

First Iranian Geometry Olympiad September 2014

Solutions of Junior Level

1. In a right triangle ABC we have $\angle A = 90^{\circ}$, $\angle C = 30^{\circ}$. Denot by C the circle passing through A which is tangent to BC at the midpoint. Assume that C intersects AC and the circumcircle of ABC at N and M respectively. Prove that $MN \bot BC$.

Mahdi Etesami Fard

Proof. Let K midpoint of side BC. Therefore:

$$AK = KC \Rightarrow \angle KAC = \angle NKC = 30^{\circ}$$

$$\angle ANK = \angle NKC + \angle ACB = 60^{\circ}$$

A, K, N, M lie on circle (C). Therefore:

$$\angle KAN = \angle KMN = 30^{\circ}, \angle AMK = 60^{\circ}$$

We know that K is the circumcenter of $\triangle ABC$. So we can say KM = KC = AK. Therefore $\triangle AKM$ is equilateral.(because of $\angle AMK = 60^{\circ}$). So $\angle AKM = 60^{\circ}$. We know that $\angle AKB = 60^{\circ}$, so we have $\angle MKC = 60^{\circ}$. On the other hand:

$$\angle KMN = 30^{\circ} \Rightarrow MN \perp BC$$

2. The inscribed circle of $\triangle ABC$ touches BC, AC and AB at D, E and F respectively. Denote the perpendicular foots from F, E to BC by K, L respectively. Let the second intersection of these perpendiculars with the incircle be M, N respectively. Show that $\frac{S_{\triangle BMD}}{S_{\triangle CND}} = \frac{DK}{DL}$.

Mahdi Etesami Fard

Proof. Let I be the incenter of $\triangle ABC$. We know that

But $\angle DFM = \angle MDK$. Therefore

$$\angle MDK = \frac{1}{2} \angle B$$

hence $\triangle MDK$ and $\triangle BID$ are similar (same angles) and $\frac{MK}{DK}=\frac{r}{BD}$. In the same way we have $\frac{NL}{DL}=\frac{r}{CD}$. Therefore

$$r = \frac{MK \cdot BD}{DK} = \frac{NL \cdot CD}{DL} \Rightarrow \frac{area \ of \ \triangle BMD}{area \ of \ \triangle CND} = \frac{MK \cdot BD}{NL \cdot CD} = \frac{DK}{DL}$$

3. Each of Mahdi and Morteza has drawn an inscribed 93-gon. Denote the first one by $A_1A_2...A_{93}$ and the second by $B_1B_2...B_{93}$. It is known that $A_iA_{i+1} \parallel B_iB_{i+1}$ for $1 \leq i \leq 93$ $(A_{93} = A_1, B_{93} = B_1)$. Show that $\frac{A_iA_{i+1}}{B_iB_{i+1}}$ is a constant number independent of i.

Morteza Saghafian

Proof. We draw a 93-gon similar with the second 93-gon in the circumcircle of the first 93-gon (so the sides of the second 93-gon would be multiplying by a constant number c). Now we have two 93-gons witch are inscribed in the same circle and apply the problem's conditions. We name this 93-gons $A_1A_2...A_{93}$ and $C_1C_2...C_{93}$.

We know that $A_1A_2 \parallel C_1C_2$. Therefore $A_1C_1 = \widehat{A_2C_2}$ but they lie on the opposite side of each other. In fact, $\widehat{A_iC_i} = A_{i+1}\widehat{C_{i+1}}$ and they lie on the opposite side of each other for all $1 \leq i \leq 93$ ($A_{94}\widehat{C_{94}} = \widehat{A_1C_1}$). Therefore $\widehat{A_1C_1}$ and $\widehat{A_1C_1}$ lie on the opposite side of each other. So $\widehat{A_1C_1} = 0^\circ$ or 180° . This means that the 93-gons are coincident or reflections of each other across the center. So $A_iA_{i+1} = C_iC_{i+1}$ for

