
Solutions of APMO 2017

Problem 1. We call a 5-tuple of integers arrangeable if its elements can be labeled a,
b, c, d, e in some order so that a − b + c − d + e = 29. Determine all 2017-tuples of integers
n1, n2, . . . , n2017 such that if we place them in a circle in clockwise order, then any 5-tuple of
numbers in consecutive positions on the circle is arrangeable.

Answer: n1 = · · · = n2017 = 29.

Solution. A valid 2017-tuple is n1 = · · · = n2017 = 29. We will show that it is the only
solution.

We first replace each number ni in the circle by mi := ni − 29. Since the condition a− b+
c− d+ e = 29 can be rewritten as (a− 29)− (b− 29) + (c− 29)− (d− 29) + (e− 29) = 0, we
have that any five consecutive replaced integers in the circle can be labeled a, b, c, d, e in such
a way that a− b+ c− d+ e = 0. We claim that this is possible only when all of the mi’s are 0
(and thus all of the original ni’s are 29).

We work with indexes modulo 2017. Notice that for every i, mi and mi+5 have the same
parity. Indeed, this follows from mi ≡ mi+1 + mi+2 + mi+3 + mi+4 ≡ mi+5 (mod 2). Since
gcd(5, 2017) = 1, this implies that all mi’s are of the same parity. Since m1+m2+m3+m4+m5

is even, all mi’s must be even as well.
Suppose for the sake of contradiction that not all mi’s are zero. Then our condition still

holds when we divide each number in the circle by 2. However, by performing repeated divisions,
we eventually reach a point where some mi is odd. This is a contradiction.

�

Problem 2. Let ABC be a triangle with AB < AC. Let D be the intersection point of
the internal bisector of angle BAC and the circumcircle of ABC. Let Z be the intersection
point of the perpendicular bisector of AC with the external bisector of angle ∠BAC. Prove
that the midpoint of the segment AB lies on the circumcircle of triangle ADZ.

Solution 1. Let N be the midpoint of AC. Let M be the intersection point of the
circumcircle of triangle ADZ and the segment AB. We will show that M is the midpoint of
AB. To do this, let D′ the reflection of D with respect to M . It suffices to show that ADBD′

is a parallelogram.
The internal and external bisectors of an angle in a triangle are perpendicular. This implies

that ZD is a diameter of the circumcircle of AZD and thus ∠ZMD = 90◦. This means that
ZM is the perpendicular bisector of D′D and thus ZD′ = ZD. By construction, Z is in the
perpendicular bisector of AC and thus ZA = ZC.

Now, let α be the angle ∠BAD = ∠DAC. In the cyclic quadrilateral AZDM we get
∠MZD = ∠MAD = α, and thus ∠D′ZD = 2α. By angle chasing we get

∠AZN = 90◦ − ∠ZAN = ∠DAC = α,

which implies that ∠AZC = 2α. Therefore,

∠D′ZA = ∠D′ZD − ∠AZD = 2α− ∠AZD = ∠AZC − ∠AZD = ∠DZC.

Combining ∠D′ZA = ∠DZC, ZD′ = ZD and ZA = ZC, we obtain by the SAS criterion
that the triangles D′ZA and DZC are congruent. In particular, D′A = DC and ∠D′AZ =
∠DCZ. From here DB = DC = D′A.

Finally, let β = ∠ABC = ∠ADC. We get the first of the following equalities by the sum of
angles around point A and the second one by the sum of internal angles of quadrilateral AZCD
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360◦ = ∠D′AZ + ∠ZAD + ∠DAB + ∠BAD′ = ∠D′AZ + 90◦ + α + ∠BAD′

360◦ = ∠DCZ + ∠ZAD + ∠CZA+ ∠ADC = ∠DCZ + 90◦ + 2α + β.

By canceling equal terms we conclude that ∠BAD′ = α + β. Also, ∠ABD = α + β.
Therefore, the segments D′A and DB are parallel and have the same length. We conclude that
ADBD′ is a parallelogram. As the diagonals of a parallelogram intersect at their midpoints,
we obtain that M is the midpoint of AB as desired.

�
Variant of solution. The solution above is indirect in the sense that it assumes that M is

in the circumcircle of AZD and then shows that M is the midpoint of AB. We point out that
the same ideas in the solution can be used to give a direct solution. Here we present a sketch
on how to proceed in this manner.

Now we know that M is the midpoint of the side AB. We construct the point D′ in the
same way. Now we have directly that ADBD′ is a parallelogram and thus D′A = DB = DC.
By construction ZA = ZC. Also, the two sums of angles equal to 360◦ in the previous solution
let us conclude that ∠D′AZ = ∠DCZ. Once again, we use (differently) the SAS criterion and
obtain that the triangles D′AZ and DCZ are congruent. Thus, D′Z = DZ.

