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H.Benyxos, A.3acnasckwnii, I1.KoxxeBHUKOB

1 BBoanble 3a1a4n

1. N3oronanbHoe conpsizkerne. Jlan tpeyrosbank ABC u Touka P.

a)lokazkure, ato mpsmMble, cuvmMerpuatbie AP, BP, C'P oTHOCHTEIbHO GHCCEKTPUC COOTBET-
CTBYIOIIMX YIJIOB, MEPECEKAIOTCA B OJHON TOYKe WM MapasuiesbHbl. [lomydennas Touka P’
HA3BIBACTCS U3020HAALHO conpadicennot P orrnocurensao Tpeyroibunka ABC.

b)lokaxkure, aro P’ — GeckoHEYHO yJlajeHHas TOYKA (T.e. TPU COOTBETCTBYIOIIHE MPSIMbIE I1a-
paJuIesIbHbI) TOTJ/Ia U TOJIBKO TOTJIA, KOrJa P JIeXKUT Ha OMHCAHHOM OKPYZKHOCTH TPEYTOJIbHUKA,

ABC.

c)Haiimure o6pa3 npu M30roHaJIBHOM COMPSI?KEHUN OKPYKHOCTH, IIPOXOJIAIIEl depes3 JBe Bep-
IIWHBI TPEYT'OJIbHUKA.

d)! Hoxazkure, uto mpoexiuu P u P’ na croponst ABC jexkaT Ha OJHOH OKpyKHOCTH. Kak 3BYy4HT 3TO
yTBepXKIenue, ecau P’ 6eckonedHO yuaaeHa?

e)Eciim X, X' n Y, Y’ — nBe napsl n3oronaibHo conpszkeHHBIX Touek, To XY N XY’ nu XY’ N X'Y usoronanbho

COIIPSAZKEHBI.

Han gersipexyroibauk ABC'D u touka P.

f)lokaxkure, 910, €cqim TpU U3 UYETHIPEX NPAMBIX, cumMerpuddbix AP, BP, CP, DP orHo-
CUTETbHO OMCCEKTPUC COOTBETCTBYIOIIMX YIJIOB, IIEPECEKAIOTCS B OJIHOI TOYKe, TO YeTBEPTasd
TaKKe IMPOXO/IUT Yepe3 3Ty TOUKY.

g)/lokazkure, 9TO TOYKA, H30MOHAJIBHO CONPsi?KEeHHAas P OTHOCHTENHHO YeThIPEXYTOJbHIKA, CY-
IIECTBYET TOI/Ia U TOJBKO TOIJIa, KOTIa IPOeKnn P Ha CTOPOHBI JIezKaT Ha OJTHOU OKPYZKHOCTH
(mpraem Ha TON OKPYKHOCTHU JIEXKAT W IIPOEKIIUU U30TOHATIBLHO COMPSZKEHHON TOUKH).

I{OHI/IKOI‘/'I7 BIIMCAHHOI B MHOI'OYTI'OJIbHUK, Ha3bIBa€TCAd KOHUKA, KaCalol[adCd BCEX ITPAMDBIX, COAEPZKAIUX CTOPOHDbI
MHOI'OyIr'oJibHUKa.
h),ZLOKa)KI/ITe7 q9TO (bOKyCLI BIIMCAHHOU B TPEYTOJIbHUK KOHUKN U30I'OHAJIbHO COIIPA?KEHDI.

i)Jokaxure, aro doxyc ar0boit napabosbl, kacawoieiics npsambix AB, BC, C A, JeXXUT HA ONUCAHHON OKPY K-

noctu Tpeyrosbanka ABC.

2. Touka Mukens. /lan gersipexyronbauk ABCD. Ipsambie AB u C'D miepecekaioTcst B TOUKe
E, AD u BC' — B Touke F.

a)/lokazkure, 9T0 B 0003HAYEHUAX MPEJIBLIYIIEH 3aa9i OKPY?KHOCTH, OIMUCAHHBIE OKOJIO TpPe-
yrosbuukos ABF, CDF, ADE u CDE, uepecekatorcs B ojuoii Touke M (touke Mukesist

vyerBepku npambix AB, BC', CD, DA).

b)/dokaxkure, uro M — TEHTP MOBOPOTHOI rOMOTETHH, TlepeBosiiieit orpe3ok BE B F'D (umm
DE B FB, u 1.1.)

¢)Ba Tapakana B u C 1mOJ3yT C HOCTOSHHBIMU CKOPOCTSIMU II0 JBYM IPSIMBIM, [EPECEKAIONMMCs B TOUKe A.
Hokazkure, ato okpyx)uoctu ABC' mpoxomdar depe3 (DUKCHPOBAHHYIO TOUKY, a npsmble BC' kacatorcst dbukcu-
DPOBAHHOII 1TapaboJIbL.

d)(IMO2005) Jan sbirykiabsii gerbipexyroabiuk ABCD, croporsl BC' u AD KOTOPOro paBHBI, HO He I1apaji-
sensibl. [Iycrs E u F' — Bayrpennune Touku orpe3koB BC' u AD coorBercrBenno Takue, yro BE = DF. Ilpsvbie
AC u BD mnepecekatorcst B Touke P, npsmbie BD u E'F nepecekaiorcs B Touke @, npsimbie FF u AC niepece-
karorcsa B Touke R. Paccmorpum tpeyrosmbaukn PQ R, mosydaembie st Becex Takux Todek F u F. Jlokaxkure,
YTO OKPY?KHOCTH, OIIMCAHHBIE OKOJIO BCEX ITUX TPEYTOJbHUKOB, UMEIOT OOIILYI0 TOYKY, OTJINIHYIO OT P.
e)Boisicaure ¢Bsa3b TOUKU MUKest €O BIUCAHHBIME KOHUKAMH.

131ech u masee MesKuM mpHdTOM HAGPAHBI 33a4K, KOTOPbIE He HCIOJIb3YIOTCH IPH IOy UeHHH OCHOBHBIX
PEe3yJIbTATOB, IPUBEJIEHHBIX B pa3jese 2.



f)Jokaxkure, 4To npoekmuu ToUYKH MuKesisi Ha CTOPOHBI YeThIPEXYTOJbHUKA JIe?KAT Ha OJHON [MPIMOIi, mepIeH-

JUKynIgpHOil mpsimoit ['aycca. Kak cBsi3ana sra mpsMasi cO BIUCAHHON B Y€THIPEXYTOJBHUK apabosIon?

3. IIpsimag Faycca. /Tan gersipexyronsauk ABC D. [psymbie AB u C'D niepecekaiorcst B TOUKe
E, AD u BC — B Touke F.

a)lokazkure, aro cepenunbl orpe3sko AC, BD u EF nexkat Ha onHoit npsmoit (mpsimoii [aycca
verbipexyrosbunka ABC D, win yerBepku npsmeix AB, BC, CD, DA).

b)lokazkuTe, 9TO MEHTPHI OKPYKHOCTEH, MTPOXOJAIIIX Yepe3 MPOEKIIH Mapbl N30TOHAJTIBHBIX

OTHOCUTEJILHO YeThIPEXYTOJIbHUKA TOUEK, JieyKaT Ha Hpsmoii [aycca deTbipexyroibHuKA.
c¢)dokazkure, uro Touka MuKe/ist 4eThIpexyroJbHIKA H30IOHAIBHO CONPsizKeHa GECKOHEUHO yla-
JIHHOI TOYKe ero mpsamoii ['aycca.

d)HOKa}KI/ITe, Y9TO HEHTPBbI KOHUK, BIIMCAHHBIX B 9Y€TBIPEXYI'OJbHUK, JIe2KaT Ha €ro Hle\IOI;'I Faycca.

e)(Bcepoccntiickast ommmmuaa 2009) Ha croponax AB n BC napasmrenorpamyma ABC D seibpanst Toukn Ay u C
coorBerctBenHo. OTpesku ACT u C' A; nepecekaiorcs B touke P. Onucannble OKpyKHOCTH TpeyroJbHuKoB A A1 P

u C'C1 P BrOpudHO TlepecekaloTcst B TOUKe (), jexkareit BuyTpu Tpeyrojibauka ACD. Hokaxkure, aro /PDA =
/QBA.

2 Tpu Mukeis ajiss KBaApTeTOB.

B zajjauax sToro pasjesia paccMaTpUBAETCS CJIEIYIONas KOHCTPYKIIUA U UCIOJIB3YIOTCS CJIeTy-
fomne obosnaderuss. A, B, C, D — derbipe TOUKH 00IIEro mojoxkeHusi. X — Todka MuKesrs
upsameix AB, AC, BD, CD, Y — touka Mukensa npaveix AB, AD, BC, CD, Z — touka
Muxkesist npameix BC', AC, BD, AD. Px = ADNBC, Py = ACN BD, P, = ABNCD.
Kx, Lx — cepequnint BC u AD, Ky, Ly — cepequant AC u BD, Kz, L; — cepenusbl AB n
CD.Tx, 'y, 'y — upsmsie (Iaycca mis coorBercTByomux yeTBepok npsimbix) Kx Ly, Ky Ly,
Ksz.

4. Nokaxkure, aro npsimbie AX, BY, C'Z nepecekatorcst B ojiHOI Touke D' min mapaJijie/ibHbl.
Amnasornano onpejensatorest Toukn A’ B/ C' Kak NeHTPBI MePCIEeKTUBBI Tpeyroabauka XY 7

¢ Tpeyroibaukavu DC'B, CDA, BAD.

5. Jlokazkure, 9T0O A B C, D’ — To4YKH, N30roHaJILHO conpsizkenuole A, B C, D orHocurennb-
) ) ) ) ) ) ) )
HO TpeyroJIbHUKa XY Z.

6. okazkure, uro X, Y, Z — Touku Mukess miga gersepku touek A, B', C', D’.

7. Hokazkure, uro upsameie AA', BB', CC' u DD’ napaJuieabHbl.

8. Hokazxkure, uro npsimbie AD, A'D’' u Y Z nepecekaiorcsi B OjiHO# ToUKe (M aHAJIOIMYHbBIE
HepeceveHust ).

9.

a)/lokaxkure, uro Trouku X, Z, Py, Ky, Ly jsexar Ha OJHON OKPYKHOCTH — Wy . OKPYKHOCTH
Wx, Wz ONPEJIEIAIOTCH aHAJIOTUIHO.

b)/lokaxkuTe, 9T0 OKPYKHOCTH Wy, Wy, Wz MPOXOJAT Uepe3 oaHy TouKy 7' (MM COBIAIAIOT).
c)dokaxwure, uro npsimbie X Py, Y Py, Z Py npoxousit yepes T.



3 Ksaprernl aj1a Tpex MukeJieii.

Han Tpeyronpauk XY Z. Oupenennm npeodbpa3oBanue )y, KaK KOMIIO3UIIUI CUMMETPUN OT-
HOCHUTEJIbHO OMCCeKTpuchl yria X W WHBEPCUU C IeHTpoM X U TakKuM pajuycoM R, 4To
R? = XY - XZ. Anasorn4no onpeaesanM Yy, 1.

10. JTokaxkute, 9TO

2)ix (V) = Z, Yx(Z) = Y

b))% — ToxKIecTBeHHOE TIpeobpasoBaHue;

c)Komnosunust ¢y, 1y u by — ToxIecTBEHHOE TPeobpa3oBaHue.

[Iycts D — npoussosbHas Touka, A = x (D), B =y (D), C = z(D).

11. Jokaxkure, uro AXDZ ~ AXYAu AXDY ~ AXZA.

12. Jlokaxkure, 9TO KaxKjoe w3 mpeobpaszoBanuil ¥y, 1y, ¥z MEePEBOAUT HADOD U3 UETHIPEX
touek A, B, C, D B cebs.

Bynem HasbiBarh HaOOp U3 derbipex (He obsg3aTesbHO pasandubix) Touek A, B, C', D xsapme-
mom. VI3 mocseineit 3a/1a4u cjaeyer, 9To BCs ILIOCKOCTh MOXKET ObITh Pas30duTa Ha KBapTeTHI.
13. JlokaxkuTe, 9TO YeTBEpKa TOUYEK, N30TOHAJIBHO COIPSI?KEHHBIX KBAPTETY — KBapTeT.

14. Haitiure KBapTETHI, COJIEPKAIIINE

a)ieHTp I BIUCAHHON OKpy2KHOCTH Tpeyroybuuka X, Y, Z;

b)uertp O ero onmcaHHON OKPYZKHOCTH.

c)Haiture HenmomBuKHBIE TOYKN TPEOOPA30BaHusl 1) U COOTBETCTBYIOINIIE KBAPTETHL.

D.

a)/lokaxure, aro X — Touka Mukess npameix AB, AC, BD, C'D.

b)lokazkure obparHoe yTBepK aenue: eciau X, Y, Z — rouku MukeJis, onpejie/isieMbie TOIKAMUI
A, B, C,D, 10 A, B, C, D obpasyior KBapTer.

16. /lokaxkure, 9TO KakJioe U3 mpeoOpaszoBanuili Vx, Yy, 1z KOMMYTUPYET C U30TOHAJIbHBIM

CONpsKEHNEM OTHOCUTEHHO TpeyroabHuka XY Z.

17. Ilycrs Touku A, B, C', D 06pa3yior KBapTeT OTHOCUTeILHO Tpeyroabauka XY Z, A’ B', C’, D’ nzoronajbho
conpsizkeHbl M. Torma cyImecTByIOT BIUCAHHBIE B TpeyrolbHUK Konuku ¢ ¢pokycamu A n A’, Bu B', C u C’,
DulD'.

a)/JokazkuTe, 9TO 3TU KOHUKH TOMOTETUYHBL JIDYT JPYTY.

b)lokazkure, 94T0 CEPEAUHBI MIECTH OTPE3KOB, COEIUHSIONIUX EHTPHl 9TUX KOHUK, JIE2KAT HA FOMOTETHYHON UM
KOHUKE, OMMCAHHOM OKOJIO Tpeyroiabuuka XY Z.

18. Buyrpu Tpeyrosphuuka ABC' jexar jiBe M30roHajibHO conpsizkeHHble Touku M u N. U3BectHo, yro AM -
AN -BC=BM - -BN-AC=CM-CN -AB =k.

a)dokaxkure, uro ceperuua M N COBIAJAET € NEHTPOM THKECTU TPEYTOJIbHUKA.

—_

b)Boipasure k Yepe3 CTOPOHBI TPEYTOJbLHUKA.



4 JlonmoJiHUTEJIbHbIE 3a/1aYMN.

19.

a)llycre A, B,C, D — ksaprer, A’, B',C’, D’ — u30roHaJbHO CONpsi?KeHHBII KBapreT; Px —
rouka rnepecedenns AD u BC, Py — AC u BD, P, — AB u CD. Touku Qx, Qy, Q7 omupe-
nensores agajgornyno 1o roukam A’ B’ C', D', Jlokaxkure, uro npsmbie PxQx, PyQy, P7Q 4
[IePECEKAIOTCsT B OJIHOI TOUKe, JieyKalllell Ha ONUCAHHON OKPYZKHOCTH Tpeyrojibhuka XY 7 (u3
HPEJbIILY X 0O03HAYEHHUI ).

b)B obo3HaueHusIX IpebIIYIero myHKTa JoKaxKuTe, 9to npsimble PxQy, PyQx u XY mepece-
KaloTCs B OJHON TOYKE.

¢)O603HAYMM TOUKY, TIOJYUIEHHYIO B IIPeIbLIyIeM HyHKTe depes Z'. lokaxwure, uro ZZ' na-
pamnensna AA', BB',CC',DD'.

d)IIycte Dy, D} u Dy, D), — nBe mapbl H30rOHAJIBHO COIPSIZKEHHBIX TOYeK Takue, 9to Di D] ||
Dy D). lokazkure, uaro npsimbie A1 As, By Ba, C1Cy, Dy Dy iepecekatorcst B opaoit Touke (A1, By, Cy, Dy
u Ay, By, Co, Dy — KBapTeThl).

20. Jlansr Touku A, B, C, D. IspecTHO, 9TO TpeyroabHuK XY Z MepCcleKTUBEH KazKI0My U3 Tpe-
yrosibaukoB ABC, BCD,CDA, DAB (umenno B TakoM nopsijike Beprius). Touku D', A’ B/, C' —
COOTBETCTBYIOIIHE IEHTPHI HepcrekTuBbl. Jlokaxkure, uro npsimbie AA", BB', CC’, DD’ nepece-
KAlTCSI B OJITHOM TOYKE.



O06 u3oroHaJibHOM coOIpsi2keHuUu, Toukax MuKes, npgaMbix I'aycca n
ap. Pemenus
H.Benyxos, A.3acnasckwnii, I1.KoxxeBHUKOB

1 BBoanble 3a1a4n

1.

a)HenocpeicrBenno cieyer u3 reopembl UeBbl B (hopMe CHHYCOB.

b)¥Ykazauue. /[okasbiBaeTcsi CI€TOM YIJIOB.

c)Ilycrs P smexut Ha 910it okpyzkHOCcTH. Torya yron AP B uMeer (bUKCHPOBAHHYIO BEJIHUUHY.
Ho Tak kak cymma yryioB dersipexyroibuuka CAPB pasraa 360°, To dbukcupoBana u cymma
yrinoB CAP u CBP. A snauutr 6yner dpukcuposan yron AP'B, to ectb P’ jexxut Ha ukcu-
POBaAHHOI OKPY?KHOCTHU, IIPOXOdIeil uepe3 Touku A u B.

d)O6osuaunm 1epe3 Pa, Pg, Po Touku, cummverpudnbie P otrocurensno BC, C A, AB. Tax
kak P,C = PC = PgC, cepeuHHbII TepHeHIUKYIIP K 0Tpe3Ky P4 Ppg mpoxomnt vyepes C' n
coBnasiaer ¢ obuccekrpucoit yrina PoC Pg. Ho Jilerko BujieTh, 9T0 3TOI OMCCEKTPUCO ABIISAETCH
aya C'P'. CnenoBaresibio, P — neHTp onucanHoii okpy»kHocTH Tpeyroyibuuka Py PgPo. Ipu-
MEHHB TOMOTETHIO ¢ leHTpoM P u kosddurmentom 1/2, moayamnMm, 4to cepemHa orpeska PP’
SIBJISIETCST TIEHTPOM OKPYKHOCTH, IPOXO/ISIeil depe3 mpoekimn P Ha cTOpOHBI. AHAJOTMYTHO
MOJIydaeM, UTO 9Ta YKe TOUKa SBJIAeTCH IMEHTPOM OKDPYXKHOCTHU, ITPOXOJAIIEil depe3 MPOoeKInn
P’ a mockoJIbKy OHa paBHOyIaJIeHa OT npoekiuil P u P’ Ha mo6yio npsMyio, 06e OKpyKHOCTH
COBIIA/IAIOT.

Eciu P’ 6eckoneuno yuasena, mosydaem reopemy CrMcoHa: OCHOBAHUS HEPIEHINKYISAPOB, OIly-
IIEHHBIX U3 TOYKU Ha OMUCAHHON OKPYZKHOCTH TPEYTOJbHUKA HA CTOPOHBI TPEYTOJTbHUKA, JIEXKAT
Ha OAHON IPAMOil.

e)O6o3naunM Touky nepecedenns XY’ ¢ Y X' yepes P, a XY ¢ XY’ gepes Q. IIycrb XA N
YX' =X, aYANY X' =Y, Takxke obosnaunm depe3 ()4 Touky nepecedennss QA ¢ Y X',
[Tokaxkem, uro npsimbie AQ n AP cuMMeTpuvHbBI OTHOCUTEIbHO OuccekTpuchl yria A. Torma,
TaK KaK aHaJOTMYIHOE yTBEP:K/IeHNEe BEPHO U JIJId OCTAJbHBIX YIVIOB TPEYTOJIbHUKA, TOUYKH P 1
() Oy/IyT W30TOHAJIBHO COIPSI?KEHBI, I9TO U TPEOYETCH.

Pacemorpum gpoiinoe orHommenne Touek (Y, Q 4, X4, X'). Cupoenupyem ero u3 Touxu () Ha mpsi-
myto AX’. Torna Y nepeitner B X', QQ 4 nepeiiner B A, X 4 nepeiiner cama B cebst, a X' nepeiiger B
nepecevyenne npsamMbix XY u X A. CupoerupyeM moJiyduBIieecs JIBOWHOE OTHONIEHUE U3 TOYKH
Y’ na upsmyto Y X'. Toryma A nepeiier B Yy, X nepeiiger B P, X 4 onsaTh OCTAaHETCSI HA MECTE,
a obpa3z Touku X' Beprercs B X'. To ectb (Y, Qa, Xa, X') = (P, Y4, X4, X') = (Ya, P, X', X4).
A 3HAUUT TPU CUMMETPHUHU OTHOCUTEILHO ONCCeKTPUCH yriia A npsamast AQ) mepeiiier B IpsaMyio
AP, ...

Jpyroe j10Ka3aTeIbCTBO TaK »Ke MOXKHO PoUnTaTh B ctatbe A.Akomnsina n A.3aciaBckoro "Pas-
HbIE B3IVISIIbI Ha M30roHabHOE conpsizkerne' "Maremarudaeckoe npocserienue Nell, 2007.
f)O603HaunM 31y TOUKy mepeceuenust P, [Tycrs npambie AB u C'D nepecekatorcst B Touke K.
Torpma as ogroro us Tpeyroyabinkos K BC' u K DA touka P’ Gyjaer TOYKOii miepecedenust XoTs
OBl JIBYX NPSAMBIX CUMMETPUYHBIX MPSIMBIM, COEIUHSIONUM [ ¢ BepIIMHAMU TPEyTrOJLHIKOB.
A cieoBaTeibHO OHA OyJIET SIBASTHCS TOYKOl, M30TMOHAJIBHO CONPsizKeHHOW Touke P. A cie-
JIOBATEJIbHO, OHA JIEZKUT Ha MPsAMON, CUMMEeTprdHOi K P OTHOCHTETHHO OUCCeKTpuchHl yria K.
Ho torma u jy1s octaBiierocst TpeyrojibHIKa OHA ABJISETCA M30TOHAJIBHO CONPSI?KEHHON TOYKOM
Touke P, a cjemoBaTe/bHO, JEXKHUT Ha BCeX YeThbIpeX MpsAMbIX, cumMeTpudabix AP, BP, CP n
DP orHOCHTETBHO OUCCEKTPUC COOTBETCTBYIONIUX YIJIOB

g)lycts mpoeknuu Touku P jiexkar Ha oJHO# okpyzKHOCTH. Torma, paccyxjas, kKak B 1.d),



noJrydaeM, 9ro Touka P’ cummerpudHasi P OTHOCHTE/IBHO IEHTPa OKPYZKHOCTH, M30IMOHAIBLHO
compsizkena P. ObpaTHoe yTBep:K/ieHne JTOKA3bIBACTCH aHAJIOTUIHO.

h)CwM. ykazaHHYTO BBIIE CTATHIO.

)13 obparroit Teopembl CuMcOHA MOJTy9IaeM, 9TO HaM HaJO JOKA3aTh, YTO OCHOBAHUS IEpP-
HEHIUKYJISIPOB 13 (DOKyca 1mapabosibl Ha CTOPOHBI TPEYTOJbHUKA JIEXKAT HA OJIHOW MpPAMOi. A
9TO BEPHO, IOCKOJIbKY, €CJIH CUMMETPUYHO OTPa3uTh (DOKYC MapabdosIbl OTHOCUTETLHO JIIOOOM
KacaTeJIbHOM K 3TOi napabdoJie, TO OH IOIaJeT Ha JUPEKTPUCY ITOH 1mapadoJIbL.

2.

a)llycts ommcanublii OKpy:KHOCTH TpeyroibHuKoB ABF u C'DF BTOPUYHO II€pPECEKAIOTCsl B
touke M. Torma u3 Bumcannoctn noiayvaeMm /(AM, MD) = L(AM, MF) + /(MF, MD) =
/(BA, BF) + /(CF,CD) = /(BA, CD) = /(AE, ED). To ectb M Ttak ke JI&XKUT U Ha
OIUCAHHOW OKPYKHOCTH TpeyrobHuka ADFE. AHAJOITYHO JIJIsi OCTaBIIErocs TpPeyrobHUKA.
b)ljist 3TOrO HaM JIOCTATOYHO JI0Ka3aTh, UTo Tpeyroabuuku MBE u MFD nomobubt. s
Toro mnokaxkem, 4ro yron M BE pasen yriy MFD. Torma yrimet MEB u M DF paBHbI
[0 AHAJOTUIHBIM COOOpPaKEeHHAM, & CJIeJIOBATEILHO, TPEYTOJbHUKH IMO/IO0HBI 10 JIBYX YIJIaM.
/(EB, BM) = (/(CE,CM) = /(CD,CM) = Z(FD FM), a.r.n.

)HyCTb BeKTOp CKOPOCTH TapakaHna B paBeH b a Tapakana C' — €. Torma mycrthb cC' = 7,

a BB = 1. Torma Touka mepecedeHusl OMMCAHHBIX OKpYyrKHOCTell TpeyroabHukoB ABC un
AB'C' (touka P) 6yaer meHTp MOBOPOTHOH TOMOTETHH, HepeBosdmuii orpesok BB’ B CC’. A
cJIeI0BaTe/IbHO U TIepeBoIsImit BCio psiMyto A B B ipsamyto AC ¢ KoadurimeHToM OTHOTIIIeHU ST
ckopocreit TapakaHoB. CjieJoBaTeIbHO, TaK KaK B KAKOW-TO MOMEHT 3Ta TOMOTETHSI TIEPEBOIUT
OJIHOTO TapaKaHa B JIPyroro, To OHa Bcerja OyaeT JejaarTh 9To. A Toria g Joboro JIpyroro
noJioxkeHust TapakanoB By, Cy st derBepku upsmbix BogB, BC, CCy, CyBy Touka P Bcerja
Oy/IeT SABJIATHCS MEHTPOM TAKOl MOBOPOTHOI MOMOTETHH, a CJIeI0BATEILHO U TOYKOH Mukers.

3aMeTuB erre, 9To ec/ii OTPA3UTH TOUKY P CHMMETPUIHO OTHOCUTEIbHO mpsiMoit BC' To mosty-
quTcs TpeyroJbHuK PBP’, KoTopblit Tak ke npu JABUKeHHU B Oyjer ocraBaThCsl BCe BPeMs
10/J00HBIM caMoMy cebe (Tak Kak TpeyronbHuK PBC TakoBbiM octaercs). CiieJoBaTeIbHO BCe-
BO3MOXKHBIE TOYKHU P’ MOYKHO IOJIyUYUTh IIOBOPOTHON TOMOTeTHel u3 npsaMoit AB ¢ neHTpoM B
touke P. To ecth 310 TOXKe Oymer npsimasi. Obo3nadum ee depes [. Torma npsamas C'B Bce Bpe-
Md OYIeT KacaThcd mapadoJibl ¢ pokycoM B Touke P u qupektpucoii [. Toukoit Kacanus Oyjer
SIBJISITHCS TOYKa Nepecederns npsimoii C'B ¢ MepHeHiuKyJIsipoM, BOCCTAHOBJIEHHBIM B TOUKe P’
K IIPAMOii [.

d)IIycrs Touka FE mosser ¢ moCTOSHHON CKOpOCThIO OT Touku B K Touke C, a Touka F ot D k A
¢ Takoit ke ckopocTbio. Torja ycioBue coxpansiercs B Jito0oi MoMeHT Bpemenu. C npyroit cTo-
POHBI IIOCMOTPHUM Ha TO Kak OyyT gBurarbcs Toukn R u (). [lokaxkem, aTo Touka () JBUTAETCS
¢ TIOCTOSHHOI CKOPOCTBIO, TOTJIa M TOYKa R 10 aHAJOTHYHBIM NPUIUHAM OyJIeT JIBUTATHCS C
MTOCTOSTHHON CKOPOCTBIO, W 3aJia9a CBEJIeTCs K MpebLayIeit. 3amernm, 9to yriabl FQB u F QD
paBubl. Tak ke paBHBI cropoubl KB u F'D tpeyroasuukos EBQ u FD(Q. A ciegoBaresbHO,
II0 TeopeMe CHHYCOB PaBHBI M MX OIMCAHHBIE OKPYXKHOCTH. A cjleloBaTeIbHO, TaK KaK yIJIbI
EBQ v FD(Q dukcupoBaHbl, TO IOCTOSHHO U oTHOIeHne F(Q) Kk QF. A cieioBaTeibHO, TOUKA
() Tax Ke JIBUTAETCs C IMMOCTOSTHHON CKOPOCTBIO, I.T.JI.

e)Touka Mukessi — hOKyC BIMCAHHON B 4€THIPEXYTOJBHUK HapabOJIbL.

f)3amernm, 9To eciin B3ATH JIEOObIE TPU U3 YETHIPEX MIPOEKIIUiL, TO OHU JIEXKAT Ha OJHOMN MPIMOii
110 Teopeme CUMCOHA JIjIsI COOTBETCTBEHHOI'O Tpeyro/ibHuka. CiieoBaTe/IbHO, BCe OHU JIEXKAT Ha
ojiHOI TpaMoit. HecnoxkHo mokazaTh, 9TO eciu ¢/ie/IaTh TOMOTETUIO € IEHTPOM B TOYKE, JIJIsd
KOTOpOit mpuMeHsieTcst Teopema Cumcona, ¢ KoaddummeaToMm 2, To 0b6pas3 npsamoit CuMcoHa J11s
9TOI TOYKHU IPOIJIET Yepe3 OPTOIEHTDP TpeyroiabauKa. [losToMy eciu ¢iaesaTb rOMOTETHIO C TICH-
TpoM B TouKe Mukejis 1 KoapduimeHToM 2 To oIy deHHasd IpsaMast [IPOJIeT Yepe3 OPTOIEHTPhI



BCEX TPEYIOJIbHUKOB. A €CJIi B3ATh TPU OKPYKHOCTH € JIMaMeTPaMK Ha JMArOHAJIAX (BCeX TPex)
YeTHIPEXYTOJIbLHUKA, TO BCE OPTOIEHTPHI Oy/IyT UMETh OJIMHAKOBBIE CTEIIEHN OTHOCUTEILHO ITHX
TPeX OKPYKHOCTeil. A cjiejoBaTe/IbHO, 3TO UX 00Iasl PaJIMKAIbHAS OCh U 9Ta MPIMasi ePIeH-
JIMKYJISIpHA JIMHUU [IEHTPOB, TO ecTh npsamoii ['aycca. [ns Bnucannoit napadbosist ee pokyc Oyier
JIeYKaTh HA OIMCAHHBIX OKPYKHOCTSX BCeX TpeyroibHukoB. CrenoBaresibHO, Touka Mukess un
oymer (okycoM 3Toit mapabosbl. A OCHOBAHWA NMEPHEHIUKY/ISPOB OYIYT JIeXKaTh Ha IMPSIMOI,
SABJIATONIENCS KacaTeJbHOM K 9TOoil mapabosie B ee Bepiiuue. [Ipsimasi, mpoxossias depes op-
TOIEHTPHI OyJ/IeT JUPEKTPUCO 9Toil mapabosibl. A 3HadnT npsimas [aycca OyeT mapaJiie/ibHa
IJIaBHOM OcH 11apaboJIbl.

3.

a)O6o3HaunM paccmarpuBaeMble cepenutbl uepes M (cepenuna AC), N (cepemuna BD) u T
(cepequna E'F). Ilyctb cepenunbl Tpeyrosibinka ABF — touku F', A" uw B’. 3amerum, 410
M nexur na F'B', N wa F'A’, T wa A'B’. Eciu ciesath TOMOTETHH C IIEHTPAMK B BEpITHHAX

tpeyrosbauKa ABF 1 KoaddurmerToM j1Ba Moy daem M _ BC ﬁ = AE m = FD .
MB CF' TA EC'NF DA

[TepeMHOKMB 9T TpU paBEHCTBA MOJIYyYIUM ciipaBa 1o Teopeme Meneas —1, a ciieoBaTe/ibHO,
10 9TOM 2Ke TeopeMe MPUMEHEHHON B 0OOPaTHYIO CTOPOHY IOJIydIaeM Tpedyemoe.

b)¥Ykazauue. [Ipamas [aycca gerbipexyrombanka ABC D sBsieTcss reOMeTPUIECKIM MECTOM
To4eK, Jist Koropbix X Sxap + Sxcp = Sxpo + Sxpa (101 OPUEHTHPOBAHHDIE).
¢)Cnemyer u3 3amaqan 2f.

d)9r1o nepedopmysmposka 1.b)

e)3amernM, uTo () — Touka Mukess st werBepku npsimbix AB, BC, C'A;, AC,. Beuny 3c
JIOCTATOYHO TOHATH, uTo D P mnapaJsuiesibHa mnpsamoii ['aycca sToit yerBepku npsmbix. Ho 310
BEPHO, TaK KakK IPU TOMOTETHH ¢ IeHTpoM B u KodddurerTom 1/2 D P niepexo/uT B IpsIMyTo
laycca.




2 Tpm Mukejs njg KBapTeTOB.

4. Nz zagmaq 13, 15 caemnyer, aro npsmbie AX, BY | C'Z npoxojdT yepe3 TouKy [’ m30roHabHO
conpsizkennyo D oraocureabno XY Z.

5. Henocpeicreenno cieyer us 3ajga4n 13.
6. Hemocpeicreenno ciemnyer u3 3aga4 13, 15.

7. ITo 3amaue 11 tpeyronbanku X DZ u XY A, XD'Z u XY A’ nono6ust. CiregoBarensho, X A :
XD = (XA: XZ)(XZ: XD') = (XY : XD)(XA : XY)=XA": XD, 910 paBHOCUTILHO
YTBEPKJICHUIO 3aatN.

8. Chemyer w3 npeablaylieil 3aa9i U TeOPeMbl O TpeX MEeHTpaxX MOMOTETHUH, NPUMEHEHHON K
orpeskam AA’', DD' w B'B. [eiicrBuresibHo, Z sABJISeTCsS IIEHTPOM I'OMOTETHH, TEPEBOIAIIEH
AsB,aA —BBumtn

Jpyroe perreHre MOXKHO Cpasy MOJIYYIUTh U3 YTBEPKICHUS 3a1a9u 1e).

9.

a)Touka X siBseTcs meHTPOM MOBOPOTHOM roMorerun, nepesojgiieit C' B D, a A — B B. Tlo-
CKOJIBKY Ky TIpu 3T0it roMOTeTnn 1epexojnutT B Ly, yron Ky X Ly paBeH yIiry MeKy TPSIMbIMA
AC u BD. CnenoBarenbno, X J1exKuT Ha OKpy:KHOCTU Py Ky Ly . AHajgorundto moJjydaem, 9To
Z TO¥Ke JIEeZKUT Ha TON OKPYZKHOCTH.

b)Tak kak X sexur Ha okpyxkuoctu APy B, /XPyB = (XAB. Ananoruuno, /BPy7Z =
/BCZ. V3 »Tux m 4eTbipex aHAJOTMIHBIX PaBeHCTB mojydaeM, urto /X PyZ + [ZPxY +
LY Pz X = 7, oTKy/a, OYEBUJIHO, CJIE/IyeT YTBEPXKJIEHNE 3a/Ia4u.

