed, if H_{2} is the symmetric point of H with respect to M then $\mathrm{BH}_{2} \mathrm{CH}$ is parallelogram, $\varangle B H_{2} C+\varangle B A C=180^{\circ}$ and since $E B \| C H$ we have $\varangle E B A=90^{\circ}$.

Since $D E T H$ is a parallelogram and $M H=M D$ we have that $D E T H$ is a rectangle. Therefore $M T=M E$ and $T E \perp B C$ implying that T and E are symmetric with respect to $B C$. Denote by Q^{\prime} the symmetric point of Q with respect to $B C$. Then $Q^{\prime} E T Q$ is isosceles trapezoid, so Q^{\prime} is a point on the circumcircle of $\triangle E T Q$. Moreover $\varangle B Q^{\prime} C+\varangle B A C=180^{\circ}$ and we conclude that $Q^{\prime} \in \Gamma$. Therefore $Q^{\prime} \equiv X$.

It remains to observe that $\varangle C X M=\varangle C Q M=\varangle C B A$ and $\varangle C X A=\varangle C B A$ and we infer that X, M and A are collinear.

Problem 4. Consider a regular $2 n$-gon $P, A_{1} A_{2} \ldots A_{2 n}$ in the plane, where n is a positive integer. We say that a point S on one of the sides of P can be seen from a point E that is external to P, if the line segment $S E$ contains no other points that lie on the sides of P except S. We color the sides of P in 3 different
colors (ignore the vertices of P, we consider them colorless), such that every side is colored in exactly one color, and each color is used at least once. Moreover, from every point in the plane external to P, points of at most 2 different colors on P can be seen. Find the number of distinct such colorings of P (two colorings are considered distinct if at least one of the sides is colored differently).

Solution. Answer: For $n=2$, the answer is 36 ; for $n=3$, the answer is 30 and for $n \geq 4$, the answer is $6 n$.

Lemma 1. Given a regular $2 n$-gon in the plane and a sequence of n consecutive sides $s_{1}, s_{2}, \ldots, s_{n}$ there is an external point Q in the plane, such that the color of each s_{i} can be seen from Q, for $i=1,2, \ldots, n$..

Proof. It is obvious that for a semi-circle S, there is a point R in the plane far enough on the bisector of its diameter such that almost the entire semi-circle can be seen from R.

Now, it is clear that looking at the circumscribed circle around the $2 n$-gon, there is a semi-circle S such that each s_{i} either has both endpoints on it, or has an endpoint that's on the semi-circle, and is not on the semi-circle's end. So, take Q to be a point in the plane from which almost all of S can be seen, clearly, the color of each s_{i} can be seen from Q.

Lemma 2. Given a regular $2 n-$ gon in the plane, and a sequence of $n+1$ consecutive sides $s_{1}, s_{2}, \ldots, s_{n+1}$ there is no external point Q in the plane, such that the color of each s_{i} can be seen from Q, for $i=1,2, \ldots, n+1$..

Proof. Since s_{1} and s_{n+1} are parallel opposite sides of the $2 n$-gon, they cannot be seen at the same time from an external point.

For $n=2$, we have a square, so all we have to do is make sure each color is used. Two sides will be of the same color, and we have to choose which are these 2 sides, and then assign colors according to this choice, so the answer is $\binom{4}{2} \cdot 3 \cdot 2=36$.

For $n=3$, we have a hexagon. Denote the sides as $a_{1}, a_{2}, \ldots, a_{6}$, in that order. There must be 2 consecutive sides of different colors, say a_{1} is red, a_{2} is blue. We must have a green side, and only a_{4} and a_{5} can be green. We have 3 possibilities:

1) a_{4} is green, a_{5} is not. So, a_{3} must be blue and a_{5} must be blue (by elimination) and a_{6} must be blue, so we get a valid coloring.
2) Both a_{4} and a_{5} are green, thus a_{6} must be red and a_{5} must be blue, and we get the coloring rbbggr.
3) a_{5} is green, a_{4} is not. Then a_{6} must be red. Subsequently, a_{4} must be red (we assume it is not green). It remains that a_{3} must be red, and the coloring is rbrrgr.

