Sixth South Eastern European Mathematical Olympiad for University Students

Blagoevgrad, Bulgaria March 8, 2012

Problem 1. Let $A = (a_{ij})$ be the $n \times n$ matrix, where a_{ij} is the remainder of the division of $i^j + j^i$ by 3 for i, j = 1, 2, ..., n. Find the greatest n for which det $A \neq 0$.

Solution. We show that $a_{i+6,j} = a_{ij}$ for all i, j = 1, 2, ..., n. First note that if $j \equiv 0 \pmod{3}$ then $j^i \equiv 0 \pmod{3}$, and if $j \equiv 1$ or $2 \pmod{3}$ then $j^6 \equiv 1 \pmod{3}$. Hence, $j^i(j^6 - 1) \equiv 0 \pmod{3}$ for j = 1, 2, ..., n, and

$$a_{i+6,j} \equiv (i+6)^j + j^{i+6} \equiv i^j + j^i \equiv a_{ij} \pmod{3},$$

or $a_{i+6,j} = a_{ij}$. Consequently, det A = 0 for $n \ge 7$. By straightforward calculation, we see that det A = 0 for n = 6 but det $A \ne 0$ for n = 5, so the answer is n = 5.

Grading of Problem 1.

5p: Concluding that $\Delta_n = 0$ for each $n \geq 7$

5p: Computing $\Delta_5 = 12$, $\Delta_6 = 0$

2p: Computing $\Delta_3 = -10$, $\Delta_4 = 4$ (in case none of the above is done)

Problem 2. Let $a_n > 0$, $n \ge 1$. Consider the right triangles $\triangle A_0 A_1 A_2$, $\triangle A_0 A_2 A_3$, ..., $\triangle A_0 A_{n-1} A_n$, ..., as in the figure. (More precisely, for every $n \ge 2$ the hypotenuse $A_0 A_n$ of $\triangle A_0 A_{n-1} A_n$ is a leg of $\triangle A_0 A_n A_{n+1}$ with right angle $\angle A_0 A_n A_{n+1}$, and the vertices A_{n-1} and A_{n+1} lie on the opposite sides of the straight line $A_0 A_n$; also, $|A_{n-1} A_n| = a_n$ for every $n \ge 1$.)

Is it possible for the set of points $\{A_n \mid n \geq 0\}$ to be unbounded but the series $\sum_{n=2}^{\infty} m(\angle A_{n-1}A_0A_n)$ to be convergent? Here $m(\angle ABC)$ denotes the measure of $\angle ABC$.

Note. A subset B of the plane is bounded if there is a disk D such that $B \subseteq D$.

Solution. We have
$$|A_0A_n| = \sqrt{\sum_{i=1}^n a_i^2}$$
 and $\sum_{n=2}^k m(\angle A_{n-1}A_0A_n) = \sum_{n=2}^k \arctan \frac{a_n}{\sqrt{a_1^2 + \dots + a_{n-1}^2}}$.

The set of points $\{A_n \mid n \geq 0\}$ will be unbounded if and only if the sequence of the lengths of the segments A_0A_n is unbounded. Put $a_i^2 = b_i$. Then the question can be reformulated as follows: Is it possible for a series with positive terms to be such that $\sum_{i=1}^{\infty} b_i = \infty$ and

$$\sum_{n=2}^{\infty} \arctan \sqrt{\frac{b_n}{b_1 + \dots + b_{n-1}}} < \infty.$$

Denote $s_n = \sum_{i=1}^n b_i$. Since $\arctan x \sim x$ as $x \to 0$, the question we need to ask is whether one can have $s_n \to \infty$ as $n \to \infty$ and $\sum_{n=2}^\infty \sqrt{\frac{s_n - s_{n-1}}{s_{n-1}}} < \infty$. Put $\sqrt{\frac{s_n - s_{n-1}}{s_{n-1}}} = u_n > 0$. Then $\frac{s_n}{s_{n-1}} = 1 + u_n^2$, $\ln s_n - \ln s_{n-1} = \ln(1 + u_n^2)$, $\ln s_k = \ln s_1 + \sum_{n=2}^k \ln(1 + u_n^2)$. Finally, the question is whether it is possible to have $\sum_{n=2}^\infty \ln(1 + u_n^2) = \infty$ and $\sum_{n=2}^\infty u_n < \infty$. The answer is negative, since $\ln(1+x) \sim x$ as $x \to 0$ and $u_n^2 \le u_n \le 1$ for large enough n.