 $1\leqslant i\leqslant 93.$ Therefore, $\frac{A_{i}A_{i+1}}{B_{i}B_{i+1}}=c.$

4. In a triangle ABC we have $\angle C = \angle A + 90^{\circ}$. The point D on the continuation of BC is given such that AC = AD. A point E in the side of BC in which A doesnt lie is chosen such that

$$\angle EBC = \angle A, \angle EDC = \frac{1}{2} \angle A$$

Prove that $\angle CED = \angle ABC$,

Morteza Saghafian

Proof. Suppose M is the midpoint of CD, hence AM is the perpendicular bisector of CD, AM intersects DE and BE at P,Q respectively. Therefore, PC = PD. We have

$$\angle EBA + \angle CAB = \angle A + \angle B + \angle A = 180^{\circ} - \angle C + \angle A = 90^{\circ}$$

hence $AC \perp BE$. Thus in $\triangle ABQ$, BC, AC are altitudes. This means C is the orthocenter of this triangle and

$$\angle CQE = \angle CQB = \angle A = \frac{1}{2}\angle A + \frac{1}{2}\angle A = \angle PDC + \angle PCD = \angle CPE$$

hence CPQE is cyclic. Therefore

$$\angle CED = \angle CEP = \angle CQP = \angle CQA = \angle CBA = \angle B.$$

First Iranian Geometry Olympiad September 2014

Solutions of Senior Level

1. In a right triangle ABC we have $\angle A = 90^{\circ}$, $\angle C = 30^{\circ}$. Denot by C the circle passing through A which is tangent to BC at the midpoint. Assume that C intersects AC and the circumcircle of ABC at N and M respectively. Prove that $MN \bot BC$.

Mahdi Etesami Fard

Proof. Let K midpoint of side BC. Therefore:

$$AK = KC \Rightarrow \angle KAC = \angle NKC = 30^{\circ}$$

$$\angle ANK = \angle NKC + \angle ACB = 60^{\circ}$$

A, K, N, M lie on circle (C). Therefore:

$$\angle KAN = \angle KMN = 30^{\circ}, \angle AMK = 60^{\circ}$$

We know that K is the circumcenter of $\triangle ABC$. So we can say KM = KC = AK. Therefore $\triangle AKM$ is equilateral.(because of $\angle AMK = 60^{\circ}$). So $\angle AKM = 60^{\circ}$. We know that $\angle AKB = 60^{\circ}$, so we have $\angle MKC = 60^{\circ}$. On the other hand:

$$\angle KMN = 30^{\circ} \Rightarrow MN \perp BC$$

2. In a quadrilateral ABCD we have $\angle B = \angle D = 60^{\circ}$. Consider the line whice is drawn from M, the midpoint of AD, parallel to CD. Assume this line intersects BC at P. A point X lies on CD such that BX = CX. Prove that $AB = BP \Leftrightarrow \angle MXB = 60^{\circ}$.

Davood Vakili

Proof. Suppose X' is a point such that $\triangle MBX'$ is equilateral.(X' and X lie on the same side of MB) It's enough to show that:

$$AB = BP \Leftrightarrow X' \equiv X$$

We want to prove that if AB = BP then $\angle MXB = 60^{\circ}$. AB = BP therefore $\triangle ABP$ is equilateral. We know that $\angle ABP =$

 $\angle MBX' = 60^{\circ}$, Therefore $\angle ABM = \angle PBX'$. On the other hand AB = BP, BM = BX' therefore $\triangle BAM$ and $\triangle BPX'$ are equal.

 $\angle X'PM = 360^{\circ} - \angle MPB - \angle BPX' = 360^{\circ} - \angle DCB - \angle BAM' = 120^{\circ}$

 $MP \parallel DC$, so we can say $\angle PMD = 120^\circ$. If we draw the line passing through X' such that be parallel with CD and this line intersects AD in D', then quadrilateral MPX'D' is isosceles trapezoid. Therefore PX' = MD'. In the other hand PX' = AM = MD (becauese $\triangle BAM$ and $\triangle BPX'$ are equal.) According to the statements we can say MD' = MD. In other words, $D' \equiv D$ and X' lie on CD. Therefore both of X and X' lie on intersection of DC and perpendicular bisector of MB, so $X' \equiv X$.