¢)U3 pemenus 3agaun 15 Bugno, uro ¥x(Py) = Pz u 1. 910 o3Hadaer, 9ro TOYKU P,
Py, Pz Bxomar B ojuH KBaprer, T.e. ¥x(Px) = ¢y (Py) = 1¥z(Pz). YTBepKieHue 3ajaqn
O3HAYAEeT, UTO 9Ta TOUKA N30TOHAJIbHO conpsizkeHa T wnn 1z (T) usoroHanbHO conpsizkeHa Py.
BameTnm, 9TO 1)z epeBoAnT mpoxo/isiye depes T okpyzkuoctu Z X Py u ZY Py B upsambie Y Py
u X Py, tak uto ¢7(T) — Touka nepecedenus stux npsmMbix. 13 pasencrs /PxY X = /ZY Py,
[Py XY = /Z X Py nony4yaeM HCKOMOe yTBEPIKJIEHUE.

3 KBaprethl 14 Tpex MukeJeii.

10. a)-b) HenocpeicTBEHHO CJielyeT U3 OlpPeIeIeH sl

¢) Kax ioe u3 npeobpazoBanuii ¢y, Py, 1z ABIg€TCS KPYTOBBIM (T.€. IEPEBOIUT JIIOOYIO OKPY K-
HOCTb B OKDPY2KHOCTbL HJIA HpHMyIO) " COXpPaHAIOOIUM OPHUEHTAIIUIO. BHa}‘H/IT7 X KOMIIO3UIIA
Takxke obsafaer stumu cBoiicrBamu. Kpome Toro, u3 mi. a)-b) ciemyer, 94T0 OHa OCTaBIIsIET
HenoakHbIME Toukr X, Y, Z. Ho KpyroBoe npeobpasoBaHue, COXpaHSIOINEe OPUEHTAIINIO,
OJIHO3HAYHO OIpeJIeisieTcss 00pasaMi TPeX TOYeK. 3aMeTHM, YTO yTBEPZKIEHNE 3aJa9li BEPHO
HE3aBUCHMO OT IIOPsiJIKa IIPUMEHEeHUsT IpeodpasoBanuii 'y, Yy, 1z. CiegoBaTebHO, 3TH Ipe-
oOpa3oBanusg KOMMYTHPYIOT JIPYT C JIPYTOM.

Bropoe pemenne. [lomoxnm 1px (D) = A, 1y (A) = C. JocrarodHo goKa3aTh, 9TO TPEYTOIh-
aukn Y DZ w C X Z coBMemaiTcst TOBOPOTHONW TOMOTETHEN.

Nmeem (MHOPOKpaTHO moJib3yemcs nogobusiviu Y X D ~ AX Z w ananornanbivu): /(Y D, D7) =
/(YD,DX)+/(DX,DZ) = L(AZ, ZX)+L(YX,AY) = L(AZ, ZY)+L(ZY, ZX)+L(Y X, AY) =
L(XC,CY)+L(2Y, ZX)+L(CY,ZY) = L(CX, ZX); F2 =YD 22 = DX .34 — bX.DZ _ b2
YTO U TPeDOBAJIOC.

11. ITo ompenenenuto vx /ZXD = /AXY u XD - XA = XY - XZ, otkyna cpa3dy ciaeayer

nepBoe 1101001e. Bropoe joka3biBaeTcss aHAIOTTIHO




12. U3 zagaun 10 ciemyer, uro, nampumep, ¥x o ¥y = ¢,' = 1. Crenosarensuo, vy (A) =
Yy (Yx (D)) = z(D) = C, re. ¥y mensier mecramu toukun A u C, B u D. Ananorudno
noJjiyaaem, 910 Y x Menser mectamu Au D, Bu C,av; — Au B, Cu D.

13. Ilycts D', A’ — roukm, nuzoronanbro conpszkernbie D, A. Torga A’ nexxur Ha npsimoit X D, a
D' — na upamoit X A. Kpome roro, / XD'Z =7 —/ZXD' — /D' ZX =7—/DXY —/YZD =
(ZDX + /XY Z — w. Ho no zamaue 11 /ZDX = [AY X, re. (XD'Z = /XY A'. Buauur,
tpeyrosibauku X D'Z u X A'Y nonobust u A" = x(D').

14.

a)lleHTpbI BIMCaHHOIN U TpeX BHEBIMCAHHBIX OKPY’KHOCTEH TpeyrosbHuka XY Z.

b)Touka O u Tpu TOYKH, CUMMETPUIHbIE BepIINHAM TPeyroabHuKa XY Z OTHOCHTENHHO MPO-
THBOITOJIOYKHBIX CTOPOH.

¢)U3 onpeiesienust 1), ciaeyer, 9To €ro HEMOBUYKHbBIE TOUKH JIOJIZKHBI JIeYKaTh Ha OMCCEKTPHCE
yrja Z u OKPY:KHOCTHU C IEeHTpoM Z u pajuycoMm v ZX - ZY . Takux Todek jBe, 0603HATUM
ux U, V. 3 zamaan 10 nomyqaem, 1to Yx(U) = ¢y (¥z(U)) = Yy (U) = ¢Yz(¥x(U)), re.
Yx(U) — moxe nenomsmkuast Touka 1z. OueBnano, ¥y (U) # U, cienoarensho, 1y (U) =
Yy (U) =V, n uckomblit kBaprer (Kak i U, Tak u Jyist V') COCTOUT U3 JIBaXK/IbI IIOBTOPEHHBIX
touek U, V. BoJsiee Toro, sicHO, YTO TOYKM, N30TOHAJILHO collpsizKeHHbIe U, V| TakxKe ABJISAIOTCA
HETO/[BUZKHBIMY TOUYKAMU 1. 3Ha4IuT, U 1 V' M30roHAILHO COIPSIYKEHbI, & MOy YeHHbII KBAPTET
COBIIAJIAET CO CBOMM COIPSIZKEHHBIM.

15.

a)l13 onpejiesienns 1y u pesyabrara 3agadn 12 ciaemyer, 910 X — IMEHTD MOBOPOTHON TOMOTE-
tuu, nepesojsieit A B B, a C' B D. Tlo 3amade 2b) 5101 11eHTp coBnajaer ¢ Toukoii MukeJis
b)Tak kak X — rouka Mukess, o , nanpumep, rpeyroibaukn X BD u X AC nopo6ust. [lycrs
Px, Py, P; — touku nepeceuenuss AD u BC, AC' u BD, AB u CD. Torma tpeyrojbHUKI
XBPy u XPzC nonobusl, cieposarensio, XA - XD = XB-XC = XPy - XP; = R% n
yruet AXD, BXC, Py X Py umeror obmiyio ouccekrpucy [. Kommosunus naBepcnn ¢ meHTPOM
X u pagmycom Ry m cuMmerpuu oTHOCHTe bHO [ mepeBoautr Tpeyroabiauku ADPy u BC Py
coorBerctBento B DAP; u C BPy;. CnenoBatesibHO, 00Ias TOYKa Z ONUCAHHBIX OKPYZKHOCTEN
JIBYX TIEPBBIX TPEYTOJILHUKOB MEPEXO/IUT B Y, T.€. 9Ta KOMIIO3UIIUs COBIIAIAET C x .

16. N3 zajaun 13 ciemxyer, 9T0 KOMIIO3UIUS Yy W U30TOHAJBHOIO CONPAXKEHUA, TPUMEHEHHBIX
B JI000M TOpsijiKe, rnepeBoauT Touky D B A’



On isogonal conjugacy, Miquel points, (Newton-)Gauss lines, etc.
N.Beluhov, A.Zaslavsky, P.Kozhevnikov

1 Introductory problems

1. Isogonal conjugacy. Given a triangle ABC and a point P.

a)Prove that lines symmetric to AP, BP, C'P in the bisectors of corresponding angles are
concurrent or parallel. The common point P’ of these lines is called isogonal conjugate to P
with respect to ABC.

b)Prove that P’ is a point at infinity (i.e. three corresponding lines are parallel) iff P lies on

the circumcircle of ABC.

c¢)Determine the image isogonal conjugacy of a circle passing through two of three points A, B,
C.

d)! Prove that all projections of P and P’ to the sidelines of ABC' are concyclic. Reformulate the statement
above for the case when P’ is a point at infinity.

e)For two pairs X, X’ and Y, Y” of isogonal conjugate points, prove that XY N XY’ and XY'NX'Y are isogonal

conjugates.

Given a quadrilateral ABC'D and a point P.

f)Suppose that three of four lines symmetric to AP, BP, C'P, DP in the bisectors of
corresponding angles are concurrent. Prove that all four lines are concurrent.

g)Prove that for a point P there exists an isogonal conjugate P’ iff projections of P to the
sidelines of ABC'D are concyclic (if P’ exists, then all projections of P and P’ to the sidelines
of ABCD are concyclic).

A conic is said to be inscribed to a polygon if it touches all the sidelines of this polygon.
h)Prove that foci of a conic inscribed to a triangle are isogonal conjugates.

i)Prove that focus of a parabola inscribed to a triangle lies on its circumcircle.

2. Mliquel point. Given a quadrilateral ABCD. Let E = ABNCD, F =AD N BC.

a)Prove that (in notation of the previous problem) circumcircles of triangles ABF, CDF, ADFE,
CDE have a common point M (Miquel point for a quadruple of lines AB, BC, CD, DA).
b)Prove that M is a center of spiral similarity that takes segment BE to F'D (or DE to F'B,
etc.)

¢)Two bugs B and C move, each at a constant speed, along two lines intersecting at A. Prove that all the circles
ABC have a common point, and * all the lines BC' touch fixed parabola.

d)(IMO2005) Let ABCD be a convex quadrilateral with sides BC' and AD equal in length and not parallel.
Let E and F be interior points of the sides BC and AD such that BE = DF. The lines AC and BD meet at
P, the lines BD and E'F meet at @, the lines EF and AC meet at R. Consider all triangles PQR as E and F'
vary. Prove that the circumcircles of these triangles have a common point other than P.

e)Establish a connection between Miquel point and inscribed conics.

f)Prove that the projections of Miquel point to the sidelines of a quadrilateral lie on a line perpendicular to

Gauss line. Establish a connection between this line and a parabola inscribed to the quadrilateral.

3. Gauss line. Given a quadrilateral ABCD. Let E=ABNCD, F=AD N BC.

a)Prove that the midpoints of the segments AC, BD, E'F lie on a line (that is called Gauss
line of ABC'D, or Gauss line of quadruple of lines AB, BC, CD, DA).

b)Prove that the center of the circle passing through the projections of a pair of isogonal

conjugates lies on Gauss line.
c¢)Prove that Miquel point is isogonal conjugate to the infinite point of Gauss line.
d)Prove that centers of conics inscribed to a quadrilateral lie on Gauss line.

IHere and further we footnotesize the statements that not used in the proofs of results from section 2.



e)(All-Russian Olympiad 2009) Let A; and C; be points on the sides AB and BC of parallelogram ABCD. Let
P = ACy N CA;. Circumcircles of triangles AA; P and CCy P meet for the second time at point @ lying inside
triangle ACD. Prove that /PDA = /QBA.

2 Three Miquels for a Quartet.

In this section we use the following notation. Let A, B, C, D be four points such that no three
of them are collinear. Let X be Miquel point for the quadruple of lines AB, AC, BD, CD, let
Y be Miquel point for the quadruple of lines AB, AD, BC', CD, let Z be Miquel point for the
quadruple of lines BC', AC', BD, AD. We set Px = ADNBC, Py = ACNBD, P, = ABNCD.
Let Kx and Lx be midpoints of the segments BC' and AD respectively, similarly, let Ky, Ly
be midpoints of AC', BD, let K, Lz be midpoints of AB, CD. Let 'y = KxLx, 'y = Ky Ly,
I'y = K7Lz be Gauss lines for the corresponding quadruples of lines.

4. Prove that AX, BY, C'Z have a common point D', or parallel. Similarly define A", B', C".

5. Prove that A, B’, C', D’ are isogonal conjugates to A, B, C', D with respect to triangle
XYZ.

6. Prove that X, Y, Z are Miquel points for quadruples of lines joining A’, B’, C', D’.
7. Probe that lines AA’, BB', CC’, DD’ are parallel.
8. Prove that AD, A’D', Y Z are concurrent (find other analogous intersections).

9.

a)Prove that points X, Z, Py, Ky, Ky lie on a certain circle wy. Similarly define circles wy,
Wyz.

b)Prove that wy, wy, wz have a common point 7.

c)Prove that X Py, Y Py, ZP; meet at T.



3 Quartets for three Miquels.

Let XY Z be a triangle. Define a transformation ¢ x as the symmetry in the bisector of angle
X followed by the inversion with center X and radius R = VXY - XZ. Similarly define
transformations ¥y, V5.

10. Prove that

a)Yx(Y) =27, vx(Z2) =Y;

b))% is the identity transformation;

c)Product 171y 1)y is the identity transformation.

Let D be an arbitrary point, let A = ¢x (D), B = ¢y (D), C = 14(D).

11. Prove that AXDZ ~ AXY A and AXDY ~ AXZA.

12. Prove that each of the transformations ¥ x, 1y, 1z takes the 4-element set {A, B, C, D} to
itself. A 4-element set of points {A, B, C, D} defined as above is said to be a quartet. From the
previous problem it follows that all the plane except X, Y, Z is partitioned into quartets.

13. Prove that four isogonal conjugates to points of a quartet is a quartet.

14. Find all the quartets containing

a)the incenter I of triangle XY Z;

b)the circumcenter O of triangle XY Z.

¢)Find the invariant points for ¢z, and corresponding quartets.

D.

a)Prove that X is Miquel point for the quadruple of lines AB, AC, BD, CD.

b)Formulate similar statements for Y, Z.

c)Prove the converse: if X, Y, Z are Miquel points defined by A, B, C, D, then A, B, C, D us
a quartet (for X, Y, 7).

16. Prove that each of transformations ¥y, ¥y, ¥z commutes with the isogonal conjugacy with
respect to XY Z.

17. Suppose A, B, C, D be a quartet with respect to XY Z, let A’, B’, C’, D’ be isogonal conjugates to A, B,
C, D respectively. Consider four conics having pairs of foci A and A’, B and B’, C and C’, D and D'.
a)Prove that these conics are homothetic to each other.

b)Prove that midpoints of six segments joining centers of these conics lie on a certain conic that is homothetic
to them and passing through X, Y, Z.

18. Let M, N be a pair of isogonal conjugates with respect to triangle ABC lying inside ABC. It appears that
AM -AN-BC=BM - -BN-AC=CM-CN -AB =k.

a)Prove that the midpoint of M N is the gravity center of A, B, C.

b)Find % in terms of side lengths of ABC.

—_



4 Additional problems.

19.

a)Let A, B,C, D be a quartet, A’, B',C", D' be conjugated quartet; let Py be intersection point
of AD and BC', Py — of AC and BD, P; — of AB and C'D. Points Qx, Qy, @z are defined
similarly by points A’, B’,C’, D’. Prove that lines PxQx, PyQy, PzQ 7 are concurent in the
point, which lie on the circumcircle of triangle XY Z (notations as above).

b)In previous notations prove that lines PxQy, PyQx and XY concur.

c)Let Z' be the point obtained in b). Prove that line ZZ’ is parallel to AA’, BB',CC', DD’.
d)Let Dy, D] and Ds, D, be two pairs of isogonally conjugated points such that D;D] ||
Dy D). Prove that lines Ay Ay, By By, C1Co, D1 Dy concur (Ay, By, Cy, Dy and Ay, By, Cy, Dy are
quartets).

20. Given points A, B, C, D. It is known that triangle XY Z is perspective to each of triangles
ABC,BCD,CDA, DAB (with indicated order of vertices). Points D', A’, B', C" are respective
centers of perspective. Prove that lines AA’, BB',CC’, DD’ concur.



On isogonal conjugacy, Miquel points, (Newton-)Gauss lines, etc.
Solutions.
N.Beluhov, A.Zaslavsky, P.Kozhevnikov

1 Introductory problems

1.

a)Follows from sine Ceva theorem.

b)Proof by counting angles.

c)Let P be a point of a given circle. Then measure of angle APB is fixed. Hence the sum of
measures of angles CAP and C'BP is fixed. Therefore, measure of angle AP’'B is fixed, hence
P’ lies on a fixed circle passing through A and B.

d)By Pa, Pg, Pc denote points symmetric to P in BC, C'A, AB, respectively. Since P4C =
PC = Pg(C, the perpendicular bisector of the segment P, Pg passes through C, and hence
it is the bisector C'P’ of angle P,C Pg. Hence P’ is the circumcenter of triangle PyPgPc. By
homothety with center P and ratio 1/2, the midpoint 7" of PP’ is the center of the circle passing
through projections of P to the sidelines. Similarly, 7" is the center of the circle passing through
projections of P’. These two circles coincide since T is equidistant from projections of P and
P’ to a centain line.

In the case when P’ is a point at infinity we obtain the Theorem on Simson line. for a point
lying on the circumcircle, its projections of to the sidelines are collinear.

e)Let the common point of XY’ and Y X’ be P and the common point of XY and XY’ be Q.
Let XANY X' = X4, and YYANY X' = Y,. Also call as @ 4 intersection point of QA and Y X”.
Prove that lines AQ) and AP are symmetric with respect to the bisector of angle A. Since this
is true for all angles points P and () are isogonaly conjugated.

Consider cross-ratio (Y, Qa, X4, X’). Project these points from @ to line AX’. The map of Y
is X', the map of Q4 is A, X4 transforms to itself and X’ transforms to the common point
of lines X'Y’ and X A. Now project obtained ratio from Y’ to line Y X'. The map of A is Yy,
the map of X is P, X4 transforms to itself and the map of X’ transforms back to X’. Thus
(Y, Qa, X4, X') = (P,Ys,Xn,X") = (Ya, P, X', X4). It means that AQ is the reflection of AP
in the bisector of angle A.

Another proof see also in the book of A.Akopyan and A.Zaslavsky "Geometry of conics" AMS,
2007.

f)By P’ denote the point of intersection. Let AB and C'D meet at K. For one of triangles
KBC and KDA, P’ is isogonal conjugate to P. Hence, P lies on the line symmetric to K P
in the bisector of angle K. For the other of two triangles KBC and K DA, P’ is also isogonal
conjugate to P. We obtain that P lies on all four lines symmetric to AP, BP, CP, and DP,
in the bisectors of corresponding angles.

g)Suppose that projections of P are concyclic. Then, similarly to p.d), obtain that point P’
symmetric to P in the center of the circle is isogonal conjugate to P. The converse statement
is proved anagolously.

h)See the book mentioned above.

i)By the statement converse to the Theorem on Simson line, it is sufficient to prove that the
projections of parabola focus to the sidelines are collinear. Since a point symmetric to the focus
in any tangent lies on a directrix, the required statement follows.

2.
a)Let the circumcircles of ABF and CDF meet for the second time at M. We have
L(AM, MD) = L(AM, MF)+ ((MF, MD) = /(BA, BF) + L(CF, CD) = L(BA, CD) =



/(AE, ED), hence M lies on the circumcircle of ADE. Similarly for the other triangle.

b)It is sufficient to prove that triangles M BE and M F'D are similar. We have /(EB, BM) =
[(CE, CM) = /(CD,CM) = /(FD, FM). Angles MEB and MDF are equal by the same
reasoning.

c)Let B’ and C’ are the positions of bugs at some moment. The intersection point P of the
circumcircles of triangles ABC and AB'C" is the center of spiral similarity taking line BB’ to
CC’ (ratio of this similarity is equal to the ratio of the speeds of the bugs). Hence P is Miquel
point for quadruple of lines B'B, BC, CC', C'B'.

d)Suppose E moves from B to C' at some constant speed, while F' moves from D to A at the
same speed. The condition holds at any moment. We show that each of points () and R moves
at a constant speed, so statement of the problem follows from the previous problem. Note that
(EQB = /FQD, EB = F'D. Hence the circumcircles of triangles EBQ FD() are equal, and
ratio FQ)/QF is constant. Therefore () moves at a constant speed. Similarly, for R.

e)Miquel point is the focus of a parabola inscribed ro the quadrilateral.

f)By Therem on Simson line, eah three of four projections are collinear. Hence all four
projections are collinear. It is known that homothety with center at some point of the
circumcircle and ratio 2 takes Simson line to the line passing through the orthocenter. Therefore,
by homothety with center at Miquel point and ratio 2 we obtain the line [ passing through
orthocenters of four triangles. The orthocenters have equal powers with respect to three circles
constructed on the diagonals of quadrilateral, hence [ is the radical axis for these three circles
that is perpendicular to Gauss line (passing through the centers of the circles). For the inscribed
parabola, the focus lies on the circumcircles of the triangles. Hence, Miquel point is the focus.
The projections of Miquel point lie on a tangent to the parabola at its vertex. The line passing
through the orthocenters is the directrix of the parabola. Hence, Gauss line is parallel to the
axis od parabola.

3.
a)By M denote the midpoint of AC, N — midpoint of BD, T" — midpoint of EF. Let F’,
A’ and B’ are the midpoints of the sides of ABF. Note that M lies on F'B’, N lies on F'A’,

F'M _ BC
T lies on A’B’. By homotheties with centers at vertices of ABF and ratio 2, 5 = ,

_ . B CF
? IZ; = %, ]/\1[ }]:’\C = g Multiplying these three equalities, and applying Menelaus theorem,
we obtain the required.

b)Hint. Gauss line of quadrilateral ABC'D is the locus of points X such that Sxap + Sxcp =
Sxpc + Sxpa (here the areas are oriented).

c¢)Follows from 2f.

d)This is reformulation of b).




2 Three Miquels for a Quartet.

4. From Problems 13, 15 it follows that AX, BY, C'Z pass through D’ (isogonal conjugate to
D with respect to triangle XY 7).

5. Follows directly from Problem 13.
6. Follows directly from Problems 13, 15.

7. By problem 11, AXDZ ~ AXYA, AXD'Z ~ AXY A Hence XA : XD = (XA :
XZ)(XZ:XD')= (XY : XD)( XA :XY)=XA: XD, that equivalent to the statement of
the problem.

8. Follows from the previous problem and Theorem on three homotheties applied to the segments
AA', DD', and B’B. Indeed, Z is the center of homothety that takes A to B’, A’ to B, etc.
Alternative solution could be easily derived from Problem le).

9.

a)X is a center of a spiral similarity that takes C' to D, A to B. Since Ky is the image of Ly
under this spiral similarity, angle Ky X Ly equals to /(AC, BD). Hence X lies on the circle
Py Ky Ly. Similarly obtain that Z lies on the same circle.

b)Since X lies on the circle APy B, we have /X PyB = /X AB. Similarly, /BPyZ = /BCZ.
From these and four analogous equalities it follows that / X Py Z+ /ZPxY + /Y Pz X = 7, that
implies the statement of the problem.

¢)From problem 15 it is clear that 1 x(Py) = Pz, etc. This means that Py, Py, Pz belong to
a certain quartet, so ¥x(Px) = ¥y (Py) = ¥z(Pz). We need to show that ¢ (Py) is isogonal
conjugate to T', or equivalently, ¥z (7T) is isogonal conjugate to Pz. Note that 1), takes circles
Z X Py and ZY Px (passing through T') to lines Y Px and X Py, hence ¢z(T) = Y Px N X Py.
From equalities /PxY X = /ZY P;, /Py XY = /Z X P, obtain the required statement.

3 Quartets for three Miquels.

10. a)-b) Follows directly from the definition.

c) Each of the transformations ¥y, ¥y, 1z is circular (i.e. takes a circle either to a circle
or to a line) and preserves the orientation. Hence any product of ¢z, vy, ¥x is a circular
transformation preserving the orientation. Moreover, from a)-b) follows X, Y, Z are invariant
points for ¥ 21y 1) x. Note that a circular transformation preserving the orientation is uniquely
defined by the images of three points. The statement of the problems is independent of the
order of ¥x, ¥y, ¥z in its product. Hence ¥ x, ¥y, 1z commute to each other.

11. By definition of ¢x, /ZXD = /AXY and XD - XA = XY - XZ, that implies the first
similarity. The second similarity is proved analogously.

12. From Problem 10 it follows, in particular, that 1y oty = ¢,' = 1. Therefore, 1y (A) =
Yy (Yx (D)) = 1z(D) = C, so ¥y interchanges the points in the pairs (A, C), (B, D). Similarly
we obtain that ¢x interchanges the points in the pairs (A, D), (B, (), while ¢ interchanges
the points in the pairs (A, B), (C, D).

13. Let D', A" be isogonal conjugates to D, A respectively. Then A’ lies on X D, D’ lies on X A.
Moreover, / XD'Z =7 — /ZXD' — /D'ZX =7 — /DXY —/YZD = /ZDX + /XY Z — .
By Problem 11 we have /ZDX = /AY X, ie. /(XD'Z = /XY A'". Hence AXD'Z ~ NXA'Y,
and A" = ¢Yx (D).

14.

a)The incenter and the excenters of XY Z.

b)Point O and three points symmetric to X, Y, Z in the opposite sidelines of XY Z.



¢)From the definition of v it follows that its invariant point lie on bisector of angle X ZY", and
on the circle with center Z and radius vZX - ZY. There are two such points U and V. From
Problem 10 we obtain that ¢ x(U) = ¥y (¢¥z(U)) = ¥y (U) = ¥z (¥x(U)), i.e. ¥x(U) is also
an invariant point for ¢z. It is clear that ¢x(U) # U, therefore, 1x(U) = ¢y (U) = V, and
a required quartet (both for U and for V') is U, U, V', V. Further, the isogonal conjugates to
U, V are also invariant under vz. Hence U and V' are isogonal conjugates to each other, and
quartet U, U, V', V coincides to conjugate quartet.

15.

a)From the definition of ¢x and the Problem 12 it follows that X is the center of spiral similarity
taking A to B, and C to D. By Problem 2b) this center is Miquel point.

b)Y is Miquel point for the quadruple of lines AB, BC, AD, C'D; Z is Miquel point for the
quadruple AD, AC, BD, BC.

¢)X is Miquel point, hence (in particular) AXBD ~ AXAC. Let Px = AD N BC, Py =
AC N BD, P, = ABNCD. We have XA - XD = XB-XC = XPy - XP; = R? and
the angles AXD, BXC, Py X Pz have a common bisector [. The inversion with center X and
radius R, followed by the symmetry in [ takes triangles AD Py and BC'Py to DAP; and CBPy,
respectively. Therefore it tales intersection point Y of the circles AD Py and BC Py to Z. Hence
the product of an inversion and a symmetry defined above is 1.

16. From Problem 13 it follows that the product of ¢x and the isogonal conjugacy (in any
order) takes D to A’.






10.

Packpacku v knacrepbl

A.BenoB-Kanesn,

. NBanos-Iloromaen, A. MajnaucroB, M. XapuToHOB

[TiockocTh packpaitiera a) B aBa 1seta b) B Tpu npera. Jlokaxkure, 910
HAJIyTCA ABE TOYKH OJIHOTO IBETA, PACCTOSTHUE MEXK Iy KOTOPLIMU 1.

Tor ke Bompoc JJig IPOCTPAHCTBA, PACKPAIIIEHHOTO B 4 IIBeTA.

Tot ke Bompoc /15T N-MEPHOTO MPOCTPAHCTBA, PACKPAIIIEHHOro B N + 1
IIBET.

[LitockocTh packpaleHa B JiBa 1BeTa. JlokaxKuTe, 9TO B OJJTHOM U3 IIBETOB
YKJIQIbIBAIOTCS BCE PACCTOSHUSI.

Tot ke BompoC JIjIsI N-MEPHOTI0 MPOCTPAHCTBA, PACKPAIIIEHHOTO B N IIBE-
TOB.

Tot ke Bompoc [jId IJIOCKOCTH, PAaCKpallleHHO# B 3 IIBeTa.

Tor ke BompoC JIjIsT N-MEPHOTO ITPOCTPAHCTBA PaCKpaIIeHHOTO B n—+1
IIBET.

PaCKpaCBTe IIJIOCKOCTHb B BO3MOXKHO MeEHbIII€ee YHUCJIO IIBETOB, 9TOOLI HE
OBLITO CINHNYIHOTI'O OTPE3Ka C OAHOIIBETHBIMHN KOHIIaMU.

K macrosiemy BpeMeHH HEM3BECTHO MHHHMAJIBHOE YHCJIO T IIBETOB, Ta-
KO€ 4TO IIPH HEKOTOPOH pacKpacKe IIOCKOCTH B T IIBETOB HET OTPE3Ka
eIMHUYIHOMH JIJIMHBI C OJHOLIBETHBIMH BepiiuHaMmu. V3BecTHO TOJIBKO, ITO
4 <x<T.

Ba,uaqa YIIpolIaeTCd, €CJIN NCKAThb «IIOYTU €IMHHUYIHBbIC» OTPE3KU.

[TiockocTh packpaiiieHa a) B 4erbipe 1BeTa b) B msiTh nperos. Jokaxu-
Te, 9TO HAWIyTCA JBE TOYKN OJHOTO I[BETa, PACCTOSHIE MEXKIY KOTOPDI-
MU OTJInYaeTcs oT eauHuIbl He Oojiee yem Ha 0,001.

Permmrerne nmyuakTa b npeapiayrineli 3aj1aqu OCHOBBIBAETCS Ha CJIETYIOIIEM
¢akre:

KiteTku 1mrockocTu packpaliieHbl B jiBa IiBeTa (001asi rpaHuia KJIeTOK
Pa3HBIX IIBETOB CUUTAETCS MECTPOM, KaxKasi KJIETKa pacKpAaIlleHa I10JI-
HOCTBIO B 0jinH 1BeT). Jlokaxkure, 910 HANIETCsT OMHOIBETHAS JIOMAHASI
(Bce TOYKM MOKpAIIEHbI B OJINH I[BET), KOHIIBI KOTOPOl HAXOAATCS HA
paccrosiauu 6oJibiie 1000.



11.

12.
13.

14.

15.

16.

Packpackxu u xkaacmepwi

[IpocTpancTBEeHHOE 0000IIIEHNE TTPEABLIYINEN 3a/1a91 Ha ITPOCTPAHCTBEH-
HYIO TPEXMEPHYIO PeIleTKy, KJIETKH KOTOPOIl IMOKpAaIeHbl B TPU I[BETA

To ke 1 n-MepHON PemeTKH, MOKPAIIIEHHONH B N IIBETOB.

Ky6 k x k x k pazour Ha k3 enHIIHBIX KyOUKOB, KasKIbIil I3 KOTOPBIX
ITOKPAIleH B KPACHBIN, CUHUI WJIM 3ejeHblil 11BeT. Jlokazkure, 94TO Hali-
JIeTCs OJTHOIIBETHAS JIOMaHasd, COeTNHSIIONIAs MTPOTUBOIIOIOXKHBIE TPAHU.
CdopmynupyiiTe un goKakute n-MmepHoe obodieHue. Jlokaxkure Takxke,
YTO IPU YBEJIUIEHUN KOJIMIECTBA [[BETOB Ha €IUHUILY yTBEPKJICHUE CTa~
HOBUTCsI HEBEPHBIM.

TpexmepHoe mpocTpaHCTBO MOKpatieHo B 9 nmBeTos. /lokakure, 9T0 Hali-
JIYTCS JIBE OJTHOIIBETHBIE TOYKU, PACCTOTHUE MEXKJIY KOTOPBIMH OTJIMYa-
ercs oT eimHUIBI MenbIte, deMm Ha 0,001. O6ob1uTe 33,18y HA N-MEPHbIHT
cJydvai.

Omnpenenenune. HazoBeM k.aacmepom MHOXKECTBO CBSI3AHHBIX KJIETOK.
JIBe KjeTku, uMeroniue OOILYI0 TOUYKY, CAUTAIOTCA CEA3AHHBLMU.

PesysbraTs! 3aga9u 12 nmoggaoTces JajbHeReMy oO00IeHHTIO.
IIycTh Bce KjI€TKM €IUHUIHON n-MEepHOI pelreTKu IIOKpaIleHbl B k 1Be-

ToB (kK < n+1). Torma B kybe ¢ pedbpom 10M Haiizercs CBA3HBIN O/IHO-
IIBETHBIN Kj1acTep obbema M™H17F,

a)* Pemure 3anaay s k = 2.
b)* Pemure 3anauy s k = n.
¢)* TlonpoOyiiTe pemuTs 3a/a49y B JAPYTUX CIIydasiX.

[TokaxkuTe, YTO yTBEpP2KIeHNE 331291 12 BBITEKAET U3 CJAEIYIONEero (pak-
Ta, KOTOPBIi JIEZKUT B OCHOBE TOIIOJIOTMYECKOT'O OITPeJIe/IEHNs Pa3MePHO-
CTH: €CJIU M-MePHOe TPOCTPAHCTBO MOKPBHITO OTKPHITHIMUA MHOXKECTBaMU
OrpaHUYEeHHOIo JMaMeTpa, TO eCTh TOYKa, IMTOKpbITas n + 1 pas.

17* JlokaXuTe 9TOT TOMOJOTHIECKUI (PaKT.



18.

19r

20.

21.

22.

Packpacku v knacrepbl

A.BenoB-Kanen,

. NBanos-lloromaen, A. MaaucroB, M. XapuToHOB

Cioit Mex Iy JBYMs HapaJuieJIbHBIMH IIPSIMBIMI PAacKpallleH B 2 I[BeTa.
JlokaxxuTe, YTO B HEM HAUIYTCA 2 OJHOIBETHBIE TOYKU HA €JIUHUIHOM
PacCTOIHUMN.

Coroit MexK 1y JABYMs IapaJlie/IbHBIMUI IIJIOCKOCTSIMU pPacKpalieH B 4 1Be-
Ta. /lokaxkuTe, 9TO B HEM HaMIyTCAd 2 OJHOIBETHBIE TOYKH HA €JIMHIY-
HOM PaCCTOSHUMN.

a) Jlemma IITnepuepa. Tpeyronbuuk, Beprmmabl A BC koroporo pac-
KpallleHbl B 1BeTa 1, 2, 3 COOTBETCTBEHHO, Pa30UT HaA TPEYroOJbHUKMN.
BepmuHb 9THX TPpEeyroJbHUKOB PACKPAIIEHbI B IIBeTa, 1, 2, 3 TaK, YTOObI
TOUKH, Jiexkariue Ha [AB], ObLIn packpainenbl B npera 1, 2; Ha [BC| —
2, 3; [CA] — 3, 1. Torna wHaiinércs TpeyroJibHUK, BEPIIUHBI KOTOPOTO
pacKpallleHbl B pa3HbIe IIBETA.

b) ChopmymupyiiTe u JJOKaKUTE ITO YTBEPKIEHUE JJIsT N-MEPHOTO TIPO-
CTPAHCTBA.

a) Jlokaxkure, 9TO He CyIECTBYET HEIPEPHIBHOTO OTOOPAXKEHMs JIUCKA
HA CBOIO I'PAHUILY, TOXKJIECTBEHHOTO Ha TOH rpaHurie (T.e. Jiodas TOIKa
I'DAHUIBI TIEPEXOUT caMa B cebsi). Takme oToOpakeHWsT HA3BIBAIOTCSI
PEMPAKMAMU,.

b) lokaxkure Teopemy Bpayspa o HemoaBu>kHOI Touke: Hermpe-
PBIBHOE OTOOpaKeHue JTUCKa B ce0sS MMeeT HEMOIBUKHYIO TOUKY.

c¢) CchopmyupyiiTe 1 JOKaKUTE N-MEPHBIE AHAJOTH ITUX (PAKTOB.

