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MLADI NADARENI MATEMATIČARI

Marin Getaldic

Problems and Solutions

Problem 1. Find all pairs (x, y) of integers that satisfy the equation

x2y + y2 = x3.

(Daniel Paleka)

First Solution. Firstly, let us consider the case x = 0. In that case, it is trivial to see that y = 0, and thus we get the
solution (0, 0). From now on, we can assume x 6= 0.

1 point.

From the trivial x2|x3, the equation gives x2|x2y + y2 ⇒ x2|y2, which means x|y.

1 point.

We use the substitution y = kx, where k ∈ Z.

1 point.

The substitution gives us
kx3 + k2x2 = x3

kx+ k2 = x

k2 = x(1− k)

.

2 points.

Considering the greatest common divisor of k2 and 1− k, we get

GCD(k2, 1− k) = GCD(k2 + k(1− k), 1− k) = GCD(k, 1− k) = GCD(k, 1− k + k) = GCD(k, 1) = 1

3 points.

That leaves us with two possibilities.

a) 1− k = 1⇒ k = 0⇒ x = 0 which is not possible since x 6= 0.

1 point.

b) 1− k = −1⇒ k = 2⇒ x = −4, y = −8, which gives a solution to the original equation.

1 point.

Second Solution. We rearrange the equation into:

y2 = x2(x− y).

It can easily be shown that if y 6= 0, x− y must be square.

1 point.
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If y = 0, from the starting equation we infer x = 0, and we have a solution (x, y) = (0, 0).
In the other case, we set x = y + a2, where a is a positive integer. Taking the square root of the equation gives:

|y| = |x|a

.

1 point.

Because x = y + a2 > y, it is impossible for y to be a positive integer, because then the equation would say y = xa > x,
which is false. That means y < 0, and also:

−y = |x|a

2 points.

If x is positive, we can write:
−y = xa = (y + a2)a = ay + a3

which rearranges into
−y(a+ 1) = a3,

so a3 is divisible by a+ 1, which is not possible for positive a due to a3 = (a+ 1)(a2 − a+ 1)− 1.

2 points.

We see that x cannot be zero due to y being negative, so the only remaining option is that x < 0 also. We write:

−y = xa = −(y + a2)a = −ay + a3

which can similarly be rearranged into
−y(a− 1) = a3,

and this time a3 is divisible by a− 1.

1 point.

Analogously, we decompose a3 = (a− 1)(a2 + a+ 1) + 1, so a− 1 divides 1 and the unique possibility is a = 2.

2 points.

The choice a = 2 gives y = −8 and x = −4, which is a solution to the original equation.

1 point.

Notes on marking:

• Points awarded for different solutions are not additive, a student should be awarded the maximal number of points
he is awarded following only one of the schemes.

• Saying that (0, 0) is a solution is worth 0 points. The point is awarded only if the student argues that, disregarding
the solution (0, 0), we must only consider x 6= 0, or a similar proposition.

• Failing to check that (0, 0) is a solution shall not be punished. Failing to check that (−8,−4) is a solution shall
result in the deduction of 1 point only if a student did not use a chain of equivalences to discover the solution.
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Problem 2. A regular hexagon in the plane is called sweet if its area is equal to 1. Is it possible to place
2000000 sweet hexagons in the plane such that the union of their interiors is a convex polygon of area at least
1900000?

Remark: A subset S of the plane is called convex if for every pair of points in S, every point on the straight
line segment that joins the pair of points also belongs to S. The hexagons may overlap.

(Josip Pupic, Borna Vukorepa)

Solution. It is possible to make such arrangement.

0 points.

We will stack hexagons in a triangular pattern shown below, where the first row has one hexagon, second row has two
and so on.

3 points.

Such triangle with n rows has an area of n(n+1)
2

since that is the total number of hexagons used for that pattern.

1 point.

Setting n = 1950 gives us a triangle with 1950 rows. That figure has an area of 1902225 and the same number of hexagons
is used. The only problem is that it is not convex.

1 point.

We can use the remaining hexagons to fix the non-convex parts of the figure, as shown below.

3 points.

Every non-convex part can be fixed with two hexagons, so in total we will need 1949 · 3 · 2 = 11694 hexagons to make
the figure convex. This is because there are 1949 non-convex parts on every side of our triangular pattern. Obviously,
this is much less hexagons than we have remaining. The resulting figure is now convex, so this completes the proof.