Different solution. Since $\sum_{n=2}^{\infty} m(\angle A_{n-1}A_0A_n) < \infty$, there exists some large enough k for which $\sum_{n=k}^{\infty} m(\angle A_{n-1}A_0A_n) \leq \beta < \frac{\pi}{2}$. Then all the vertices A_n , $n \geq k-1$, lie inside the triangle $\triangle A_0A_{k-1}B$, where the side $A_{k-1}B$ of $\triangle A_0A_{k-1}B$ is a continuation of the side $A_{k-1}A_k$ of $\triangle A_0A_{k-1}A_k$ and $\angle A_{k-1}A_0B = \beta$. Consequently, the set $\{A_n \mid n \geq 0\}$ is bounded which is a contradiction.

Grading of Problem 2.

1p: Noting that $\{A_n \mid n \geq 0\}$ is unbounded $\Leftrightarrow |A_0 A_n|$ is unbounded **OR** expressing $|A_0 A_n|$

1p: Observing that $\sum_{n=2}^{\infty} m(\angle A_{n-1}A_0A_n)$ is convergent $\Leftrightarrow A_0A_n$ tends to A_0B **OR** expressing the angles by arctan

8p: Proving the assertion

Problem 3.

a) Prove that if k is an even positive integer and A is a real symmetric $n \times n$ matrix such that $(\operatorname{Tr}(A^k))^{k+1} = (\operatorname{Tr}(A^{k+1}))^k$, then

$$A^n = \operatorname{Tr}(A) A^{n-1}.$$

b) Does the assertion from a) also hold for odd positive integers k?

Solution. a) Let k = 2l, $l \ge 1$. Since A is a symmetric matrix all its eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ are real numbers. We have,

$$Tr(A^{2l}) = \lambda_1^{2l} + \lambda_2^{2l} + \dots + \lambda_n^{2l} = a$$
 (1)

and

$$Tr(A^{2l+1}) = \lambda_1^{2l+1} + \lambda_2^{2l+1} + \dots + \lambda_n^{2l+1} = b.$$
 (2)

By (1) we get that $a \ge 0$, so there is some $a_1 \ge 0$ such that $a = a_1^{2l}$. On the other hand, the equality $a^{2l+1} = b^{2l}$ implies that $(a_1^{2l+1})^{2l} = b^{2l}$ and hence

$$b = \pm a_1^{2l+1} = (\pm a_1)^{2l+1}$$
 and $a = a_1^{2l} = (\pm a_1)^{2l}$

Then equalities (1) and (2) become

$$\lambda_1^{2l} + \lambda_2^{2l} + \dots + \lambda_n^{2l} = c^{2l} \tag{3}$$

and

$$\lambda_1^{2l+1} + \lambda_2^{2l+1} + \dots + \lambda_n^{2l+1} = c^{2l+1},\tag{4}$$

where $c = \pm a_1$. We consider the following cases.

Case 1. If c=0 then $\lambda_1=\cdots=\lambda_n=0$, so Tr(A)=0 and we note that the characteristic polynomial of A is $f_A(x)=x^n$. We have, based on the Cayley-Hamilton Theorem, that

$$A^n = 0 = \operatorname{Tr}(A) A^{n-1}.$$

Case 2. If $c \neq 0$ then let $x_i = \lambda_i/c$, i = 1, 2, ..., n. In this case equalities (3) and (4) become

$$x_1^{2l} + x_2^{2l} + \dots + x_n^{2l} = 1 (5)$$

and

$$x_1^{2l+1} + x_2^{2l+1} + \dots + x_n^{2l+1} = 1.$$
(6)