NuanykTuBHOE ornpeesieHne pa3MepHoOcTHU. (-MepHOe MHOXKECTBO:
€CJTH BCE €r0 TOYKH JIeXKAT B PA3HBIX KOMIIOHEHTAaX CBS3HOCTH. 1-MepHOeE:
e 0-mepHOe, JTI0ObIE 2 TOYKH KOTOPOTO pa3ieassiorcsd )-MepHbIM MHOXKe-
CcTBOM, 1 T.J1. Jlokakute, uTo R™ corjtacHO 3TOMY OITpPeIESICHUIO N-MEPHO.



Packpacku v knacrepbl

M. MaTouHoB
Bapuaiinu Ha 3aga4ym npo KJacTepbl

23* IlycTb k-MepHBIT Ky6 cO pebpoM n pazduT Ha n* MaIeHbKUX k-MepHBIX

KyOMKOB CcO CTOpPOHO# 1, packpareHHbIX B £ 1mBeTOB. PaccMoTpuMm Bce
TPOUKMU 1BETOB a, b, c. PaccMoTpuM MHOXKECTBO TOYEK, KaxKJiasd U3 KO-
TOPBIX ITOKpAaIlleHa BO Bce 3Tu nBera. OKPYKUM BCE 3TH TOYKH OKPECT-
HOCTBIO PaJNyca 2 W PACCMOTPUM OObEIMHEHUsI TUX OKPECTHOCTell u
CBsI3HBIE KOMIIOHEHTBI TaKOro oobenHenusi. I1ycTh KaxK 1as Takasi CBA3-
Hag KOMIIOHEHTA JJIsI JIFDOOIr'o IIBeTa MMeeT auaMeTp He OoJibiie d.

Torna maiinércst koncraura C(k,d, ) > 0 Takasi, 9T0 CyIIeCTBYeT KJia-
crep oobéma C(k, d, £) - nF~1.

a) okaxkure s1o st k = 3,

b) mist mpon3BoOIBHOTO k.

24 CdopMynmupyiiTe yeJI0BHe, AHAJOTTYHOE YCJIOBHIO IPEILLIYINEH 38 1a49H,
JIsi HabopoB m3 m 1BeroB. OOImasi ruioTesa: CyIecTByeT KOHCTAHTA
C(k,m,d,f) > 0 takasi, 970 Npu packpacke k-MepHOro Kyba ¢ pebpom
n B | nBeToB HaiinéTca Knacrep oobéma C(k,m,d, £) - nk+2-m,

JanHas 3a/1a49a siBJISIETCS CBOEro poja obodbiieHneMm 3ajaun 15. Eé pe-
IITeHe HaM He M3BECTHO.



@

Colorings and clusters

A. Belov-Kanel,
I. Ivanov-Pogodaev, A. Malistov, M. Kharitonov

. Each point of the plane is colored by one of a) two colors; b) three

colors. Prove that there exist two points separated by the distance 1
which have the same color.

2. Prove the same for the space colored by 4 colors.

3. Prove the same for the n-dimensional space colored by n 4 1 colors.

4. The plane is colored by two colors. Prove that one can choose the color

6
Tr

10.

11.

such that for any distance d there exist the points separated by the
distance d and colored by this color.

. Prove the same for the n-dimensional space colored by n colors.

Prove the same for the plane colored by 3 colors.

Prove the same for the n-dimensional space colored by n + 1 colors.

. Color the plane such that there are no unit segment with the edges

colored by the same color. Try to use the minimal number of colors.

So far, it remains an open question to find the minimal number of colors
x such for some coloring there are no unit segment with the single-colored
edges. It is known that 4 < x < 7.

If we look for “almost unit” segments then the problem became more
simple.

. The plane is colored by a) four colors; b) five colors. Prove that there

exist two points of the same color such that the distance between them
is different of 1 by less then 0.001.

The solution of the b-part of the previous problem is based on the fol-
lowing fact:

Consider the cell-like plane. Suppose that any cell is fully colored by
one of two colors. Let the common edge of the two cells be colored by
both cell-colors. Prove that there exists a single-colored polygonal path
such that the edges of the path are separated for the distance more then
1000.

Prove the generalization of the previous problem for 3-dimensional cube
lattice colored by 3 colors.



12.

13.

14.

Colorings and clusters @

Prove the generalization of the previous problem for n-dimensional cube
lattice colored by n colors.

Suppose that a cube k x k x k consists of k3 unit cubes which are colored
by red, blue and green colors. Prove that there exists a single-colored
polygonal path which connects opposite faces of the big cube. Formulate
and prove the n-dimensional generalization. Prove that if we use n + 1
colors then the statement is not true.

3-dimensional space is colored by 9 colors. Prove that there exist two
single-colored points which are separated by the distance d such that
|d — 1| < 0.001. Generalize this problem for n-dimensional case.

Definition. Connected set of cells called claster (Two cells with common
point are connected).

The achievements of the problem 12 can be further generalized.

15.

16.

Suppose that the cells of the n-dimensional lattice are colored by k colors
and k£ < n + 1. Then in any cube with edge 10M there exist connected
single-colored cluster with volume M"*1=F,

a)* Solve the problem for k = 2.
b)* Solve the problem for k = n.
c)*™ Try to solve the problem for other cases

Show that the statement of the problem 12 can be obtained from the
following fact, which is base for topological definition of dimension: if
n-dimensional space is covered by some sets of bounded diameter then
there exists a point covered n + 1 times.

17F Prove this topological fact.
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Colorings and clusters

A. Belov-Kanel,
I. Ivanov-Pogodaev, A. Malistov, M. Kharitonov

There is a mistake in the first version of the problem 16. Here is the right

version.
16.

18.

197

20.

21.

22.

Show that the statement of the problem 12 can be obtained from the
following fact, which is base for topological definition of dimension: if
n-dimensional space is covered by some open sets of bounded diameter
then there exists a point covered n + 1 times.

Suppose the layer between two parallel lines is colored by two colors.
Prove that there exist 2 points of the same color inside the layer such
that distance(A, B) = 1.

The same problem for the layer between two parallel planes, colored by
4 colors.

a) Sperner Lemma. Triangle ABC is divided by small triangles; ver-
tices of these triangles are colored by 3 colors such that A is colored
by color 1, B by color 2, C' by color 3. Vertices on [AB] are colored by
colors 1 or 2; vertices on [BC| — by colors 2 or 3, vertices on [C' A] — by
colors 3 or 1. Prove that there exists a small triangle, which vertices are
colored by different colors.

b) Generalize this lemma for n-dimensional space (consider also n = 1).

a) Prove that there is no continuous mapping of disc onto its boundary R
such that it is identical on the border. This mapping is called Retract.

b) Prove the Brauer theorem: Continuous mapping F' of the disc into
itself has a stable point, i.e. there exists a point x( such that F'(xg) = xg.

c¢) Generalize this for n-dimensional space.

Inductive definition of dimension. O-dimensional space is a space
such that any 2 points are situated in different connected components,
1-dimensional space is a space such that any 2 points can be separated by
O-dimensional space (and it is not 0-dimensional). n-dimensional space
is a space, such that any two points are separated by n — 1-dimensional
space (and it is not (n—1)-dimensional). Prove that R™ is n-dimensional
space according this definition.



@

Colorings and clusters

M. Matdinov
Additional problems

23* k-dimensional cube n X n x --- x n is divided by n* k-dimensional sub-
cubes 1 X 1 x --- x 1 colored by ¢ colors. Consider all triples of colors
(a,b,c). Consider the set of points colored by these 3 colors simultane-
ously. Surround each of them by circle of radius 2. Consider connected
components of the union of these circles. Suppose that all such compo-
nents for all triples (a, b, ¢) have diameter less than d.

Then there exists a positive constant C'(k,d, ) > 0 such that for any
coloring there exists a cluster of volume C'(k,d, ¢) - n*~1.

a) Prove that for k = 3.

b) Prove that for all k.

24* Generalize condition of the previous problem for m-tuples of colours.
General hypothesis: there exists a constant C(k,m,d,¥¢) > 0 such that
for each coloring of k-dimensional cube n x n x --- xn by [ colors there
exists a cluster of volume C(k,m,d, ) - nk+2=m,

This hypothesis can be considered as generalization of the problem 15.
We don’t know how to solve it.



Colorings and clusters
Solutions

la. B paBHOCTOpOHHEM TpEyroJbHUKE CO CTOpOHOM 1 1o mpunIMny Jlu-
puxJjie HaiJlyTcs 2 BEPIIUHBI OJHOTO IBETA.

C

A | B

la. Consider the regular triangle with the side 1. Using Dirichlet principle
we can find 2 vertices colored by the same color.

1b. IIpemnmonoxkum obparnoe. Torma paccmorpum Touky A msera 1. Ec-
JIM TaKOil He HaWAETCs, 3a/1a4da cBojuTcd K la. /lokaxkem, 4To Ha pacCTOSTHUA
v/3 or A Bce Touku mBera 1. PaccMOTPHM IIPOM3BOJIBHBINA PABHOCTOPOHHMIL
tpeyroabHuk ABC co croponoit 1. Toukun B u C' packpallleHbl B IBera 2 1
3. Paccmorpum pasuocTroponnuii Tpeyroiabauk BCD. Touka D mokpariena B
nepselii nBer. Paccrosmme mexkny A u D pasuo v/3. IToBTopsist Takyio orre-

1



paInuio Jijid NPOU3BOJIBHBIX TOYEK IIOJIYYUM, YTO BCE€ TOYKH HA PACCTOAHUMN
v/3 0T A HOKpAIIeHbI B [EPBHIT IBET, & T.K. CPEIH HIX Hall[yTcsd 2 TOYKHU Ha
paccTogHnu 1, umeeM TpedyeMoe yTBepKJIeHE.

2. Anajorngso 1b, TonbKO GepéM HE PABHOCTOPOHHME TPEYTOJbHUKH, &
PaBHOCTOPOHHUE TETPad/PHL.

3. Anajiorm4mo 2, TOJBKO OEpéM He PaBHOCTOPOHUNE TETPasdIpbI, a M-
MEPHBbIE CUMIIJIEKCHI.

4. Ilpeanonoxum odparnoe. Torya y niBetroB 1 u 2 HaliyTcd TaKue pac-
CTOSHUA X U i COOTBETCTBEHHO, O€3 orpaHudeHnst OOITHOCTU T > Y, UTO T He
yKJIaabBaeTcsa B npere 1, a y — B 2. Torma paccmorpum Touky A mBera 1.
Bokpyr Heé onuireM OKpPYKHOCTBH pajimyca x. Bce TOYKU 3TON OKPYKHOCTU
IoKparensl B et 2. Torma Ha Hell HaliIyTcs JIBe TOYKHU IIBETA 2, PACCTOSHUE
MEKJIy KOTOPBIMHA — .

5. Ilpeamomoxum mporuBHOE. AHAIOIMIHO 3aJ/a49e 4 pacCMOTPHUM pac-
CTOSHUS X1 = T2 = ... = T, TaKWe, 9TO X He YKJIa/IbIBAeTCs B 1IBeTe 1, Ty —
B IIBETE 2, ..., T, — B 1BeTe n. /lajee qokKa3aTeIbCTBO IIPOBOJIMM IO WHTYK-
. Ecimm Touky niBeTa 1 HeT, TO IpUMeHsieM WHYKIIMOHHOE ITPEIIT0JI0XKEHNE.
PaccmarpuBaem TouKy 1-T0 1BeTa M ONMUCHIBAEM BOKPYT HEE N-MepHYIO cde-
py paauyca r; = x1. Ha Heit ToIbKO TOYKU 2-TO, ..., N-TO IIBETOB. lemepb
paccMOTPUM Ha Hell TOUKy 2-To 1BeTa. Ecam e€ HeT, TO 3a/1a9a ONSTh CBOJIUT-
csl K CJIyvaro MeHbIeit pa3mepHocTu. OnucbiBaeM BOKPYT 3TO# TOYKU cdepy
pajimyca To. B mepecedenun stux JByXx cdep nosydaeM chepy MeHBbIEH pas3-
MEPHOCTH U PaJInyca 7o, pacKpalieHHoil B 1iBeta 3, 4, ..., n. [Ipogomkas sToT
IIPOIIECC JIaJiee II0JIydaeM TOYKY, KOTopasi He MOXKeT ObITh IIOKpallleHa HU B

KaKoll u3 11BeToB. HecjioxkHO Hokaz3arhb, 910 d; > 1; > @di, OTKYy/Ia CJIeIyeT
TpedyeMoe yTBepKIeHIeE.

5. We shall act similarly to the problem 4. Assume the contrary. Suppose
that there are no two points of color 1 on the distance z; from each other,
there are no two points of color 2 on the distance x5 from each other, etc. We
can also suppose that o1 > 22 > ... > x,.

Let us consider a point A; of the color 1 and sphere S; with center A;
with the radius r;1 = x1. Next we consider a point Ay € S7 of color 2 and
sphere Sy C S7 obtained by intersection of S; with sphere of radius x5 centered
in the point of A,. Similarly, we construct point As and (n — 4)-dimensional
sphere S3 and so on.

If we can not find point on the sphere S with color k£ + 1, we proceed
with next color and distance. Finally we get a point, which can not be colored
in any color and get a contradiction.



The only thing we have to take care that process can be continued on
the each step, i.e. all spheres will be not empty. This can be guaranteed by
proving that 2-7r; > d;41.

8. Packpacka B 7 1mBeTOB. ['paHUIBI MTECTHYTOJHHUKOB MOKpPAIEHBI B
oboii tpet, ux guamerp — 0,99: (pucyHOK)

The coloring of the plane in 7 colors is based on the hexagonal lattice.
diameter of each hexagon is 0.99 (see picture).

9b. IIpeamosoxkum mporuBHOe. Pa3obbEM BCIO IJIOCKOCTH Ha, KB IPaTH-
ku co croponoit €/1000. Ecinu B KBajparuke HalyTcsi TOYKH 3 IIBETOB, TO
BCE TOYKM, PACIIOJIOXKEHHBIE OT HEro Ha paccrosiHum or 1 —&e/2 no 1 + &/2
pacKpallleHbl B 2 IIBeTa, 3HAYAT CPEJM HUX HAWIYyTCs 2 TOYKH OJHOIO IIBETa,
pacCTOsTHIE MEXK/Iy KOTOPBIMH OTJINYIAETCsI OT eIUHUIIbI He DOJIbINe YeM Ha £.

FEcnu kaxkiprit KBaJpaTuK packpalineH He Oojiee 4eM B 2 IBeTa, TO OyieM
CUYUTATh €ro KBaJPAaTHUKOM OJHOTO M3 ITHUX I[BETOB. be3 orpaHumveHus oOIIl-
HOCTU HaMJIETCS KBaJApaTuK 1-ro mBera. PaccMoTpuM KjacTep MaKCUMAJIbHON
ILJIOIIA I U3 KBaJAPAaTUKOB 1ro 1Bera. Ecau ¢ HUM 110 BHEIIHENH I'paHUIEe rpa-
HUYAT KJIACTEPHI JIBYX I[BETOB, TO HaiIETCs KBajpaT co CTOpoHOi /10, co-
Jep:kamuit Touku 3 1BeToB. Jlajee Jl0Ka3biBaeM aHAJIOIMYHO IEPBOMl YacTH
JI0Ka3aTeIbCTBA.

Ecau sror xiacrep 1-ro mpera IpaHHYUT TOJBKO C KJIACTEPOM OJIHOTO
1BeTa, 0e3 orpaHudeHns OOIITHOCTHA 20, TO PACCMATPUBAEM TOT KJIACTEDP 2-TO
nera. OH KpoMme KjiacTepa IIepPBOHAYAJIBHOIO IIBETa I'PAHUIUT TOJIBKO C O-
HUM KJjiacTepoM. [Ipojioinkast 9Ty olepalinio, IoJiydaeM KJacTep JuaMeTpa He
MEHbIIIe 2, a B TAKOM KJIacTepe HalyTCs 2 TOYKU Ha PACCTOSTHUU, OTJIUIAI0-
IeMcsI OT eJIMHUIIbI He OoJibilie YeM Ha €. IIpoTruBopedne.
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9b. Suppose contrary. Let us divide the plane onto squares with the side
e/1000.

Suppose we can find 3 points of 3 different colors a,bc in one of these
squares. Let A be center of such square. Consider a circle C' of radii 1 with
the center A. It is clear that all its point are colored with remaining two colors.
If both of them are present (otherwise we can find 2 points of the same color
of distance 1), then there are two points in C' of different colors arbitrary close
to each other. By considering intersection point of C' and circle C’ of radii 1
centered by one of these point, we get a contradiction.

Suppose there are no such square. Let us color each square in color of an
arbitrary point in it. Then no three squares of pairwise different colors meet
and we have cluster with arbitrary big diameter, greater than 1. Then we have
pair of points which we need.

14. The proof is similar to the proof of problem 9b. We divide a space
on small cubes and color each of them in the color of its arbitrary point. If
there is no pairwise contacted cubes of 4 different colors, then there exist a
cluster diameter grater than 1 and we are done. (This fact can be obtained
from dimension theorem quite similar as Lebeg theorem). Next we consider a
sphere S of radii 1 centered by center of one of these cubes and continue.

In order to proceed next step we divide equator of S onto 4 equal parts
Py, P,, P3, Py and consider north hemisphere of S as a “square” with edges P;.
Next we proceed similarly to the problem 9b.

14. PazbuBaem npocTpancTBO Ha KyOouku ¢ pebpom €/1000. Packparsa-
eM UX B OJIMH U3 IIBETOB, KOTOPbIe B HUX coaepxkarcs. V3 3amaun 16 HaxoamMm
KyOHK, B KOTOPOM HaMIyTCs TOYKU 4-6X 1BeTOB. TOorma TOUYKU Ha PACCTOSTHUN
or 1 —¢/2 no 1+ ¢/2 packpaitensl B 5 1BetoB. Jlajee neifictByeM aHAJIOTHTIHO
3a1a4e 90.

17. Ecsmm n-MepHOE MPOCTPAHCTBO IOKPHITO OTKPBHITHIMHU MHOXKECTBaMU
OrpaHUIEeHHOI'O JTHaMeTpa, TO eCTh TO4YKa, MOKphITas n + 1 pas.

Ykazanue. [IycTth Bce OTKpPBIThIE MHOYXKECTBa OI'DAHUYEHBI JIHAMETPOM
d. PaccMoTpuM n-MepHBIN TpaBUWJIBHBIN cuMILIeKC co ctopoHoit 1000d.

[IpucBonM Bcem BepIuHAM CHUMILIEKca 1BeTa oT 1 1o n + 1. Takke mpu-
CBOMM BCEM OTKPBITBIM MHOXKECTBaM IBeTa OoT 1 0 n + 1 Tak, 4ToObl MHO-
»KEeCTBa MOKPBIBAIOIINE BEPIITUHBI IMEJIN 1IBETa STUX BEPIITUH, MHOXKECTBA, T10-
KpbIBaloIue pedpa UMeJN IIBeTa OJHOU M3 JABYX BEPIUH ITUX pedep, MHOXKe-
CTBa, MOKpbIBaIONIe k-MepHbIe I'PaHU UMEJIU IBET OJHOU u3 k + 1 BepIuH,
OTPAHUYMBAIONINX I'DAHD.

Paccmorpum HelpepbiBHOE O0TOOparkeHne BHYTPEHHUX TOYEK CUMILIEKCA
Ha ero rpanmity. Kaxkjas To4uka, MOKPbITasi OJIMH Pa3 IEPEXO/IUT B BEPIITUHY
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COOTBETCTBYIONIEro 1Beta. To4uKa, MOKpbITas k pa3 MepexouT B TOYKY Ha k-
MEpHOI I'paHU, BEPIIUHBI KOTOPOW paCKpAaIlleHbl B COOTBETCTBYIOIINE IIBETA,
IIPU 9TOM TOYKa BBIOMPAETCsS KaK CPEeIHEB3BEITEHHBIN IEHTP MacC C BeCaMu,
PaBHBIMHU PACCTOSTHUSIM JI0 IPAHUIIBI COOTBETCTBYIOIIEN0 MHOYKECTBA.

Takoe oTobpazkeHUe SIBJIAETCA PETPAKTOM, a HEIPEPBIBHOTO PETPAaKTa He
CYIIECTBYET.

17. Note. Suppose that all open sets are bounded by diameter d. Con-
sider n-dimensional simplex with edges equal to 1000d.

Let us assign the colors from 1 up to n 4+ 1 for the simplex vertices. Also
we assign these colors to the open sets such that the following conditions hold:
the sets covering vertices colored by its colors; the sets covering edge colored
by one of its vertices colors; the sets covering k-dimensional face colored by
one of this face vertices colors.

Consider the continuous mapping from simplex to its boundary. Each
point covered by one set is transformed to the vertex colored by the color
of this set. Each point covered by k sets is transformed to a point on the k-
dimensional face which vertices are colored by the corresponding colors. This
point is situated at weighted mass center of these vertices according to the
distances to the boundaries of the corresponding sets.

This mapping is a retract. But continuous retract does not exist.

10,11,12, 16. Yka3anue. Bce kyiacTepbl orpaHUYeHbl, HHaYE MBI MO-
JKeM HailT! JUIMHHBIA IIyTh B HEOT'paHWYEHHOM KJjacTepe. Kaxkmomy kijacrte-
Py, COCTOAIIEMY U3 KyOOB, COIIOCTABUM OTKPBITOE MHOXKECTBO, COCTOSIIEE U3
TOYeK KJjacTepa U HEKOTopoii e-okpectHoctu (¢ = 1073). W3 romosormye-
ckoro akTa 3a/@a49u 17 cjejayeT, UTO CYIIECTBYeT TOYKa, MOKpbITasi 1 + 1
MHOXKecTBoM. M3 mpunnuna /lupuxie ciemayer, 9To CyHIeCTBYIOT JIBE IIepece-
KAIOIKeCs: OKPECTHOCTU KJIACTEPOB OJHOIO IiBeTa. 1ormaa 3TO J0JIXKEH OBbITh
OJUH KJIACTEP.

10,11,12, 16. Note. All the clusters are bounded. If not, there exists a
long path in some unbounded cluster. For each cluster consider an open set
formed by the cubes of the cluster and its e-neighborhood. Using the fact of
problem 17 we obtain that there exists a point covered by n + 1 sets. Hence
this point is covered by two clusters of the same color. But it is impossible.

13. ¥Ykazanwme. llycTh cymecTByeT packparmieHHbIT Ky0 k X k X k 6e3
ckBO3HOTO TIyTH. OTpa3zuM KyO OTHOCUTETHHO KaXKJIOW €ro 'PaHd B COOTBET-
CTBYIOIIFE STUM I'PaHsIM CTOPOHBI. ByjeM oTpakaTh MoJIydYnBIInecs: KyObl OT-
HOCUTEJILHO JIPYTUX I'PaHeil, 3aI10/IHss OTPAYKEHUSIMU UCXOJIHOTO KyDa Bce HO-
Bble U HOBBIe oOJiacTu. [losryyuMm 3aroJiHeHNE MPOCTPAHCTBA OTPAYKEHUIMU
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Halrero kyba. st oboro kKjacrepa B MCXOJHOM KyOe CYIEeCTBYIOT TPU CO-
IIPUKACAIONINECs TI0 BEPIIUHE I'PAaHU, KOTOPBIX 3TOT KJIACTEDP He Kacaercs. B
BHUJLy ITOCTPOEHHBIX OTPAXKEHUI ITOT KJIAaCTep He KacaeTcsl BCeX IpaHeil HEKO-
TOoporo kKyba 2k X 2k X 2k, BHyTpH KOTOPOTO OH HaXOAUTCs. Takum oOpa3oMm
BCE KJIACTEPbI OI'PAHUYEHBI, YTO IIPOTUBOPEYUT PaKTy 3aJa4uu 12.

13. Note. Suppose that there exists a colored cube k x k X k£ having no
path from some face to the opposite one. Let us reflect the cube using each
its face. Then we reflect these reflected cubes again using other faces. So we
can fill the space by reflections of our initial cube. For any cluster in the cube
there exist three faces having some common vertex such that the cluster does
not intersect them. It is clear that our cluster is bounded by some 2k x 2k x 2k
cube. Hence all cluster are bounded. Using the fact from problem 12 we obtain
a contradiction.






3aJladn 0 MOKPBITHUAX U PYHKIIMI POCTA
A.Toanwveo, b. @penrun, M.IIpaconros, U.Bozdaros

IIpeaucioBue.

Tema JAHHOIO IUKJIA — HOKPBITUSA (DUIYD OJHOTUIHBIMEU Gurypamu (Kak MpaBHIOo — KPyraMu
i mapamu). Tpebyercs: OleHUTh UX KOJMYECTBO, UX CyMMAPHYIO ILIOMAJb W T. II.

HauboJsiee TpyauHbIME 3/1€Ch, €CTECTBEHHO, SBJIAIOTCI 3aJia4u, Ije TpeOyercs JlaTh TOYHYIO
orenky. K cqacTbio, oKa3bIBaeTCs, 9TO OCHOBHBIE IIPUJIOYKEHUS TAaKUX 3314 KaK pa3 He TpedyIoT
TOYHOI'O OTBETA, JIOCTATOYHO 3HATH MOPSJIOK COOTBETCTBYIONIEH BeJTMINHBI. TOIHO COOTBETCTBY-
orye orpeaesaeHus OyayT chbopMyIMpoBaHbl B uKIe B.

Hwuka A.

Al

HeTpy/1HO IOKPBITH €IMHUYHBIH KBAIpaT KPyroM IIOmau /2. A MOXKHO JIi TOKPBITH KBAIpaT
HECKOJIbKUMHU KPYTaMu, CyMMapHasi IJI0Ia b KOTOPBIX MeHbIie m/27 Kpyru MoryT nepecekaThbest
1 BBIXO/IUTH 3a IIPeJIeIbl KBa/JIpaTa.

A2

Tpebyercst MOKPHITH €IMHUYHBINA KBaJIpaT HECKOJLKIUMU KPYraMu, PAIRyC KazKI0ro U3 KOTO-
pbix paser r. [lycts N(r) — MEHUMAJIbHOE YHCJIO0 KPYTOB, KOTOPBIME 9TO MOYKHO CJIEJIATh.

Ouenno, ecim r — 0, To N (1) — oc.

Haiitu xapakrep crpemyieHns: K 6eCKOHeTHOCTH 3Toi dyHKImu (Kak GbICTPO OHa pacrer)?

A3

Ta ke 3aj1a4a, ecau TpeOyeTCss MOKPBITH €MHIIHBI Ky HECKOJBKIME (IT€PECEeKAIOTIMUCS )
mapaMyu pajnyca r.

IHukn B.

B npeabiymux 3a1auax moJipa3yMeBaIoch, YTO BCAKOMY HHTYUTHBHO MTOHATHO, YTO TAKOE «CKO-
pocthb poctay. Ho masbie HaM oTpedyeTcst TOUHOE ONPEJIeICHHUST: ITO TaKOe «POCT (DYHKIANIS !

JlaThb Takoe orpejeseHue He OYeHb JIETKO, ¥ OHO OYJIeT JIaHO 9y Th HUKe. BHavdase ke MbI, ele
He JlaBasi TOYHOTO OIpeJeIeHrs «pocTa (DYHKIUN», cOOPMYIUPYEM CBOMCTBA 9TOr0 «pocray. A
MMEHHO:

Hanee pacemarpuBarorcest ToJbKO MyHKIMU f(x) Takue, 910
() f(x) oupezenena s Beex x, 6oJibIe HEKOTOPOro a (Kak npasusio, a = 0, HO yjiobHee pa3pe-
muTh 6oJiee obuwil ciaydaii — nanp. dyuxiuu Tuna In(z—1)). Kpome Toro, npesmnoaraercs, 4o
f(z) Beromy nosokuTenbHA (BO BCIKOM CJIydae, IPU T > @), HECTPOrO BO3PACTACT W CTPEMUTCS
K OECKOHEYHOCTH.

O6osnaunm poct dbyukrmun f(z) depes [f]. B wacrnocrn, s npocrorst 6yieM fJajtee 0603Ha-
gaTh poct dbyHKImH " npocto n. Takum obpasom, n = [z"].
Mpb1 xoTuM, 9T0OBI POoCT (DyHKIMH 00181/l CJICTYIONIMMI CBONCTBAMMU:
(1) Ecou qyist Beex , 6osbinux HeKoToporo b (b He 06s3aTe/IbHO COBIAIAET C @) BBIIOJIHSETCSI
1) o) ro [f] > [g]

2) [lycts A, B, C' — npou3BoJIbHBIE MOJIOKHUTEIbHBIE dncia, u g(x) = C f(Ax + B). Torna
9]

[f]-



(3) Orcroia MOHATHO, YTO BIOJHE BO3MOXKHA CHTYaIlMs, KOTJa ofHOBpeMeHHO [f] > [g] m
[g] = [f]. B aToM ciygae mbI Takzke mosaraeM, ato [f] = [g].

Ecmu xe [f] > [g], HO HeBepHO, uTO [g] > [f], TO MBI UIIeM: [f] > [g].

OHAKO J10 CHX HOP MBI He JaJIi OIPEeAeIeHusT: 9To ke Takoe pocT? IIpaBuibHbIi OTBET cOCTO-
UT B TOM, 9TO POCT KaK Pa3 U €CTh HEUTO, YAOBJIETBOPAIOIIEE BCEM IePEUNCICHHBIM CBOCTBAM.

Eciim roBoputh 6osiee popMabHO, TO CJIeIyeT PAcCMOTPEThb KJacC (DYHKIINI, YIOBIETBOPSI-
fonux (*), ¥ pasdUTh €ro Ha KJIACChI SKBUBaJeHTHOCTH: f ~ ¢, ecm [f| = [g] (B coorBeTcTBUM €

. (2), (3)).

Kaxkapiit 13 9TUX KJIaCCOB M HA3BIBACTCH POCTOM BCEX BXOJANUX B Hero dyukiwuii. [Ipu srom
HEKOTOPbIE KJIaCChI 60J'[I)HI€ APYTrux, TaKk 9TO Mbl MO2KEM I'OBOPUTBL O TOM, 9TO TaKagd-TO (bYHKHI/IH
pacrer GpicTpee (ee pocT GOJIBbINE), YeM JIpyTasi.

B1

Hokaxxure, uro 1 < 2.
(Hamomuuanme: 1 u 2 — #e quca, a pocT DyHKIHI).

Opnaako ecin i OOBIYHBIX YMCEJI BCErJa BEPHO OMHO M3 Tpex: Jmbo a > b, jmbo a = b,
Jmbo a < b, To st pyHKIMHE 570 HeBepHO. CyIECTBYIOT «HEeCpaBHUMbIE (DYHKIUN», T.€. TAKNE
dbyukuu, f u g, 9ro HeBepHO HU TO, uTO [f] > [g], HU TO, WTO [g] = [f].

B2

Haittu n1Be HecpaBHUMBIE (DYHKITUN.

B3

Haityure dyukimio f(z) takyio, uro 1 < [f] < 3, Ho npu sToM f HecpaBHUMA C 2.

B4

Haiigure dynknuo f(x) Takyo, 910 jjis Jiroboro ducia a > 0 BBIIOJHIETCS HEPABEHCTBO

[/l <a.

B5
Haiiaure dbyukmuio f(z) Takyio, uro [f] = [f?].

B6
Cymecrsyer sin dyuknus f(z) takasg, aro [f] = [In f] 7

Hwukna C.

DTOT IMUKJI MOCBAIIEH 3a/1a9aM Ha MOKpbITHs duryp. [Ipu sTom ocHoBHOIT Bopoc Oy/1eT cOCTOATH
B CJIJIYIONIEM: HAifTH MOPSIIOK POCTa YUC/Ia KPYroB (MK IapOB), KOTOPBIME MOYKHO HOKDBIThH
JIAHHYIO (PUTYDPY.

OnpepesieHne. DICUIOH-CETHIO (£-CETHIO) HA3bIBAETCA HAOOP TOYEK BHYTPHU JAHHON hu-
IYPbI TAKOM, UTO Jitobas TOYKa (DUT'YPhl HAXOIUTCS HA PACCTOSHUM HE OOJIBbIIIE € OT OJHOW U3
BbIOpaHHBIX To4eK. (MHBIMEU cjrloBaMu, KpyTu WK MIapbl PAJINYCa & TIOJIHOCTHIO TIOKPHIBAIOT JIaH-
nyio qurypy).

MuHuMaIHHON £-CEThIO HABBIBAETCA £-CETh ¢ MUHUMAJIHLHO BO3MOYKHBIM dncjoM To4uek. O6o-
suadnM M (€) KOJIM4IecTBO TOYEK MUHUMAJIBHON £-CeTH.

Onpepesienne. /lenbra-permerkoii (0-perneTkoii) Ha3blBaeTcs HAOOP TOUYEK BHYTPHU JAHHON
dburypsr Takoit, uTo jobbe 1Be TOUKM HAOOpa HAXOJSITCS Ha PACCTOSHUM He MeHblne 0. (Pasy-
MeeTCsl, YUC/Ia STCUJIOH U JIeJIbTa MOI'YT COBIAJIATD).



d-peleTKa Ha3bIBAETCS MAKCHMAJILHON, €C/IM OHA MMeeT MAKCHMAJIbHO BO3MOXKHOE HHCJIO
touek. Oboznaanm N (§) KOJIHIECTBO TOYEK MAKCHMAJIBLHO 0-PENIeTKH.

O6aymaiiTe camu, OYeMy B IIEPBOM CJydae HAJ0 PacCMaTPUBATh MEUHIMAJBHYIO CETh, & BO
BTOPOM — MaKCHMAJIbHYIO PEIIETKY.

C1

Haitaure M (e) u N(§) nas orpeska JyIMHEL ¢ (K IPOU3BOJIBHBIX €, 0).

C2

Haiire 10 BO3MOXKHOCTH TOUHYIO OlEeHKY it M (€) u N(6), eciim ceTb U peIierky cieryer
CTPOUTDL B €JIMHUIHOM Kpyre; B eguHuIHOM mmape. OIeHKy cleyeT JaTh CBepXy U CHHU3Y, T.e.
OHa JIOJIZKHA MMeTh BUJL (YCJIOBHO TOBODS):

2/e < M(e) < 5/e.
Onpedeaerue. Pazmeproctsio urypsl HaseiBaerces poct M (g), kKak GyHKImu aprymenTa 1/e.

C3
Hokazkure, 910 pasMepHOCcTh paBHa pocty N (€), Kak dbyHKIMK aprymenTa 1/e.

Takum o6pa30M, Pa3sMEpPpHOCTb MO2KHO OIIpede/JINTb KaK C IIOMOIIbI0O MMHMUMAJIbBHBIX
CeTeﬁ, TaK U C IIOMOIIIbI0O MaKCMMaJIbHbIX PEIIEeTOK.

