SEEMOUS 2013 PROBLEMS AND SOLUTIONS

Problem 1
Find all continuous functions f : [1,8] — R, such that

/ 72%) dt+2/ £t 3/1 f(t>dt_/12(t2_1)2dt.

Solution. Using the substitution ¢t = u3
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Hence, by the assumptions,
/2 (f2(#) + (£ — 1)® + 2f () — 2¢%f(¢%)) dt = 0.
1
Since f2(89)+ (12— 1212 (1) 202 (1) = (F(E2))2+(1—2)>42(1—2) f(£2) = (J(%) + 1 — £2)°

0, we get
2
/ (F(t) +1—2)%dt = 0.
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The continuity of f implies that f(t3) =2 — 1, 1 <t < 2, thus, f(z) = w23 —1,1<z<8.
Remark. If the continuity assumption for f is replaced by Riemann integrability then
infinitely many f’s would satisfy the given equality. For example if C' is any closed nowhere
dense and of measure zero subset of [1, 8] (for example a finite set or an appropriate Cantor type
set) then any function f such that f(z) = 22/3 — 1 for every z € [1, 8]\C satisfies the conditions.

we get

Problem 2
Let M,N € M5(C) be two nonzero matrices such that

M? = N? =0y and MN + NM = I,
where 0g is the 2 X 2 zero matriz and Iy the 2 x 2 unit matriz. Prove that there is an invertible
matrizc A € Ma(C) such that

M:A(8 é)A— and N = A(O 0>A—

First solution. Consider f,g: C? — C2? given by f(z) = Mz and g(x) = Nax.
We have f? = g2 =0 and fg+ gf = idge2; composing the last relation (to the left, for instance)
with fg we find that (fg)? = fg, so fg is a projection of C2.
If fg were zero, then gf = idg2, so f and g would be invertible, thus contradicting f2 = 0.
Therefore, fg is nonzero. Let u € Im(fg) \ {0} and w € C? such that u = fg(w). We obtain
fo(u) = (fg)*(w) = fg(w) = u. Let v = g(u). The vector v is nonzero, because otherwise we
obtain u = f(v) = 0.
Moreover, u and v are not collinear since v = Au with A € C implies u = f(v) = f(Au) =
A (u) = Af?(g(w)) = 0, a contradiction.
Let us now consider the ordered basis B of C? consisting of u and v

We have f(u) = f*(g(u)) =0, f(v) = f(g(u)) = u, g(u) = v and 9(v) = g*(u) =0
Therefore, the matrices of f and g with respect to B are < > and ( [1) 8 > respectively.
We take A to be the change of base matrix from the standard basis of C? to B and we are

done. O
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02 and M, N # 0o, the minimal polynomials of both M and N are equal to 2. Therefore, there
are invertible matrices B, C' € M3(C) such that M = BE;sB~! and N = CEyC~L.

Note that B and C' are not uniquely determined. If BlElgBl_l = B2E12B2_1, then (B1_1B2 FEio =

- o)
)

E12(By'By); putting By 'By = ( .y 0
. Consequently, ByEjsB; = ByE12B; " if and only if there exist a € C — {0} and

a b
B2=B1<0 a)' (*)
Similarly, C’1E21C’f1 = 02E21051 if and only if there exist &« € C — {0} and § € C such that

a 0
CQ:Cl(B a>~ (%)
Now, MN + NM = I, M = BEjsB~! and N = CEy C! give

BE12B_1CE210_1 + CEQlc_lBElgB_l = I,

Second solution. Let us denote < 8 (1) > by E12 and ( 00 > by Fsi. Since M? = N? =

>, the last relation is equivalent to (

c
0 0
b € C such that

or

E19B 'CE3C7'B + B 'CEy»C 'BE5 = I.

If B~1C = ( i ZZ ), the previous relation means

(G506 L) -wmvmron

After computations we find this to be equivalent to 2t — yz = t?> # 0. Consequently, there are
y,z € Cand t € C — {0} such that

_g(tt% v
C—B< . t>' (s * %)

According to (%) and (#x), our problem is equivalent to finding a,a € C — {0} and b, € C
a 0 a b

such that C’( 3 a ) = B< 0 4 > Taking relation (x * %) into account, we need to find

a,a € C— {0} and b, 8 € C such that
t+ %y a 0 _ a b
()5 R) (0 )
t+% y a 0\ _(ab
z t 68 « 0 a )’

ozt—l—oz%—f—ﬁy:a

This means { @y =0 ,

or, B being invertible,

az+ 6t =0
at =a
ay=>b
and these conditions are equivalent to ¢ «az = —pt .
at =a

It is now enough to choose a =1, a=t, b=y and 8 = -7
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Third Solution. Let f,g be as in the first solution. Since f? = 0 there exists a nonzero
v) €Kerf so f(v1) =0 and setting ve = g(v1) we get
flv2) = (fg+gf)(v1) =v1 #0
by the assumptions (and so vy # 0). Also

g(v2) = g*(v1) =0

and so to complete the proof it suffices to show that v; and vy are linearly independent, because
then the matrices of f, g with respect to the ordered basis (v, v2) would be F15 and Fa; respec-
tively, according to the above relations. But if v = Av; then 0 = g(va2) = Ag(v1) = Ava so since
ve # 0, A must be 0 which gives vo = 0v; = 0 contradiction. This completes the proof. O

Remark. A nonelementary solution of this problem can be given by observing that the
conditions on M, N imply that the correspondence Iy — Is, M — FE15 and N — FEs; extends
to an isomorphism between the subalgebras of Ms(C) generated by I, M, N and I3, E12, E9;
respectively, and then one can apply Noether-Skolem Theorem to show that this isomorphism
is actually conjugation by an A € Gly(C) etc.