Now we prove if $\angle MXB = 60^{\circ}$ then AB = BP. Let P' such that $\triangle MP'X$ be equilateral. (P') and X be on the same

Draw the line passing through P' such that be parallel with CD. Suppose that this line intersects AD in M'.

$$\angle XP'M' = 360^{\circ} - \angle M'P'B - \angle BP'X = 360^{\circ} - \angle DCA - \angle BAM = 120^{\circ}$$

Also $\angle P'M'D=120^\circ$. Therefore quadrilateral XP'M'D is isosceles trapezoid and DM'=P'X=AM=DM. So we can say $M'\equiv M\Rightarrow P'\equiv P$.

3. An acute-angled triangle ABC is given. The circle with diameter BC intersects AB, AC at E, F respectively. Let M be the midpoint of BC and P the intersection point of AM and EF. X is a point on the arc EF and Y the second intersection point of XP with circle mentioned above. Show that $\angle XAY = \angle XYM$.

Ali Zooelm

Proof. Suppose point K is intersection AM and circumcircle of $\triangle AEF$. MF tangent to circumcircle of $\triangle AEF$ at F. (because of $\angle MFC = \angle MCF = \angle AEF$). Therefore $MF^2 = MK.MA$. In the other hand, MY = MF so $MY^2 = MK.MA$. It means

$$\angle MYK = \angle YAM$$
 (1)

Also AP.PK = PE.PF = PX.PY therefore AXKY is(...??)
.Therefore

$$\angle XAY = \angle XYK$$
 (2)

According to equation 1 and 2 we can say $\angle XAY = \angle XYM$.

4. The tangent line to circumcircle of the acute-angled triangle ABC (AC > AB) at A intersects the continuation of BC at P. We denote by O the circumcenter of ABC. X is a point OP such that $\angle AXP = 90^{\circ}$. Two points E, F respectively on AB, AC at the same side of OP are chosen such that

$$\angle EXP = \angle ACX, \ \angle FXO = \angle ABX$$

If K, L denote the intersection points of EF with the circumcircle of $\triangle ABC$, show that OP is tangent to the circumcircle of $\triangle KLX$.

Mahdi Etesami Fard

Proof. Let M and N on continuation of XF and XE such that M, L, X, N, K lie on same circle. We have to prove $\angle AMX = \angle ACX$. In other hand,

We know:

$$XF.FM = FL.FK = AF.FC$$

Therefore AMCX is (...?) and $\angle AMX = \angle ACX$. similarly we can say ANBX is (...?). Now it's enough to show that $\angle AMX = \angle NMX$. In other words, we have to show that A, N, M lie on same line. we know that ANBX is (...??) therefore:

$$\angle NAM = \angle NAE + \angle A + \angle FAM = \angle EXB + \angle A + \angle CXF$$

= $\angle A + 180^{\circ} - \angle BXC + \angle ABX + \angle ACX$
= $\angle A + 180^{\circ} - \angle BXC + \angle BXC - \angle A = 180^{\circ}$

5. Two points P, Q lie on the side BC of triangle ABC and have the same distance to the midpoint. The pependiculars fromP, Q tp BC intesects AC, AB at E, F respectively. LEt M be the intersection point of PF and EQ. If H₁ and H₂ denote the orthocenter of △BFP and △CEQ respectively, show that AM ⊥ H₁H₂.

Mahdi Etesami Fard

Proof. First we show that if we move P and Q, the line AM doesn't move. To show that we calculate $\frac{\sin \angle A_1}{\sin \angle A_2}$. By the law of sines in $\triangle AFM$ and $\triangle AEM$ we have

$$\frac{\sin \angle A_1}{\sin \angle A_2} = \frac{\sin \angle F_1}{\sin \angle E_1} \cdot \frac{FM}{EM} \tag{3}$$

also, for $\triangle FBP$ and $\triangle CEQ$ we have

$$\frac{\sin \angle F_1 = \frac{BP}{PF} \cdot \sin \angle B}{\sin \angle E_1 = \frac{CQ}{EQ} \cdot \sin \angle C} \Rightarrow \frac{\sin \angle F_1}{\sin \angle E_1} = \frac{\sin \angle B}{\sin \angle C} \cdot \frac{EQ}{FP} \tag{4}$$

from (3) and (4) we have

$$\frac{\sin \angle A_1}{\sin \angle A_2} = \frac{\sin \angle B}{\sin \angle C} \cdot \frac{EQ}{FP} \cdot \frac{FM}{EM}$$
 (5)