C4
[IpuBeure npumep Gurypsl pazmeproctu 3/2.

C5

Kakue eme pasMepHOCTH MOIYT UMETh pa3smanbie hurypbt? (JJocTaToqHo MpuBecT HECKOIb-
KO TIPUMEPOB).

C6

CHI/IpaJIb — 9TO JIMHUA, ITEeJIMKOM JIezKalllasl BHyTpI/I HEKOTOPOI'0 Kpyra n CXoIdinadcda K IIeH-
TPY; e MOXKHO 3aJIaTh B HOJISIPDHBIX KOOpJAUHATax ypasHerueM r = f(p), nae f omnpenesnena npu
¢ = 0 u yObIBaeT, CTpeMsCh K HYJIIO Ha OECKOHETHOCTH.

Haiiqnre pasmepHOCTh crimpasini. 3aBUCUT JIM 9Ta Pa3MEPHOCTh OT KOHKPETHO# (byHKIuu f,
WJIM OHA BCErJa OJIHa U Ta ¥Ke?

Lunka D.

VYrouneuue 3agaun Al.

Kakosa Tounas omenka B 3amade Al? lHade ropopsi: TpeOyercst HAWTU UHCIO (¢ TAKOE, UTO
(1) kBaspaT HeJB3sl MOKPHITH KPyraMu CyMMapHOii [I01a i MeHblie « u (2) st goboro 5 > o
KBaJIpaT MOXKHO HOKpBITH Kpyramu mommayan (3. (ITocrapaiitech Takke BBIICHUTH, MOXKHO JIH
ero MOKPbITh KPYraMu IO POBHO (V).

Ora 3aja4a noapasjuensercd Ha Tpu. s GopMyIMpPOBKE NEPBOil YKazKeM, YTO OJHO U3
pemennii 31291 Al COCTOUT B CJleAyIOIIEeM: KBaJIPaT HOKPBIBAETCS CETKON M3 NPABUJILHBIX IIe-
CTUYTOJLHUKOB, ¥ KaxK bl IEeCTUYTOIbHUK ITOKPbIBaeTca KpyroM. OTHOIIEHUE ILIOMAI KPyTa

i
K IIJIOIIIa/J I IMIEeCTUVI'OJIbBHUKA PAaBHO = —. HOCKOJIbK IIJIOIIIa/Ib CETKM HEMHOI'O 60JIBHI€ I1J10-
3v3

a1 KBaJ[paTa, To CyMMapHasi IJI0IA/ b KPyroB (0bo3uaqmnM eé (3) 6yer 6oJIbIie v, HO Pa3HOCTh
 — ¥ MOXKHO CJIeJIaTh CKOJIb YIOJIHO MAJIOi, B3B JIOCTATOYHO MaJIbIe MIECTHYTOJTbHUKN.



D1

JlokaxkuTte, 9TO €C/IM BCEe PaJUyChl KPYTOB JIOJI?KHBI OBbITH OJIMHAKOBBLIME, TO IPUBEIEHHAS
BBIINIIE KOHCTPYKIMS ONTUMAaJJIbHA, TO €CTh o = 7.

D2

Haiinure «, eciu pasperraercs 6paTh KPyTrd JABYX TPOU3BOJIBLHBIX PAJITYCOB.

D3

Haiiure «, ecin pasperniaercs 6paTh KPyru IIPOU3BOJIbLHBIX PAJIUYCOB 0€3 BCIKUX OTPaHU'Ie-
HUIA.

(IIpenynpexaenne. He nymaiite, aro 3aaqu ynopsiioueHbl [0 BOSPACTAHIIO CJI0KHOCTH! )

D4-D6

a 2Ke 3aJlada, HO TpebyeTcd NOKPBITh KyO co cTopoHoii 1 mapamu (11apbl, pa3yMeeTcd, MOTyT
T , 6 6 1 , ,
repecekaTbcst). (371ech TOCTATOYHO JaTh XOPOIIUE ONEHKI; TOYHBI OTBET HEN3BECTEH).

D7

Tpebyercst OKPHITH KBaJPAT HECKOJLKIUMHU KPYTraMyl PaBHOTO PaJINyca Tak, YTOObI KaryKas
TOYKa ObL/Ia MOKpbITa He MeHee, deM N Kpyramu. /lokaxkute, aTo ripu Hekoropom N cyMMapHYIO
ILJIONIA/Ib KPYT'OB MOYXKHO CJIe/IaTh MeHbIIe, deM N7y.

D8

Bepno s yTBep:xkenune 3agaaun D7 mpu N = 2 7

Hwukna E.

E1l

Ha crose jexxur jmmctok 6ymaru B KjaeTouky. [loBepx HEro mojo:KeH ere OJuH JUCT OyMard B
KJIETOUKY; KJIEeTKI Ha 000X JIMCTaX KBaJPaTHBIE W OJHOIO pa3Mepa, HO BTOPOIl JIMCT IIOJIOXKEH
HAMCKOCh, TaK YTO €ro JUHAN He HapaJslie/IbHbI JIMHUSM [IepBOro. BepXHuil TMCTOK Ipo3padHbIii,
U BHJIHO, KaK €ro JIMHUH JIeJISAT OJUH U3 KBaJIPATOB HUYKHETO JIMCTKA.

Ha xakoe MakcuMmaJ/IbHOE 9HCIO YacTeil MOXKeT ObITH pasjie/ieH HUXKHUI KBaapaT?

A Ha Kakoe MUHUMAaJILHOE?

E2

Ha crosie nexut smucrok 6ymaru B Kiietouky paszmepom 10000 x 10000. [Toepx Hero moJiozxkeHn
erre oJIuH JINCT Oymaru B KjaeTouky pazmepom 1000 x 2000; kjieTKr Ha 060UX JINCTaX KBaIPATHBIE
U OJIHOTO pa3mepa. Bepxuwuil TUCTOK MPO3padHbIil, U BUJIHO, KAK JUHUA HUXKHETO JIUCTKA JIeJIAT
KBa/IpaThl BEPXHErO JTUCTKA Ha YACTU; TAKUM 00pPa30M, MBI BUJUM, YTO YHUCJIO YACTEH BEPXHETO
JINCTKA OOJIbINE IBYX MUJIMOHOB.

JlokaxkuTte, 9TO 9TO YUCJIO MEHbBIIE JECATH MUJIIIMOHOB.

Hwuka F.

Bossparmmaemcst K 3aa9amM Toro ke tura, 91o B ke C. OHako Ternepb pacCMOTPUM HECKOJIBKO
HHYI0 KOHCTPYKIuioo. ucyio € Mbl GyjieM cantarh GUKCUPOBAHHBIM (Hamp. € = 1), HO Oymem
paccMaTpuBaTh HeorpaHudeHHYIO (urypy ® — Hampumep, BCIO ILJIOCKOCTh, HOJIYILIOCKOCTD, U
T.II.



Paccmorpum nponsBosibhyto Touky O jpanuoii durypet u durypy ®(R), cocrosinyio u3 Beex
TOYEK, PUHAJIEKAIIIX JTaHHON dburype u orcrosmux ot O Ha paccrosHue He 6oee R (mepe-
ceveHne JaHHON (DUrYpBI ¢ KPYTOM WJIH, MOXKET OBbITh, IIAPOM C IIEHTPOM B JAHHOI TOYKe).

O6o3naunm depe3 N (R) aucsio rouek MuHnMaabHoi e-cetr B durype ®(R). Ilycrs y — cko-
poctb pocra dyukimu N (R). Ecim sra dyHknus He crpemurcs K 6eckoHedHOCTH TIpH R — 00,
0JI03KUM yestoBHO X = 0.

X Ha3bIBaeTCd 006EMHOU Tapakmepucmukol JTaHHON (PUryphl.

F1

Y kakux Guryp oobeMHas XapaKTEePUCTUKA PaBHA HYJIIO?

F2

Haiitu 06beMHy 0 XapaKTepucTuky ciaefyonmx ¢uryp: (a) miockocru, (6) MoIyIIoCKOCTH,
(B) MOJIOCHI, 3aK/IIOUEHHON MEXKJLy JBYMS IAPAJIIETbHBIME TIPSAMbBIMA.

F3

Jlokaxxkute, 9T0 0ObeMHas XapaKTEePUCTUKA (PUTYPhI HEe 3aBUCUT OT TOI'0, KAK BbIOpaHa TOY-

Ka O.

F4

JlaHbBI JIBa MOJIOXKUTEIBHBIX 9KCIa € 1 0. BepHOo 1, 9To Jj1s1 11000t burypsr @ eé obbéMHast
XapaKTEePUCTUKA, BHIUYNCIEHHAs C IIOMOIBIO KPYTOB PaJuyca € U pajauyca 0, OJHa U Ta XKe?

F5

Haiitu o6beMuy0 XapaKTepUCTUKY BHYTPEHHOCTHU 1TapadOJibl U BHEITHEH YacTu napaboJIib.

F6

Haiitu 06 beMHYIO XapaKTEePUCTUKY KaXKJI0i U3 TpeX dacTeil, Ha KOTopbie rurepbosa xry = 1
JIEJIAT TLJIOCKOCTb.

F7

Kaxue 4yncyioBble 3HaUeHNST MOYKET IPUHIUMATH 0OObeMHast XapakTepucTrka Gurypsr (Hurypst
Ha TJIOCKOCTH, (DUTYDPBI B IPOCTPAHCTBE)?

F8

Mozker Jin 0ObeMHasi XapaKTepucTiKa (bUrypsl He ObITh IHCIOM (T.e. ObITH (DYHKIHEH, KO-
TOpas He CPABHUMa C YHCJAMK); HAIPUMeD, MOXKeT JI OHa, Moj00H0 GyHKInN u3 3agadu B4,
ObITh GoJible 1, MeHbIIe 2 U IPUTOM HECDABHUMA C YUCIOM 3/27



Penrenus

Al

OrBer. Moxkno.

OpnuH U3 c1ocoboB COCTOUT B TOM, 4TOOBI IMOKPBITH KBaJIPAT OJHUM KPYTOM PaJIyca \/75,
3aTeM HEMHOI'0 YMEHBIIHUTDH 3TOT pajuyc. Ocranercs 4 He MOKPBITHIX YIOJIKA, KOTOPbIE MOXKHO
HOKprTb ‘{eTprI)MH MaJIEHbKNMMN prI‘aMI/I.

JIpyroii criocod npuBejieH B KOMMEHTapUsaX K MUKy 3a7a49 D.

A2, A3

B nepsom ciryuae dyuknus N (r) pacrer Kak KBajapar (I0JIb3ysACh TEPMUHOJIOTHEN ITHKJIa B,
[N(7)] = 2), Bo BTOpoM ciIydae — Kak Ky0.

B1

Kakosbl 661 Hu O6btn A, B, C, npu 6oabmux x Beerga r2 > C(Az + B). Takum o6paszom,
[2%] > [z], HO HeBepHO, uTO [2] > [2?]. D10 M 3HAUMT, UTO [2] > [1].

B2, B3

Nckomyto BYHKIMIO MOXKHO IOCTPOUTDH, Halpumep, Tak. IlocTpoumMm mocsemoBaTe/bHOCTD
OBICTPO YBEJIUYIUBAIOIINXCA MHTEPBAJIOB (HAM IOJOWIYT, HapuMep, unrepsasbl: |2,4], 4,16
) ) ) ) ) )
on 2n+1 3
[16,256], ..., [227,2° "], ...), u paccmorpuM BHauase dyHKIMIO ¢g(x), KOTOpas paBHa T2 Ha
5
HEYETHBIX 110 CUETY OTPE3KaX, U paBHA T2 HA YETHBIX.

JlocTaTovHO OYeBH/IHO, UTO TaKasg (DYHKINS pacTeT OBICTpee, UeM T, HO MeJjIeHHee, 9eM T°.
[1aBHBII ee HEJTOCTATOK B TOM, YTO OHa pa3pbiBHA (B Toukax 4,16,...) u Geja HE B TOM, YTO
pa3pbiBHA, & B TOM, 4TO U3-3a 9TOI'O0 OHA HE MOHOTOHHA.

Oxnako 310 Jierko monpasumo. [Tosoxkum dbyukuo f(x) Ha r-M 110 CY€TY BbIIEJIEHHOM OT-
peske paBHoii g(x) + A, rie uucia A, moabuparorcs Tak, YToObI (DYHKIUS CTAIa HElIPEPBIBHOI.

3 5
Konkperno momoxxum A; =0, Ay =42 —42 = —56, u 1. 1.

[Monyuatomasics dbyHKIMs yJI0BIETBOPseT TpeboBanuio 3aa4uu. /lelicrBuresibao, € rpaduk

IIO-TIPEZKHEMY JIEKNT Mexky rpaduxamu yrkmmit 32 n 22, ITokaxeM, 9T0 OHA HeCpaB-
2n

numa ¢ 2. Pacemorpum orpesok [d,d?], tme d = 2%, rorma f(d) < d°/?, orkyma f(d?) <

A2 + ((d?)52 — @32 < &3 + d°/? < 2(d?)%/2. Buaaur, ecom > a, To a > 3/2. AHagornaHo
Y ) ?

2n+1
paccmarpusas otpesok [d, d?], tne d = 2% nonyuaem f(d*) = 1(d?)*/?, orxyna [f] < a anwmb
upu a < 3/2.
CoOTBeTCTBEHHO, MOCTpoeHHasA DYHKIWA 1 GYHKINA T2 Tal0T perleHne 3a1a49n B2.

B4

Tomurest, manpumep, dyukiws f(z) = Inz.

B5

WUTCsI, HATTPUM ks f(x) = 2%, MOM JIeJI€, TOT = 4" = f(2x), u cornacu
lomurest, Ha ep, 2% B camoM neste, Torma f2 = 4% 2x), U COrIacHO
OIIPeIEJICHUIO, 9TO 3HAYUUT, IYTO POCT (PYHKIUN OJIMHAKOB.

B6

OtBert. /la, cymecTByer.

Hocrarouno, Hampumep, 4rTo0bl BBIIOIHSIOCH cooTHomenune In f(x) = f(z/2), wu, aro To
ke camoe, f(2x) = exp(f(x)). st 3T0r0 paccMoTpuM IIPOU3BOIBHY IO BO3PACTAIONLY IO PYHKITHIO
f(z) ma orpeske [1,2] rak, urober f(1) = 1< f(2) = e = exp(f(1)). Torma mame coornorenne
OJTHO3HAYHO 3a/1aéT QYHKINIO Ha oTpe3kax [2,4], [4,8], .. .. fdcHo, uro momydennas QyHKINA —
Tpebyemasi.



C1

OtBer. M(g) paBHO mesomy uucity, 6nKaiimemy K a/2¢, koropoe He Menbiie ero. N(J) =

[a/d + 1].

C2

B 3aja4e He Tpelyercs JaTh HAWJIYUIILYIO OIEHKY, [IO9TOMY OHA He UMEET OIPEJIeJIeHHOIO
OTBeTA.

Bor ojHa u3 O1eHOK.

(a) s M (e).

[TockoJIbKY KPYTH pajinyca £ JOJIKHBI MOKPBITh BECh €IMHUYHBIN KPYT, TO UX CyMMapHas

IJIOIA/Ib JIOJIZKHA ObITh OoJibiie, deM rioniaab kpyra. Coorsercreenno, M (g) > <—) (coor-
€

13
BercTBenHo, M (g) > (—) JIst Ky0a).
£

C apyroit CTOPOHBI, UCIOJIB3YsT KOHCTPYKITUIO U3 MPABUILHBIX 6-yTOJIBHUKOB, TPUBEICHHYIO
niepe/| ycsioBueM D1, MbI JIerko y6eK 1aeMcsi B TOM, 9TO MOZKHO TIOKPBITh BECh KPYT (€ HEGOJIBIIIM
«3aX0JIOM HapyzXKy») NPaBUJIbHBIME G-yroJbHUKaMu. [TOKPBIB 9TH 6-yrOJbHUKE KPYTaMu, Mbl

1\* o
HostydaeM (IIpH JTOCTATOYHO MasbiX €) oneHky M(e) < A - (—) - ——=, rje A — npousBosIbHOE

£ 3v3
qncsa0, bosbiree 1.

Jlas mapa mepBasi OlleHKa COBEPIIEHHO aHAJOIMYHA, C TeM U3MEeHEHHeM, 9TO HaJo Oparhb He
KBaJpar, a Kyo. Bropyio moyiyunTs Tak npocto He yaaercs. OIHAKO MOXKHO, HAIIPUMED, IIOKPHIThH
BECH IIap MAJEHbKUME KyOUKaMM, U 3aTeM KaXK bl KyOUK IIOMECTUTH B IIap. DTO JAET OIEHKY
CBEPXY.

(b) dst N(6).

[Iycts B Kpyre pasmeredo N TOYEK; ONHUIIEM BOKPYT KaxKJOil Kpyr paamyca §. Ecim stn
KPYI'H He IIOJIHOCTBIO MOKPBIBAIOT €IMHUYHBIA KPYT, TO 3aBEJOMO MOXKHO IIOMECTHTD €Ie OJHY

2
touky. CienoBaresnbro, N(0) > (—) . OcTaybHbIE OIEHKH IOy Ya0TCs aHAJIOTIIHO.

o
C3

O[eBmuIHO, UTO €CJIN )-pernreTKa MaKCUMAaIbHa, TO KPYTH Pajnyca d ¢ IEHTPAMU B 9THX TOTKAX
[OJTHOCTBIO TIOKPBIBAIOT (BUI'YPY, TaK YTO TaKasl PEIIeTKa SABJISETCH TaKyKe U J-CeThI0, XOTs He
obg3aTe/IbHO MakcuMasbHoi. Bo BegkoM cirydae, ato 3uauut, aro N(0) > M(0).

C pyroii CTOPOHBI, B Kpyre PaIiyca 3 MOKeT HaXOJUThCst He GoJlee OJIHOM TOUKH d-PeleTK.
Orcrona cpasy CIeAyerT, 9To eClu & < g, to M(g) = N(J).
Taxum obpazom, M(5) = N(§) = M(0), oTKyza 1 cIeflyeT yTBep:KIeHne 3a/Iatm.

C4

Uckomyio purypy MOXKHO ITOCTPOUTH, B YACTHOCTHU, KaK Ie€peceveHrne DECKOHETHOrO IUCIa
duryp. A nmenno, nmyctb ®; — Kpyr pajumyca 2 ¢ IEHTPOM B Hadaje KOOP/IMHAT.

Hamee, 5 ects durypa, suucannas B 1. A umenno, 5 ectb 00beIMHEHNE BOCBMU KPYTOB Pa-
muyca 1 (T.e. B 4 pasa Menbme) ¢ nenrpamu B roukax (0, —32); (0,—1); (0,1)(0, 2), m ananoruuno
ere 4 Kpyra ¢ IeHTPaMi Ha OCH OpAuHAT. (DTU KPYTIU YACTUIHO TIEPECEKAIOTCSI. )

Tenepb B KaxKplil U3 9TUX KPYroB Mbl BIHCHIBaeM 8 KPyros pajmyca 1/8, pacrosioKeHHbIX
TOYHO TaK Ke. DTO 3HAYUT, YTO UX IEHTPHI JIEZKAT HA MPAMBIX, IPOXOJIAIIIX YePe3 IEHTP Odepe]l-
HOT'O KPYTa IMapaJuie/ibHO O/IHOM u3 oceil. Dtu 64 kpyra obpazytor durypy ®3 u . 1. Obo3HaImM
gepe3 ¢ nepecedenne Becex puryp P;.

OueBuIHO, TOMYYUBIIAACA GUIYypa KaK pa3 U MOMXKET ObITh IMOKPBITA JINOO OJHUM KPYTOM

pajyca 2, b0 8 KpyramMu paJinyca %, u 1. 1. C Ipyroit cTOpoHbI, BCe MEHTPBI KPYTOB PaJinyca



2172 (yx kosmvecTBo papHO 237) obpazyior 27 2"-peméTKy U Jexkar B Hameii dpurype. OTcioaa
1 HaXOJUM €€ Pa3MEePHOCTb.

C5

OtBet. Peasuzytorcs Bce pazmeproctu Mexkay 1 u 2. Tak:ke pazMepHOCTh MOXKET He ObITh
qucjioM. PazmMepHOCTbh MOXKeT OBbITH MEHbINE 1 TOJIBKO JIjI HECBA3HOM (DUTYPHI.

C6

OTtBet. PazmepHocThb crimpasin MOYKeT ObITh Pa3JIMIHONA.

B camom jsierte, gorycTuM cHavdasa, 9To JJIMHA CIIUpAIn KOHedHa. Tak Oy/IeT, HallpuMep, eCin
f(p) = e %?: B 9TOM Cilydae JUIMHA KaKJOrO CJIEJIYIOIMIEro BUTKA CIHUPAJU MPOIMOPIMOHATBHA
JUTAHE TIePBOr0 BUTKA, TAK YTO JIJINHA BCEl CIIMpaJ/IM paBHA CyMMe YOBIBAIOIIENH TeOMeTPUIecKOit
IIPOTPECCUM.

[Iycts L — jymmHa Beeii crimpaJin.

[TockoJIbKY KyCOK CIIPaJIN JJIUHBI 27" 3aB€JIOMO MOXKHO ITOKPBITh KPYTOM PaJINYCa 1", OUEBU/I-
HO, YTO BCIO CIIMPaJIh MOYKHO Oy/IeT MOKPBITh KPyraMU B KOJIMIECTBE a 9TO O3HAYaeT, YTO
pa3MepHOCTh paBHa 1.

C /ipyroii CTOPOHBI, €C/Id CIUPAJIb IIOTHO IMOKPBIBAET KPYT, TO €€ pa3MepHOCTh OyJeT 060JIb-
mie 1. Ho 9o 3nHauunT «1mmotHo» ?

o)

JL1a mpuMepa MpoBejieM BHYTPH KPyTa, B KOTOPOM JIEXKUT CIUPAJIb, KOHIIEHTPUIECKHE OKPY K-
HOCTH PajIyCcoB %, %, e %, ... OHE pa3eadioT Kpyr Ha KOHIIEHTPUYIECKHE KOJIbIIA.

Jonyctum, uto B k-M Kosble JexkuT 10% BUTKOB clMpasii, paciojloKeHHbIX paBHOMepHO (B
9TOM KOJIBIE). DTO OYIeT «JI0CTATOYHO ILIOTHOE» DPACIOJIOXKEHHE BUTKOB, U JIETKO yOeInThes,
YTO pa3MEePHOCTh Takoi crmpaJsiu OosibIie 1.

s jokazaresbeTBa chOpMYIUpPyeM ODIIee YTBEPKIeHHE:

YrBepxkaenue T. [lycte & — nekoropas durypa, pazMep KOTOPOil 3HAYUTETLHO OOJIBIIE
MIUPUHBI BUTKa cnupasan. Torjga miomaas ¢ mpuban3uresbHO paBHA TPOU3BEIEHUIO TTHPUHEBI
BUTKA HA JJIMHY TON YacTU CHUPAJIA, KOTOpas cojep:kutcs BuyTpu P.

CTporo roBopsi, 9TO yTBEPKIEHNE BeCbMa HETOYHO, U JIETKO ITPUBECTH K HEMY KOHTPIIPUMe-
pbl. O1HAKO [T TeX ABYX (PUTYP, KOTOPbIE HAM TOJIBKO U TMOHAI00SITCsI, OHO BEPHO U JJOCTATOYHO
odeBuiHO. [loaTOMY IMOKa OCTaBMM BOIIPOC OTKPBITBHIM, U IEpeiiieM COOCTBEHHO K JT0Ka3aTe/hb-
CTBY.

[Iycts gaHo HEKOTOpOE, JOCTATOIHO MaJjioe €. Boibepem k Takum oOpa3oM, 9TOOBI, OJIHOBpE-
MEHHO BBITIOJIHANCH [[Ba HEPABEHCTBA: ¢ OJIHOI cTopoHbl, 1/k* > ¢ > 10~%, ¢ apyroit — 9TOOHI
IIUPUHA BUTKA B k-TOM 110 CUETY KOHIIEHTPUIECKOM KOJIblle (0003HAUNM ee §) Oblia MHOTO MEeHb-
e €. [TocKoJIbKY, 110 IPeIoIozKeHHIo, MUpHHa BUTKa MeHbine dem 1/107%, To ouesmano, 4o
9TH YCJOBUSI BIIOJIHE COBMECTHMBI.

[Iycts ® — k-Toe Kosb1io (oHO 3a1aercst HepasercTBoM 1/k < r < 1/(k+1)), u nycrs L — mitu-
Ha TOil yacTu crmpasu, kotopas jsexut B ¢. Cornacho yreepxkienuto T (ybemurecs camu, 4ro

1 1

k2 (k+1)?
L6. CoryacHo TOMY Ke yTBEpXKICHUIO, JIHHA YIACTKA CIHPAJIH, JIesKaIlasd B KPyre paJuyca &,
NIpUOIZKEHHO paBHa me2/J.

CrieJioBaTe/IbHO, YUCII0 KPYTOB, JlesKalux BHyTpu ®, He MozkeT ObITh MeHbIie (10 MOpAIKY ),
YeM YacTHOE STUX JBYX BEJINYMH, TO €CTh OTHOMICHUA IIOMa I ® K IIoma m KpyTa.

OHO CITPaBE/JINBO 751 JIIDOOTO KOJIBIIA, €CJIH PAJINYC KOJIbIA HE OU€Hb MaJI), 7

D10 3HAYUT, UTO KPYIOB JIOJIZKHO OBITH CTOJIBKO 2Ke (110 KpaiiHeil Mepe, 1O TMOPSIJIKY ), CKOJIBKO
ux ObLIO ObI, ec/i Obl OHU MTOJTHOCTBIO MMOKPbIBAIH P.

8



Orcro/ia HeJb3s e1e ¢e/aTh BBIBO/I, UTO PA3MEPHOCTH clinpaJju paBHa 2: xots P, necomuen-
HO, (bUTrypa pasMepHOCTH 2, HO Hallle PaCCyKJeHHe ITPOBOJIMIIOCH JIJIsI OIIPEJIEIEHHOTO €, U C
yMeHnbItieHueM € durypa ¢ takxke ymenbiaercd. Ho mockonbKy k ymMeHbITaeTCsd HAMHOTO M€/I-
JIEHHee, YeM €, BO BCAKOM CJIydae, JIETKO YOeIUThCSd B TOM, YTO POCT TaKOi crmpaJsu OosbIre 1,
a TOJIbKO 3TO MbI U CTPEMUJINCH JIOKA3aTh.

D1-D3

OtBer Kk 3amade D3. Eciu paspemaerca 6pars Kpyru Joboro paanyca, To orser: 1. To
€CTh KBaJIPAT MOYKHO ITIOKPBITH HECKOJILKUMU KPYTaMi, €CJIM paspelaeTcs, 4To0bl UX CyMMapHast
ILJIONIA/Ib PaBHAIACH 1 + «, Kak Obl MaJjio HU OBLIO (.

Bagaua D2 (ciyuail 1ByX pajinycoB) CJIOXKHEE.

[Tepeiigem k jgokazarenberam. Haunem ¢ 3agaun D3, kak 6ojiee mpocToii.

O4eBH/IHO, JTOCTATOYHO JIOKA3ATh CJIELYIONIYIO JIEMMY:

Jlemma. Ecim MOXKHO TOKPBITH KBaJpaT IJIOMaau 1 KpyramMu cyMMapHOil miomaau 1 + a,
TO CYIIECTBYET TaKkKe CIocod MOKPHITh €ro Kpyramu cyMMmapHoii mwromamn 1 + (o /2).

s mokazaTeqabcTBa CHAYaAIa 3aMETUM, YTO €CJIM eJMHUIHBIA KBAJIPAT MOXKHO MOKPBITH
KpyramMy CyMMapHOM ILIONAau MeHbIne 1 + «, To J00yio hurypy miom@aiu S MOKHO HOKPBIThH
Kpyramu cyMMapHoii mioraju Merbine S(1 + «).

JI1s1 mokazaTesibeTBa 3TOro BCIOMOIaTeIbHOTO YTBEPZKICHHU JOCTATOYHO 3aMETUTD, UTO JIIO-
Oy10 PUIypy MOKHO «IIOYTH TOYHO» IOKPBITH CETKOM N3 MEJIKUX KBaJAPATUKOB. I [OKPBIB KazK Iblii
KBa/IpaT HYKHBIM 00PA30M, MbI [TOJIyIUM TOKPBITHE TPOU3BOIBLHON (DUTYDHI.

Terneps mokazkem jiemmy. JIjist 5TOro Mbl BIUIIEM B €MHUYIHBIA KBaJIPAT KPYT, & 3aT€M OCTaB-
mytocs durypy (ee miomaap paBaa S = 1 — (7/4) HOKpoeM MeJKUMU KBaJIPaTHKAMU, C TEM,
9TOOBI MTOKPBITH €e KpyraMi cyMMapHOil omaan Merbire S(1 + «).

DTOro JOCTATOUHO JJIA JIOKA3aTEILCTBA JIEMMbI, & C T€M JIOKA3aHO U YTBEpPKICHUE 3a/1a49u.

3amauya D1.

Jlemma. Tlyerb manbt N KPyroB OJIMHAKOBOIO PaJinyca (MOKHO CIMTATh, YTO PAUYC paBeH 1),
1 B KaKJIOM KpyTre PaclioJIO¥KeH BBITYKJIBI MHOTOYTOJILHUK, COJIEPXKAINil IIEHTP KpyTa, TpuieM
KOJIMYECTBO YIJIOB BCEX MHOTOYTOJILHUKOB He mpeBbimaeT 6/N. Torma cymmapHas 1I01a/ b MHO-
FOYTOJIbHIUKOB HE TPEBBIIIAET CYMMAapHOM ILIONIAIA BIMCAHHLIX B T€ Ke KPYT'H MPaBUIbLHBIX
6-yTro/JIbHUKOB.

115 fokazaTeqbCTBAa JIEMMBbI COCIMHUM KazK/IyI0 BEPIIUHY MHOIOYTOJIbHUKA ¢ IleHTpoM O
COOTBETCTBYIOIIEr0 Kpyra; TeM CaMbIM MHOTOYTOJBHUK Pa30UT Ha TPEYTOJbHUKHU. Y IBOCHHAs
IJIONIA/ b TPEYro/IbHUKA He O0JibIlle sina, rje o — yroj npu Beprmae O; IPU 9TOM CyMMa
BCeX TaKuxX yIyioB paBHa 2m/N, a mx KojamdectBo paBHo n < 6/N. Takum obpasom, Tpedyercs
OTIEHNTh CBEPXY BbIpaKeHWe Sin oy + sinag + ... + sinq,, TpH YCJIOBUU 1 + (g + -+ + qy =
mN. Moxno cunrarb, uro n = 6N (ecsm 5T0 He Tak, J00aBUM HECKOJIBKO HYJIEBBIX YIJIOB).
Terepb MOXKHO, HAIPUMED, BOCIIOJIL30BAThLCsE TeM, uTo rpaduk QyHKImn sin z Ha orpeske [0, 1| —
BBIIYKJIBII BBEPX, M IIOTOMY MAKCHMYM JIOCTUTAETCS, €CJIN BCE cIaraeMble PABHBI MEXKLy CODOIi;
B 9TOM CJIydae BCe YIVIbI OyyT PaBHBI [0 7/3, MOTOMY Yy HAC U MOJYUIUTCA CyMMa ILIOMIa el
MPaBUILHBIX IECTUYTOJTEHUKOB.

Bepnemcs K Hareit 3aja4e, mpudeM OyJieM pelaTh ee Jjis TPOU3BOJILHOTO MHOTOYTOTbHUKA, T’
mwiommaau 1 ¢ yriamu, He nipesocxojsiiumu 27 /3. Tlyers T OKPBIT HECKOIBKUME KPYTaMU OJIHOTO
pamuyca €. Torma T MOKHO PaszsdUTh HA MHOIOYTOJBHUKU 110 CJIEAYIONIEMY IPUHIMILY: OepeMm
TOYKH, Jisi KOTOPBIX JAHHBIN MEHTP Kpyra — Osmkaiimmit (cM. pucynok). [Tockonbky Kpyru
OJIHOT'O PaJINyca, TO CTOPOHAMH TIOJTYYaIONIUXCsl MHOIOYTOJTbHIKOB SABJIIIOTCs OOIINE XOPIbI JIBYX
[epPeCceKaoInXcst KpyroB (MM 9acTh TUX XOP), U KazXK bl MHOTOYTOJIBHUK R; TEJMKOM JIEKHUT
BHYTPH COOTBETCTBYIONIEr0 KPyra (MHaYe HEKOTOPBIE TOUKK He ObLIn Obl MOKPLITH ). Bosee Toro,
IIEHTP KpPyTa, €eCTEeCTBEHHO, JIEKUT B R;.

Cpe/taee 3HaUeHNE BHYTPEHHETO YIUIa P KaKJI0H BEPIITHHE pa3OUeHus He IPEBOCXOANT 27 /3
(3TO TIpOBEpsIETCS OTJENBHO JIJIs BEPIIUH BHYTpU 1', TOYEK HA TPAHUIE U YIJIOB — B HOCJIE]l-
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HeM cjlydae KaK pa3 ¥ BaXKHO, 9TO yIJibl 1’ He mpeBblmator 27/3), OTKYAa JIETKO CJIELYeT, YTO
YUCI0 YTJIOB He mpeBocxoauT 6/N. 3HAYHUT, 10 JeMMe CyMMapHas ILIONA b MHOTOYTOJTbHUKOB

3v3

(koTopast paBHa 1) He GoJibIie, yem N 752, TO €CTh CyMMAapHasl IO/ b KPYrOB HE MEHBIIIE
2 e 2T
3V3e? 3v/3

3ameuvanune. OTcioa, B 9aCTHOCTH, CJIEJyeT, 9T0 ecan | — TpaBWIbHBIN G-yroJBHUK, TO
HAMTYIINAN CIIOCOO ero MOKPBITHS — MOKPBITH €r0 OJHUM KPYTOM; BCE IPOYHE CIIOCOOBI JAI0T
pesyJIbTaT CTpOro Xyzxe (CyMMapHast IJIoma/ (b Oyaer 6oJiblie).

BameTum erg, 9To MPUBEIEHHOE JI0KA3aTEILCTBO ¢ MUHUMAJIbHBIMU U3MEHEHUSIMU [TPOXO/IUAT
JIUTst JTI0OOTO MHOTOYTOJIbHUKA C YUCJIOM CTOPOH, He OOJbIIM 6.

N -7e? > , 9TO ¥ TpebOBaJIOCh.

Sagagya D2.

3/1ech onTUMaIbHAS KOHCTPYKIIAST TAKOBA.

Bo-1iepBbIX, ICHO, 9TO 9acTh KBaJIpaTa HAJ0 3alOJHUTH KpyraMu OOJIbIIEro pajmyca (Kak
MUMEHHO — OyJIeT CKa3aHO HUKe), a OCTABIIYIOCS YacTh — MO METOJLY, OIUCAHHOMY IepeJl YCI0-
BUeM 3a7iaun D1, T.e. MesKoit 6-yrosibHO# CeTKOI.