Problem 3

Find the mazimum value of

! / 2 1
/0 @ @) de

over all continuously differentiable functions f :[0,1] — R with f(0) =0 and
1
[ 1r@pi<t )
0

Solution. For z € [0, 1] let
oa) = [ 17 0Fa.

Then for z € [0, 1] the Cauchy-Schwarz inequality gives

x T 1/2
s < | !f’(t)!dtg( / \f’<t>\2dt) VE = Vag(a) 2.

Thus
' 2 1 ! 1/2 2 3/2 3/2
| i@ @Iz de < [ o2 @ds = S0 - 90)°7)
2/t ., N\ e
== <.
([ irepa) <3
by (%). The maximum is achieved by the function f(x) = x. O

Remark. If the condition (x) is replaced by fol |f'(x)|Pdz < 1 with 0 < p < 2 fixed, then
the given expression would have supremum equal to +oo, as it can be seen by considering

continuously differentiable functions that approximate the functions fy/(z) = Mz for 0 < z <

1 1 . -
P and i for P < x <1, where M can be an arbitrary large positive real number.

Problem 4
Let A € M3(Q) such that there is n € N, n # 0, with A™ = —I5. Prove that either A? = —1I,
or A3 = —1I,.



First Solution. Let fa(z) = det(A — xl5) = 2? — sz + p € Q[z] be the characteristic
polynomial of A and let A1, Ay be its roots, also known as the eigenvalues of matrix A. We have
that A + Ao = s € Q and M2 = p € Q. We know, based on Cayley-Hamilton theorem, that
the matrix A satisfies the relation A2 — sA + pls = 0y. For any eigenvalue A € C there is an
eigenvector X # 0, such that AX = AX. By induction we have that A”X = A" X and it follows
that A" = —1. Thus, the eigenvalues of A satisfy the equalities

T=X=-1 ().

Is A1 € R then we also have that A\ € R and from (x) we get that A\ = A2 = —1 (and note
that n must be odd) so A satisfies the equation (A + I3)? = A2+ 24 + Iy = 03 and it follows
that —Io = A" = (A + Iy — I3)" = n(A + I) — I which gives A = —I5 and hence A3 = —1I5.

If \; € C\ R then A\ = A\; € C\ R and since A} = —1 we get that |A; 2| = 1 and this implies
that A;2 = cost +isint. Now we have the equalities A\; + Ay = 2cost = s € Q and AT = —1
implies that cosnt + ¢sinnt = —1 which in turn implies that cosnt = —1. Using the equality
cos(n + 1)t + cos(n — 1)t = 2costcosnt we get that there is a polynomial P, = z™ + --- of
degree n with integer coefficients such that 2cosnt = P,(2cost). Set x = 2cost and observe
that we have P, (z) = —2 so x = 2cost is a rational root of an equation of the form 2™ +--- = 0.
However, the rational roots of this equation are integers, so € Z and since || < 2 we get that
2cost =—-2,—-1,0,1,2.

When 2cost = £2 then A;2 are real numbers (note that in this case Ay = Ao = 1 or
A1 = A2 = —1) and this case was discussed above.

When 2cost = 0 we get that A2 + Iy = 03 so A% = —1I>.

When 2cost = 1 we get that A2 — A + Iy = 05 which implies that (A + I5)(A% — A+ I5) = 0,
s0 A3 = —1I,.

When 2 cost = —1 we get that A2+ A+ = 05 and this implies that (A—I3)(A%2+A+15) = 0o
so A3 = I,. It follows that A" € {IQ,A, A2}. However, A™ = —I, and this implies that either
A = —I, or A2 = —I, both of which contradict the equality A% = I,. This completes the
proof. O

Remark. The polynomials P, used in the above proof are related to the Chebyshev poly-
nomials, T,,(x) = cos(narccosz). One could also get the conclusion that 2cost is an integer by
considering the sequence x,, = 2cos(2™t) and noticing that since ,,+1 = x?n — 2, if xg were a

a
noninteger rational 3 (b > 1) in lowest terms then the denominator of z,, in lowest terms would

be b?" and this contradicts the fact that x,, must be periodic since ¢ is a rational multiple of 7.

Second Solution. Let m4(z) be the minimal polynomial of A. Since A%" — Iy = (A" +
I3)(A™ — 1) = 0, m4(z) must be a divisor of 2" — 1 which has no multiple roots. It is well
known that the monic irreducible over Q factors of 2" —1 are exactly the cyclotomic polynomials
®4(x) where d divides 2n. Hence the irreducible over Q factors of m4(z) must be cyclotomic
polynomials and since the degree of m4(x) is at most 2 we conclude that m 4(x) itself must be a
cyclotomic polynomial, say ®4(z) for some positive integer d with ¢(d) = 1 or 2 (where ¢ is the
Euler totient function), ¢(d) being the degree of ®4(x). But this implies that d € {1,2,3,4,6}
and since A, A3 cannot be equal to Iy we get that ma(x) € {z + 1,22 + 1,22 — 2 + 1} and this
implies that either A% = —I, or A3 = —1I,. O