We finish the problem by noting that ZM is a median of the isosceles triangle D′ZD, so it
is also a perpendicular bisector. This shows that ∠DMZ = 90◦ = ∠DAZ, and therefore M
lies in the circumcircle of DAZ.

Solution 2. We proceed directly. As above, we name

α = ∠DAC = ∠AZN = ∠CZN = ∠DCB.

Let L be the midpoint of the segment BC. Since M and N are midpoints of AB and AC, we
have that MN = CL and that the segment MN is parallel to BC. Thus, ∠ANM = ∠ACB.
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Therefore, ∠ZNM = ∠ACB+90◦. Also, ∠DCZ = ∠DCB+∠ACB+∠ZCA = ∠ACB+90◦.
We conclude that ∠ZNM = ∠DCZ.

Now, the triangles ZNC and CLD are similar since ∠DCL = 90◦ = ∠CNZ and ∠DCL =
α = ∠CZN . We use this fact to obtain the following chain of equalities

CD

MN
=
CD

CL
=
CZ

ZN
.

We combine the equality above with ∠ZNM = ∠DCZ to conclude that the triangles

ZNM and ZCD are similar. In particular, ∠MZN = ∠DZC and ZM
ZN = ZD

ZC . Since we

also have ∠MZD = ∠MZN + ∠NZD = ∠DZC + ∠NZD = ∠NZC, we conclude that the
triangles MZD and NZC are similar. This yields that ∠ZMD = 90◦ and therefore M is in
the circumcircle of triangle DAZ.

�
Solution 3. Let m be the perpendicular bisector of AD; thus m passes through the center

O of the circumcircle of triangle ABC. Since AD is the internal angle bisector of A and OM
and ON are perpendicular to AB and AC respectively, we obtain that OM and ON form equal
angles with AD. This implies that they are symmetric with respect to M .

Therefore, the line MO passes through the point Z ′ symmetrical to Z with respect to m.
Since ∠DAZ = 90◦, then also ∠ADZ ′ = 90◦. Moreover, since AZ = DZ ′, we have that
∠AZZ ′ = ∠DZ ′Z = 90◦, so AZZ ′D is a rectangle. Since ∠AMZ ′ = ∠AMO = 90◦, we
conclude that M is in the circle with diameter AZ ′, which is the circumcircle of the rectangle.
Thus M lies on the circumcircle of the triangle ADZ.

Problem 3. Let A(n) denote the number of sequences a1 ≥ a2 ≥ . . . ≥ ak of positive
integers for which a1 + · · · + ak = n and each ai + 1 is a power of two (i = 1, 2, . . . , k).
Let B(n) denote the number of sequences b1 ≥ b2 ≥ . . . ≥ bm of positive integers for which
b1 + · · ·+ bm = n and each inequality bj ≥ 2bj+1 holds (j = 1, 2, . . . ,m− 1).

Prove that A(n) = B(n) for every positive integer n.

Solution. We say that a sequence a1 ≥ a2 ≥ . . . ≥ ak of positive integers has type A if
ai + 1 is a power of two for i = 1, 2, . . . , k. We say that a sequence b1 ≥ b2 ≥ . . . ≥ bm of
positive integer has type B if bj ≥ 2bj+1 for j = 1, 2, . . . ,m− 1.

Recall that the binary representation of a positive integer expresses it as a sum of distinct
powers of two in a unique way. Furthermore, we have the following formula for every positive
integer N

2N − 1 = 2N−1 + 2N−2 + · · ·+ 21 + 20.

Given a sequence a1 ≥ a2 ≥ . . . ≥ ak of type A, use the preceding formula to express each
term as a sum of powers of two. Write these powers of two in left-aligned rows, in decreasing
order of size. By construction, ai is the sum of the numbers in the ith row. For example, we
obtain the following array when we start with the type A sequence 15, 15, 7, 3, 3, 3, 1.

8 4 2 1
8 4 2 1
4 2 1
2 1
2 1
2 1
1
27 13 5 2
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Define the sequence b1, b2, . . . , bn by setting bj to be the sum of the numbers in the jth
column of the array. For example, we obtain the sequence 27, 13, 5, 2 from the array above.
We now show that this new sequence has type B. This is clear from the fact that each column
in the array contains at least as many entries as the column to the right of it and that each
number larger than 1 in the array is twice the number to the right of it. Furthermore, it is
clear that a1 + a2 + · · · + ak = b1 + b2 + · · · + bm, since both are equal to the sum of all the
entries in the array.

We now show that we can do this operation backwards. Suppose that we are given a type
B sequence b1 ≥ b2 ≥ . . . ≥ bm. We construct an array inductively as follows:

• We fill bm left-aligned rows with the numbers 2m−1, 2m−2, . . . , 21, 20.

• Then we fill bm−1 − 2bm left aligned rows with the numbers 2m−2, 2m−3, . . . , 21, 20.