Bo-BTopbix, n3 coobparkennii, BBICKA3aHHBIX BBIIIE, sICHO, ITO MEHBIIHI PAIUYC T0IKEH ObIThH
KaK MOXKHO MeHbIte. Ho u Oosbmuii pajimyc Toxke J0J2KeH ObITh MaJIbIM; HHaYe TOBOPsA, Tpely-
ercs, 9TO0bl ObLIO 1 >> 11 > ry (YeM cuibHee OHM YMEHBIAIOTCsI, TeM JIYUIle; ONTUMAJIbHOe
COOTHOIIIEHNE HE JIOCTUIAeTCsl, HO TOBOPsSI YCJIOBHO, Tpebyercs, 9Tobbl oTHOMe s 11 /1 u 19/11
06a PaBHSJIICH HYJIIO).

BaroTHIM KBaJIpaT MeJIKOi (OTHOCUTEILHO MEJIKOiT; TPUMEHUTEILHO K PAJIYCy T's OHA Oy/IeT,
HAIIPOTHB, OUEHb KPYIHO{T) 6-yTro/bHO# ceTKoil. 3areM KaxKI0My 6-yroJIbHUKY COMOCTABUM KPYT
pajuyca 1 ¢ TeM Ke IEHTPOM.

Taxkum o6pazoM, cyMMapHas IO/ b BCeX TOKPBIBAIOIIIX KPYToB (ecsn mpeHebpeds 3 dek-
TaMU, CBSI3aHHBIMU C TPAHUIEHl KBajpara — a, KaK Mbl 3HAEM, 9TO BIIOJIHE KOPPEKTHO) paBHA
IJIOMIA I KPYTOB pajimyca 11 (UX CTOJIBKO Ke, CKOJBKO 6-yTOJIbHUKOB), ILIIOC ILIOMIAIb OCTAB-
IIUXCS «yTOJIKOBY, YMHOXKEHHAs Ha 7. ByjeM Ha3bIBaTh BTOPOE cjlaracMoe MOJIHOM ILIONIAJIHIO
YTOJIKOB; OH& B 7y pa3 OoJIbIlle UX «HACTOAIIEH» TI0MaIu.

Orcro/ia IOHATHO, YTO HaM JIOCTATOTHO PACCMAaTPUBATH MOKPBITHE OJHOTO 6-yroJbHUKA, KO-
TOpOMY cOOTBeTCTBYeT 1 «BoJibIoity Kpyr (pasmyca r1) i 6 «yroJaKoB».

[Iycth 6GoKOBast CTOPOHA KazK10r0 6-yroJibHIKa PABHA @ (YUCJIO @ MOXKHO BBIODATH IIPOU3BOJIb-
HO, JIUIIb ObI OHO BBLIO JIOCTATOYHO MAJIBIM ). JI0/IZKHBI BBITIOJIHATHCS HEPABEHCTBA, I'] = a‘/Tg. 910
3HAYUT, 9TO KPYT HE HOJHOCTHIO TIOKPHIBAET COOTBETCTBYIONIHUI eMy 6-yToJIbHUK, HO IIPUTOM BbI-
JIe3aeT 3a €ro IPaHUILy.

Ocraercs Ha\ﬁfTI/I COOTHOIIIEHNE MEXKJTY @ U 71, IIPU KOTOPOM JIOCTUTAeTCs SKCTpeMyM. [Ipumem

3

BHauaJse 1y = a5, 1 OyjileM MeJIJIeHHO YBeJIMuuBaTh 3TOT pajuyc. Ecim on yeenmunpaercs Ha 0,
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TO ILJIOMIA h OOJIBIIOTO Kpyra yBEJUYINIaCh Ha TJIOMAIb KOJIbIA PAJNyca 1y W IIUPUHBL ), T.e.
npubmsnTesbHo Ha 27716, C Ipyroii CTOPOHBI, ILIOMIAAL «yTOJKOB» yMEHBIIUIach Ha 63710,
(cM. PECYHOK), COOTBETCTBEHHO, UX TIOJIHASI ILJIOMIA/IL YMEHbIUIach Ha 6y3110.

OueBmIHO, cCyMMapHasi IJIOMA/Ib YMEHBIIAETC s, TIOKa IIePBOe BBIPAYKEHNE MEHbIIIEe BTOPOTO,
1 Ha9MHAET PACTHU ITOCJIe TOTO, KAK OHU CPABHAIOTCA. MUHUMYM, CTAJIO0 OBITH, JJOCTUTAETCS, €CITH
OHM PaBHBI, TO €CThb TPeOYeTCsI, YTOOBI BBIOJIHSIOCH PaBeHCTBO 27r1d = 6y(0rid. Cokparmasi,

2T \/5
nojiyqaem 3 = — = —.

6y 2
V3 1
2 cos (§ - 5)
TeM CaMbIM, TAKKe U BECh KBaJIPAT) HETPY/IHO BLIYUCIUTh, HO OH UMEeT HECKOJIbKO «3y60opotu-
TEJbHbBIAY» BH]IL.

CTOI/IT 3aMeTUuTb, 9TO TeM 2XKe CHOCO6OM MO2KHO HalTH OITHUMAaJIbHOE IIOKpPbITHUE, €CJIN Pa3-
peraercd 6paTb KPyru TPexX PasHbIX PAJIMYyCcOB, U BOOOIIE, JIIOOOTO (PUKCHPOBAHHOTO Yucjaa k
PA3HBIX PaJINyCOB.

B zakrodyenne oTMeTHM, YTO MPUBEJIEHHOE JTOKA3ATETHLCTBO NMeEeT «JIAKYHY»: He JOKA3aHO,
YTO TEHTPHI «OOJIBINX» KPYTOB CJIE/lyeT pa3Meliarh UMeHHO B opMme 6-yroJbHON pereTKu.
ZKiopu B JaHHBINT MOMEHT HE MMeeT YeTKOIr'O JIOKA3aTe/IbCcTBa 9Toro ¢akra. Bo3mMoxkHO, ydacT-

HUKU CyMEIOT BOCIIOJIHUTL 9TOT Hp06eﬂ.

[Ipu sToM 1, = @ - . Kosddurnpment, ¢ KoTOpbIM TTOKPHIT BeCh 6-yroJabHUK (1,

D4-D6

Otger B 3aade D6, dpakTuyuecku, ToT xKe, 4To B 3a1a4e D3: KyO MOKHO MOKPBITH HECKOJIb-
KUMU TIIAPaMU, €CJIN Pa3PeIraeTcs, YToObl UX CyMMAapPHbI 00beM paBHsICA 1 + a, Kak Obl MaJIo
HI OBLIIO a.

Bosee Toro, mo cyTu u perrenne ee MoJHOCTHIO AHAJOTUIHO. 3aMETHUM, 9TO TYT HaJI0 OyaeT
BOCIIOJIb30BAThCA T€M OOCTOATEILCTBOM, 9TO 00BEM IIapa, BIIMCAHHOIO B KyO, OOJIbIIE, XOTh U
HEHAMHOT0, YeM I0JIOBUHA obbeMma Kyba. Ecim 661 910 ObLIO He Tak (K IpuUMepy, ecjiud Obl Mbl
3aHUMAJIICH 4-MEPHOI reoMeTpHeil ), TO JOKAa3aTeIbCTBO BCE PABHO MPOIILIO Obl, HO €ro MPHUIILIOCH
OBl HEMHOT'O MOJIU(DUITNPOBATD.

B zajaue D4, Tak ke, kak u B D1, moHATHO, 9TO pajuyc MAapoB JIOJKEH ObITh MaJi, HO CYyTh
BOIIPOCA 3aKJIIOYAETCA B TOM, KaK JIOJIZKHBI pa3MeNIaThCs IEHTPHI PABHBIX MAPOB, TOKPBIBAIOIITNX
Ky0.

[To ananorun ¢ D1 («mioTHast yIakoBKa KPYroB» ) CJIEJLYET, [0 BCEell BUIMMOCTH, PA3MECTUTD
9TU MEHTPBI TAK, ITOOBI MOy IUTh «ILJIOTHYIO YIIAKOBKY IIapoB». MbI cHaYa I [IPEIbIBUM «HAU-
OoJiee TJIOTHYIO» YIIAKOBKY HEIIEPECEKAIONINXCs MAPOB; MOCIE ITONO OCTAHETCH YBEJIUYUTh BCE
pPaJMyChl TaK, 9TOOBI MOJIyYE€HHbIE MAPhl MOKPHLIA BCE.

OTa IIOTHAs yIAaKOBKa UMEEeT CJIeIYIONUil BI: Oy/IeM pasMeIarTh Mapbl TOPU30HTATLHBIMU
cinogmu. [lapbl HUKHETO CJIOs PA3MEIAoTCeA Tak ke, Kak B D1, T.e. ux 1meHTpsl 06pa3yioT mpa-
BIJIHHYIO TPEYTOJIbHYIO PEIIeTKY. A TEHTPHI IapOB BTOPOTO CJIOSI PACIIOJIATAIOTCH TaK, ITOOBI
KaK/IbIil 13 HUX 0OPa30BBIBAJI BMECTE C TPEeMs IIapaMU HUYKHETO CJIOsl MPAaBUJIBHBIN TeTpasIp
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(3aMeTuM B CKOOKAX, 4TO PACIOJIOKUTH UX TAK MOXKHO JIBYMsI PA3HBIMU CIIOCODAMU, OCKOJIBKY
«sI9€eK», B KOTOPbIE MOYKHO IIOMECTUTH OU€PE/IHOM T1ap, BIBOE OOJIBITIE, YeM MTapOoB JIJId ITUX dde-
ek). T'perwuit ci0it OMeIaeTCst MOBEPX BTOPOTO TI0 TOMY 2Ke IpuHIuITy, U T. 1. ([l HarsgrocT
CKayKeM, YTO eCJId, K TPUMEPY, Iaphbl IEPBOT'O CJIOS BBIJIOYKEHBI TPABUIHHBIM TPEYTOJHHIKOM 110
N IapoB BJOJIb CTOPOHBI, IIaPbl BTOPOI'O — TPEYTOJbHUKOM CO CTOPOHOI Ha €JIMHUILY MeHbIIe
U T. Jl., TO B UTOre Iapbl Oy/IyT BBLIOXKEHBI MUPaMuioil B hopMe TPAaBUILHOTO TETPAd/Ipa; B
HAIIIeM CJIydae, BIIPOUeM, Iapbl JOJKHBI 00pa30BaTh HE IIMPAMUJLY, & «IIPUOJIM3UTETBHO» KY0).

[Tocse 3TOTO OCTAETCST BBIYMC/IUTDL PAJIRYC YBEIUIeHHBIX mapoB. Ckaxkem 06e3 J10Ka3aTe Ib-
CTBa, YTO KO3 DUIMEHT yBeJnmdeHus OyJeT paBeH OTHOIIEHUIO JUaMeTpa ONMUCAHHONW cdepbl
IPABHJILHOIO OKTA3JIpa K €ro pebpy, T.e. /2.

Hakowner, B 3ajade D5 my2kHO, 110 006pazity 3ajiadu D2, pa3MecTuTb MEHTPHI IIapoB OOJIbIIe-
ro pajmyca TOYHO Tak ke, Kak B D4, 1mogodparh UX paJinychl TakK, 9TOObI 3allOJHUTH KyO He
MIOJTHOCTBIO, 8 OCTABIIYIOCS 9aCTh 3aIlOJHUATD IapaMi MaJIoro pajuyca 1mo obpasiy DA4.

OmHAKO MBI XOTUM IIOTYEPKHYTH, 9YTO CKa3aHHOE 110 1oBoay 3axad D4, D5 — He permenne, a
TOJIBKO TIPABJIOINOIO0HBIE PACCYKIEHUS O TOM, KAKUM OHO JOJI?KHO ObITh. HampoTus, ckazanHnoe
o 3ajade D6 — ecThb mcYeprbIBaloliee pelleHne, Wik, TOTHee, ero KOHCIIEKT.

D7

Cornacuo 3ajade D1, npu ontuMajbHOM MOKPBITUN KBaJIpaTa KPyraMu B OJUH CJIOH 4acTb
KBa/IpaTa IIOKPbITa JABazKIbI. STa JaCTb COCTOUT U3 «JIYHOK>. BaMeTI/IM, 9TO HECKOJIbKHUMH KO-
NUAMHI <JIYHKA» MOKHO IIOKDBITH BECh IICCTUYIOJIbHUK — HAIpUMEp, TaK, KaK Ha PHCYHKE:
MIECTUYTOJTLHUAK TOKPBIT pOMOaMU, KarXKJbIil 13 KOTOPBIX, B CBOIO OYepe/lhb, TOKPBIBAETCS OJTHOM
JIYHKOH.

[Iycte N — 49mcio poMOOB B 9TOM IMOKPBITUHU; KAaXKIbIIl U3 3TUX POMOOB IOJIYIAeTCs U3 M3-
Ha4d9aJIbHOI'O CABHUI'OM. COOTBGTCTBGHHO, cCJIn N pa3 CABUHYTLHL Hall€ MCXO/JHO€ IIOKPbITHE, TO
Hall MeCTUYroJIbHUK 6YIL€T IIOJIHOCTBIO ITOKPBLIT JIYHKaMMH. TOLIHO TaK ZKe 6y;[eT IIOKPBIT 1 JIIO-
6ot pyroit 6-yroJbHUK MOKPBITUS, a 3HAYUT, U Bech KBajpar. (Hurareso mperocraBisgercs
pa300paThCst ¢ TPAHUIHBIM 3(hHEKTOM CAMOCTOSATETHHO. )

Takum obpazom, N MOKPBITUSIMU MbI B AeHCTBUTEILHOCTH TOKPBLIN KBajpar He N, a N + 1
pas.
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D8

Pemrenne aBTOpaM ITIOKa HEU3BECTHO.

E1

Jlemma 1. Huco qacreit paBuo 1+ a + b+ ¢, tje a, b, ¢ — COOTBETCTBEHHO YHCJIO TOPU30H-
TaJbHBIX JIMHUI, IepeceKaronux JaHHbI KBaJIPaT, BEPTUKAJIbHBIX JIMHUN U Y3JI0B CETKH.

Jloxazamenvbcmeo TIpoOIIEe BCEro IMPOBECTH, CHAYA/Ia CTEPEB BCe JIMHUM, a 3aTeM BOCCTaHABJIU-
Bagd UX OJIHY 3a JAPYroil.

Jlemma 2. B kBajgpare co cTOPOHO# 1 HEJIB3sT TIOMECTUTH TPEYTOJIBHUK, ¥ KOTOPOTO OCHOBAHIE
1 BBICOTA, Ha HErO OIyIeHHasi, 00a He MeHbIe 1 1 He TmapaJlieIbHbI CTOPOHAM KBaJIPaTa.

Jloxazameavcmeo JIETKO ClIeJIyeT U3 TOrO, TaKKe dJeMEHTapHOro, ¢gakrta, 4TO B KBajpaT
CO CTOPOHOIT 1 He MOXKET MOMECTUTHCS TPEYTOJbHUK IO 6oJibine 1/2, mpudeM paBeHCTBO
BO3MOYKHO TOJIBKO €CJTM OCHOBaHUE TPEYrOJIbHUKA COBIIAJAeT CO CTOPOHOI KBaJIpaTa.

OtBer. uncio yacreii He Menbie 4 u He Gosbmie 6. Ilpumepsr g 4, 5 u 6 gacTeii J1erKoO
HApPUCOBATH (CM. PHC. ).

/\

Pemntenne. /Inga Toro, 4Todbl jI0Ka3aTh, 9TO YacTeil HE MOXKET OBITH MEHbBIIE WU OOJIbIIE,
BBISICHUM, Y€MY MOTYT ObITh paBHBI YUcaa a, b, c. [IocKOJIbKY «IMUpUHA» HAKJIOHHO JICXKAIIETO
KBaJ[paTa B TOPU30HTAJIHHOM WJIN BEPTUKAJIHHOM HaIlpaBJIeHUU OOJIbIlle 1, HO 3aBEJIOMO MEHBITIE
2, ICHO, YTO IepPBbIE JIBa YUCJIa HEe MOTYT ObITH MeHbIre 1 man Oosibiire 2. JIerko rakke yoeanTbes
B TOM, 9TO ¢ MOxKeT ObITh paHo 0, 1 win 2.

Horyctum, 910 vacTeil BCero 3; n3 CKa3aHHOT'O CJIEIYeT, 9TO ITO BO3MOYKHO TOJILKO B CJIydae
a=>b=1,c=0. Ho Torja namr kBaJipaT IeJIMKOM ITOMEIIAETCA B TpeX KBajpaTax, MMEHHO TaK,
KaK ITOKa3aHO Ha PUCYHKE CIIPaBa, U Mbl BIJUM, UTO 3Ta KaPTUHKA ITPOTUBOPEYNT JIeMMe 2.

Coyuait cemu dacreil, Kak HU CTPAHHO, aHAJOTUYEH B TOM CMBICJIE, YTO CBOJUTCA K TOH Ke
JeMMe (CM. pHC. CJIeBa).

E2

[TombrTaemest TpubJIMAKEHHO BBIYUCAUTE 9ncJI0 dacTeil. [l sToro Oyjem caurarh, 9TO BEpX-
HUIl TPSIMOYTOJBHUK HE IMMOJIOYKEH Ha HIDKHUI, a HapucoBan Ha HeMm. COTpEéM Terepb BCE €ro
JIMHUYU U OyJIeM UX BOCCTAHABJIMBATHL OJIHY 3a Jpyroit. Mbr OyjaeM cuuTaTh, YTO BEPXHUN TTPAMO-
YTOJIBHUK — TOT, YHUCJIO YacTell B KOTOPOM HAJI0 OIEHUTh — PACIIOIOXKEH MapaJslieIbHO 0CsaM (ero
JIMHUM BEPTHKAJIbHBI U TOPU30OHTAILHBI), & JIUHUM HUXKHErO, 10 BCeil BEpOATHOCTH, HAKJIOHHBI.

BraugaJsie napucyem TOJIbKO BepxHuii mpsiMoyroibHuK pazmepoM 1000 x 2000 6e3 BHyTpeHHUX
Jmanit. OH pa3jieieH Ha JBa MUJIJIUOHA C HEDOJBIINM dYacTeil, OCKOJbKY B JIAHHBIT MOMEHT
JacTH — 9TO KBaJIPATUKN HUKHETO JIMCTKA, a HAa T'PAHUIE — YaCTU KBaIPATUKOB.
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Terneps GyJ1eM IPOBOJUTD OJHY 3a JIPYTOil IMHUM BEPXHET'O IIPAMOYTOIbHUKA, CHAYAIA TOPH-
30HTaJIbHBIE, IOTOM BepTUKaJbHBIE. KaxKas JIMHAA JaeT CTOJBKO HOBBIX 4YacTell, Ha CKOJBKO
JacTeil oHa pa3dmBaeTcs TOUYKaMU mepecedeHus. VMeercss 0KOIO ABYX MHUJIJIMOHOB TOUYEK Ilepe-
cedeHnsl TOPU30HTAJIENl ¢ BEPTHKAJISIMM, M KPOMe TOro, HaJI0 COCUUTATh, CKOJIBKO €CTh TOYeK
nepeceveHnsl HOBBIX JIMHUI, KOTOPbIe Mbl PUCYeM, C JIMTHUSIMU HUZKHEH CeTKH.

[IycTh HAMMEHBINIT YTO MEXK/Iy JIMHUAMU BepXHEN M JIMHUAMU HUKHEU PelIeToK paBeH (.
Kaxmaa Bepxusas jmmaug nveer jymmay 1000 wan 2000. PaccMorpuM, Hanpumep, JIUHUK JIJTAHBI
1000. Hwucso nepecedenuii Takoil TMHUN C JIMHASIMU HUKHeN npubimkenao pasao 1000 (sin o +
cos ). DTa BeJMUMHA MAKCUMATbHA, eCli o = /4, 1 B 9TOM ciydae ona coctasiser 1000v/2.
Coyuait munnit jymmnasl 2000 MOJTHOCTHIO aHAJOTUYEH, U JIETKO yOeIUThCsd, UTO HYHUCJIO YacTei
npubmzKenHo pasto 2 - 10 +2-106 422+ 109v/2 ~ 2 - 4,83 - 10°.

Ocraercst poBepuTh, ITO 3DMEKTHI, CBA3AHHDBIE C IPAHUIEH IPIMOYTOIbHUKA, HE3HAYNTE b
HBI, TAK 9TO KOIMDMUIIMEHT IPU MUJLINOHE ocTaeTcd MenbIine 10.

F1

OTtBet. VY orpannveHHbIX (HUTYD U TOJBKO Yy HUX.

F2
OtBert. /Ij1g MI0CKOCTH ¥ IOJIYILIOCKOCTH OObeMHas XapaKTepUCTHKa paBHa 2. g mosto-
cel — 1.
F3

HaJ1o BOCIIOJIb30BaThCs TEM, UTO ecJin paccrosiaue Mexkry Toukamu O u O paBHo A, TO Kpyr
paauyca R ¢ menrpom B Touke O IEJUKOM JIEXKUT B Kpyra paguyca R + A ¢ nenrpom B O, u
Ha00OPOT.

F4

Ortser. /la, BepHo.

B camom gerte, ecim § < g, T 10601 KPYr pajmyca § HOKPBIBACTCSH OJHUM KPYTOM Dajuyca
g, orkyna caenyer, aro Ns(R) > N.(R). (Baecs N.(R) u Ns(R) xak pa3 n 0603HAYAIOT JBE
dbyHKIHM, ONpe/Ie/IEHHbBIE C TOMOIIBIO PA3IIIHBIX PA/IyCOB. )

C mpyroii cTOpoHBI, 000N KPYT pajiyca € MOKPhIBAETC ONMPEIeIeHHBIM KOJMIeCTBOM A
KpPYyroB pajmyca 0, orkynaa ciaeayer, aro Ns(R) < A - N.(R), aro u Tpebyercs.

F5
2.

nojee

OTBer. &,

F6

OTtBert. Bee Tpu nmeroT xapakTepucTuky 2.

F7, F8

Ecim dpurypa neorpannyena u cBssna, TO €€ XapaKTEPUCTUKA He MOXKeT ObITh MenbIne 1. Ecin
OHa HAXOJWTCA B TPEXMEPHOM ITPOCTPAHCTBE, TO €€ XapaKTEePUCTHKa He MOXKEeT OBbITh OOJIbIIe
XapaKTEPUCTUKU BCETO MMPOCTPAHCTBA, T. €. He 0oJIbIie 3.

B ocrasmbHOM BO3MOXKHO BCE.
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Problems on coverings and growth functions
A.Tolpygo, B.Frenkin, M.Prasolov, 1.Bogdanov

Preface

This cycle is devoted to coverings of arbitrary figures by figures of a prescribed type
(usually by disks or balls). The task is to estimate their number, their total area etc.

Naturally, the most difficult are the problems where the precise estimate is required.
Fortunately it turns out that basic applications of these problems just don’t require an exact
answer, and it suffices to know the order of the respective value. The related definitions will be
formulated accurately in Part B.

Part A.

Al.
It is not difficult to cover the unit square by a disk of area n/2. However, is it possible to
cover the square by several disks of total area less than n/2? The disks may intersect and get out
of the square.

A2.
Cover the unit square by several disks of the same radius . Let M(r) be the minimal
number of disks sufficient for this.
Clearly r - 0 implies N(r) —> 0.
Determine the type of tending to infinity for this function. In other words: how fast does
it grow?

A3.
The same task but it is required to cover the unit cube by several (possibly intersecting)
balls of radius r.

Part B.

In the above problems we assumed that the notion of the “growth rate” is intuitively
clear. But below we shall need the precise definition for the “growth of a function”.

This definition is not quite obvious, and we will give it a bit later. Before that, having no
precise definition for the “growth of a function”, we will formulate certain properties of this
“growth”. Specifically:

In the sequel, we consider only functions f{x) such that

(*) f{x) 1s defined for all x exceeding some a (usually a=0, but for convenience we allow
a more general case, for example, functions like In(x—1)). Moreover we assume that f{x) is
positive everywhere (at any rate, for x>a), non-strictly increases and tends to infinity.

Denote the growth of f(x) by [f]. In the sequel, for simplicity we denote the growth of
x"byn. Thus, n=[x"].

We require that the growth of a function has the following features:

(1) If for all x exceeding some b (b not necessarily equals a) we have f(x) > g(x) then [f]
> [g].

(2) Let 4, B, C be arbitrary positive numbers, and g(x) = Cf(4x+B). Then [g] = [f].

(3) This easily implies that a situation is possible when both relations [f] > [g] and [g] >
[/] hold. In this case we set [f] = [g] as well.

If [f] = [g] but not [g] = [f] then we write [f] > [g].



However we still have not given a definition for growth. The correct answer is that
growth is just something subject to the above conditions.

Speaking more formally, we have to consider the class of functions subject to (*) and
split it into equivalence classes: f ~ g iff [f] = [g] (according to items (2), (3)).

Each of these classes is called the growth of all functions contained in it. Some of these
classes occur to be greater than others, so that we may say that a certain function grows faster (its
growth is greater) than another one.

B1.
Prove that 1 <2.
(A reminder: 1 and 2 are not numbers but the growth of some functions.)

For ordinary numbers there are three alternatives: either a>b, or a=b, or a<b. However
for functions this doesn’t hold. There exist “incomparable functions”, that is, functions f and g
such that both assertions [f] > [g] and [g] = [f] fail.

B2.
Find two incomparable functions.

B3.
Find a function f{x) such that 1 <[f] <3 but f is incomparable with 2.

B4.
Find a function f{x) such that for any >0 we have [f] <a.

BS5.
Find a function f{x) such that [f] =[f?].

Be.
Does there exist a function f{(x) such that [f] =[Inf] ?

Part C.

This part is devoted to coverings of figures. The main task is as follows: determine the
growth for the number of disks (or balls) sufficient to cover a given figure.

Definition. An epsilon-net (e-net) is a set of points inside a given figure, such that the

distance from any point of the figure to at least one of the chosen points doesn’t exceed €.
(In other words, disks or balls of radius € cover the whole figure.)

Definition. A delta-lattice (a d-lattice) is a set of points inside a given figure, such that
the distance between any two points in the set is not less than 8. (Of course, the numbers epsilon
and delta may coincide).

An g-net is called minimal if it contains the minimal possible number of points. Denote
the number of points in a minimal e-net by M(g).

A d-lattice is called maximal if it contains the maximal possible number of points. Denote
the number of points in a maximal d-lattice by N(9J).

Think on your own why in the first case we have to consider a minimal net, and in the
second case a maximal lattice.

C1
Determine M(g) and N(J) for a segment of length @ (and arbitrary g, J).



C2
Give an estimate (as sharp as possible one) for M(g) and N(5) when a net and a lattice are
constructed in the unit disk, or in the unit ball. The estimate must be two-sided, that is of the
form (for instance)
2/e <M(e) < 5/e

Definition. The dimension of a figure is the growth of M(¢g) as of the function in 1/¢.

C3
Prove that the dimension equals the growth of N(¢) as of the function in 1/e.

Thus the dimension can be defined both in terms of minimal nets and of maximal lattices.

C4
Give an example of a figure of dimension 3/2 .

C5s
What are other possible values for the dimension of various figures? (It suffices to
provide several examples.)

Cé
A helix 1s a curve which is located inside some disk and tends to its center; in polar
coordinated, it can be defined by the equation » = f{@) where f'is defined for ¢ > 0 and decreases
tending to O at infinity.
Determine the dimension of a helix. Does this dimension depend on the specific
function £, or it is always the same?

After the intermediate final

Part D.

Refinement of Problem Al.

Now, we are interested in a sharp estimate in Problem Al. In other words: we look for a
number a such that (1) the unit square cannot be covered by disks of total area less than a, and
(2) for any B > a, this square can be covered by disks of total area B. (Try also to determine
whether the square can be covered by disks of total area equal to a.)

We split this problem into three different ones. To formulate the first problem, we recall
one of the solutions for problem Al: tile the square by the regular hexagons, and cover each
hexagon by a disk. The ratio of areas of a hexagon and a disk is y = 21 / 33. Since the total area
of hexagons is larger than the area of the square, the total area of disks 3 will be greater than v,
but the difference  —y can be made arbitrarily small by taking sufficiently small hexagons.

D1.
Suppose that all the radii of the disks should be equal. Prove that the above construction
1s optimal, that is, o =y.



D2.
Find o if it is allowed to use the disks of two distinct radii.

D3.
Find a if it is allowed to use the disks of arbitrary radii without any restrictions.

(Warning. The problems are NOT necessarily ordered by the ascending difficulty!)

D4 - D6.
The same problem but the task is to cover the unit cube by balls which of course may
intersect. (Here it suffices to give some good estimates; the precise answer is not known.)

D7.
We need to cover the square with some disks of equal radii so that each point is covered
by at least N disks. Prove that there exists some N such that it is possible to make this with total
area of the disks smaller than N y.

DS.
Does the statement from D7 hold for N = 2?

Part E.

El.

A checked sheet of paper lies on a table. Another checked sheet of paper is put on it; the
squares on both sheets have the same size but the lines on the second list aren’t parallel to those
on the first sheet. The upper sheet is transparent, so that we see how its lines dissect some fixed
square of the lower sheet.

Determine the maximum and the minimal possible number of parts in a dissection of a
lower square.

E2.

A checked sheet of paper of size 10000*10000 lies on a table. Above it, another checked
sheet of paper of size 1000*2000 is put; the squares on both sheets have the same size. The upper
sheet is transparent, so that we see how the lines of the lower sheet dissect the squares of the
upper one. So, the number of parts of the upper list occurs to be greater than two millions.

Prove that this number is less than ten millions.

Part F.

Now we return to the problems of the same type as in cycle B. However, we consider a
somewhat different construction. We assume the number ¢ to be fixed (for instance €=1) but
consider an unbounded figure @, for instance, the whole plane, a half-plane etc.

Consider an arbitrary point O of the given figure, and construct the figure ®(R) consisting
of all points of the given figure whose distance from O does not exceed R (in other words, ®(R)
is the intersection of the given figure with a disk or a ball with center O and radius R).

Denote by N(R) the number of points in a minimal e-net in the figure ®(R). Let x be the
growth rate of the function N(R); if this function does not tend to infinity as R — oo, we
conventionally say that y = 0.

The number y 1s called the volume characteristics of the given figure.



F1.
Which figures have a zero volume characteristics?

F2.
Determine the volume characteristic of the following figures: (a) the plane, (b) a half-
plane, (¢) a strip bounded by parallel lines.

F3.
Prove that the volume characteristic of a figure does not depend on the choice of point O.

F4.
Given two positive numbers € and 0. Is it true, that the volume characteristics of a figure
@ calculated using the disks of radius € is the same as that calculated using the disks of radius €?

FS.
Determine the volume characteristic of the interior and of the exterior of a parabola.

Fe.
Determine the volume characteristic for each of three parts of the plane obtained by its
dissection by the hyperbola x)=1.

F7.
What are possible numerical values of the volume characteristic of a figure (in the plane
or in the space)?

F8.
Can the volume characteristic of a figure be not a number (in other words, can N(R) be a
function incomparable with some numbers)? For instance, can it be greater than 1, less than 2
and incomparable with 3/2, like the function from Problem B4?



Problems on coverings and growth functions
A. Tolpygo, B. Frenkin, M. Prasolov, I. Bogdanov

Solutions

Al

Answer. Yes, it is possible.
V2

One of the possible ways is to cover a square by a disk of radius 3%, then decrease this radius

a bit, and cover the four regions which are uncovered by four small disks.
A different way is presented in the problem statements before problem D1.

A2, A3
In the first case the growth of N(r) is quadratic (in terms of part B, [N(r)] = 2), while in
the second case it is cubic.

B1

For any A, B and a sufficiently large x we have 2? > Az + B. Thus [2?] > [z] but it is false
that [2%] < [z]. This just means that 2 > 1.

B2, B3
For instance, the required function can be constructed as follows. Construct a sequence of
rapidly increasing intervals (for example, the intervals [2,4], [4,16], [16,256], ..., [2%", 22“1] e

would fit), and consider first the function g(x) equal to 22 on odd intervals, and equal to 2% on
even intervals.

Obviously, this function grows faster than z but slower than x®. The main its defect is
its discontinuity (at points 4, 16, ...) which implies a non-monotonicity. But this can be easily
corrected. Define f(z) at the rth interval as g(x) + A,, where the constants A, are chosen so
that the function becomes continuous. Namely, let A; =0, Ay = 43 — 43 = —56, and so on.

The resulting function satisfies the conditions of the problem. Actually, its graph lies between
the graphs of x and 2% as before. Now we show that it is incomparable with 2. Consider
an interval [d,d?], where d = 22", Then we have f(d) < d°2, and hence f(d?) < d°? +
((d?)52 — d3¥?) < d® + d°* < 2(d*)*?. Therefore, if [f] > a, then a > 5/2. Analogously,
considering the interval [d, d?] for d = 227", we get f(d?) > 1(d?)>/?, wherefore the relation
[f] < a implies a < 3/2.

Correspondingly, the constructed function and x? provide the solution for Problem B2.

B4

For instance, the function f(x) = Inx fits.

B5

For instance, the function f(x) = 2% fits. Indeed, we have f? = 4% = f(2z), and the growth
of the functions is the same by the definition.

B6

Answer. Yes, it exists.

It suffices to provide for instance the relation In f(x) = f(z/2), or equivalently f(2z) =
exp(f(x)). To get this, take any increasing function on the interval [1,2] such that f(1) = 1;
f(2) = e =exp(f(1)); then our relation determines uniquely the function f n the intervals [2,4],
[4,8], and so on. Clearly, we get a desired example.



C1
| vy = L%HJ.

C2

The best possible estimate is not required in this problem, so the answer is not unique.
We present one of the possible estimates.
(a) For M(e).

Since the disks of radius € must cover the whole unit disk, their total area must exceed the
3

1\’ 1
area of the unit disk. Hence M () > (—) (respectively, M(e) > (—) for the cube).
£ £

a

Answer. M(c) = {2—5

On the other hand, using the construction shown in the Problems section above D1, we
can easily see that the whole disk (with a minor “overcoming”) can be covered by regular
hexagons. Covering these hexagons by disks, we arrive (for a sufficiently small ) to the estimate

1\* 2
M) < A- <—> : —W, where A is an arbitrary constant greater than 1.
) 3V3

For the ball, the first estimate is quite similar up to replacement of the square by the cube.
The second one can’t be obtained in this way. But we can cover the ball by small cubes and
insert each cube into a ball. This leads to the upper estimate.

(b) For N(6).

Suppose that N points form a lattice; for each point, consider a disk of radius § with the
center in this point. If all these disks do not cover the unit disk, then we can add one more point

1\ 2
to the lattice, and it is not maximal. Hence N(9) > (5) . The other estimates are obtained

similarly to the ones above.

C3

Clearly, a maximal d-lattice is also a d-net (the respective disks cover the whole figure). On
the other hand, a disk of radius g can contain not more than one point of a J-lattice. This
immediately implies that if £ < § then M(g) > N(4).

Thus M(5) > N(6) > M(0), and this implies the statement of the problem.