2 points.

Notes on marking:

• Sketches of stacking the hexagons in any pattern will not be worth any points if there is no work done on them.

• No points are awarded for the claim that the construction is possible.

• There are many patterns for stacking the hexagons which can give the correct solution. Each of them should be
marked the same way as this one.

• Work on patterns which can’t produce the desired area will not be worth any points.
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Problem 3. Let ABC be an acute triangle. Denote by H and M the orthocenter of ABC and the midpoint
of side BC, respectively. Let Y be a point on AC such that Y H is perpendicular to MH and let Q be a point
on BH such that QA is perpendicular to AM . Let J be the second point of intersection of MQ and the circle
with diameter MY . Prove that HJ is perpendicular to AM .

(Steve Dinh)

Solution. We present the following diagram:

0 points.

Since ∠MHY = 90◦, Y lies on the circle with diameter MY , so the quadrilateral HMJY is cyclic.

1 point.

It follows that ∠HJM = ∠HYM . Since QA ⊥ AM ,

HJ ⊥ AM ⇐⇒ HJ ‖ QA ⇐⇒ ∠HJM = ∠AQM ⇐⇒ ∠HYM = ∠AQM.

Since ∠Y HM = ∠QAM = 90◦, the latter is to equivalent to 4AQM ∼ 4HYM .

1 point.

Now let P,R be the reflections of A,H in M , respectively.
Then since ∠Y HM = ∠QAM = 90◦, i.e. ∠Y HR = ∠QAP = 90◦,

4AQM ∼ 4HYM ⇐⇒ AQ

HY
=

AM

HM
⇐⇒ AQ

HY
=

1
2
AP

1
2
HR

⇐⇒ AQ

HY
=

AP

HR
⇐⇒ 4AQP ∼ 4HY R ⇐⇒ ∠QPA = ∠Y RH.
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3 points.

Since M is the midpoint of BC, the quadrilaterals ABPC and HBRC are parallelograms.

1 point.

Since CR ‖ HB and HB ⊥ AC, it follows that ∠ACR = 90◦. Hence ∠Y CR = ∠RHY = 90◦, so the quadrilateral
Y HRC is cyclic.

1 point.

It follows that ∠Y RH = ∠Y CH = ∠ACF = 90◦ − ∠BAC.

1 point.

Since BP ‖ AC and AC ⊥ BQ, we have PBQ = 90◦. Hence ∠PBQ = ∠PAQ = 90◦, so the quadrilateral ABPQ is
cyclic.

1 point.

It follows that ∠QPA = ∠QBA = ∠EBA = 90◦ − ∠BAC.

1 point.

Finally, we conclude that ∠Y RH = ∠QPA, as desired.
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Problem 4. The real numbers x, y, z satisfy x2 + y2 + z2 = 3. Prove the inequality

x3 − (y2 + yz + z2)x+ y2z + yz2 ≤ 3
√
3

and find all triples (x, y, z) for which equality holds.

(Miroslav Marinov)

Solution. First let us notice the factorization of the left-hand side

x3 − (y2 + yz + z2)x+ y2z + yz2 = (x− y)(x− z)(x+ y + z)

.

2 points.

Now we get the following inequalities

(x3 − (y2 + yz + z2)x+ y2z + yz2)
2
3

= 3
√

(x− y)2(x− z)2(x+ y + z)2

1 point.

(G−A) 6
1

3
((x− y)2 + (x− z)2 + (x+ y + z)2)

3 points.

=
1

3
(3x2 + 2y2 + 2z2 + 2yz)

=
1

3
(6 + x2 + 2yz)

(G−A) 6
1

3
(6 + x2 + y2 + z2)

1 point.

=
9

3
= 3

from where we get the required inequality by raising to the power of 3
2
.

In the case of equality, expressions |x − y|, |x − z| and |x + y + z| are all equal to
√
3 which we conclude from the first

G-A inequality.

1 point.

From the case of equality in the second G-A inequality we conclude y = z.

1 point.

Now by squaring |x− y| =
√
3 we get

x2 − 2xy + y2 = 3

3− z2 − 2xy = 3

y2 + 2xy = 0

y(y + 2x) = 0

If y = 2x we get
√
3 = |x− y| = |x| which combined with x2 + y2 + z2 = 3 gives the solution (

√
3, 0, 0).