The equality (5) implies that $|x_i| \leq 1$ for all i = 1, 2, ..., n. We have $x^{2l} \geq x^{2l+1}$ for $|x| \leq 1$ with equality reached when x = 0 or x = 1. Then, by (5), (6), and the previous observation, we find without loss of generality that $x_1 = 1$, $x_2 = x_3 = \cdots = x_n = 0$. Hence $\lambda_1 = c$, $\lambda_2 = \cdots = \lambda_n = 0$, and this implies that $f_A(x) = x^{n-1}(x-c)$ and Tr(A) = c. It follows, based on the Cayley-Hamilton Theorem, that

$$f_A(A) = A^{n-1}(A - cI_n) = 0 \quad \Leftrightarrow \quad A^n = \operatorname{Tr}(A) A^{n-1}.$$

b) The answer to the question is negative. We give the following counterexample:

$$k = 1,$$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{2} \end{pmatrix}.$

Grading of Problem 3.

3p: Reformulating the problem through eigenvalues:

$$\left(\sum \lambda_i^{2l}\right)^{2l+1} = \left(\sum \lambda_i^{2l+1}\right)^{2l} \Rightarrow \forall i: \ \lambda_i^n = (\lambda_1 + \dots + \lambda_n)\lambda_i^{n-1}$$

4p: Only $(\lambda_i) = (0, \dots, 0, c, 0, \dots, 0)$ or $(0, \dots, 0)$ are possible

3p: Finding a counterexample

Problem 4.

a) Compute

$$\lim_{n\to\infty} n \int_0^1 \left(\frac{1-x}{1+x}\right)^n dx.$$

b) Let $k \geq 1$ be an integer. Compute

$$\lim_{n\to\infty} n^{k+1} \int_0^1 \left(\frac{1-x}{1+x}\right)^n x^k dx.$$

Solution. a) The limit equals $\frac{1}{2}$. The result follows immediately from b) for k=0.

b) The limit equals $\frac{k!}{2^{k+1}}$. We have, by the substitution $\frac{1-x}{1+x}=y$, that

$$n^{k+1} \int_0^1 \left(\frac{1-x}{1+x}\right)^n x^k dx = 2n^{k+1} \int_0^1 y^n (1-y)^k \frac{dy}{(1+y)^{k+2}}$$
$$= 2n^{k+1} \int_0^1 y^n f(y) dy,$$

where

$$f(y) = \frac{(1-y)^k}{(1+y)^{k+2}}.$$

We observe that

$$f(1) = f'(1) = \dots = f^{(k-1)}(1) = 0.$$
 (7)

We integrate k times by parts $\int_0^1 y^n f(y) dy$, and by (7) we get

$$\int_0^1 y^n f(y) dy = \frac{(-1)^k}{(n+1)(n+2)\dots(n+k)} \int_0^1 y^{n+k} f^{(k)}(y) dy.$$

One more integration implies that

$$\int_0^1 y^n f(y) dy = \frac{(-1)^k}{(n+1)(n+2)\dots(n+k)(n+k+1)} \times \left(f^{(k)}(y) y^{n+k+1} \Big|_0^1 - \int_0^1 y^{n+k+1} f^{(k+1)}(y) dy \right)$$

$$= \frac{(-1)^k f^{(k)}(1)}{(n+1)(n+2)\dots(n+k+1)} + \frac{(-1)^{k+1}}{(n+1)(n+2)\dots(n+k+1)} \int_0^1 y^{n+k+1} f^{(k+1)}(y) dy.$$

It follows that

$$\lim_{n \to \infty} 2n^{k+1} \int_0^1 y^n f(y) dy = 2(-1)^k f^{(k)}(1),$$

since

$$\lim_{n \to \infty} \int_0^1 y^{n+k+1} f^{(k+1)}(y) dy = 0,$$

 $f^{(k+1)}$ being continuous and hence bounded. Using Leibniz's formula we get that

$$f^{(k)}(1) = (-1)^k \frac{k!}{2^{k+2}},$$

and the problem is solved.

Grading of Problem 4.

3p: For computing a)

7p: For computing b)