C4

We construct the required figure as an intersection of an infinite number of figures. Actually,
let ®; be the disk of radius 2 with the center at the origin. Furthermore, inscribe a figure ®,
into ®; as follows. Let ®5 be the union of 8 disks of radius % (that is, 4 times less) with centers
at (0,—2); (0,—%); (0,1); (0,2), and of 4 similar disks with centers on the y-axis. (Some of
these disks do intersect.)

Next, into each of these disks we inscribe 8 disks of radius % arranged similarly. Namely,
their centers lie on lines passing through the center of the disk in question and parallel to one of
the coordinate axes. These 64 disks form the figure ®3. The figures &4, ®5,... are constructed
similarly; let ® be the intersection of all these figures.

Obviously the resulting figure can be covered either by a single disk of radius 2, or by 8 disks
of radius %, or so on. On the other hand, all the centers of constructed disks of radius 2!=2"
form a 272"-lattice in ®, and there are 23" such centers. This determines the dimension of ®.

C5

Answer. The dimension of a (connected) figure can attain each value from [1,2] (on the
plane). The dimension can be incomparable with some numbers as well. It can be less than 1
only for a non-connected figure.

C6

Answer. The dimensions of different helices may be different.

2



Let us assume first that a helix has finite length. (This is true, for example, when f(p) = e %,
since in this case the length of each turn is proportional to the length of the first one, thus the
length of the whole helix is the sum of a descending geometrical progression.)

Let L be the length of the whole helix. Since a piece of the helix having length 2r obviously
can be covered by a disk of radius r, the whole helix can be covered by 2—]; disks, which means
that the dimension is equal to 1.

On the other hand, if a helix covers a disk densely, then its dimension is greater than 1. We
are left to define what is “densely”.

To give an example, let us draw concentrical circles of radii %, %7 e %, ... in the unit disk.
They dissect the disk into concentrical rings. Suppose that the kth ring contains 10* turns of the
helix arranged uniformly (in this ring). We claim that this is a “sufficiently dense” arrangement
of turns, that is, the dimension of this helix is greater than 1.

For the proof we formulate a general

Proposition T. Let ® be some figure in a ring, the size of ® being much larger than the
width of a helix turn. Then the area of ® is approximately equal to the product of the turn
width and the total length of the parts of the helix lying inside .

Strictly speaking, this proposition is incorrect; one can easily find some counterexamples.
But we will apply it only to the disks and the rings, for which it holds, and can be easily proved.

So, we turn to the dimension of our helix. Consider some small €. Choose integer k such
that 1/k* > e > 107%, that is, ¢ much smaller that the width of kth ring, but the turn width §
in this ring is much smaller than €. Note that such k£ can be found if € is small enough. Denote
by ® the kthe ring.

Now, apply the Proposition T to ® and to each disk of radius ¢ in the covering. Let L be the

1 1

length of the piece of the helix lying inside ®; then the area of ® is 7 (ﬁ — m) ~ L).
On the other hand, each disk will contain the pieces of helix with total length ~ 7e?/§. This
means that the number of disks covering the part of a helix inside ® is (almost) at least the
ratio of these two values. In other words, these disks have almost the area sufficient to cover the
whole ®.

From this, we cannot make a conclusion that the dimension of a helix is 2, though ® has
a dimension 2: actually, we choose different figures ® for different €. But, since k£ grows much
slower than ¢, one can easily see that the dimension of ® is definitely greater than 1, and this
was exactly our goal.

D1

Lemma. Given N polygons lying inside unit disks such that each polygon contains the center
of its disk, and the total amount of vertices of polygons does not exceed 6/N. Then the total
area of polygons is at most N - %g (so, this estimate is sharp when the polygons are the regular
hexagons).

Proof. Dissect each polygon into triangles by the radii of its disk. The doubled area of each
triangle is not greater than sin o, where « is the angle at the central vertex. So, the doubled
total area of given polygons equals to sin a; +sin as +. . . +sin «,, where «; are the corresponding
angles; we have ay + --- + a,, = 7N, and n < 6/N. Moreover, adding some zero angles one can
assume that n = 6N. Finally, one can notice that the graph of the function sinz on [0, 7] is
concave, so the function attains its maximal value when «; = 3. So we get the maximal area if
all polygons are regular hexagons.



Solution of problem D1. We will prove the statement for an arbitrary polygon T with
angles not exceeding 27 /3. Suppose that 7" is covered by N equal disks. Divide this unit square
into convex polygons by the following rule: for each disk center, its polygon contains all the
points such that this center is the closest center to them (see Figure). The discs are equal,
therefore the sides of polygons are the parts of common chords of our disks. Since all points are
covered, each polygon lies in a corresponding disk. Moreover, each polygon obviously contains
the center of its disk.

Now we estimate the average value of the angle of our polygon. The average angle in each
vertex of our dissection is not greater than 27/3 (it can be easily seen separately for the vertices
inside 7', on the sides of T', and for the vertices of T — exactly here we use the estimates for
the angles of T). It follows easily that the total number of vertices of the polygons does not

3v/3

exceed 6N. Hence by the Lemma the total area of the polygons (which is 1) is at most N —

2
and the total area of the disks is N - 7e* > 3 =, as desired.

3e?
Remark. If 7" is a regular hexagon, then the best way to cover it is to use exactly one disk;

all other ways are strictly worse.
With some minimal changes, the proof above is valid for any polygon with at most six sides.

D2

The optimal construction is the following one.

We cover a part of the square by the disks of a larger radius, and the remaining part will be
covered by the smaller disks using the method from D1 (that is, using a covering by the small
hexagons). Naturally, to reach an (almost) optimal configuration by this method, we should
take the radii r; and 75 such that 1 > r{ > ro.

Cover a unit square by regular hexagon lattice. Denote a side of a hexagon by a and put on
each hexagon a disk of radius ;. We wish these disks to intersect but not to cover the whole
square; these conditions rewrite as \/Tga < ry < a. It remains to cover the rest by the smaller
disks.

Now we find the radius r; for which this configuration is optimal. We see that the total area
of the disks is the sum of the total areas of large and of small disks; the latter is v times larger
than the area of the parts (“corners”) uncovered by the large disks. We call this latter summand
the full area of the corners (to distinguish it from their total area).

Thus, neglecting the boungary effect, we can consider only the disks covering of one hexagon;
the ratio of their total area to the hexagon area is exactly the total area of all disks.

3

First, let r| = a%, and then let us increase this radius. When it increases by 9, the area of

the large disks increases approximately by 27r10, while the area of six “corners” decreases by



60710, hence their full area decreases by 64r10y. Obviously, the total area is minimal when the

2T \/§

increment and the decrement become equal, that is, 27716 = 68r16, wherefore 3 = = —.

6y 2
V3

In this case ry = a - — - ; The total area of the disks can be computed but it
2 cos(§-5)
has a combersome form.

One can notice that the (presumably) optimal arrangement of the disks with three (or more)
different radii can be found in a similar manner.

Unfortunately, the jury does not know the proof for the optimality of this configuration.

Perhaps, the participants can fill this gap?

D3

Answer. 1.

The solution follows from the following

Lemma. If a unit square is covered by disks of total area 1 + « then it is possible to cover
this square by disks ot total area 1+ 3.

Proof. Assume that a unit square can be covered by the disks of total area < 1+ a. We
claim first that each figure F' of area S can also be covered by the disks of total area < S(14«).
To prove this, one can cover F' “almost sharp” by some small squares, and then cover these
squares with the “non-efficiency” < 1+ a.

Now we are ready to prove the Lemma. Inscribe a disk of area 7 into a unit square; then we
can cover the remaining figure by the disks of total area < (1 + «) (1 — %) Since ™ > 2, we get
the desired covering.

D4

Naturally, as in D1, the radii should be small enough, and the main queation is about the
arrangement of the ball centers. By analogy with D1, it is presumably better to take some
“dense” packing of balls and try to expand it. We present a dense packing of non-intersecting
balls; then it remains to increase their radii to obtain the covering of the whole cube.

Let the centers of the balls in a “first layer” lie in the vertices of a triangular lattice in one
plane. The next layer will contain the balls also forming the triangular lattice; moreover, each
center in the second layer will form a regular tetrahedron with three centers from the first layer.

The third layer is constructed in a same manner from the second one, and so on. Notice here
that, having made two first layers, one can construct the third one in two (essentially different)
ways; but the density of both coverings will be the same. To visualize his, we remark that if
one starts with the first layer in a form of the regular triangle with side n, then we can obtain
a pyramid with n layers.

It remains to calculate the ratio of the radii of the original and the expanded balls. We
mention (without a proof) that this ratio is equal to the ratio of the circumdiameter and the
side of a regular octahedron, or V2.



D5

It seems that the optimal configuration has a form similar to that in D2. That is, we take
the configuration from the previous problem, decrease the radii a bit, and cover the remainng
spaceby the balls of a smaller radius.

D6

The answer for D6 is the same as for D3. The solution is similar due to the fact that the
volume of the ball is greater than half of the volume of the corresponding cube (in 4-dimensional
case this is not true, hence one should upgrade the proof a bit).

Remark. Notice that in D4-D5 we provide only some plausible reasonings on an optimal
example; conversely, in D6 we show an outline of the full solution.

D7

Cover the square as in D1. Part of the square which is covered twice consists of equal figures;
we call such a figure a lens. Cover a hexagon by lenses as in the figure: a hexagon is covered by
rhombs, and each rhomb can be covered by a lens.

Denote by N a number of rhombs in this covering. Each rhomb can be obtain from the initial
one by a shift. So, let us shift the covering N times to obtain a square covered N + 1 times.
The correcting of the boundary effect is left to the reader.

D8

Jury does not know the solution.

E1

We start with two elementary lemmas.

Lemma 1. The number of dissection parts equals to 1 + a + b + ¢ where a, b respectively are
numbers of horizontal and vertical lines which intersect the lower square and c¢ is a number of
vertices of the upper sheet which lies in the lower square.

Proof by induction is easy: delete all the horizontal and vertical lines, and then draw them
one by one.



Lemma 2. If a base and the corresponding altitude of triangle are at least 1 and this triangle
lies in the square then its base coincide with the side of the square.

Proof follows from the fact that if a unit square contains a triangle with area > 1/2, then
this area is 1/2; moreover, in this case the triangle and the square have a common side.

Answer. The number of parts equals to 4, 5 or 6. Examples are shown in the figure.

/\

VAR
IOIR Y

Solution. First, notice that each projection of a unit square onto some line has a length
between 1 and v/2; this means that a and b can be only 1 or 2. Moreover, it is easy to see than
0 < ¢ < 2. This means, by Lemma 1, that the desired number lies between 3 and 7. We are left
to show that the border cases are impossible.

Suppose that the number of parts equales to 3, thus a = b =1 and ¢ = 0. This means that
the lower square is covered by three upper squares (see the left figure below); this contradicts
Lemma 2.

The case of 7 parts is similar in the sense that it follows from the same Lemma 2 (see the
right figure below).

E2

We will find an approximate estimate for the number of pieces; the further details are left to
the reader. We will assume that the upper rectangle is drawn on the plane; so we erase it and
then we reconstruct it in several steps. Now we assume that the sides of top (small) rectangle
are oriented vertically and horizontally, while the lower rectangle is sloped.

First, we draw the boundary of the upper rectangle; then it will be split into a bit more than
two millions parts (almost all of them — except those on the border — are the unit squares).
Next, we draw the vertical and horizontal lines (of the upper rectangle) one by one. Each line
increases the number of parts by the number of its intersections with other lined (drawn up
to this moment). Hence, the total increment will equal to the total number of the points of
intersection (where the 3- and 4-fold points are considered in an appropriate manner). So, we
are to estimate this number. There are not more than two millions points of intersection of
horizontal and vertical lines with each other. The remaining points are the points of intersection
of lines from different sheets.

Let a be the angle between a horizontal and (some) sloped line. Then a horizontal line
(of length 1000) intersects approximately 1000 sin « lower lines of this type, and approximately
1000 cos a sloped lines of another type, so all horizontal lines add approximately 2000-1000(sin a+
cos ) points. Similarly, the vertical lines add approximately 1000 - 2000(sin « + cos «v) points.
Note that the expression sina + cos a reaches its maximum value v/2 when a = 7 /4, so the



obtained bound for the number of parts is approximately 2-10642-10+2-2-106v/2 ~ 2-4.83-10°
parts. It is left to see that the errors in our calculations sum up at less than one million.

F1

Answer. Figure has a zero volume characteristics if and only if it is bounded.

F2

Answer. A volume characteristics of the plane and the halfplane equals to 2. A volume
characteristics of the strip equals to 1.

F3

Denote by Ni(R) and Ny(R) functions corresponding to points O; and O,. Then Ni(R +
0102) Z NQ(R) and Nl(R) S NQ(R+ 0102). Thus [Nl] = [Ng]

F4

Answer. Yes.

Assume that ¢ > §. Then each disk of radius 6 can be covered by a disk of radius e¢.
So Ns(R) > N.(R). (Here, N. and Nj denote the two functions defined by the disks of the
corresponding radii.)

Conversely, each disk of radius € can be covered by A disks of radius ¢ (for some constant A).
Then Ns(R) < A- N.(R), quod erat demonstrandum.

F5

Answer.

N

2.

F6

Answer. A volume characteristics of all of them equals to 2.

F7, F8
If a figure is unbounded and connected then its volume characteristics is at least 1. Volume
characteristics of a figure is at most volume characteristics of the whole plane/space, i.e. 2 or 3.
These are the only restrictions.






Ciydaiiable OJTy»K1aHUsT U SJeKTPUIecKue 1en

Ivurpuit Bapanos, Muxann Ckomnenkos, Ajtekceil Yerunos

[enn marero mpoekTa — J0Ka3aTh CJIEIYIONIYIO TEOPEMY U U3YYUTH CMEXKHBIE BOITPOCHI.
Teopema Iloita. (a) Ecau uerosex cayuaiinvim 00pa3om nepemeusaemcs no 2-meprot
PEWEMKE, MO OH BEPHEMCA 6 HAYAALHYIO MOYKY € 8EPOAMMHOCMDBIO 1.
(b) Ecau orce on nepemewsaemcs no 3-meproti pewemre, mo 6ePOAMHOCTIG €20 6036PAMA
8 HAYAALHYN TOYKY CMPo20 MeHbWE 1.

Tounbie popMyIpPOBKH JlaHbl HUzKe. [IpejiaraemMblii 101X0/1 K J0Ka3aTeIbCTBY OCHOBaH
Ha puznveckoil narepuperanun. Hukaxkux criennajbHbIX 3HAHUN (PU3NKKN He TpedyeTcs.

A

l-piepuasn pemeTra —

2-MepHAS peleTKA

3-mMepHas pemerka

1. OgHoMepHBIE OJIyKIaHUSA
MuI cragasia cchopMmyInpyeM 3aiady 1 JIUIIb TIOTOM JaJIIM HEeOOXOINMbBIE OIIPeIeIeHISI.

1.1. HesoBeK XOMUT 110 OTPE3KY YJIUIIHI, COCTOAIIEMY U3 5 KBapTasoB. Hauas cBoil yTh Ha
rpaHuIle KBapTaJOB B TOUKE X, OH C BEPOSITHOCTHIO 1/2 mepemerinaercst Ha OJMH KBapTall
BJIEBO U C BEPOSITHOCTHIO 1/2 — Ha ojuH KBapTas Bipaso. 110/10fi/is K rpaHuile KBapTaJIoB,
OH ONATH BLIOMpAET HAIpaBJeHne JBIMKEHNs caydaifHbiM oOpaszoM. Ecm oH okasbiBaeTcs
B Touke 5 (ero jom) mim B Touke 0 (6ap), To OH mpekpalaer aBmKeHne: cM Puc 1.

Bap G ’/m‘g__@ Jom
0 | 2 3 4 5

Puc. 1: Ciyuaitnoe gsuzkenue 1o yswmiie; cM. 3aady 1.1.

(A)* Hamummre KOMIIBIOTEPHYIO TIPOIPAMMY, MOJIETUPYIOILYIO JIBUZKEHNE ITOTO Ye/IOBEKA.
3allycTuTe ee MHOIO pa3 1 OIPEJCJNTE IPOICHT YUCJa CAYyYaeB, B KOTOPBIX OH IPUXOJUT
JIOMOIL. Bbl MOZKeTe UCI0IB30BaThL 3TOT CIOCO0 I yTa IbIBAHUS OTBETOB B HOC/ICLY FOIIX
3a1a49aX.

E-mail address: dimbaranov@mail.ru, skopenkov@rambler.ru, ustinov.alexey@gmail.com

Jlemnasn xongpepenyus Meorcoynapodnozo mamemamuneckozo Typrupa [opodos 2-10 aseycma 2010 e.



(B) Ilycts Pr(x) — BEposSITHOCTBH TOTO, 9TO U€JIOBEK, HAYABIINI CBOE JBUZKEHHE B TOU-
Ke T u cienaBimuii He 6ojiee T XO0B, oKa3ajCs JOMa. J3aIOJHUTE CJIEIYIONLY0 Tab/IuILy
JNECATUIHBIMU JIPOOSIMU ¢ TOYHOCTBIO JI0 COTBIX.

Tabsuna 1: Bepositnocru Pr(z) masg mameix T

x 0 1 2 3 4 5

0.00 | 0.00 | 0.00 | 0.00 | 0.50 | 1.00

NIV O T

(C) Haiigure BepositHocTh P(2) TOTO, 9TO 9€I0BEK JOWIET 10 JOMA depe3 KaKoe-TO KOJIH-
YECTBO XOJI0B.

Omnpenesienne. (A) IlpeanookuM, 9T0 y HEKOTOPOTO SKCIEPUMEHTA UMEETCS N PAGHO-
GEPOAMMHBLT UCXOJIOB, U cOObITHE X TPOUCXOJIUT POBHO B M U3 HUX. Torja geposmmocmvio
cobbitust X HazbiBaercd unciao Py (X) :=m/n.

Harpumep, BeposiTHOCTD BBINAJIeHNsT OpJia TIPH OPOCAHUHN MOHETBI — 1/2; BEpOSITHOCTD

BbINIa IeHNst 6 0YKOB Ha KyOnke — 1/6; BepOSTHOCTH TOWTH HANPABO IO HAIEHl yiuie —
1/2.
(B) Teneps npejiosozkum, aro cobbitue X 3aBUCHT OT MOCJIEI0BATEILHOCTH TAKUX IKC-
nepuMeHTOB. [locien0BaTeIbHOCT U3 1 SKCIEPIMEHTOB nMeeT N’ BO3MOXKHBIX HCXOJIOB.
[Ipemmonoxkum, 910 cobbiTue X IIPOUCXOIUT POBHO IIPU My UCXON0B u3 HuX. Torma eepo-
ammocmuio cobbitust X Hasbiaercs uncio Pr(X) := mgy/nt.

Hamnpumep, ects poBHO 4 BO3MOYKHBIX MCXO/Ia IMPU OpOcaHNN MOHETHI 2 pa3a:

1-wr1it 6Gpocox open open perka perka
2-oit 6Gpocok open pemka oper perka

[TycThb cobbiTie X cOCTOUT B HOSIBJIEHUN PEIiKK X0Tst Obl ojiuH pa3. CodbiTre X MponcxouT
B 3 ciaydasax 3 4 Bo3aMoKHbIX. [losromy BeposgTHOCTE coObITust X ecth Po(X) = 3/4.

BepositHocTh mostydenust 6ostee 10 oukoB mpu 6pocannn nByx KyonkoB — 1/12) tak Kak
9TO COOBITHE MPOUCXOAUT B POBHO 3 ciydasax (5 + 6, 6 + 5 win 6 4+ 6) u3 36 BOSMOKHBIX.
BeposiTHOCTH TOTO, UTO Ye/I0BEK, HAYaBIINil ¢ TOYKHU 3, CJIBUHETCsI BIIPABO J[Ba Pa3a IMOPsi/I
coctaiger 1/4.

(C) Ilycts Terneps codbiTie X 3aBUCHT OT OECKOHETHOIT MMOC/ICIOBATEILHOCTI TAKIX IKCIIE-
puMenToB. Mbl Oyjiem HazbiBaTh dncyio P(X) eepoammocmuio cobbitust X | et BEpOSTHO-
et Pr(X) crpemsres K uncay P(X) npu crpemiennn T K GeckonednocTn'.

Harnpumep, BeposSITHOCTH BBINAJIEHNUsT PEIKN XOTs Obl OJINH pa3 B OECKOHEUHOl cepuu
6pockos coctapiser P(X) = 1, Tak kax Pp(X) = 1—1/2 erpemures x 1 npu crpemiiennn
T K 6ECKOHEYHOCTH.

To, aro Bepositnoctn P(X) cywecmsyrom st Bcex cobbituii X, paccMaTpuBaeMbIxX B
IPOEKTE, MOXKHO HCIO/Ib30BAThH 03 J0Ka3aTe/IbCTRA.

1dopmanbHO 9TO 03HAUAET, UTO IUIst KaxKaoro € > 0 cymecrByer uucio 1) Takoe, 4To st Kazkaoro 1 > T BBIIOJHEHO |P(X)—Pr(X)|<e.



1.2. Ilera u Ilama urpaior Ha MOHETKM; BCEI'O y HUX €CTh 5 MOHETOK; B KayKJIOM payHIe
[lers BeimrpeiBaet y Ilamm oHy MOHETKY ¢ BEDOATHOCTBIO 1/2 1 MPOUTPHIBAET C BEPOSTHO-
crbio 1/2; orn urpator 1o Tex nop, noka y Ileru we cramer 0 MOHETOK (OH MpoUTrpaJt) WIn
5 (on Bbrpas Bee Monerst [lamm). Haiijgure Bepositnocts P(x) Toro, uro [lerst Bbrurpaer,
HavyaB UTPY C T MOHETKaMM.

1.3. Ilpe/monoxKum, HaIIero "y TelecTBeHHIKa CHOCUT B OJIHY CTOPOHY; TOUHee, IIyCTh OH
KayK/IbIil pa3 mepeMeriaeTcs BIPaBO ¢ BEPOATHOCTBIO P 1 BJIEBO C BEPOSITHOCTHIO ¢ = 1 — p.
Haiinnre Bepositnoctu P(x) B 9TOM ciiydae.

1.4. IlpenmosiokKuM, 9TO BBl UTpaeTe Ha JIeHbIN; cHadasa y Bac 20 MOHET, a y BaIlero
conepHuka — 50 MOHeT; B KazKJI0il UT'Pe Bbl BBIUT'PbIBAETE OJIHY MOHETY C BepOTHOCTHIO (.45
1 IIPOUTPBIBAETE ¢ BEPOATHOCTHIO (.55; UI'pa MPOIOJIzKAETCA JI0 TeX 0P, MoK y KOIro-J1ndo
He 3aKOHYaTCsd JeHbru. Halijimre BepoATHOCTb CBOETO Pa30peHNs.

Onpepnenenue. Idaexmpuyeckas yend — 3TO CBI3HBI KOHEIHBII Irpad, y KOTOPOro Kazk-

JOMY peOpy oy HPUINCAHO MOJOKUTETbHOE BEIIECTBEHHOE YNCJ/IO, HA3bIBAEMOE €ro Npoe6o-

dumocmvio? C(xy), 1 3aaH0 JBa HEHEPeCeKaIOUXCsl BbIICJCHHBIX MHOYKECTBA BEPIIIH

(P u N). Bepuuabl u3 MHOKecTBa N COEIMHEHBI ¢ OTPUIATEIBHBIM TTOJIIOCOM OaTapeiikn

1 3eMJefl, & BEPIIMHBI 13 MHOYKeCTBa P — ¢ MOJIOZKNTEJIbHBIM; CM PUCYHOK 2.
ITomenyuanv, Beprins v(x) ONPeEIAIOTCS CIEYIOMIMI AKCHOMAMI:

1. Ipanuunvie yeaosua. Ecom x € N, 1o v(z) = 0. Ecm ¢ € P, 1o v(x) = 1.
2. Baxon Kupzeofa. Ecrm x ¢ PUN, o >, C(zy) (v(x) —v(y)) = 0, rie cymmnposa-
HIE BEJIETCS 110 BCeM PeOpaM Xy, COJEPKAIlUM BEPIIUHY .

Yucio i(zy) = C(zy) (v(x) — v(y)) HA3BIBACTCA MOKOM, UAYIIM 10 pebpy xy; i(z) =

Y 2wy H(TY) — mokom, BrekalonuM B nenb vepes pepumny @ (Tak, i(z) = 0 11 Kax10r0

t & PUN no akcuome 2); C:= > _,i(zr) HasbiBaercs afexmuenoti nposodumocmovio
2

nern Mexkiy mMuoxecrsamu P ou N; Q = > C(xy) (v(z) —v(y))”, rae cymmnposanue

BEJIETCsI 110 BceM pebpaM IeITH, HA3BIBACTCS MeNnA060U MOUHOCTBIO TIETIH.

1.5. OauHaKkoBbIe PE3UCTOPDI COEMHEHBI IIOCIeI0BATE/IHLHO U MOIK/II0UEHbI K OaTapeiike B 1
BOJIBT KaK MOKa3aHo Ha pucytke 2. Haiigure norennunasbt v(x) B Toukax x = 0, 1,2, 3,4, 5.
Brr MokeTe ICoIb30BaTh MTPOTPAMMBbI, SMYJIHPYIONINE JeKTPUIECKHIE TEIN, 1A YTaIbiBa-

H1d OTBETa.

Puc. 2: Dnekrpuueckas 1emnb; cM. 3agady 1.3.

2136.TII/I'—II/IHa7 O6paTHaﬂ IPOBOANMOCTHY, HA3BIBACTCA CONPOMUBAEHUEM.



1.6. Paccmorpum nens ¢ Bepmmaamu 0, 1, ..., n, peopamu 01,12, ..., (n — 1)n exuanIHOM
poOBOAUMOCTH, 1 BbiAeeHHbiMu MuO)KecTBamu N = {0}, P = {n}.

(A) IIpunyun maxcumyma. Pyuxmms v (), yIOBICTBOPAIONAT AKCHOME 2 IOCTUTACT CBOETO
MaKCHMyMa ¥ MUHHMYyMa B BepIInHax u3 MHOyKecTBa P U N.

(B) Eduncmeenmocmy. Ecmu v(x) n u(x) — nBe GyHKINE, YI0BIETBOPSIONE AKCHOMAM
1-2, To v(z) = u(x) nas Beex T.

(C) Haitnnre norennmasbl v(x) u 3GEKTUBHYO TPOBOANMOCTD JaHHoi teru. K demy oHn
CTPEMSITCSI IIPU CTPEMJICHUH YHCIA 1 K OECKOHEUHOCTH !

1.7. Chopmynupyiite n jokaxkure 1-mepayio Teopemy Iloiia.

2. /IBymepHBbIe OyKIaHUS

2.1. PaccmoTpum ropoj, cxema KOTOpPOIro IpuBejieHa Ha pucyHke 3 ciea. O1rpesku 0003Ha-
yaroT yauisl. [Tyt orxoga rnmomedenbl OyKBoit £, a OykBoit P 1omMedeHbl TOUKU, 3aHIThIE
nosintmeit. Hafiiure ¢ TOUHOCTBIO /10 COTBIX BEPOSITHOCTL P () TOro, 9To HavYaB CBOii My Th
B TOUKE X, 4eJIOBeK yOeXKuT, a He momajer B pyku nojmruu. U3 touku x = (a,b) on nepe-
MermaeTcst B Kaxkayto n3 touek (a + 1,b), (a — 1,b), (a,b + 1), (a,b — 1) ¢ BepogTHOCTDHIO
1/4. Eciu on jocturaer ofHoit u3 Touek F win P, To ero nepejiBuKeHnst 3aKaHInBaIOTCsI.

2.2. Haiigure noteHnua/ibl v(x) B IElN U3 €IUHIIHBIX PDE3NCTOPOB HA PUCYHKE 3 CIIpaBa.

E

e

. ¢ 9
E
T N
E @ & v
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E P P

Puc. 3: Ciy4gaiinoe gBuUzKeHME IO TOPOLY U 3JEKTpUIeCcKas Ielb; ¢M. 3agadd 2.1 u 2.2.

2.3. Ilayk nepemeraercs caydaiiHbIM 00pa3oM 110 pedpam

(A) xy6a; (B) okrasapa; (C) momekasapa; (D) mkocasipa,;

ecJli OH HaYMHAET JIBUYKEHHE B TOUYKE @, TO KaKOBa BEPOSITHOCTH TOI'O, YTO OH JIOCTUIHET
IIPOTHUBOIOJIOXKHON BepInHbl h ObICTpee, UeM BEpHETCsl B HAYAIbHYIO BEPIINHY @; CM. PHU-
cyHOK 4 cieBa?

Puc. 4: Cinyuaiinoe Giyzknanue 1o KyOy U 9J€KTpHUIecKast 1ernb; cM. 3agadn 2.3(A) u 2.5(A).



2.4. Cnepnyrorue peodpa3oBaHus COXPAHAIOT 3PPEKTUBHYIO TPOBOJMMOCT TIEITH:

(A) 3amena JByX pe3UCTOPOB, COEJMHEHHBIX MOCJIEI0BATENBHO, HA OJNH PE3UCTODP MPOBO-

mimoctu 1/ (C% + C%), CM. PUCYHOK D CJIeBa;

(B) 3amena jByX mapasiieibHO COeIMHEHHBIX PE3UCTOPOB Ha OJUH PE3UCTOP C TPOBO/IIMO-
ctoio C7 4+ C9; M. PUCYHOK D CIIpaBa;
(C) obbenunenne IByX BEPIINH ¢ OJMHAKOBBIMU [TOTEHIMAIAME B OJIHY HOBYIO BEDIINHY.

C C: c

1 —-

Cr C: C,+
AAAA —_—A A

Puc. 5: IlocnenoBarenbHoe 1 TapaJsiieilbHOE COeTMHEHNE; CM. 3a1ady 2.4.

2.5. Haitmure 3¢phekTuBHYI0 TPOBOUMOCTD MEXKTY

(1) mporuBomoNoKHBIME BeprmnHaMIT; (2)* cMe:KHBIMI BEpPINHAM;

(A) xy6a; (B) okrasgapa; (C) momekasapa; (D) mkocasipa,;

¢ pebpaMiu eJMHNYIHO IPOBOAUMOCTH; CM PUCYHOK 4 CIpasa.

2.6. [IbsHblil TyPUCT BBIXOJUT U3 OTEJA U HEPEMEIAeTCsl CIyYailHbIM 00pa30M 10 yJIUIAaM

[Tapmka, cxema IeHTpa KOTOPOTO IpuBeJeHa Ha pucyHke 6 ciaeBa. Haiiinre BepodaTHOCTH
TOr0, 9TO OH Jjioiiier Jo TpuymdalsbHOl apKi 0 TOro, Kak J00epeTcs 10 OKparmHbl TOPOJIA.

1 i Prey . e I ] y
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Puc. 6: Typuctnueckas Kapra [lapmka n pernrerounad 1ennb; cM. 3ajgaqu 2.6 u 2.7.

2.7. Ilposogumocts Mexk 1y Bepimmnamu (A)* a u b; (B)** a u ¢; qsymepnoit permerku u3
eJIMHIYHBIX PE3UCTOPOB paBHa 2 u /2, coorBeTcTBeHHO; ¢M. Puc. 6 cripasa.

JL1st 2-MepHOit peleTKy B olpejie/IeHIH TOTeHIIa/Ia Mbl J00ABJIsIEM ellle OJHy aKCHOMY:

3. v(x) crpemuTest K 1/2 mpu cTpeMJICHHH PACCTOSTHUST MEXKJLYy & U HEKOTOPOii (puKcnpo-
BAHHOI BePIINHOI K OECKOHEUHOCTH.

Pasperaercst mosib30BaThest 6€3 JI0KA3ATEILCTBA CYIIECTBOBAHIEM (DYHKIMN v(T ), YI0BJIe-
TBOpstoIieit akcuomam 1-3.



2.8. Baxorn monomonrocmu. Pazpesanne Kakux-mdbo pedbep Ienu MOKET TOJbKO yMEHb-
MUTH 3DPEKTUBHYIO MTPOBOINMOCTD MEXKTY JAHHBIMI BEPITHHAMI; CM. PUCYHOK 7 CJIEBA.
O0benHeHne KaKNX-JI100 BEPINNH B OJIHY BEPIINHY MOYKET TOJHKO YBeJIMIUTh 3P PHEeKTHB-
HYIO [TPOBOJIMMOCTD MEKJIy JAQHHBIMU BEPIIUHAMI, CM. PUCYHOK 7 B IIEHTPE.

2.9. (A) Hdokaxkure, aro 3¢hdeKTuBHAs TPOBOIUMOCTD MEXK/IY IEHTPOM U TDAHUIEH KBa/I-
paTtnoii pernteTkn 4 X 4 U3 e MHUIHBIX PE3UCTOPOB MEHbINE 3; CM PUCYHOK 7 CIIpaBa.

(B) K gemy crpeMuTcst IpoBOMMOCTD MEXK/LY HEHTPOM U I'PAHUIEH KBaJPATHON pereTkn
2n X 2n U3 eJINHUIHBIX PE3UCTOPOB IIPU CTPEMJIEHIN N K OECKOHETHOCTH !

Mem

At
Ay

[ T

Pazperammie Coemmensre

Puc. 7: Pazpesanne, coennnenne, n KBajapaTHas pemreTka 4 X 4; cm. 3agaqdn 2.8 u 2.9.
2.10. [Hokaxkute Teopemy lloita g 2-MepHOIT pereTKn.

3. ComnporunBiieHHEe ITPABUJIBHBIX IrpadoB

3ajiaun JJaHHOTO pa3jiesia MOI'YT IIOMOYb IIPU PEHICHUN 3a/1a4 IIPEJIblLyIIero.

Oyukiwst v(x) HA BEPITHHAX SJICKTPUIECKOIT eI HA3BIBACTCST 2aPMOHUYECKOT, €CITH OHa
VJIOBJIETBOPSET aKCUOMe 2 U3 olpejeieHnsd 3JIeKTPUIecKoit 1ienn. Bepmmnbl n3 MHoXKecTBa
P U N nazoBeM 2paruyHbLMU, OCTAJIBHBIE — 6HYMPEHHUMU.

3.1. (A) Ipunyun cynepnosuyuu. Eciu dyuxmun u(zx) n v(x) — rapMoHndeckne u a, b €
R, o u dyukius au(z) + bv(x) — rapMoHIIecKast.

(B) Ipunyun marxcumyma. TapMoHndecKast Ha KOHETHON 3JEKTPUYIECKOfl 1ernn (hyHKITHs
IPUHUMAET CBOe HauboJIblllee 1 HauMeHbIllee 3HaYeH sl Ha MPAHUIHBIX BEPINTHAX.

(C) Eduncmeennocmo. Ecim u(x) n v(x) — aBe rapmonmtaeckne QyHKIN, COBIAIAIONINE
BO BCEX IM'PAHMYHBIX BEPIIHHAX KOHEYHOMN 3jIeKTpudeckoit remnn, To u(xr) = v(x) Bo Beex
BepInHax T rpada.