If y = 0 again we get
√
3 = |x− y| = |x| which again gives us the same solution.

1 point.

Notes on marking:

• Factorization from the beginning can be spotted because y and z are obviously roots of the polynomial equation
x3 − (y2 + yz + z2)x+ y2z + yz2 = 0 in the variable x.

• Potential solution (−
√
3, 0, 0) is dismissed by checking it in the original equation. 1 point must be deducted if it’s

stated as a solution.
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Problem 1. Find all functions f : N→ N such that the inequality

f(x) + yf(f(x)) ≤ x(1 + f(y))

holds for all positive integers x, y.

(Adrian Beker)

Solution. We claim that f(x) = x is the only function that satisfies the inequality for all positive integers x, y.
We can see that it is indeed the solution because x+ yx = x(1 + y).
Setting x = 1 and y = 1, we obtain:

f(1) + f(f(1)) ≤ 1 + f(1),

which implies f(f(1)) ≤ 1, so f(f(1)) = 1 because it must be a positive integer.
Setting x = 1 and y = f(1), we obtain:

f(1) + f(1) ≤ 1 + f(1),

which similarly implies f(1) = 1.
Now, setting x = 1 gives:

1 + y ≤ 1 + f(y),

so f(y) ≥ y for all positive integers y.
Setting y = 1 and using the previous fact, we write:

f(x) + f(f(x)) ≤ 2x ≤ 2f(x) = f(x) + f(x) ≤ f(x) + f(f(x)),

so equality holds on each step. In particular, f(x) = x for every positive integer x.
Notes on marking:

• Checking that f(x) = x satisfies the inequality is worth 0 points. If a student shows that a solution, if it exists,
must be the identity function ("solves the problem"), but fails to show that the identity function is indeed the
solution, he or she shall be deducted 1 point. A sentence saying something along the lines of "it is trivial to show
that the identity function satisfies the inequality", due to the sentence being true, shall not be deducted the point.
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Problem 2. A friendly football match lasts 90 minutes. In this problem, we consider one of the teams, coached
by Sir Alex, which plays with 11 players at all times.

a) Sir Alex wants for each of his players to play the same integer number of minutes, but each player has to
play less than 60 minutes in total. What is the minimum number of players required?

b) For the number of players found in a), what is the minimum number of substitutions required, so that each
player plays the same number of minutes?

Remark: Substitutions can only take place after a positive integer number of minutes, and players who have
come off earlier can return to the game as many times as needed. There is no limit to the number of substitutions
allowed.

(Athanasios Kontogeorgis, Demetres Christofides)

Solution. a) Since exactly 11 players play at all times, the total number of minutes played by all of the players
combined is 11 · 90 = 990. Let n be the number of Sir Alex’s players that have participated in the match and let k
be the number of minutes which each of them spent playing, with k < 60 and k ∈ Z. Now the equality nk = 990
holds.

1 point.

From that fact combined with k < 60 we get n > 17 and n|990 as well. Finally, it is easy to conclude that the
minimal such n is 18.

2 points.

b) We can formulate the problem by using graphs. Let us construct a graph with 18 vertices that represent the players.
Two vertices are connected by an edge if one of the corresponding players substituted the other.

1 point.

Suppose that less than 17 substitutions were made. Then the graph isn’t connected and the smallest connected
component consists of k 6 9 players among which all of their substitutions were made.

1 point.

Let us suppose that exactly r of them are on the pitch at all times. It is easy to determine that each of the 18 players
will play exactly 55 minutes. So the players from the smallest connected component will spend the combined total
of 55k minutes playing. But, from the same conclusion as earlier, we get the equality 55k = 90r. It follows that
11|r which implies r > 9 and so we reach a contradiction. ⇒ The graph is connected and at least 17 substitutions
are required.

3 points.

The following table shows a match in which each of the 18 players played 55 minutes and exactly 17 substitutions
were made (the shaded regions correspond to the time intervals played by each player).