• Then we fill bm−2 − 2bm−1 left aligned rows with the numbers 2m−3, 2m−4, . . . , 21, 20, and
so on.

• In the last step we fill b1 − 2b2 left-aligned rows with the number 1.

For example, if we start with the type B sequence 27, 13, 5, 2, we obtain once again the array
above. We define the sequence a1, a2, . . . , ak by setting ai to be the sum of the numbers in the
ith row of the array. By construction, this sequence has type A. Furthermore, it is clear that
a1 + · · ·+ ak = b1 + · · ·+ bm, since once again both sums are equal to the sum of all the entries
in the array.

We have defined an operation that starts with a sequence of type A, produces an array
whose row sums are given by the sequence, and outputs a sequence of type B corresponding
to the column sums. We have also defined an operation that starts with a sequence of type
B, produces an array whose column sums are given by the sequence, and outputs a sequence
of type A corresponding to the row sums. The arrays produced in both cases comprise left-
aligned rows of the form 2N−1, 2N−2, . . . , 21, 20, with non-increasing lengths. Let us refer to
arrays obeying these properties as marvelous.

To show that these two operations are inverses of each other, it then suffices to prove that
marvelous arrays are uniquely defined by either their row sums or their column sums. The
former is obviously true and the latter arises from the observation that each step in the above
inductive algorithm was forced in order to create a marvelous array with the prescribed column
sums.

Thus, we have produced a bijection between the sequences of type A with sum n and the
sequences of type B with sum n. So we can conclude that A(n) = B(n) for every positive
integer n.

�
Remark The solution above provides a bijection between type A and type B sequences via

an algorithm. There are alternative ways to provide such a bijection. For example, given the
numbers a1 ≥ . . . ≥ ak we may define the bi’s as

bj =
∑
i

⌊
ai + 1

2j

⌋
.

Conversely, given the numbers b1 ≥ . . . ≥ bm, one may define the ai’s by taking, as in the
solution, bm numbers equal to 2m − 1, bm−1 − 2bm numbers equal to 2m−1 − 1, . . ., and b1 − 2b2
numbers equal to 21 − 1. One now needs to verify that these maps are mutually inverse.

Problem 4. Call a rational number r powerful if r can be expressed in the form pk

q
for some relatively prime positive integers p, q and some integer k > 1. Let a, b, c be positive
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rational numbers such that abc = 1. Suppose there exist positive integers x, y, z such that
ax + by + cz is an integer. Prove that a, b, c are all powerful.

Solution. Let a = a1
b1
, b = a2

b2
, where gcd(a1, b1) = gcd(a2, b2) = 1. Then c = b1b2

a1a2
. The

condition that ax + by + cz is an integer becomes

ax+z
1 az2b

y
2 + az1a

y+z
2 bx1 + bx+z

1 by+z
2

az1a
z
2b

x
1b

y
2

∈ Z,

which can be restated as

az1a
z
2b

x
1b

y
2 | ax+z

1 az2b
y
2 + az1a

y+z
2 bx1 + bx+z

1 by+z
2 . (1)

In particular, az1 divides the right-hand side. Since it divides the first and second terms in the
sum, we conclude that az1 | bx+z

1 by+z
2 . Since gcd(a1, b1) = 1, we have az1 | b

y+z
2 .

Let p be a prime that divides a1. Let m,n ≥ 1 be integers such that pn‖a1 (i.e. pn|a1
but pn+1 - a1) and pm‖b2. The fact that az1 | b

y+z
2 implies nz ≤ m(y + z). Since gcd(a1, b1) =

gcd(a2, b2) = 1, we have p does not divide b1 and does not divide a2. Thus

pnz‖az1a
y+z
2 bx1 and pm(y+z)‖bx+z

1 by+z
2 . (2)

On the other hand, (1) implies that

pnz+my | az1a
y+z
2 bx1 + bx+z

1 by+z
2 . (3)

If nz < m(y + z), then (2) gives pnz‖az1a
y+z
2 bx1 + bx+z

1 by+z
2 , which contradicts (3). Thus

nz = m(y + z) so n is divisible by k := y + z
gcd(z, y + z)

> 1. Thus each exponent in the prime

decomposition of a1 must be divisible by k. Hence a1 is a perfect k-power which means a is
powerful. Similarly, b and c are also powerful.

�

Problem 5. Let n be a positive integer. A pair of n-tuples (a1, . . . , an) and (b1, . . . , bn)
with integer entries is called an exquisite pair if

|a1b1 + · · ·+ anbn| ≤ 1.

Determine the maximum number of distinct n-tuples with integer entries such that any two
of them form an exquisite pair.

Answer: The maximum is n2 + n+ 1.

Solution. First, we construct an example with n2 + n + 1 n-tuples, each two of them
forming an exquisite pair. In the following list, ∗ represents any number of zeros as long as the
total number of entries is n.