(D) Yenorek, ciryuaiito 61y 2K IAOIIAIT 110 KOHETHOMY TOPOJLY, ¢ BEPOSITHOCTHIO 1 TI0OBIBAET
Ha BCEX IEPEKPECTKAX €ro YJINIL,

3.2. (A)* Asvmepnamusa Opedzosvma. Ilycrs umeercst cucrema JIMHENHBIX ypaBHEHUIT

A11T1 + ... + A1 pTy = b1,

Ap1T1 + ...+ QppTy = by,

B KOTOPOI YNCJIO ypaBHEHN paBHO YMC/IY Hen3BeCTHBIX. JloKaknTe, 4TO Beeryia BBITIOJIHSA-
eTcd OJIHA U3 CJICAYIONNX BO3MOXKHOCTEIA:



1. jist 1106bIX by, ..., b, cECTeMa MMeeT POBHO OJIHO pelieHue (B YACTHOCTH, NpH by =
... = b, = 0 cymecTByeT TOJILKO HYJIEBOE PEIleHNe);

2. JUist HEKOTOPbIX by, ..., b, cucrema Hepaspeliuma, a Jijis HEKOTODBIX (B TOM dYHCIIe
HYJIEBBIX) MMeeT OECKOHEYHO MHOTO PEIeHHI.

(B)* 3adawa Jupuxae. lokaxkure, 910 j1jist J11000#1 KOHETHOMN 9IEKTPUIECKON TEMH CyTIe-
crByeT (byHKINA v(x), YIOBIETBOPSIOMAs akcnomam 1-2.

3.3. (A) Bapuayuonnwoii npunyun. Ilycrs v(x) — npousBosibHast (DyHKIUST HA BEPIIU-
HaX KOHEYHON 3JICKTPUYECKOIl LI, YIOBJICTBOPAIONAsS aKCHOMe 1, HO He 00A3aTe/IbHO
akcumoMe 2. 3aHyMepyeMm BepiinHbl rpada uuciaamu 1,...,m u mnycrb 1,...,k — BHyT-
pernnne Beprmibl. Obosmatum vy = v(1), ve := v(2), ..., v, = v(n). Byzem paccmar-
puUBaTh U1, ...,V KaK HepeMeHHble. PaccMOTpUM TEIIOBYIO MONHOCTH Q(vg, ..., V) =
>y Clay) (vp — Uy)2 KaK (DYHKINIO ePEMEHHBIX U1, ..., V. JoKaxKknure, 9TO (DYHKIIUSI
Q(v1,...,v;) IPUHUMAET HAMMEHbIIee 3HaYeHre, Korja GyHKIus v(x) — rapMOHIYECKAsl.
(B)* Hokazxkure, uro mist dyukimu Q(vy, ..., vx) CyIIECTBYeT POBHO OJUH HAOOD 3Hade-
HUI V1, ..., Uk, IPE KOTOPOM OHA JOCTUIAET CBOCIO MUHMMAJILHOTO 3HadeHusd. Vlcnoabsys
5TO, JafiTe BTOpOe JIOKA3aTeIbCTBO TOro (hakTa, YTO JIJIs KOHEUHOH 3JIEKTPUUECKON Ienu
dbyukimst v(x), 3aJaHHasd aKCHOMaMU 1—2, CYIeCTBYeT U eIMHCTBEHHA.

(C) Baxon coxpanenus snepeuu. Jokazkure, 970 MUHIMAIbHOE 3HAUEHUE BEJTUIHHBL (Q (V1 . . .

qucjaeHHo paBHo 3ddexkTuBHOI npoBoanmocTtu C.

(D) Ilpuryun moromonmnocmu. JlokazKure, 9TO €CiM B TEMU OJHY HPOBOUMOCTD YBe/IH-
YUTh, TO 3(PPEKTUBHA TPOBOIMMOCTb HE YMEHbBIIIITCS.

(E) U3 2-mepHoit permierkn BLIOPOCHIN TPOU3BOJIbHOE MHOXKECTBO pebep. [lokazkure, 4To
HO-TIPEXKHEMY CIydaiiHoe OJIyzK/IaHue ¢ BEPOSITHOCTHIO 1 BEPHETCS B UCXOJIHYIO BEPIIIHY.

[Ipenmnonoxkum, aro numeercs rpad I', y Koroporo conpoTusjieHne Kazjaoro pebpa paBHO
1. Bosemewm B rpade I' aBa cmexubix pebpa AB u AC. 91tu pebpa Ha30BEM IKEUBANAEHMN -
HbLMU, €CJIN CYIIeCTBYET IIepecTaHOBKa BEPIINH rpada, mepeBojIdiast CoeJIMHeHHbIe peOpoM
BEPINHBI B COeIMHEHHBIE peOpOM BepinHbl, Ipu KoTopoit A nmepexomur 8 Au B — B C.
Bepmuny rpada nazoseM uermpom cummempuu Tpada I', ecau Bee pebpa, cojieprKariiie
ee, SKkBUBaJIeHTHBI. ['pacd I’ Ha3BIBaeTCA NPaBUALHBIM, €CJIN BCE €r0 BEPIIMHBI — IIEHTPbI
cuMMeTpun rpada.

[Tpumepbl NpaBUIbHBIX I'PadOB: PABUILHBIE MHOTOTPAHHUKH JIIOOOI pa3sMepHOCTH; Mpa-
BIJIbHBIE PEIIeTKN Ha €BKJIMAOBOI IIJIOCKOCTH, IJIOCKOCTH JIoOaueBCKOTo M UX MHOTOMEp-
HBIX aHaJIorax; CUMMETPHYHBIC pElIeTKH Ha Tope U T. 1. HeTpuBuabHbI mpuMep: rpad
pomMOOo/10/1eKadIpa. DTO MHOIOIPAHHUK, KOTOPBII TOJIydYaeTcs, ec/ii K KaxK/0i Irpann Kyoa
IPUCTABUTD 110 YETHIPEXYTOJILHOM IMUPaMUIe TaK, 9TO BCe TPEYTroJbHUKM, IpaHUYaIIe 110
pebpaM Kyda, coJibloTcst B poMObI. [ToBepxHOCTh poMbOI0O/IEKadIpa cocTOUT u3 12 poMmOOB.
O HETpUBHAJIEH TE€M, YTO €r0 BEpIINHBI UMEIOT Pa3Hyto cTeneHb (3 u 4).

3.4. (A) Ilycrb npaBusbHbIA Tpad copepKuT n BepiinH, A; u Ay — coce/lHUE BEPIINHBI
crenieneit k1 u ko, cOOTBEeTCTBeHHO. J[oKaKWTe, 9TO CONPOTUBJICHIE MEYKy HUMH PABHO

1+1 ] 1
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(B) Eciu ke B3s1Th 2-MepHYyI0 perieTky, To 1/n B nocseaneit popmysie HyZKHO 3aMEHUTD
HYJIEM.

3.5. K nBy™m coceianm BepiinHam mpososioanoro (A) ukocasapa; (B) pomexkasipa; mojgsesn
HallpsizKeHHe TaK, 4To 110 coeJnHdAoneMy ux pebpy norek Tok I. Kakoil npn sTom Oyjer
Tedb TOK 110 JUAMETPAJIBLHO IPOTUBOIOIOKHOMY peOpy”?

3.6. * Dy = 3k g I
.6. * Jlokaxkure, uTo cymmbl D, = kz:om u b, = W};E paBHBI JpPYT JIPYTY.
=i n =

Kax 3Ti cyMMBI CBA3aHBI ¢ CONPOTUBJICHIEM MHOTOMepHOTO Kyba?! B KadecTBe cjencTBus
k

[MOJIyYUTE, YTO MMOPAJOK BXOXKJICHUSA JIBOVKNA B YUCJIO zzzl % CTPEMUTCS K OECKOHEUHOCTH

C POCTOM N.

4. TpexmepHbIe OJIyXKIaHUS

1 \

<

Puc. 8: (CneBa) 6bunaproe gepeBo riyouHbl 3; (B 1eHTpe) MoquduUIupoBaHHOe OMHAPHOE JIEPEBO Iy OMHBI
3; (cipaBa) paspellieHHbIe IlepecedeHns pebep B 9TOM JiepeBe; cM. 3ajadn 4.1, 4.2 u 4.4.

I|—

4.1. Haitjure conporus/enue 6unapuoro jgepesa riayounst (A) 3;  (B) 2010, cocrabiien-
HOT'O U3 €IMHIYHBIX PE3NCTOPOB (CM. pHC. 8 cjeBa).

4.2. Haiigure conpoTuBaeHne moluduuuposarozo OUHAPHOTO U TPOUYIHOT'O JIEPEBHEB IUIy-
6unbl 2010, B KOTOPBIX Kazk/Iblil PE3UCTOP Ha k-OM YPOBHE 3aMeHsercs Ha 2F 1ocienioBa-
TEJILHO COCJINHEHHDBIX €IMHIIHBIX PE3UCTOPOB (CM. pHC. 8 B IEHTPE).

4.3. Kakune u3 nepesbes, ynomsnytoix (A) B 3ajgade 4.1;  (B) B 3amaue 4.2;  MOXKHO
BLIPE3aTh M3 TPEXMEpHOil perreTkn’

4.4. A ecqm pasperaiores mepecedeHust (M. puc. 8 crpaba) pebep Ha PABHOM PACCTOSHUNI
OT KOpHs?

4.5. Jlokaxkute Teopemy lloita jiis 3-MepHOIT peneTKu.

5. ComnpoTuBJieHHEe KOJIbIa™*

Bo Bcex 3aj1a1uax 3Toro pasjena oyjaer purypupoBaTh KBajgparHas MeTaIndecKast CeTKA.
byner nmpejmnoaaraTbest, 9T0 BCe €€ Y3JIbI — 9TO TOUKN JIByMEPHOIT IeJJOUNCICHHON PEIeTKH.
CoeinHeHbB! JPYT € JIPYTOM TOJIBKO COCEIHIE Y3JIbI (DACCTOSTHIE MEXKY KOTOPBIMU PaBHO
equnntie). Conporusienue pebpa MexKy JIOOBIMU COCETHUMU Y3JIaME TaKyKe CUUTAeTCsI
PaBHBIM €JIMHUIIE.



5.1. Ucrounuk Toka mojk/odaeTcss K ysiaam cerkn ¢ koopauaaramu (0,0) u (1,0). do-
KaykuTe, 910 B y3jaax (2,2) u (3,2) OyayT oJMHAKOBbIE MOTEHIUAJbI (CM. 3aMevaHue B
samaqe 3.4(B)).

5.2. U3 ceTKn BBIpe3aH KBaJApaT pasMepaMu 1 X 11, FPAHIYHBIC TOYKH KOTOPOTO COeINHEHDI
IIIHOM C HYJIEBBIM CONPOTUBJICHEEM. JJoOKazKuTe, 4TO CONPOTUBJICHNAE MEZKLY JTIOOBIM y3/10M
KBaJpaTa 1 ero rpaHuleil He IPeBOCXOIUT /7.

5.3. B ycnoBusax 3aa4n 5.2 ICTOYHUK TOKA MOJIKJIIOYEH K BHYTPEHHEMY y3J1y KBajpaTa n
K rpanurie. [lorennmas Ha rpanuiie paseH HyJ0. JlokaykuTe, 9TO e€C/ii UCTOUYHUK I0/IaeT
TOK €, TO B KazKJI0fi 13 TOYEK KBaJpaTa [HOTEHIUAJ HE IPEBOCXOIUT E+/1.

5.4. JIns dpyHKIuil, 3aJJaHHbIX B y3J1aX [EeJOYNCIEHHON PeleTKn OIpe e/ iM
Af(z,y) = fle —=Ly)+ fle+1y) + f(z,y = 1)+ f(z,y + 1) — 4f(z,y).

[lycte r(x,y) = /22 +y? Hokaxure, uro misa byakunu f(x,y) = Inr(x,y) (upn

r(z,y) > 2) somosneno Af(z,y) = O (m

3nech u nasee st aByx yuknuit A u B 3amuce A = O(B) o3Hadaet, 9T0 i HEKOTO-
pOii TTOJIOXKUTEILHON KOHCTAHTBI ¢ BCEryia BBINOJTHsIeTCs HepaBeHCTBO |A| < ¢B.

5.5. I3 Merajuinueckoil CeTKH BBIPE3AHO KOJILIIO € BHYTPEHHUM PajJUyCcOM 717 U BHEII-
HUM — 797 (IeHTPbI 060X KPYyroB — B Havdase KoopauHat). Eciu Hekoropoe pebpo paspe-
3aH0, TO COITPOTHB/IEHNE OCTABIIET0Cd KyCKa ITPOMOPIMOHAJILHO ero jyimne. Ha BHyTpennmit
KOHTY]P KOJIbIIA I0JIaeTCsl HalpsxkeHue In 1, a Ha BHeNTHU — In ry. Jlokaxkure, 9T0 B KazK-
Ji0it Touke Koubla (,y) norenmuan nveer sy Uy (z,y) = Inr(z,y) + O (7).

5.6. C nomonipio pasencrsa arctg x = x+0(x?) nokazxute, uro nmpu 0 < y < R BHIIOJIHEHO

RQL;z = arctgy—;gl —arctg £ + O (#) .

R s 1
5.7. Hokaxmure, 910 Zy 0 =110 (%)

5.8. Ilycrb B yesoBusx 3ajaqu 5.5 uMeeTcst JOMOJHUTEbHOe OIpaHuveHne ry > 3r1/2
(mocraTodHoe Jiist TOro, YTOOBI KBaJIpaT, OMICAHHBIN OKOJIO BHYTPEHHETO KPYTa, MeTUKOM
cojieprKaJicst Obl BO BHeITHeM ). [loKazKuTe, 9T0 MerK1y BHYTPEHHUM 1 BHEITHIM KOHTYDPAMU

TedgeT TOK 27w + O (\/Lﬁ) . BeiBesiute orcroma hopMmysty Jiist CONIPOTUBIIEHNST KOJIBIA

R(rin, ron) — % 40 (\/15> (1)

5.9. lokaxure, aro (hopmysa (1) BbImoHsIETCsT 1 6€3 JOTOTHUTETEHOTO OTPAHNIEHUST Ty >

3T1/2.

5.10. C nomortpio paseHcrsa (1) yrounure oneHKN B 3aa4ax 5.2, 5.3 1 JoKayKuTe (hopMy-
JIBI ¢ OOJIee TOYHBIMHI OCTATOYHBIMH YJIEHAMHU B 3aJa49ax 5.D 1 H.8:

Inn

1 r9 Inn
U(z,y) =Inr(zx, y)+0<n2>, R(rln,frgn)—%lnr—l+0(—>.

n



6. Caoxknble 3agaan™

6.1. Teopema JIuysuarsaIlycrs sanannas na Z2 Gyukius f(m,n) ylIoBieTBOpseT Hepa-
BerctBy 0 < f(m,n) <1 u yciosuio

flmm) = 1 (FGn = Ln) + fn+ Ln) + flmn = 1)+ fmn+1) ()

st Beex m,n € Z. Jokaxure, ato f(m,n) ABjsieTcst KOHCTAHTOIL.

6.2. Cywecmeosarue nomenyuaros. Jlokazxkure, 94To cyiiecTByer takast pyakiust f(m,n)
na Z?, uro f(0,0) = 0, f(0,1) = 1, xns xaxkgoro (m,n) # (0,0),(0,1) ycaosue (2)
BhITIOJIHSIETCsT, U f(m,n) ctpemures K 1/2 npu crpemsennu r(m, n) := v/m? 4+ n? kK 6ecko-
HEYHOCTH.

6.3. Qynxyusa 'puna. [ycrs f(m,n) — conporusienne 2-MepHOil PEIeTKI MKy Hada-
JIOM KOODJIMHAT U TOYKOf (m,n).

(A) Hoxaxure, uro mia kazxaoro (m,n) # (0,0) ycaoue (2) BBITOJHEHO.

(B) Hoxaxure, ato f(m,n) = g(r(m,n))+ O(1) ana sekoropoii dbyuximn g(x).

(C) Hdokaxkure, 9T0 COMPOTUB/IEHIE MEXKJy U [EHTPOM U IPAHUIEil JUCKa pajuyca T, Bbi-
PE3aHHOIO U3 2-MEPHOil peIeTKy paBHO % Inr+ O(1).

(D) Hoxazute, uto f(m,n) = 5-Inr(m,n) + O(1).

6.4. Haitjjure ¢ TOYHOCTHIO JIO COTHIX BEPOSITHOCTH TOI'O, UTO MPU CJIydaiiHOM OJIyzKIaHuN
110 3-MepHOil peleTKe Mbl BEpHEMCS B HAYAJIbHYIO TOUKY.

6.5. Pobor xoauT 10 BepinnHaM 3-MEpPHOI perieTKu, Mmepexojist KaykJiblii pa3 B OJHY U3
coceTHUX BepIuH. B ojHOll 13 BepImmH HAXOUTCA KJ1aJ, poOOT HAXOJUT €ro, KOTJa OKa-
3bIBaeTCd B BepimHe ¢ KiaajgoMm. CyIiecTByeT Jin MporpamMMma, yIpaBJsionas JIBUKEHITeM
poboTa U UCIOJIL3YIOINIAsT KOHEUHbII 00beM MaMSITH U TeHEPATOp CJAyUailHbIX JHCe)I, TaKas,
9TO pobOT HAMJIET KJIaJi ¢ BEPOITHOCTHIO 17
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7. YkazaHus u pelieHusd

1.1 (A) IIpaBwibHOCTH PAGOTHI MPOrPAMMBI [IPOBEPSIETCs CAEYIONMM 00pa30M: Pa3sHOCTb MeXKJly “Ha-
crosmeil” U MOCYNTAHHONW BEPOATHOCTSAMM JIOJZKHA OBITH MPOIOPINOHAIbHA, TUCITY \/Lﬁ, rje n — 9HICIIO
9KCIIEPUMEHTOB.

(B) Orser cmorpute B Tab/IuILe.

Tabsuna 2: Bepositnocru Pr(z) u P(x)

x 0 1 2 3 4 5

T

1 0.00 | 0.00 | 0.00 | 0.00 | 0.50 | 1.00
2 0.00 | 0.00 | 0.00 | 0.25 | 0.50 | 1.00
3

4

0.00 | 0.00 | 0.13 | 0.25 | 0.63 | 1.00
0.00 | 0.06 | 0.13 | 0.38 | 0.63 | 1.00
P(z) | 0.00 | 0.20 | 0.40 | 0.60 | 0.80 | 1.00

(C) Omeem: P(x) = x/5; cM HOCJIEIHIO CTPOKY B TabOJIAIE BHIIIE.

Jlokasamenvcmso. Pacemorpum citydaitaoe 6ty aanne no Toukam 0, 1,2, ..., n. O6o3naunm 3a P(x) Bepo-
STHOCTH JioiiTH u3 x 10 N panbiie, gem 10 0. Pacemorpum nosydusinytocs byHkimo P(x), onpe/iejeHHy o
B Toukax r = 0,1,2,...,n. OHa oba1aeT CJIeIYIONIMI CBONCTBAMA:

1. P(0)=0wu P(n) = 1.
2. P(x) =iP(x — 1)+ ;P(z + 1) nusa kaxzgoro = 1,2,...,n — 1.

CsoiicTBo 1 ciemayer u3 TOro, 9TO MPH JOCTUKEHUN TOUeK () U 1 IepeMelleHns 3aKaHINBAIOTCS; JIJIsT UI'PhI
Ha MOHETKH 9TO O3HadaeT KoHell urpbl. CBOMCTBO 2 3aK/II09AETCSI B TOM, UYTO BEPOATHOCTD IIOIACTH JOMOII
13 BHYTPEHHEH TOUKHU & paBHA CpeaHeMYy apu(MeTHIeCKOMY BEPOATHOCTEN MO aHus JIOMOI U3 COCEIHNX
ToueKk. CBOMCTBO 2 BBIBOJIUTCS U3 CJIEAYIOIIETO YTBEPIK ICHUSI:

BazoBoe YTBepxkaenue. [[ycmo E — nexomopoe coowmue, F' u G — dsa cobvmus, us xomopwux ecezda
caywaemes posno odno. Tozda

P(E) = P(F) - P(F nocnenyer 3a F) + P(G) - P(E nocnenyer 3a G).

B namem ciygae E="“uenioBek poitjer jo 6apa’, F="“nepsbiii pa3 ou noiijier najaero’ u G="nepnblit
pas on noiijer namnpaso”. Torga nonyaaem P(E) = P(z), P(F) = P(G) = 1/2 , P(E nocneayer 3a F) =
P(z — 1), P(E nocrenyer 3a G) = P(x + 1) u cBOWCTBO 2 10Ka3aHO.

U3 sTux 1BYX CBOiCTB BhITEKaeT, uro P () nmpeacrasiser coboil apudmernaeckyto mporpeccuto P(x) =
1.2 Omeem: P(x) = x/5; s1a 3a7a4a sxsuBajgeHTHa 3amade 1.1(C).

1.3 Omsem: P(z) = EZ;’;;::.

Yrazanue: Paccyxmaiite tak xke, kak B pemenun 3agadn 1.1(C). Tlokaxkure, uro cBoiictBa 1-2 HaJ0
3aMEHUTH Ha TaKue:

1. P(0)=0wu P(n) = 1.

2. P(z) =qP(z — 1)+ pP(x + 1) nua xaxmoro x = 1,2, ...,n — 1.

Beibepure A u B rakumu, arobsl dyakuus f(z) = A(q/p)* + B ynoBierBopsijia HOBBIM cBoficTBam 1-2.

0.55/0.45)20—1
W; CMOTpHTE pellleHne 3aja4n 1.3.

1.5 Omeem: v(x) = /5. Yrazanue. I3 akcuom 1-2 ciemyer, aro dynknus v(x) OymeT JUHEHAHOI /71 9TOM
eI,

1.4 Omsem: ~ 99.995%. Touynoe 3nauenne: 1 —

1.6 (A) Ilycte M — makcumym dyukinun v(z). Torga ecm v(z) = M mua o ¢ P U N, 10 910 XKe
PaBEHCTBO JIOJZKHO ObITh BbIoHEeHO st v(z — 1) m v(z + 1) Tak Kak v(z) — cpeHee apudMeTniecKoe
v(x —1) mv(x +1). Eciim x — 1 oka3ajach BHyTPEHHEl TOUKOI, IPUMEHSIEM TO YK€ CaMOe PacCyzKJeHne 1
nosyaaem f(x — 2) = M; npogoszkas paccyxiaenue, noaydaeM f(0) = M. JIjast MUHUMAJIBHOTO 3HAYEHUST
AHAJIOTUIHO.
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(B) Iomnoxkum h(x) = v(x) — u(x). Torma s 1060 BHYTPEHHE TOYKN & NMeEM:

h(x—1)+h(z+1) v@e—-1)+v@+1) ulxz—1)+u(z+1)

2 2 2

u nosromy dyukims h(x) rakxke ynosiaerBopser akcuome 2. Ho h(x) = 0 npu z u3 P U N; u3 upusmnumna
MaKCUMyMa, [OJIy9IaeM, 9TO MaKCHUMAJIbHOe W MUHHMAajbHoe 3HadeHusi h pasubl 0. Suaunt, h(x) = 0 u
v(x) = u(z).

(C) Omsem: v(z) =x/n, C =1/n; C — 0 uv(z) — 0 jys KakI0ro GUKCUPOBAHHOIO T TIPH 1 — OO.
Yrazanue: Jlerko nposeputh, uro dbyuknus f(x) := x/n ynosrersopser akcuomaMm 1-2. U3 equacTBEeHHO-
cru (cm 1.6(B)) crenyer, aro v(z) = z/n.

1.7 Teopema. IIpu caywatinom baysrcdaruu no 1-meprotl pewemxe 6EPOAMHOCTG BEPHYMBCA K0200-AUO0
68 HAYAALHYIO MOYKY pacha 1.

Zoxazameavcmeo. Ilycts P — BeposiTHOCTb BEPHYTBCS KOTJIa-InO0 B HavdaabHYIO TOUKy. Oboznadnm P,
BEPOSITHOCTH BEPHYTbCs B HAYAJIBHYIO TOYKY 0 IMONAJaHusd B n wian —n. lIpearmonoxkum, 9To Bce 3TH
BeposTHOCTH cytecTBYIOT. Torna P, < P <1 ajsa ob6oro n.

Ceitgac MbI JJoKazkeM, 1ato P, = 1 —1/n. [Tocse mepBoro “xoa” w4eaoBek monagaet B OJHY U3 TOYEK 1 1
—1 ¢ BeposgrrHOCTBIO 1/2. Ecsn on okazascs B Touke 1, 1o u3 3amaun 1.1(C) mosmydaem, 910 BEPOSTHOCTH
BEPHYTHCs B HAYAJIO JIO MOMAJIaHus B ToUKy n paBHa 1 — 1/n. Ecim on okazascs B Touke —1, paccykiaem
anasornaso. [Ipumensist Bazosoe Yrepxaenne u3 perrenns 3agaqu 1.1(C), nomyaaem P, = % (1 — %) +
% (1 — %) =1- % (Emme mozkuO 661710 3ameTuTh, uto P, = 1 — C, e C' = 1/n — npoBoAUMOCTD TIenu U3
sajaqn 1.6.)

Tak kak 1 — 1/n < P <1 jgys kaxjgoro n, To P pasho 1. [

2.1 Omeem: cM. pucyHoK 9 cieBa.

1 1

Puc. 9: Bepositroctu P(z) win norennuassl v(x); eM. 3agaau 2.1 n 2.2.

Ykasanue. Cxema ropojia mpejicTaBieHa Ha pucynke 9 cipasa. Bepogrnoctu P(x) o603HaueHb! 3a a, b, ¢,
d, u e. Kak u B 1-meprOM cityuae, dynkius P(x) yaoBiaerBopsier akcnoMaMm 1—2 13 onpe/iyIeHus 3JIeKTPHU-
geckoit menn. OTCIo/1a MBI IIOJIyYaeM CHCTEMY JIMHEWHBIX yPaBHEHMIA:

D QUL o o 9
I
N N N N /N
QU
_|_
w
N—
~
JJ>

OTBer moJtydaeM, perras 3Ty CUCTEMY.

Samevanue. Haxoxk geHne TOUHOrO pereHus I AByXMepHOit ‘3agaun Jlupuxiie” — /1e/10 CJI0KHOE; TI09TO-
My MbI PACCMOTPUM JIBA METO/Ia HAXOXKJICHUsT TTPUOJINKEHHBIX DEIICHMUIA.

[lepsbIit MeTO, UCIIOIB3YeT ciaydaiinblie Omyzkaanusi. O HazbiBaeTcst memodom Monme-Kapao, Tak Kak
CﬂyqaﬁHbIe 6J'Iy}K,HaHI/IH CBdA3aHbl C BEPOATHOCTAMU, a B MOHTe—KapJIO HaXO/JUTCA M3BECTHbBIE HUI'OPHLIE
J0Ma, asapTHbI€ UI'Dbl B KOTOPbLIX TOXKe€ CBA3aHbI C BEPOATHOCTAMU. MBI MO,ZLQIH/IpyeM MHOT'O CﬂyqaﬁHbIX
OJIyKTaHU U3 TOYKN T W HAXOAUM JIOJIO ITyTel, 3aKOHIUBIINXCsI B ToUKax F. V3 3akoHa OOIBIINX dnuCes
cJIeJlyeT, 4To TOJIyYeHHas OlleHKa Oy1eT pubInKeHneM Jjijis “HacTosiieir” Bepograoct P(x). Dror spkuii
U IIPOCTOM METOJI II03BOJIsIeT HAXOAUTh PElIeHHsI, HO OH He 04eHb 3(hDEeKTUBEH.

Tenepn ormuiiem 6oJtee 3PEKTUBHBIN Memod pesarcayuu. HarmmoMamm, 910 MbI HIeM (DYHKIUIO C 3a-
JIAHHBIMHU 3HAYEHUSIMUI Ha TPAHHUIE y KOTOpPOe 3HadeHUe B JI00O0H BHYTPEHHEHl TOYKEe PaBHO CPEIHEMY
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apudmeTnaeckoMy 3HadeHUil ee cocejieit. BozbMmeM Kakyro-HUOYIL (DYHKIIUIO C MOJXOSIIMMI TPAHUIHbI-
MU 3HAYEHUSIMUA ¥ BO3bMEM HEKOTOPYIO BHYTPEHHIOIO TOUKY. B ob1iem ciiydae 3nadenue (pyHKiun He Oyaer
paBHO cpejineMy apuMeTHIEeCKOMY 3HaYEHUN B COCEJIHMX TOYKax. lora monpodyeMm “HoJOrHATH: MOJIO-
KM HOBOE 3HadeHue (BYyHKIUU B 3TOI TOYKE PABHBIM CpeHeMy apudMeTHICCKOMY 3HAYEHUN B COCETHUX
Toukax. Temepsb Oymem 1o odepenn OpaTh OCTaJbHBIE BHYTPEHHUE TOYKHU U JeJaTh ¢ HUMH Ty Ke OIepa-
nmio. Korja MbI mpoiijieM 1Mo BceM BHYTPEHHHM TOYKaM, (DyHKIUS He OyJeT YIOBJIETBOPATH aKCHOME 2,
TaK Kak I0C/Ie U3MeHeHUs 3HadYenus PYHKINU B OJIHOM TOYKE MbI MOIJIM U3MEHUTH 3HAYEHUS B COCEIHUX
¢ Hell TOYKaX, HAPYIIMB PaBeHCTBO. TeM He MeHee, rosrydennas GYHKIMA OyaeT “rydie’ yJI0BIeTBOPATD
akcmome 2, 4eM Ta (PYHKIMsI, ¢ KOTOPOil MbI HAYAJIH; [TOBTOPSIsl STOT TPOIece (IPOX0/isd KaxK bl pas3 1o
BCEM BHYTPEHHHM TOYKAM) MbI OyJIeM TI0JIydaTh TPUOJINKEHUsT K PEIIeHUIO JIydIlle U JIy dIie.

2.2 Omeem: cM. pucyHOK 9 cjieBa; 9Ta 3ajada SKBUBaJIeHTHA 3a1ade 2.1.
2.3 Omsem: (A) 2/5; (B) 1/2; (C) 2/7; (D) 2/5.
Vraszarnue. CBesieM 3amady K 3aade 2.5 IPHU HOMOIIN CAEIYIOMErO YTBEPIK ICHUSI:

dusnyeckasi MHTEPHPETALs BEPOATHOCTU. Beposmmnocms moz20, wmo cayuaiinoe OAyscianue no
epapy G u3 sepwurv, a docmuenem eepuwunsvt h do 6ozepama 6 a, pasha

P =C/dega,

rie C' — npoogumocth rpada G (Bce Pe3nuCTOpbl €MHUYHBIE) Mexkiy a u h, a dega — qucio pebep,
BBIXO/IANINX M3 BEPIINHBL A.

2.4 (C) Vrasanue. Pynkuust v(x) OJHO3HATHO OIIPe/Ie/IeHa Ha BEPIIMHAX [OJIy YnBIneiics memu. [IpoBepbre,
YTO OHA YJIOBJETBOPAET akKcuoMaMm 1—2.
2.5 Omsem: (1A) 6/5; (1B) 2; (1C) 6/7; (1D) 2.
(2A) 12/7; (2B) 12/5; (2C) 30/19; (2D) 30/11.

Kopotkoe perienne cmoTpute B pasjene 3.
(2A) Vrazanue. Coenuanm Touknu @ u b ¢ 6arapeiikoii; cM. pucyHok 4 crnpasa. [loTeHrmanbl B Toukax ¢ u
d paBHBI U3 CUMMETPHH; aHAJOTUIHO B ToUKax e u f. Takum obOpa3oMm, Hallla cxeMa SKBUBAJIEHTHA CXEMe,
n30bpazkeHHoit Ha pucynke 10 cjesa.

Ucnomws3yss dopMysnsl 11t TapaJIeIbHOTO W TIOCTIE0BATEIHHOIO COEIMHEHNST PE3NCTOPOB, 3T IIElb
CBOAMTCS B K IIENH M3 OJHOIO pe3UCTOpa comporusienneM 7/12 om (cm pucynok 10 cmpasa). Takmw
06pa3oM, conpoTHBIeHne paBHO 7/12.

2.6 Omsem: 1/7. Pelienne aHaJIOrUIHO PEIIEHUIO 3aa49u 2.3.

2.7 (A). Koporkoe periienrie cMOTpuTe B pasjese 3.

(B) ABropam Heu3BeCTHO 3JIeMeHTapHOe pellenne 3a1aun. KpacuBoe pelenne, UCIoIb3yIolee JUCKPETHOe
npeobpaszosanue Oypbe, BbI MOKeTe HaliTu B KHUTe [7].

2.8 Cmotpure pasmen 3.

2.9 (B) Omsem: C' — 0 npu n — oc.

Vrazarue. [IpuMeHnnM 3aKOH MOHOTOHHOCTH: OOBLEJIUHUM BMECTE TOYKH, PACIIOJIOKEHHBbIE Ha KBaJIpaTax,
KaK 1oKa3aHo Ha pucyHke 11 cBepxy. [losmyduennas nenb skBuBajeHTHA 1ernu Ha pucynke 11 B nmeaTpe. Tak
KaK MOYKHO 3aMEHUTh N TTAPAJIIEIbHBIX PE3UCTOPOB B 1 OM Ha OJIMH Pe3UCTop B 1/n OM, 1elb SKBUBATIEHTHA
nenu Ha pucyHke 11 camsy. [IpoBommmocTs 9100t e paBHA

1
> k-1 Td
k=1 8k—4
OTO YHUCIIO CTPpEMUTCA K HYJIIO IIPU CTPEMJIEHUU 1 K beckoneunocTu. Tak Kak IIPOBO/IUMOCTD CTapOIL/'I nerm

He 6OJII3H_I67 OHa TO2Ke CTpEeMUTCA K HYJIIO.

2.10 Vxasanue. Ilyctb P — BEeposITHOCTBH TOT'O, UTO NIPH CIYIARHOM OJTyKJIAHUU 110 2-MEPHOM pereTKe Mbl
BepHeMCs B HadaIbHYI0 TOUKy. O603Ha4nM 3a P, BEpOATHOCTD TOTO, 9TO CaydaitHoe Oy TaHine BepHETCS
B HAYAJILHYIO TOYKY JIO JOCTHKEHUsI TPAHMYHBIX TOYEK KBajpara 2n X 2n ¢ NeHTPOM B HaYaJIbHOI TOYKe.
[Ipemooxkum, 9T0 BCE 3TU BEPOSATHOCTH CyIIecTBYIOT. fcno, uro P, < P <1 nana kaxjgoro n. U3 duzu-
YeCKON MHTEPIIPETAIUN BEPOATHOCTH moJrydaeM, uto P, = 1—C'/4, rne C' — sddekTrBHOE CONPOTUBIIEHIE
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Puc. 11: O6beaunenne B KBaJIpaTHON 1NN U SKBUBaJEHTHAas Iellb; CM peleHne 3aaaqu 2.9.
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MesKJIy IIEHTPOM U rpaHulleil KBajpara 2n X 2n. 13 pemenns 3anaun 2.9(B) ciemnyer, uro C' crpemurces K
HYJIIO TIpU cTpeMyieHnu n K 6eckoneunoctu. [losromy P, — 1 npu n — oo u P pasno 1. U

3.1 Cwm., manpumep, crarbio [6].

3.2 (B) Paccmorpum ciygaiinoe 6ty K 1asue 110 aekrpudeckoii menu. [lycrs Pr(z) — BeposgTHOCTH TOTO,
4TO, CTAPTYsd U3 BEPIIUHBI & U jiejiasd 1’ MaroB, Mbl JJOCTUTHEM TTOJIO2KUTE/IHHOTO TT0JTI0ca OaTapen paHblie,
9eM OTPHUIATEIbHOrO. SIcHO, 9TO mpu (BUKCHPOBAHHOM T TIOCIeI0BATELHOCTD Pr(r) Bo3pacTtaer, 3HAYNT,
umeer nipenest P(x). @yukiust P(x) yinoBierBopser akcnomam 1-2.