2 points.
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Notes on marking:

• There can be an argument made for b) without observing graphs and has to be evaluated accordingly. If
a student reaches the conclusion equivalent to the smallest connected component, 2 points have to be
given, one for that conclusion and one that is intended for observing the graph in the official solution.
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Problem 3. Let ABC be a scalene triangle and let its incircle touch sides BC,CA and AB at points D,E and
F respectively. Let line AD intersect this incircle at point X. Point M is chosen on the line FX so that the
quadrilateral AFEM is cyclic. Let lines AM and DE intersect at point L and let Q be the midpoint of segment
AE. Point T is given on the line LQ such that the quadrilateral ALDT is cyclic. Let S be a point such that
the quadrilateral TFSA is a parallelogram, and let N be the second point of intersection of the circumcircle of
triangle ASX and the line TS. Prove that the circumcircles of triangles TAN and LSA are tangent to each
other.

(Andrej Ilievski)

Solution. We present the following diagram:

0 points.

Let P be the midpoint of segment AF and let R be the second intersection of EX and the circumcircle of 4AFE. Let
K denote the intersection of lines AR and DF .

By the tangent-chord theorem, we have ∠EDX = ∠AEX. Since DEXF is cyclic, we have ∠EDX = ∠EFX = ∠EFM .
Since AFEM is cyclic, we have ∠EFM = EAM = ∠EAL. Hence, ∠AEX = EAL, so AL ‖ EX, and analogously
AK ‖ FX. Furthermore, we have ∠EDX = ∠EAL, i.e. ∠EDA = ∠EAL, so by the converse of the tangent-chord
theorem, LA is tangent to the circumcircle of 4AED.

2 points.

By power of a point, we have LA2 = LE ·LD. If we denote the radical axis of the incircle of 4ABC and the degenerate
circle A by `, this means that L lies on `. Analogously, K lies on `.

1 point.

Now, since QA2 = QE2, PA2 = PF 2 and QE,PF are tangents to the incircle of 4ABC, it follows that P,Q both lie
on `. Since PQ is the midline of 4AEF , we have ` ‖ EF .

1 point.

Since AL ‖ EX, AK ‖ FX and XFDE is cyclic, it follows that AKDL is also cyclic. Hence, K is the second intersection
of LQ and the circumcircle of 4ALD, so we must have K ≡ T , i.e. T, F,D are collinear.

2 points.

Since TFSA is a parallelogram, TS bisects the segment AF , i.e. T, P, S are collinear, which means that S lies on `.
Moreover, since AT ‖ FS and AT ‖ FX, it follows that F,X, S are collinear.
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2 points.

Then since ANXS is cyclic, ∠NAX = ∠NSX. Since NS ‖ FE, ∠NSX = ∠EFX. Since ALDT and XEDF are both
cyclic, we have ∠NTA = ∠LTA = ∠LDA = ∠EDX = ∠EFX, so ∠NAX = ∠NTA. Hence, by the converse of the
tangent-chord theorem, AX is tangent to the circumcircle of 4TAN .

1 point.

Finally, since AS ‖ TF , i.e. AS ‖ FD, we have ∠XAS = ∠XDF . Again, using the cyclicity of ALDT and XEDF , we
have ∠ALS = ∠ALT = ∠ADT = ∠XDF , so ∠XAS = ∠ALS. Hence, by the converse of the tangent-chord theorem,
AX is tangent to the circumcircle of 4LSA.

1 point.

Since AX is the common tangent of the circumcircles of triangles TAN and LSA, it follows that they are tangent to
each other at A, as desired.

5



Problem 4. Find all polynomials P with integer coefficients such that P (0) 6= 0 and

Pn(m) · Pm(n)

is a square of an integer for all nonnegative integers n,m.

Remark: For a nonnegative integer k and an integer n, P k(n) is defined as follows: P k(n) = n if k = 0
and P k(n) = P (P k−1(n)) if k > 0.

(Adrian Beker)

Solution. Let Q(n,m) denote the assertion "Pn(m) · Pm(n) is a square of an integer".
We claim that P (x) = x + 1 is the unique polynomial with integer coefficients such that P (0) 6= 0 and Q(n,m) is true
for all n,m ∈ N0.

First we check that this polynomial indeed satisfies the conditions. An easy induction on k shows that P k(n) = n + k
for all n, k ∈ N0. Then Pn(m) · Pm(n) = (m+ n)2, which is clearly a square of an integer, hence Q(n,m) is true for all
n,m ∈ N0.

1 point.

Now we show that P (x) = x+ 1 is the only polynomial satisfying all the conditions.
Consider the sequence (an)n>0 defined by an = Pn(0) for all n > 0. Then Q(n, 0) implies that n · an is a square of an
integer for all n ∈ N0.