Thus, we have 2 kinds of configurations:
i) 2 opposite sides have 2 opposite colors and all other sides are of the third color. This can happen in $3 \cdot(3 \cdot 2 \cdot 1)=18$ ways (first choosing the pair of opposite sides, then assigning colors),
ii) 3 pairs of consecutive sides, each pair in one of the 3 colors. This can happen in $3 \cdot 6=12$ ways (2 partitioning into pairs of consecutive sides, for each partitioning, 6 ways to assign the colors).

Thus, for $n=3$, the answer is $18+12=30$.

Finally, let's address the case $n \geq 4$. The important thing now is that any 4 consecutive sides can be seen from an external point, by Lemma 1.

Denote the sides as $a_{1}, a_{2}, \ldots, a_{2 n}$. Again, there must be 2 adjacent sides that are of different colors, say a_{1} is blue and a_{2} is red. We must have a green side, and by Lemma 1 , that can only be a_{n+1} or a_{n+2}. So, we have 2 cases:

Case 1: a_{n+1} is green, so an must be red (cannot be green due to Lemma 1 applied to $a_{1}, a_{2}, \ldots, a_{n}$, cannot be blue for the sake of a_{2}, \ldots, a_{n+1}. If a_{n+2} is red, so are $a_{n+3}, \ldots, a_{2 n}$, and we get a valid coloring: a_{1} is blue, a_{n+1} is green, and all the others are red.

If a_{n+2} is green:
a) a_{n+3} cannot be green, because of $a_{2}, a_{1}, a_{2 n}, \ldots, a_{n+3}$.
b) a_{n+3} cannot be blue, because the 4 adjacent sides a_{n}, \ldots, a_{n+3} can be seen (this is the case that makes the separate treatment of $n \geq 4$ necessary)
c) a_{n+3} cannot be red, because of $a_{1}, a_{2 n}, \ldots, a_{n+2}$.

So, in the case that a_{n+2} is also green, we cannot get a valid coloring.
Case 2: a_{n+2} is green is treated the same way as Case 1.
This means that the only valid configuration for $n \geq 4$ is having 2 opposite sides colored in 2 different colors, and all other sides colored in the third color. This can be done in $n \cdot 3 \cdot 2=6 n$ ways.

BALKAN MATHEMATICAL OLYMPIAD

Ohrid, 04.05.2017, Republic of MACEDONIA

Problem 1. Find all pairs (x, y) of positive integers such that

$$
x^{3}+y^{3}=x^{2}+42 x y+y^{2}
$$

Solution. Let $d=(x, y)$ be the greatest common divisor of positive integers x and y.
So, $x=a d, y=b d$, where $d \in \mathbb{N},(a, b)=1, a, b \in \mathbb{N}$. We have

$$
\begin{aligned}
x^{3}+y^{3}=x^{2}+42 x y+y^{2} & \Leftrightarrow d^{3}\left(a^{3}+b^{3}\right)=d^{2}\left(a^{2}+42 a b+b^{2}\right) \\
& \Leftrightarrow d(a+b)\left(a^{2}-a b+b^{2}\right)=a^{2}+42 a b+b^{2} \\
& \Leftrightarrow(d a+d b-1)\left(a^{2}-a b+b^{2}\right)=43 a b
\end{aligned}
$$

If we denote $c=d a+d b-1 \in \mathbb{N}$, then the equality $a^{2} c-a b c+b^{2} c=43 a b$ implies the relations

$$
\begin{aligned}
\left.\begin{array}{c}
b\left|c a^{2} \Rightarrow b\right| c \\
a\left|c b^{2} \Rightarrow a\right| c
\end{array}\right\} & \Rightarrow(a b) \mid c \\
& \Leftrightarrow c=m a b, m \in \mathbb{N}^{+} \\
& \Rightarrow m\left(a^{2}-a b+b^{2}\right)=43 \\
& \Rightarrow\left(a^{2}-a b+b^{2}\right) \mid 43 \\
& \Leftrightarrow a^{2}-a b+b^{2}=1 \quad \text { or } \quad a^{2}-a b+b^{2}=43 .
\end{aligned}
$$

If $a^{2}-a b+b^{2}=1$, then $(a-b)^{2}=1-a b \geq 0 \Rightarrow a=b=1,2 d=44,(x, y)=(22,22)$.
If $a^{2}-a b+b^{2}=43$, then, by virtue of simmetry, we suppose that $x \geq y \Rightarrow a \geq b$. We obtain that $43=a^{2}-a b+b^{2} \geq a b \geq b^{2} \Rightarrow b \in\{1,2,3,4,5,6\}$.

