

Problem 1.

An integer $a \ge 1$ is called *Aegean*, if none of the numbers $a^{n+2} + 3a^n + 1$ with $n \ge 1$ is prime. Prove that there are at least 500 Aegean integers in the set $\{1, 2, \dots, 2018\}$.

Problem 2.

Let a_1, a_2, \ldots, a_n be $n \ge 2$ real numbers such that $0 \le a_i \le \pi/2$. Prove that

$$\left(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{1+\sin a_{i}}\right)\left(1+\prod_{i=1}^{n}(\sin a_{i})^{1/n}\right)\leq 1.$$

Problem 3.

Determine the largest integer N, for which there exists a $6 \times N$ table T that has the following properties:

- (i) Every column contains the numbers $1, 2, \ldots, 6$ in some ordering.
- (ii) For any two columns $i \neq j$, there exists a row r such that T(r, i) = T(r, j).
- (iii) For any two columns $i \neq j$, there exists a row s such that $T(s, i) \neq T(s, j)$.

Problem 4.

ABC is an acute triangle. *AE* and *AF* are isogonal cevians, where $E \in BC$ and $F \in BC$. The straight lines *AE* and *AF* intersect again the circumcircle of *ABC* at points *M* and *N*, respectively. In the rays *AB* and *AC* we get points *P* and *R* such that $\measuredangle PEA = \measuredangle B$ and $\measuredangle AER = \measuredangle C$. Let $L = AE \cap PR$ and $D = BC \cap LN$.

Prove, with reasons, that

$$\frac{1}{\overline{MN}} + \frac{1}{\overline{EF}} = \frac{1}{\overline{ED}} \,.$$

Each problem is worth 7 points. Time allowed 4:30 The use of calculator is not allowed

Union of mathematicians of Macedonia-ARMAGANKA