1 point.

Lemma 1. For all sufficiently large primes p, the sequence (an) modulo p is periodic with minimal period of length
exactly p. In particular, for all sufficiently large primes p, P is bijective when considered modulo p.

Proof: Fix a prime p > max {|P (0)|, 2}. Let t be the smallest positive integer for which there exists a nonnegative
integer s < t such that as ≡ at (mod p), such a t exists by the Pigeonhole principle. Then the sequence (an) modulo p
is eventually periodic with minimal period as, . . . , at−1.

1 point.

Suppose that t − s < p holds, i.e. the length of the period is less than p. Note that there exists r ∈ {s, . . . , t − 1} such
that ar 6≡ 0 (mod p) since otherwise we would have P (0) ≡ 0 (mod p). Now let n be an arbitrary nonnegative integer.
Then take a positive integer k such that n + kp > s and n + kp ≡ r (mod t − s), such a k exists since p and t − s are
relatively prime.

We know that (n + kp) · an+kp is a quadratic residue modulo p, i.e. n · ar is a quadratic residue modulo p since
an+kp ≡ ar (mod p) and n + kp ≡ n (mod p). But this is impossible since n · ar attains all residues modulo p (recall
that ar 6≡ 0 (mod p)), and we know there exists a quadratic nonresidue modulo p since p > 2.

Finally, we conclude that t − s = p must hold, i.e. the length of the minimal period is p. In particular, P is sur-
jective and hence bijective when considered modulo p.

2 points.

Alternative proof: Again, fix a prime p > |P (0)|. Since p · ap is a perfect square, ap must be divisible by p. It follows
that for all n > 0, an+p = Pn(ap) ≡ Pn(0) ≡ an (mod p), hence (an) modulo p is periodic with period of length p.

1 point.

Now suppose there exist i, j ∈ {0, 1, . . . , p−1} with i < j and ai ≡ aj (mod p). If we let l = j− i, then for each n > i we
have an+l = Pn−j+l(aj) ≡ Pn−i(ai) ≡ an (mod p). Then it immediately follows inductively that an ≡ an+kl (mod p)
for all k ∈ N0 and similarly an ≡ an+mp (mod p) for all m ∈ N0. Since p and l are relatively prime, there exist k,m ∈ N0

such that kl−mp = 1, so we have an ≡ an+1 (mod p). It follows that the sequence is eventually constant and thus equal
to 0 modulo p, which is a contradiction. Hence, the length of the minimal period is indeed p and we conclude similarly
as in the first proof.

2 points.

Lemma 2. The degree of P is at most 1.

Proof: Assume the contrary and consider the polynomial Q(x) = P (x + 1) − P (x). Then Q is a polynomial with
integer coefficients and degQ = degP − 1 > 1, so Q is nonconstant. A well-known fact due to Schur implies that there
are infinitely many primes that divide Q(n) for some integer n. So there are infinitely many primes p such that P is not
bijective modulo p, contradicting the result of Lemma 1. Hence, the lemma is proved.

3 points.
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By Lemma 2, we can write P (x) = ax+ b for some a, b ∈ Z. Q(1, 0) implies that b is a perfect square, so b is a positive
integer since P (0) 6= 0.

An easy induction shows that P k(0) = b(1 + a+ . . .+ ak−1) for all k ∈ N. Q(p, 0) implies that pb(1 + a+ . . .+ ap−1) is
a perfect square, i.e. p(1 + a + . . . + ap−1) is a perfect square for all primes p. So 1 + a + . . . + ap−1 must be divisible
by p, but then (1 + a + . . . + ap−1)(a − 1) = ap − 1 is also divisible by p. By Fermat’s little theorem, we know that
ap − 1 ≡ a− 1 (mod p), hence p divides a− 1 for all primes p, so we must have a = 1, i.e. P (x) = x+ b.

1 point.

Finally, Q(1, 4) implies that 4b2+17b+4 is a perfect square, but since (2b+2)2 < 4b2+17b+4 < (2b+5)2, 4b2+17b+4
must be of the form (2b+k)2 for some k ∈ {3, 4}. It is easily checked that b = 1 is the only possibility, leaving P (x) = x+1
as the only solution.

1 point.

Notes on marking:

• The points from different proofs of Lemma 1 are not additive, a student should be awarded the maximum of points
obtained from different approaches.

7