If $b=1$, then $a=7, d=1,(x, y)=(7,1)$ or $(x, y)=(1,7)$.
If $b=6$, then $a=7, d=\frac{43}{13} \notin \mathbb{N}$.
For $b \in\{2,3,4,5\}$ there no positive integer solutions for a.
Finally, we have $(x, y) \in\{(1,7),(7,1),(22,22)\}$.
Problem 2. Let $A B C$ be a triangle with $A B<A C$ inscribed into a circle c. The tangent of c at the point C meets the parallel from B to $A C$ at the point D. The tangent of c at the point B meets the parallel from C to $A B$ at the point E and the tangent of c at the point C at the point L. Suppose that the circumcircle c_{1} of the triangle $B D C$ meets $A C$ at the point T and the circumcircle c_{2} of the triangle $B E C$ meets $A B$ at the point S. Prove that the lines $S T, B C, A L$ are concurrent.

Solution. We will prove first that the circle c_{1} is tangent to $A B$ at the point B. In order to prove this, we have to prove that $\measuredangle B D C=\measuredangle A B C$. Indeed, since $B D \| A C$, we have that $\measuredangle D B C=\measuredangle A C B$. Additionally, $\measuredangle B C D=\measuredangle B A C$ (by chord and tangent), which means that the triangles $A B C, B D C$ have two equal angles and so the third ones are also equal. It follows that $\measuredangle B D C=\measuredangle A B C$, so c_{1} is tangent to $A B$ at the point B.

Similarly, the circle c_{2} is tangent to $A C$ at the point C.
As a consequence, $\measuredangle A B T=\measuredangle A C B$ (by chord and tangent) and also $\measuredangle B S C=\measuredangle A C B$.
By the above, we have that $\measuredangle A B T=\measuredangle B S C$, so the lines $B T, S C$ are parallel.
Now, let $S T$ intersect $B C$ at the point K. It suffice to prove that K belongs to $A L$. From the trapezoid $B T C S$ we get that

$$
\begin{equation*}
\frac{B K}{K C}=\frac{B T}{S C} \tag{1}
\end{equation*}
$$

and from the similar triangles $A B T, A S C$, we have that

$$
\begin{equation*}
\frac{B T}{S C}=\frac{A B}{A S} . \tag{2}
\end{equation*}
$$

By (1), (2) we get that

$$
\begin{equation*}
\frac{B K}{K C}=\frac{A B}{A S} \tag{3}
\end{equation*}
$$

From the power of point theorem, we have that

$$
A C^{2}=A B \cdot A S \Rightarrow A S=\frac{A C^{2}}{A B}
$$

Going back into (3), it gives that

$$
\frac{B K}{K C}=\frac{A B^{2}}{A C^{2}} .
$$

From the last one, it follows that K belongs to the symmedian of the triangle $A B C$.
Finally, recall that the well known fact that since $L B$ and $L C$ are tangents, it follows that $A L$ is the symmedian of the triangle $A B C$, so K belongs to $A L$, as needed.
Problem 3. Find all the functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that:

$$
\begin{equation*}
n+f(m) \mid f(n)+n f(m) \tag{1}
\end{equation*}
$$

for any $m, n \in \mathbb{N}$
Solution. We will consider 2 cases, whether the range of the functions is infinite or finite or in other words the function take infinite or finite values.