• (∗)

• (∗, 1, ∗)

• (∗,−1, ∗)

• (∗, 1, ∗, 1, ∗)

• (∗, 1, ∗,−1, ∗)
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For example, for n = 2 we have the tuples (0, 0), (0, 1), (1, 0), (0,−1), (−1, 0), (1, 1), (1,−1).
The total number of such tuples is 1 +n+n+

(
n
2

)
+
(
n
2

)
= n2 +n+ 1. For any two of them,

at most two of the products aibi are non-zero. The only case in which two of them are non-zero
is when we take a sequence (∗, 1, ∗, 1, ∗) and a sequence (∗, 1, ∗,−1, ∗) with zero entries in the
same places. But in this case one aibi is 1 and the other −1. This shows that any two of these
sequences form an exquisite pair.

Next, we claim that among any n2+n+2 tuples, some two of them do not form an exquisite
pair. We begin with lemma.

Lemma. Given 2n + 1 distinct non-zero n-tuples of real numbers, some two of them
(a1, . . . , an) and (b1, . . . , bn) satisfy a1b1 + · · ·+ anbn > 0.

Proof of Lemma. We proceed by induction. The statement is easy for n = 1 since for every
three non-zero numbers there are two of them with the same sign. Assume that the statement
is true for n− 1 and consider 2n+ 1 tuples with n entries. Since we are working with tuples of
real numbers, we claim that we may assume that one of the tuples is a = (0, 0, . . . , 0,−1). Let
us postpone the proof of this claim for the moment.

If one of the remaining tuples b has a negative last entry, then a and b satisfy the desired
condition. So we may assume all the remaining tuples has a non-negative last entry. Now, from
each tuple remove the last number. If two n-tuples b and c yield the same (n− 1)-tuple, then

b1c1 + · · ·+ bn−1cn−1 + bncn = b21 + · · ·+ b2n−1 + bncn > 0,

and we are done. The remaining case is that all the n-tuples yield distinct (n−1)-tuples. Then
at most one of them is the zero (n− 1)-tuple, and thus we can use the inductive hypothesis on
2n− 1 of them. So we find b and c for which

(b1c1 + · · ·+ bn−1cn−1) + bncn > 0 + bncn > 0.

The only thing that we are left to prove is that in the inductive step we may assume that
one of the tuples is a = (0, 0, . . . , 0,−1). Fix one of the tuples x = (x1, . . . , xn). Set a real
number ϕ for which tanϕ = x1

x2
. Change each tuple a = (a1, a2, . . . , an) (including x), to the

tuple
(a1 cosϕ− a2 sinϕ, a1 sinϕ+ a2 cosϕ, a3, a4, . . . , an).

A straightforward calculation shows that the first coordinate of the tuple x becomes 0, and
that all the expressions of the form a1b1 + · · ·+anbn are preserved. We may iterate this process
until all the entries of x except for the last one are equal to 0. We finish by multiplying all the
entries in all the tuples by a suitable constant that makes the last entry of x equal to −1. This
preserves the sign of all the expressions of the form a1b1 + · · ·+ anbn.

�
We proceed to the proof of our claim. Let A be a set of non-zero tuples among which any

two form an exquisite pair. It suffices to prove that |A| ≤ n2 + n. We can write A as a disjoint
union of subsets A1 ∪ A2 ∪ . . . ∪ An, where Ai is the set of tuples in A whose last non-zero
entry appears in the ith position. We will show that |Ai| ≤ 2i, which will finish our proof since
2 + 4 + · · ·+ 2n = n2 + n.

Proceeding by contradiction, suppose that |Ai| ≥ 2i + 1. If Ai has three or more tuples
whose only non-zero entry is in the ith position, then for two of them this entry has the same
sign. Since the tuples are different and their entries are integers, this yields two tuples for which
|
∑
aibi| ≥ 2, a contradiction. So there are at most two such tuples. We remove them from Ai.
Now, for each of the remaining tuples a, if it has a positive ith coordinate, we keep a as

it is. If it has a negative ith coordinate, we replace it with the opposite tuple −a with entries
with opposite signs. This does not changes the exquisite pairs condition.
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After making the necessary changes, we have two cases. The first case is that there are two
tuples a and b that have the same first i− 1 coordinates and thus

a1b1 + · · ·+ ai−1bi−1 = a21 + · · ·+ a2i−1 > 0,

and thus is at least 1 (the entries are integers). The second case is that no two tuples have the
same first i− 1 coordinates, but then by the Lemma we find two tuples a and b for which

a1b1 + · · ·+ ai−1bi−1 ≥ 1.

In any case, we obtain

a1b1 + · · ·+ ai−1bi−1 + aibi ≥ 2.

This yields a final contradiction to the exquisite pair hypothesis.
�
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