 $\triangle FMQ$ and $\triangle EMP$ are similar, thus

$$\frac{FM}{FP} = \frac{FQ}{FQ + EP}, \ \frac{EQ}{EM} = \frac{FQ + EP}{EP}$$

with putting this into (5) we have

$$\frac{\sin \angle A_1}{\sin \angle A_2} = \frac{\sin \angle B}{\sin \angle C} \cdot \frac{FQ}{EP} \tag{6}$$

on the other hand

$$\left. \begin{array}{l} \tan \angle B = \frac{FQ}{BQ} \\ \tan \angle C = \frac{EP}{CP} \\ BQ = CP \end{array} \right\} \Rightarrow \frac{FQ}{EP} = \frac{\tan \angle B}{\tan \angle C}$$

if we put this in (6) we have

$$\frac{\sin \angle A_1}{\sin \angle A_2} = \frac{\sin \angle B}{\sin \angle C} \cdot \frac{\tan \angle B}{\tan \angle C}$$

wich is constant.

now we show that H_1H_2 s are parallel. consider α the angle between H_1H_2 and BC. hence we have

$$\tan \alpha = \frac{H_2P - H_1Q}{QP} \tag{7}$$

 H_1 and H_2 are the orthometers of $\triangle BFP$ and $\triangle CQE$ respectively. Thus we have

$$QF \cdot H_1Q = BQ \cdot QP \Rightarrow H_1Q = \frac{BQ \cdot QP}{FQ}$$

$$EP \cdot H_2P = CP \cdot PQ \Rightarrow H_2P = \frac{CP \cdot PQ}{EP}$$

but CP = BQ. Thus

$$H_2P - H_1Q = \frac{PQ \cdot BQ \cdot (FQ - EP)}{EP \cdot FQ}$$

by putting this in (7):

$$\tan\alpha = \frac{BQ \cdot (FQ - EP)}{EP \cdot FQ} = \frac{BQ}{EP} - \frac{BQ}{FQ} = \frac{CP}{EP} - \frac{BQ}{FQ}$$

$$\Rightarrow \tan \alpha = \cot \angle B - \cot \angle C \qquad (8)$$

hence $\tan \alpha$ is constant, thus H_1H_2 s are parallel. Soppuse θ is the angle between AM and BC, we have to show

$$\tan \alpha \cdot \tan \theta = 1$$

let AM intersects with BC at X. We have

$$\frac{BX}{CX} = \frac{\sin \angle A_1}{\sin \angle A_2} \cdot \frac{\sin \angle C}{\sin \angle B} \Rightarrow \frac{BX}{CX} = \frac{\tan \angle B}{\tan \angle C}$$

let D be the foot of the altitude drawn from A. We have

$$\frac{BX}{CX} = \frac{\tan \angle B}{\tan \angle C} = \frac{\frac{AD}{BD}}{\frac{AD}{CD}} = \frac{CD}{BD} \Rightarrow BD = CX$$

$$\tan\theta = \frac{AD}{DX} = \frac{AD}{CD-CX} = \frac{AD}{CD-BD} = \frac{1}{\frac{CD}{AD} - \frac{BD}{AD}} = \frac{1}{\cot\angle B - \cot\angle C}$$
 this equality and (8) implies that $AM \perp H_1H_2$.

5. Two points X, Y lie on the arc BC of the circumcircle of $\triangle ABC$ (this arc does not contain A) such that $\angle BAX = \angle CAY$. Let M denotes the midpoint of the chord AX. Show that BM + CM > AY.

Mahan Tajrobekar

Proof. O is the circumcenter of $\triangle ABC$, so $OM \perp AX$. We draw a perpendicular line from B to OM. This line intersects with the circumcircle at Z. Since $OM \perp BZ$, OM is the perpendicular bisector of BZ. This means MZ = MB. By using triangle inequality we have

$$BM + MC = ZM + MC > CZ$$

But $BZ \parallel AX$, thus

$$\widehat{AZ} = \widehat{BX} = \widehat{CY} \Rightarrow \widehat{ZAC} = \widehat{YCA} \Rightarrow CZ = AY$$

hence BM + CM > AY.