Case 1. The Function has an infinite range. Let's fix a random natural number n and let m be any natural number. Then using (1) we have

$$
n+f(m)\left|f(n)+n f(m)=f(n)-n^{2}+n(f(m)+n) \quad \Rightarrow \quad n+f(m)\right| f(n)-n^{2} .
$$

Since n is a fixed natural number, then $f(n)-n^{2}$ is as well a fixed natural number, and since the above results is true for any m and the function f has an infinite range, we can choose m such that $n+f(m)>\left|f(n)-n^{2}\right|$. This implies that $f(n)=n^{2}$ for any natural number n. We now check that it is a solution. Since

$$
n+f(m)=n+m^{2}
$$

and

$$
f(n)+n f(m)=n^{2}+n m^{2}=n\left(n+m^{2}\right)
$$

it is straightforward that $n+f(m) \mid f(n)+n f(m)$.
Case 2. The Function has a finite range. Since the function takes finite values, then it exists a natural number k such that $1 \leq f(n) \leq k$ for any natural number n. It is clear that it exists at least one natural number s (where $1 \leq s \leq k$) such that $f(n)=s$ for infinite natural numbers n. Let m, n be any natural numbers such that $f(m)=f(n)=s$. Using (1) we have

$$
n+s\left|s+n s=s-s^{2}+s(n+s) \Rightarrow n+s\right| s^{2}-s
$$

Since this is true for any natural number n such that $f(n)=s$ and since exist infinite natural numbers n such that $f(n)=s$, we can choose the natural number n such that $n+s>s^{2}-s$, which implies that $s^{2}=s \Rightarrow s=1$, or in other words $f(n)=1$ for an infinite natural number n.

Let's fix a random natural number m and let n be any natural number $f(n)=1$. Then using (1) we have

$$
n+f(m)\left|1+n f(m)=1-(f(m))^{2}+f(m)(n+f(m)) \Rightarrow n+f(m)\right|(f(m))^{2}-1
$$

Since m is a fixed a random natural number, then $(f(m))^{2}-1$ is a fixed non-negative integer and since n is any natural nummber such that $f(n)=1$ and since exist infinite numbers n such that $f(n)=1$, we can choose the the natural number n such that $n+f(m)>(f(m))^{2}-1$. This implies $f(m)=1$ for any natural number m. We now check that it is a solution. Since

$$
n+f(m)=n+1
$$

and

$$
f(n)+n f(m)=1+n
$$

it is straightforward that $n+f(m) \mid f(n)+n f(m)$.
So, all the functions that satisfy the given condition are $f(n)=n^{2}$ for any $n \in \mathbb{N}$ or $f(n)=1$ for any $n \in \mathbb{N}$.

Problem 4. We have n students sitting at a round table. Initially each student is given one candy. At each step each student having candies either picks one of its candies and gives it to one of its neighbouring students, or distributes all of its candies to its neighbouring students in any way he wishes. A distribution of candies is called legal if it can be reached from the initial distribution via a sequence of steps.

Determine the number of legal distributions. (All the candies are udentical.)
Solution. The answer turns out to be $\binom{2 n-1}{n}$ if n is odd and $\binom{2 n-1}{n}-2\binom{\frac{3 n}{2}-1}{n}$ if n is even.
Case 1. Suppose n is odd, say $n=2 m+1$. In this case we will show that any distribution of candies is legal. Thus the number of legal distributions is indeed $\binom{2 n-1}{n}$.
In this case we can achieve the above claim by letting each student to always distribute all of its candies to its two neighbouring students in some way. Thus at each step each candy will move either one position clockwise or one anticlockwise.
We now look at the initial distribution of candies and the required final distribution. We specify arbitrarily for each candy in the initial distribution, the position we wish this candy to end up in the required final distribution. Because n is odd, either the clockwise distance or the anticlockwise distance between the initial position of the candy and the required final position is even and at most m.
Thus after an even number of steps (at most m) we can move each candy to its required final position. (Note that if the candy reaches the required position earlier, we can move it back and forth until all candies reach their required position.) This completes the proof of our claim in this case.

Case 2. Suppose n is even, say $n=2 m$. Let $x_{1}, \ldots, x_{2 m}$ be the students in this cyclic order. Observe that initially the students with even indices (even students) have at least one candy in
total, and so do the students with odd indices (odd students). This property is preserved after each step.
We will show that every distribution in which the even students have at least one candy in total and the odd students also have at least one candy in total is legal.
Let us suppose that the required final distribution has a candies in odd positions and b candies in even positions. (Where $a, b \geq 1$.) It will be enough to reach any position with a candies in even positions and b candies in odd positions as then we can follow the same approach as in Case 1.

To achieve this we will first move all candies to students x_{1} and x_{2}. This is easy by specifying that at each step x_{1} moves all of its candies to x_{2} while for $1 \leq r \leq 2 m-1$ student x_{r+1} moves all of its candies to x_{r}.

Suppose that we now have $a+k$ candies at x_{1} and $b-k$ candies at x_{2} where without loss of generality $k \geq 0$. If $k=0$ we have reached our target. If not, in the next step x_{1} moves a candy to x_{2} and x_{2} moves a candy to x_{3}. In the next step x_{1} (it still has $a+k-1 \geq a>0$ candies) moves a candy to x_{2}, x_{2} moves a candy to x_{1} and x_{3} moves a candy to x_{2}. We now have $a+k-1$ candies in x_{1} and $b+1-k$ in x_{2}. Repeating this process another $k-1$ times we end up with a candies in x_{1} and b candies in x_{2} as required.

It remains to count the total number of legal configurations in this case. This is indeed equal to

$$
\binom{2 n-1}{n}-2\left({ }_{\left(\frac{3 n}{2}-1\right.}^{n}\right)
$$

as $\binom{2 n-1}{n}$ counts the total number of configurations while $\binom{\frac{3 n}{2}-1}{n}$ counts the number of illegal configurations where either all n candies belong to the $\frac{n}{2}$ odd positions or all n candies belong to the $\frac{n}{2}$ even positions.

XX Mediterranean mathematical olympiad, 23 april 2017, Faculty of mechanical ingineering

Problem 1. Determine the smallest integer n, for which there exist integers x_{1}, \ldots, x_{n} and positive integers a_{1}, \ldots, a_{n}, so that

$$
x_{1}+\ldots+x_{n}=0, \quad a_{1} x_{1}+\ldots+a_{n} x_{n}>0, \quad a_{1}^{2} x_{1}+\ldots+a_{n}^{2} x_{n}<0
$$

Solution. The answer is $n=3$. One possible example for $n=3$ is $x_{1}=2$ and $x_{2}=x_{3}=-1$, with $a_{1}=4, a_{2}=1, a_{3}=6$.

For $n=1$, the fiorst constraint enforces $x_{1}=0$; this is in contradiction with the other two constrains. For $n=2$, the first constraint enforces $x_{2}=-x_{1}$. Then the second constraint is
equivalent to $a_{1} x_{1}-a_{2} x_{1}>0$. If we multiply this inequality by the positive value $a_{1}+a_{2}$, we get $a_{1}^{2} x_{1}-a_{2}^{2} x_{1}>0$; this is equivalent to $a_{1}^{2} x_{1}+a_{2}^{2} x_{1}>0$ and contradicts the third constraint.

Problem 2. Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that

$$
\left(x^{2}+y^{2}+z^{2}\right)\left(\frac{a^{3}}{x^{2}+2 y^{2}}+\frac{b^{3}}{y^{2}+2 z^{2}}+\frac{c^{3}}{z^{2}+2 x^{2}}\right) \geq \frac{1}{9}
$$

holds for all positive real numbers x, y, z.
Solution. On account of the constrain $a+b+c=1$ we will prove that it holds the equivalent inequality

$$
\left(x^{2}+y^{2}+z^{2}\right)\left(\frac{a^{3}}{x^{2}+2 y^{2}}+\frac{b^{3}}{y^{2}+2 z^{2}}+\frac{c^{3}}{z^{2}+2 x^{2}}\right) \geq \frac{(a+b+c)^{3}}{9} .
$$

Indeed, Holder's inequality claims that

$$
\prod_{i=1}^{3}\left(a_{i}^{3}+b_{i}^{3}+c_{i}^{3}\right)^{1 / 3} \geq a_{1} a_{2} a_{3}+b_{1} b_{2} b_{3}+c_{1} c_{2} c_{3}
$$

for all positive reals $a_{i}, b_{i}, c_{i}, 1 \leq i \leq 3$. Putting in the preceding

$$
\begin{aligned}
& \left(a_{1}, a_{2}, a_{3}\right)=\left(\frac{a}{\sqrt[3]{x^{2}+2 y^{2}}}, 1, \sqrt[3]{x^{2}+2 y^{2}}\right) \\
& \left(b_{1}, b_{2}, b_{3}\right)=\left(\frac{b}{\sqrt[3]{y^{2}+2 z^{2}}}, 1, \sqrt[3]{y^{2}+2 z^{2}}\right)
\end{aligned}
$$

and

$$
\left(c_{1}, c_{2}, c_{3}\right)=\left(\frac{c}{\sqrt[3]{z^{2}+2 x^{2}}}, 1, \sqrt[3]{z^{2}+2 x^{2}}\right)
$$

yields

$$
\sqrt[3]{3}\left(\frac{a^{3}}{x^{2}+2 y^{2}}+\frac{b^{3}}{y^{2}+2 z^{2}}+\frac{c^{3}}{z^{2}+2 x^{2}}\right)^{\frac{1}{3}}\left(3 x^{2}+3 y^{2}+3 z^{2}\right)^{\frac{1}{3}} \geq(a+b+c) .
$$

Cubing both sides and dividing both sides by $9\left(x^{2}+y^{2}+z^{2}\right)$ we obtain

$$
\frac{a^{3}}{x^{2}+2 y^{2}}+\frac{b^{3}}{y^{2}+2 z^{2}}+\frac{c^{3}}{z^{2}+2 x^{2}} \geq \frac{(a+b+c)^{3}}{9\left(x^{2}+y^{2}+z^{2}\right)}
$$

from which claimed inequality follows. Equality holds when $a=b=c=x=y=z=\frac{1}{3}$, and the proof is complete.

Problem 3. Let $A B C$ be an equilateral triangle, and let P be some point in its circumcircle . Determine, with reasons, all the numbers $n \in \mathbb{N}^{*}$ such that the sum

$$
S_{n}(P)=|P A|^{n}+|P B|^{n}+|P C|^{n},
$$

is independent of the choice of the point P.
Solution. We will take an orthonormal coordinate system, with origin in the point O (center of the circumcircle of $A B C$), taking moreover the point A on the $O x$ axis, and
$|O A|=1$. In the complex numers z_{A}, z_{B}, z_{C} and z are respectively the affixes of the points A, B, C, P we have

$$
\left|z_{A}\right|=\left|z_{B}\right|=\left|z_{C}\right|=|z|=1,
$$

and therefore the first three are the rots of $z^{3}=1$, that is

$$
z_{A}=1, z_{B}=-\frac{1}{2}+i \frac{\sqrt{3}}{2}, z_{C}=-\frac{1}{2}-i \frac{\sqrt{3}}{2} .
$$

For another hand, $z=a+i b$, with $a^{2}+b^{2}=1$. Then we have

$$
\begin{equation*}
S_{n}(P)=|P A|^{n}+|P B|^{n}+|P C|^{n}=\left|z-z_{A}\right|^{n}+\left|z-z_{B}\right|^{n}+\left|z-z_{C}\right|^{n} . \tag{*}
\end{equation*}
$$

But as

$$
\left|z-z_{A}\right|=\sqrt{2}(1-a)^{\frac{n}{2}} ; \quad\left|z-z_{B}\right|=\sqrt{2+a-b \sqrt{3}} ;\left|z-z_{C}\right|=\sqrt{2+a+b \sqrt{3}},
$$

we get from (*)

$$
\begin{equation*}
S_{n}(P)=2^{\frac{n}{2}}(1-a)^{\frac{n}{2}}+(2+a-b \sqrt{3})^{\frac{n}{2}}+(2+a+b \sqrt{3})^{\frac{n}{2}} . \tag{**}
\end{equation*}
$$

If $P=A$, then $S_{n}(A)=3^{\frac{n}{2}}+3^{\frac{n}{2}}=2 \cdot 3^{\frac{n}{2}}$. If $P_{1}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, entonces $z=\frac{1}{2}+i \frac{\sqrt{3}}{2}$ that is, $a=\frac{1}{2}, b=\frac{\sqrt{3}}{2}$ and from (**) we get

$$
S_{n}\left(P_{1}\right)=2^{\frac{n}{2}} \cdot 2^{\frac{n}{2}}+\left(2+\frac{1}{2}-\frac{3}{2}\right)^{\frac{n}{2}}+\left(2+\frac{1}{2}+\frac{3}{2}\right)^{\frac{n}{2}}=2+2^{n} .
$$

Then, if $S_{n}(P)$ must to be independent of P, we get $S_{n}(A)=S_{n}\left(P_{1}\right) \Leftrightarrow 2 \cdot 3^{\frac{n}{2}}=2+2^{n} \Leftrightarrow$ $n=2$ or $n=4$.

Problem 4. A set S of integers is Balearic, if there are two (not necessarily distinct) elements $s, s^{\prime} \in S$ whose sum $s+s^{\prime}$ is a power of two; otherwise it is called a non-Balearic set.

Find an integer n such that $\{1,2, \ldots, n\}$ contains a 99 -element non-Balearic set, whereas all the 100 -element subsets are Balearic.

Solution. Let $f(n)$ denote the largest cardinality of a non_Balearic set in $\{1,2, \ldots, n\}$. One easily verifies that $f(0)=f(1)=0$. Now consider an integer $n \geq 2$ and write it in the form $n=2^{a}+b$ with $0 \leq b \leq 2^{a}-1$. We want to show

$$
f(n)=f\left(2^{a}+b\right)=f\left(2^{a}-b-1\right)+b .
$$

Partition $\{1,2, \ldots, n\}$ into $X=\left\{1,2, \ldots, 2^{a}-b-1\right\}$ and $Y=\left\{2^{a}-b, \ldots, 2^{a}+b\right\}$. A non-Balearicsubeset S of $\{1,2, \ldots, n\}$ contains at most $f\left(2^{a}-b-1\right)$ elements from X (by definition of f) and at most b elements from Y (as it cannot contain 2^{a} altogether, and as it contains at most one of the two numbers $2^{a}-x$ and $2^{a}+x$). This establishes the first inequality $\left.f(n) \leq f\left(2^{a}-b-1\right)+b\right)$.

Next consider a non-Balearic set $T \subseteq X$ of caridnality $f\left(2^{a}-b-1\right)$. We claim that also $S=T \cup\left\{2^{a}+1, \ldots, 2^{a}+b\right\}$ is a non-Balearic set. Suppose for the sake of contradiction that the
sum $s+s^{\prime}$ of some $s, s^{\prime} \in S$ is a power of two. Then $s, s^{\prime} \in T$ is impossible, as T itself is a nonBalearic set. Also $s, s^{\prime} \in\left\{2^{a}+1, \ldots, 2^{a}+b\right\}$ is impossible, as

$$
2^{a+1}<\left(2^{a}+1\right)+\left(2^{a}+1\right) \leq s+s^{\prime} \leq\left(2^{a}+b\right)+\left(2^{a}+b\right)<2^{a}+2 .
$$

Hence one of s and s^{\prime} must be in T and the other one in $\left\{2^{a}+1, \ldots ., 2^{a}+b\right\}$, which yields the final contradiction

$$
2^{a}<s+s^{\prime} \leq\left(2^{a}-b-1\right)+\left(2^{a}+b\right)<2^{a+1} .
$$

Since the constructed non-Balearic set S is of cardinality $f\left(2^{a}-b-1\right)+b$, we have established the second inequality $f(n) \geq f\left(2^{a}-b-1\right)+b$. The two established inequalities together imply the desired recursive equation $f(n)=f\left(2^{a}-b-1\right)+b$ displayed above.

The rest is computation.
It is easy to see (or to determine through the recursive equation) that $f(4)=1$.
For $2^{a}=8$ and $b=3$, the recursion yields $f(11)=f(4)+3=4$.
For $2^{a}=32$ and $b=20$, the recursion yields $f(52)=f(11)+20=24$.
For $2^{a}=128$ and $b=75$, the recursion yields $f(203)=f(52)+75=99$.
Hence an answer to the problem is $n=203$ with $f(203)=99$.
(Similar computations yield $f(202)=98$ and $f(204)=100$. Hence $n=203$ constitutes the unique possible answer for the problem).

MATHEMATICAL OLYMPIADS

Macedonian Mathematical Olympiads Balkan Mathematical Olympiads

Aleksa Malcheski, Ph.D.
Daniel Velinov, Ph.D
Risto Malcheski, Ph.D.
Slagjana Brsakoska, Ph.D.
Pavel Dimovski, Ph.D.
Tomi Dimovski, Ph.D Vesna Andova, Ph.D. Dimitar Trenevski