Samevarue. CyliecTBOBaHNE U €IMHCTBEHHOCTH pelienus cucreMbl Kupxroda - gpakThl J1eficTBUTETHHO
dynnamenranbubie. Hanpumep, 3 eIMHCTBEHHOCTH pellieHus cjejyeT TeopeMa /lena o Tom, 9To mpsiMo-
YIOJILHUK C UPPAIMOHAIBHBIM OTHOIIIEHUEM CTOPOH HEJIb3s pa3pe3aTb Ha KBaJpaTbl. V3 cymecTBoBanus
pertiernst (B HEIIPEPBIBHOM CJIytdae) cjeyer TeopeMa Pumana o kondopMHOM oTobpazkeHun [2.

3.3 Cwm., Hanpumep, crarbio [6].

3.4 (A) Ilycrp npasusbabll Tpad comepxkur n BepumH 1 Ay, As — coceinue BepiuHbI cTeneHei ki

n kg cooTBeTCTBEHHO. PaccMOTpMM cHavaia CUTyallnio, KOTJa B BepIuHy A; I0JaeTcsi TOK ”T’l, a u3
1

BCEX OCTa/IbHBIX BEPHIMH BbITeKaeT TOK —. B cumy npasumbroctu rpada 1o pebpy Aj Ay Oyjer Teub TOK

kil (1 — %) Ecmm ke Tok "Tfl mojaeTcss B BepiinHy Ag, a M3 0CTaJbHBIX BEPIIUH BBITEKAET TOK %, TO TIO

pebpy A; As OyiieT Tedb TOK é (1 — %) O6beuarM 00€ CUTYaIe, 3aMEHUB BO BTOPOM CJIydae BCe TOKU Ha
IPOTUBOMOJIOKHBIE. TOrIa MoIyInuTCs, 9TO B BeplInHy A; MOJaeTcs eMHUIHBIN TOK, KOTOPDBII BBITEKAET

u3 Bepiuabl Ay, IIpu sT0M 110 Pebpy A1 As Tedger ToK (k—ll + é) (1 — %) SHAYNUT, COIPOTUBJIEHUE MEXKTY

k1 ko n

Eciu rpad 6eckonednblit, T0 1/n HyKHO 3aMeHUTH HyJeM. KOPPEKTHOCTH OGOCHOBBIBAETCSI ¢ TIOMOIIHIO
IPEIEIBHOTO ePexo/Ia.

DopumyJIa 41 COMPOTUBJICHIA MEK Ly COCETHUMY BepIIUHAMY IpaBUILHOro rpada npunaie:kut A.B. Xomyr
Bumecre ¢ onpejiesienneM npaBuibHOroO rpada oHa B3siTa U3 crarhi [4].
(B) Permmm cravama 3aady Ha Gu3ndeckoM ypoBHe cTporoctu. HamoKuM IHHY ¢ HYJIEBBIM COIPOTHIIE-
HEeM Ha repumerp upsamoyroiabauka [—N, N + 1] x [N, N|. [lockonbKy 1pn nojkiodernn datapeiiku K
yaaam (0,0) u (1,0) noreHma bl Ha GECKOHETHOCTH CTPEMSITCS K HYJIO, TO HAJIOYKEHUE MINHBI MAJIO TIOBJIU-
sleT Ha 3HaYeHue MCKOMOro conporusienus. ([lanbHeilinme paccy K eHns Tak»Ke MPOBOJASITCS ¢ TOTHOCTHIO
JIO TIOTPEIITHOCTH, KOTOPast CTPEMUTCs K HYJI0 ¢ poctoM N.) Ec/in uCTOUHUK e TMHITHOrO TOKA MOJIKTIOYeH
k Touke (0,0) u mmmue, To u3 Touku (0,0) B KaxKJbIil U3 YeTHIPEX COCEIHUX Y3JIOB TeYeT TOK DABHBII
1/4. Eciin ke MCTOYHWK €JIMHUIHOIO TOKA MOJK/II0YeH K mmHe u Touke (1,0), To U3 YeTbipex cocegHux
y3708B B TouKy (1,0) BTekaer TOK paBHblil 1/4. 3HAaUUT, UPU NOAKIIOYEHUN 0OOUX MCTOUHUKOB TOKA II0
pebpy (0,0) — (1,0) 6ymer Teub TOK 1/2, 1 pasHOCTH MOTEHIINAJIOB B 9TUX TOYKAX TOXKe OyzeT pasHa 1/2.
Ho mexxay HuMm Teder oOmmii TOK paBHBIN €IMHUIE, TOSTOMY SKBHBAJICHTHOE COIPOTHUBJICHUE PEIIeTKH
MEKJIy COCETHUMHE y3JIaMi paBHO 1/2.

[Tpuia M STHM PaCcCyzKICHIAM MAaTeMATHICCKYI0 cTporocTh. CHOBA IPEIIONIOKHIM, YTO HCTOUHUK €/11-
HIYHOTO TOKa HOJKJI0UeH K Touke (0,0) U MiuHe ¢ HyJeBbIM CONPOTUJIEHNEM, HAJOXKEHHON Ha MepuMeTp
npsimoyrobauka [—N, N + 1] x [-N, N|. Cornacuo 3ajade 5.2 conporusierue R Takoro rpada He mpe-

Bocxoaut N'/2| osToMy Hpu HyJIeBOM HOTeHIuase Ha muHe norennuan V B Touke (0,0) He IpeBocxoauT
N2,

BepmmHamu A; Ay paBHO (L + i) (1 — l).

V=IR=R<NY2 (3)

[TokazkeM, 9TO IOTEHIUAJ B TOUYKAX, OJIM3KUX K HAJIO?KEHHOI IIMHe, MaJIo oTndaeTcs oT HyJs. OGo3HadIuM
depe3 u; HAHOOJIBIIMI MOTeHINA Ha [epUMeTpe HpsMoyroyubHuka [—j,j + 1] X [—j, j]. Torma us rapmo-
HUYHOCTU PACIPEIEJICHIs IOTEHINAIOB CIIEIYeT, IT0 U1 > 2uj — ujyq (1 < j < N —1). Ilosromy, ecin
uy—1 = € (mo mpennosoxkenuto uy = 0), o jst Becex j B npemenax 0 < j < N OymeT BBIITOTHIATHCS
HepaBeHCTBO u; > (N — j)e. B wactnocrn, ug = V' > Ne. YuureiBasg HepaBeHCTBO (3), HOJIydaeM, 9TO
e < N71/2,

Eciu Tenepb HaJIOXKUTH MIHHY 110 epumerpy kBajpara [—N, N| x [—=N, N|, ro nosyuunrcsa HoBoe (cum-
METPHYHOE) pacipejieieHne OTeHINAIOB, KOTOPOe, COMVIACHO MPUHIIUILY MAaKCUMyMa, OTJIHYAeTCd OT UC-
xoHOTO He 6oiee eM Ha N~ /2. BHaunT, 70 HepeHoca IPaBOro Kpasl IIHHLI YeTHIPE TOKA, BBHIXOISIINE M3
touxnu (0,0) ormuaamuck or 1/4 ne Gosee wem na N~Y2. Anajornano, eciim HCTOUHEK TOKA, TOIKIIOUECH K
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muHe 1 K Touke (1,0), To U3 YeThipex coceHuX y310B B T0UKY (1, () BTEKAIOT YeThipe TOKa, OTJINIAIOIIAECs]
or 1/4 ne 6osee yem na N~1/2,

O6beuHsIst 06e cuTyaly, HoIydaeM, 9To B npsamoyroyabauke [—N, N + 1] X [-N, N]| ¢ 3akopovYeHHbIM
[EePUMEeTPOM MCTOYHWK eJIUHUIHOrO ToKa nojkioder K yamam (0,0) u (1,0), a mo pe6py (0,0) — (1,0)
teuer Tok 1/2 + O(N~Y2). 3gaunT, pasHOCTh MOTEHIMAIOB, & COOTBETCTBEHHO W CONPOTHBICHHE, PABHEI
1/2+ O(N~2).

J1s1 3aBepIneHus JOKa3aTebCTBa MpUMEeHnM akcuomy 3. Pacemorpum Garapefiky, MOJKIIIOUEHHYIO K
roukaM (0,0) u (1,0) Tax, IT0 HOTEHIMABI B 9TUX TOYKax paBHbI 1/4 n —1/4 coorsBercrenno. Toxk, mpo-
rexatonuit Mexk 1y (0,0) u (1,0) obosnaunm depes I. Boibepem npsimoyroibauk [—N, N +1] x [-N, N] rak,
9T00bI TIOTEHIUAJBI Ha ero [epuMeTpe [0 MOJLYII0 He IpeBocxoauin Hekoroporo & > 0. Ilpu 3amene Bcex
HOTEHIMAJIOB Ha TIEPUMETPE TIPAMOYTOIbHUKA HYJISMHE, CONJIACHO MIPUHIUILY MAKCUMYyMa, BCE OTEHIUAJIbI
BHYTDH TakK »Ke u3MeHsATcs He Oosiee ueM Ha € > 0. Torga mosydmrest, 9To TOK [ Teder MexKy y3aamu ¢
pasHoCTbIO IoTeHmanos 1/2-+O0(g), a compoTuBIeHne MKty KOTOpeIMI pasHo 1/2+O(N~Y2). Cnenosa-
tempio [ = 1+ O(e) + O(N~Y/2). Tak xak £ MOyKeT GBITH BBIGPAHO CKOJIb YTOHO MAIbiM, a N pacTeT mpu
YMEHBIIEHUN €, TO TOK | B TOUYHOCTH paBeH ejuuuiie. OH TedeT MeXK/Ly y3/IaMi ¢ PA3HOCTHIO TIOTEHIHATIOB
1/2, 3HaunT, SKBUBAJCHTHOE COLPOTUBIICHUE PEIIETKU MEXK/IY COCCIHMH Y3JIaMHU B TOYHOCTH PABHO 1/2.

3.5 [lycrs Tenteps By 1 By — Bepmunbl rpada, JuaMerpabHO TPOTUBOIOIOXKHBIE A1 1 Ay COOTBETCTBEHHO.
Mpsr joxazasu, 9To ecyin B Ay M0JIa€TCsd €IMHUYHBIN TOK, KOTOPBINl BBITEKACT U3 BEPIIUHBI Ay, TO 110 pedpPyY

Ay Ay Teuer Toxk [ = (% + k%) (1 —1). Tok rekymmii upn s1oM 10 pebpy BsB; 06o3HaumM wepes .

JlonoHuTEIFHO TIOIKIIIOYNM UCTOTHUK €TMHITHOIO TOKa K BepumHaMm By u By (B By mogaercs, u3 By —

BeITeKaeT). Torma o Kaxgomy u3 pebep A1 As u By By Gyaer Teus Tok I + x. Ho 1o ke pacmpe/esenne

TOKOB ITOJIyIUTCsI, €CJIN €IMHNIHBIN TOK ITOJAeTCsl B BEpPIINHY A U BBIT€KaeT u3 B, a JIOIOJHATE/IbHbII

TOK TIO/TaeTcst B By u BhITeKaeT u3 Ay. B makoit cutyanum B cuty mpaBuibHOCTH Tpada MEepBhIil NCTOTHUK
1

o pebpy A; A, maer Tok 7 & BTODOM — é Orcroma

_ (1 1)1 v 1
N k’l ]{32 7’L7 I_TL—]_

[TosTomy /st MKOCA3Ipa MOJIyIaeTca TOK 1—11, JloJIeKa’dIpa — %, pOMGOIOIEKAdIPa, — -

13
3.6 Vkasanue. Cymmnr D, u F,, yJIOBJIETBOPSIOT OJJHOMY U TOMY K€ PEKYPpPEHTHOMY cooTHoIrenno. Ha-
n+1

Kyba — %

npumep, D, = 1+ D,,_1. Kpome toro, Dy = Fy = 1. CiiesioBare/ibHO, OHU PABHBI JIPYT JAPYTY. SHATUT,

opun > 1

n

ok on on on 271
_— = — n— = —D,n_ = — 7 -
ko on "N "o kZ:O Cck_,

k=1
Jlnst 3aBepiiieHnsi JOKa3aTeIbCTBA HYKHO OIEHUTH CTEIeHb BXOXKJIEHUsI JYHUC/Ia 2 B OOMINIT 3HAMEHATE b
Jipobeit 13 MOJIyIeHHOW CYMMBI C TIOMOIIBIO (hopmysibl Jlexkanapa i mokasaresisi, ¢ KOTOPBIM ITPOCTOe
9HICJI0 BXOJIUT B pasjioxKeHne gpakTopuaJa.

ConpoTruBeHre n-MepPHOro POBOJIOYHOIO Ky6a (Y KOTOPOro Kazk10e pebpo UMeeT e IMHUTHOE COTPOTHB-
JIeHVE) MeXKJIy [MPOTUBOIOJIOKHBIMU BepiiHamMu R, CBSI3aHHO C JIAHHBIME CyMMaMu paBeHcTBaMu (6oJiee
10JIpobHO M. B crarkbe [5]).

D,=F,=n+1)R,.
4.1 Vrasanue. Jokaykure 1o MHIYKIUKA, 9TO COIPOTUBJICHIE OMHAPHOTO JIePeBa IIyOUHbI 1 U3 €IUHUTHBIX
pe3ucTopoB paBHO 1 — 2%

4.2 Vxaszanue. [loTeHIuag bl B TOYKAX, PACIIOJOXKEHHBIX Ha OJUHAKOBOM PACCTOAHHHU OT KOPHS JI€peBa
J Y
paBubl n3 cumMerpur. OObeIMHNB TakKne TOYKNA B OMHAPHOM JepeBe, TOJyInM Ielb, N300pakKeHHy0 Ha

1 n
pucynke 12. Ee conmporupjienne paBHO 5N = 3. s TpouvHOro JiepeBa aHAJOTMYHO HojaydaeM R =
1y 4220 R=1-2
3 tgT- - UTCoa ft = 3

4.3 Vrxaszanue. JIBonanoe nepeBo 1yiyOnHbI 3 BbIpe3aTh He c1oxKHO0. [lokaxkeM, 9T0 JBOMYHOE JePEBO TIyOu-
el 2010 BIpe3aTh HeTb34. Ec/n ero y1amoch BhIpe3aTh, TO BCE €eT0 BEPITNHBI PACIIOIOKEHBI Ha PACCTOAHIN
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Puc. 12: Iloacuer conmporuBienus jepesa; CM pernienue 3aaa4u 4.2.
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Puc. 13: Bripe3anue JIBOUYHOIO JiepeBa ¢ IepecedeHnaMU U3 IJIOCKOCTH; CM pereHue 3aj1a9u 4.4.

He 6osiee 2010 oT KOpHS; OTCIOJIA TOJIyYIaeM, UTO JepeBO HaXOUTcsd B Kybe co croponoit 2-20104-1. ITosTomy
4rcIIo ero BepmmH He mpesocxoanT 40213 < 236 C npyroit cTroponst, unciio ero sepmmH pasno 2291 — 1. TTo-
JIy9eHHOEe TTPOTUBOPEYNe 3aBepIlaeT J0Ka3aTeIbCTBO. 3a1ad9a O BhIPe3aHUN MOIN(MUIIMPOBAHHOTO JIepeBa
perraeTcs He ITPOCTO.

4.4 Vxasanue. JIBomanoe jepeBo BbIpe3aTh HEb3; PACCYK/IafiTe aHAJIOTUYHO PEIIEHnIO 3a1a49u 4.3, T10JIh-
3ysICh TeM, 4TO OoJjiee JIBYX BEPIIUH CKJIENTbcs He MoryT. MomudunmpoBantoe JIBOUYHOE JIEPEBO MOXKHO
BBIPE3aTh U3 IJIOCKOCTH (CM PHCYHOK 13), a TPOMYIHOE U3 MPOCTPAHCTBA AHAJIOTHYHBIM 06pa3oM (CM pucy-
HOK 14). JlokazaTeabCTBO MPOBOJAMUTCS WHJYKIHEl 10 rryOuHe jgepesa.

4.5 Viasanue. g moboro n = 2° — 1 paccMoTpuM MHOXKeCTBO Bepiund (z,y, 2), rae |x| + |y| + |z| < n.
[Iycts R; — compoTuB/ieHHEe MeXKIy HavaJ oM KOOPJWHAT U TpaHurieil Takoit ¢purypnl. Kak mssectno ns
zayiaan 4.4, U3 Takoi 9acTh peneTKd MOYKHO BbIPE3aTh MOMMDUIIMPOBAHHOE TPOUIHOE JIEPEBO ITyOMHBI
i ¢ TIepecedeHnsIMI pebep Ha PaBHOM PACCTOSHUHU OT KOpHsI. JIerkKo 3aMeTWThb, 9TO COIMPOTHUBJIEHNE JI€pe-
Ba C TAaKWMU Il€peceveHnsIMI PABHO CONPOTHUBIIEHUIO TAKOTO Ke JlepeBa Oe3 mepecedennii. Kak m3BecTHO
u3 3ajaun 4.2, CONpPOTUBJIEHNs] MOAUMUIIMPOBAHHBIX TPOUYHBLIX JepeBbeB He mpeBocxoidaTr 1. [losTomy
HEe TIPEBOCXOJIAT 1 M COMPOTHUBIIEHUS BbIPE3aeMbIX J€PEBLEB C IepecedeHnsMu. V3 3aKoHa MOHOTOHHOCTH
nostydaem, uro R; < 1. 3uaunt, 1npu mojk/iodeHun darapeiiku B 1 BojbT TOK Oyzer ne menbiie 1. Core-
JIOBATEIbHO, TOTEHIMAJbI B BEPIIUHAX, COCEIHUX C HAYAJIOM KOOpJuHAT OyjayT He Oosbie 1 — % = %.
OHu paBHBI BEPOSITHOCTH BO3BpATa B HAYAJIO KOOPJMHAT J0 Mona ianus Ha rpaHuily. [lepexoms k mpeseny,

moJiydaeM Tpedyemoe.

5.1 Pacemorpum roukn A(2,3), B(3,3), C(1,2), D(2,2), E(3,2), F(4,2), G(2,1), H(3,1). CrauaJa 1o/ico-
e/IMHAM MCTOYHUK TOKa, KOTOPBIN MOIAET eIMHNIHBIN TOK B HAYAJIO KOOD/MHAT, & BTOPBIM KOHI[OM II0/ICO-
e/IUHEH K KOHTYDPY C HYJIEBBIM COIPOTUBJICHUEM, HAJIO?KEHHOMY Ha Tiepumerp Ksajpara [— R, R]?. V3-3a cum-
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Puc. 14: Bripezanue TpOUIHOIO JiepeBa ¢ IepecedeHusIMIA U3 IIPOCTPAHCTBA; CM peleHne 3a1a9u 4.4.
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MeTPHH JJI HeKOoToporo [ncia [ 6ymayT BeimoaaThest paBencrsa i(C'D) = i(GD) = i(DA) = i(DE) = 1.
PaccMoTpuM Tereph JIpyTyIo CUTYaIUIo, KOTJIa eJMHUYHbIH TOK [0/IaeTcst Ha [epuMeTp Keajpara [— R, R]?
u BbrxoauT u3 Touki (1,0). Torna i(DE) ~ i(HE) ~ i(EB) =~ i(EF) ~ —I. 31ecb paBeHCTBO TOHIMAETCS
C TOYHOCTBIO JI0 MAJIOTO £, KOTOPOe CTPEMUTCS K HYJO ¢ poctoM R (Kak u B 3ajade 3.4, 9T0 CleIyer u3
akcroMbl 3). KomMOuHupys obe cuTyaryu mosyaeM, 970 KOrja HCTOIHIK TOoKa MojkiodeH K yaaam (0, 0),
(1,0), a na nepumerp kpajpata [—R, R]? Hal0oKeH KOHTYD C HyJIEBbIM COIIPOTHBJEHUEM, 110 pebpy DE
TeYeT TOK MEHBIMHI, deM €. Yerpemiids R B 6ECKOHEIHOCTD (M CHOBa HPUMEHSIsI AKCHOMY 3), IPUXOAM K
YTBEPXKJICHUIO 33/ IaH.

OTMeTHM, 9TO IIPH PENIeHun MbI 63 JJOKa3aTeIbCTBa TO0JIb30BAINCH CJIOXKHBIM YTBEPKICHUEM O CyIIe-
CTBOBAHUY ¥ €IMHCTBEHHOCTH.

5.2 Pacemorpute Kakoe-HUOY/Ib JIEPEBO, COSIUHSIONIECE JAHHYIO TOUKY C IEPUMETPOM KBaJjpara.
5.3 llpumenure NpUHITUIT MAKCUMYMA.

5.4 3anumem oneparop Jlamraca B Buje
Af(zy)=fle=Ly)+ fle+1y) = 2f(z,y) + flz,y = 1) + f(z,y + 1) = 2f(z,y).
Torpa aa dbyukunu f(z,y) = Inr(z,y)

o= 10)+ o+ 19) = 24 (o) = g PO 20D

1 20 4+ 1 —2r+1 1 1\? 4g2

Amnajormano

[TosTomy

1 1 16222 1 1 1

5.5 Ecoin Touka (x,y) sexkuT BOJIN3U TPAHUIIBI KOJIBIIA, TO B HEll IMeeT CMbIC U3MEHUTD OIPeJIeIeHIe Olle-
paropa Jlamraca, 9ToObI OHO COIVIACOBBIBAJIOCH ¢ mpaBmiamu Kupxroda. Hamnpumep, ecin 11t HEKOTOPBIX
a, b €[0,1) roukn (x — a,y) u (z,y — b) monajaw0T Ha rPAHUILY, TO OYJEM CIUTATDH, YTO

f—ay = fley)  fey=b) - fy
a b
Torma jast dbyuxnuu f(x,y) = Inr(z,y) B Takoit Touke

f(x—a,yC)L—f(I,y) +f(x+1,y)—f(x,y)z%ln <1+—2#2—|—a?) —|—%ln (1+2x—2i-1) :O<i).

Af(r,y) =

Awnanornano
b

Takum obpazom A f(z,y) = O (r~2), npudeM 3Ta OIEHKa OCTAETCA CIIPABEJJINBOIL, €C/IH U3 YeThIPEX COCe/l-
HUX C (2,y) TOYEK JIUIIb OJ[HA JIEXKUT 3a [PEeJIeTaMU KOJIbIIA.

Pacemorpum reneps dyukimo f(x,y) = U,(z,y) — Inr(z,y). Ona paBHa HyJIO HA IpaHUIE KOJbIIA,
a BO BCEX BHYTPEHHUX TOUKaX yJoBJeTBopsieT ypasHenuto Af(z,y) = o(z,y), tie ¢(z,y) = O(n™2) B
Toukax BOm3M rpamuisl, u @(z,y) = O(n™1) B ocTAIBHBIX TOUKAX KOJIBLIIA.

+f(x,y+1)—f(x,y):o(1>.

r2
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Buauenusi GyHKIWMI Y(T,Yy) — ITO TOKU, KOTOPBIE MOJAIOTCS B COOTBECTBYIOIIME y3Jibl KOJbla. [loren-
[UaJIbl, MH/YIIUPOBAHHBIE TOKAMU B TOYKAaX BOJM3U IpaHulbl olennaiorcst Kak O(n~2). [leficTBuTe/bHO,
€CJIN, CANTATh, YTO BO BCe BHYTPEHHIE TOYKU 0OJIACTH UMEIOT paBHBIA moreHnuas U/, To B TOYKU IPAHUIIBI
TeKyT TOKH He MenbIre deM U. [lostomy, mpu 3amene Bcex TokoB Ha U moTeHNMAasbl BHYTpHU 00JIACTH HE
YBEJINIATCS.

OteHnM Terepb MOTEHIUA MOPOKIAEMbIil TOKAME B OCTAJILHBIX TOYKaX (OT/IEJIEHHBIX OT I'DAHUIIBI).
Yucno taknx Touek ectb O(n?), U TOK B KaxK/0ii 13 HuX (coryiacHo 3ajade 5.3) IPUBOJUT K MOTECHIHA-
san me npesocxofsamum O(n~7/2). TlosTomy obmmii TOTEHIMA, TTOPOK ICHHbIH BHYTPEHHIMHI TOKAMH €CTh
O(n=%?). To ectb f(z,y) = O(n=%/?).

5.6 Bocmob3yemcst paBeHCTBOM

r—y
arctg x — arctgy = arctg ———,
14+ 2y
KoTopoe crpase o npu |zy| < 1. Torma
1/R

arct y_+1 — arct L. arct =
7R 5 R Sltyly+ 1)/ R

t i +0 ! i +0 L
= I _— _— = —— — _— .
arctg y2+R2 RQ R2_|_y2 R2

5.7 Ilpocymmupyiite bopmysty us 3amaqu 5.6.

5.8 JIj1s1 HaXOXK IeHUs COTPOTHUBJICHUS KOJIbIA HAlIeM TOK, KOTOPBI OyJIeT Yepes3 Hero MpoTeKaTh P yCI0-
BHHM, YTO Ha BHYTPEHHUII KOHTYD KOJbIA MOJAETCA HalpsbKeHue Ilnnry, a Ha BHemHuid — Innry. Bymem
MCKAaTh TOK MpOTeKalonuii yepes nepumerp Kpajgpara [—R —1/2, R+1/2]% rae R = [rin] + 1. Ilocuuraem
ero npubJIMZKEHHO, 3aMeHsIsd IOTeHIMAbl B y3Jax Ha 3Hadenus dpyukiun lnr(x,y). Beero Gyger npocym-
muposano O(n) ToKoB, Kazkplii ¢ norpemmuoctsbio O(n~%/2). I[losToMy HTOroBast IOrPEIIHOCT OyIeT paBHa
O(n=1/?).

B cuny cumeerpun kBaJipaTa, IMPOTEKAIONINI Yepe3 ero mepruMeTp TOK MOXKEeT ObITh 3allucaH B BU/IE

I= SZ(lnr(R—i- Ly) —Inr(R,y)) + O

iz
y=0
Tak kak .
1HT(R+ 1,y) —lnr(R,y) = R2—+y2 —|—O ﬁ >

TO, IIpUMensis (GOPMYIIY U3 3a1a4un 5.7, MoaydaeM HyzHoe pasenctso I = 2w + O(n~/2).

5.9 Kak u B npeapiaymeil 3amade, s BBIYUCJICHUS COIPOTHBJICHUS HY?KHO HAWTH TOK, IMPOTEKAIONIUIA
"epes 3aMKHYTYIO JIOMAHYIO, OMOsICHIBAIONTYI0 BHYTPEHHIO OKPYZKHOCTH. CHOBa 11 IPUG/IMKEHHOTO Ha~
XOZKJIeHUsI TOKA TOTEHIHA/BI B y3/1aX PeMeTKH MOYKHO 3aMeHHTh Ha 3Havenus dynximuu Inr(z,y). Ecmn
Tenephb JIOMAHYIO 3aMEHUTh Ha OIMMCAHHBIN OKOJIO Hee KBaJIpaT, TO BHYTPH MOJIYUEHHOTO KOHTYDa MOSBHUT-
cst O(n?) HOBBIX UCTOUYHUKOB TOKA, B KA<JIOM M3 KOTOPbIX BTEKAeT WM BbITeKaeT TOK pabHbiil O(n~?).
3HaunT, NCKOMOE 3HAYCHHUE JJIS CyMMAPHOIO TOKA OTJIMYACTCH OT yyKe HaiiJIeHHOrO TOKA Yepe3 HePUMET]
kBaapara [ = 27 + O(n~'/?) ne 6osee wem na O(n~2).

5.10 JlokazkeMm, 9TO B 3ajiade 5.2 COMPOTUBJICHUE MEXKJy JIIOOBIM Y3JIOM KBaJjpaTa W €ro I'paHureil ecTh
O(Inn). Torma u Bo Bcex ciIeAyIONIUX 3aadax Mpu OYKBAJIbHOM [TOBTOPEHHHU JIOKA3ATEIbCTB BCE OCTATOY-
Hble YJIEHbl YMHOXKATHCI Ha, h‘TZ

Bmecro kBajipaTta paccMOTPUM TPEYTOJIBHUK, BbIPE3aHHDbIN M3 KBaJpaTHON ceTKH npsaMbiMu x = 0,
y =0, x +y = n, 1 OIEHUM €ro CONPOTUBJIEHNE MEXKJy HAYaJOM KOODJIWHAT W THUIOTEeHYy30u. bByrem
IpeJro/araTb, 9T0 B IEAbIX TOYKaX Ha oTpe3ka * +y = k, x, y > 0 moreHua bl paBHbl Vi = Zf;l %
(0 < k < n). B gactHocTu, B HavYaje KOOPJIMHAT MMOTEHIUAI HyJeBOil. Bymem Tak:ke mpesmmosararsb, 9To
B KaXKJIYIO TOUKY Ha HpsiMoii © + y = k Breraer ToK 1/k, TO ecTb Wepe3 KarxKJiblii yPOBEHb MPOTEKAET

eJIMHIIHBIA TOK. UT0OBI cuTyalust He IpoTHBOpedna 3akony OMa, COMPOTUBIIEHNST BHYTPHU TPEYTrOJIbHIKA,
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Hy2KHO Oyjier yBesmunTh. (Comnporusienus, coeunstomue rouku Bujga (0, k), (k,0) ¢ roukamu (0, k + 1),
(k +1,0) ocratorca epunmanbivu.) ITobbl BemosHsIca 3akon Kupxroda, us Toukn (j,k — j) 10/KHBI

—j j+1 . . . .

Teub TOKHU gl M 745 B TOUKH (j,k—j+ 1) u (j+ 1,k — j) coorBercrBenno. I1ockosKy pasHOCTB
HoTeHNuAaIoB paBHa 1/(n + 1), TO eIMHUYHBIE COMPOTUBIICHUS HYKHO OY/IeT 3aMEHUTH Ha COMPOTHBJICHUS
k%j n ]% coorBercTBeHHO. [losryuennas cxema nmeer comporusierue V,, < Inn. 3HaunT, conpoTuBieHne
UCXOJTHOM CXeMbI TaKzKe He TTPEBOCXOJINT 1n n.

8. buaarogapuocTu

BonpmuacerBo 3a1a4 wacreit 1, 2 u 4 maHHOro mpoekTa 3amMcTBoOBaHbI n3 crarbu II. Hoins m [Ixk.
Cuesut 6]. Asropst 6aarogapusr . Borpanosy, B. Byraernko u M. TIpaco/ioBy 3a nomols pu mepesojie
JIAHHOT'OT' TIPOEKTA.
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Random walks through electrical networks

Dmitry Baranov, Mikhail Skopenkov, Alexey Ustinov

The aim of the project is to prove the following result and investigate related problems.
The Polya Theorem. (a) A man which is randomly walking in a 2-dimensional lattice
will return to the initial point with probability 1.
(b) A man which is randomly walking in a 3-dimensional lattice will return to the initial
point with probability strictly less than 1.

Accurate statements are given in the project. The suggested approach to the result is
based on a physical interpretation. However, no physical background is assumed.

—— il ———

I-dimensional Lattice Heo-

2-dimensional Litice

A-chimwensonal lalbee

1. Walking in one dimension
Let us first state a problem and then give all the necessary definitions.

1.1. A man walks along a 5-block stretch of Madison Avenue. He starts at corner x
and, with probability 1/2, walks one block to the right and, with probability 1/2, walks
one block to the left; when he comes to the next corner he again randomly chooses his
direction along Madison Avenue. He continues until he reaches corner 5, which is home,
or corner 0, which is a bar. If he reaches either home or the bar, he stays there; see
Figure 1.

Bar O ef—@o‘.__o Huome
0 1 2 3 4 5

Figure 1: Random walk along Madison Avenue; see Problem 1.1.

(A)™ Write a computer program which models the motion of the man. Run the program
a large number of times, and find the percentage of cases in which the man returns home.
You may use this to guess the answers in further problems.

E-mail address: dimbaranov@mail.ru, skopenkov@rambler.ru, ustinov.alexey@gmail.com

Summer conference of the International mathematical tournament of towns 2-10 August 2010



(B) Let Pp(x) be the probability that the man, starting at corner x and making at most
T "moves”, will reach home. Complete the following table by 2-digit decimals.

Table 1: The probabilities Pr(x) for small T

x 0 1 2 3 4 5

0.00 | 0.00 | 0.00 | 0.00 | 0.50 | 1.00

INIEGUIR IR

(C) Find the probability P(x) that the man will reach home eventually.

Definition. (A) Suppose that an experiment has n equally possible outcomes, and an
event X occurs in exactly m of the outcomes. Then the probability of the event X is by
definition the number P;(X) := m/n.

For instance, the probability of getting tails in a coin throw is 1/2; the probability of
getting 6 points in a die roll is 1/6; the probability that our walker moves one block to
the right is 1/2.

(B) Now suppose that the event X depends on a sequence of such experiments. A
sequence of T experiments has n’ possible outcomes. Assume that X occurs for exactly
mr outcomes among them. Then the probability of X is the number Pr(X) := mr/n’.

For instance, there are 4 possible outcomes of throwing a coin 2 times:

1st throw heads heads tails tails
2nd throw heads tails heads tails

Let the event X be getting tails in at least one throw. The event X occurs for 3 cases
among the 4 possible ones. Thus the probability of the event X is P»(X) = 3/4.

The probability of getting more than 10 points in two die rolls is 1/12 because this
event occurs for 3 cases (546, 645 or 64 6) among the 36 possible ones. The probability
that our walker, starting at corner 3, consequently moves right twice is 1/4.

(C) Finally, suppose that the event X depends on an infinite sequence of such experi-
ments. We say that the probability of the event X is P(X), if the probabilities Pp(X)
tend to a number P(X) as T tends to infinity.

For instance, the probability of getting tails at least once in an infinite sequence of
coin throws is P(X) = 1, because Pr(X) =1 — 1/2T tends to 1 as T tends to infinity.

You may use without proof that the probability P(X) ezists for all the events X
considered in the project.

1.2. Peter and Paul match pennies; they have a total of 5 pennies; on each match, Peter
wins one penny from Paul with probability 1/2 and loses one with probability 1/2; they
play until Peter’s fortune reaches 0 (he is ruined) or reaches 5 (he wins all Paul’s money).
Find the probability P(x) that Peter wins if he starts with x pennies.

IFormally, this means that for each & > 0 there is a number T} such that for each T' > Ty we have |P(X) — Pr(X)| < e.
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1.3. Assume that our walker has a tendency to drift in one direction: more specifically,
assume that each step is to the right with probability p or to the left with probability
q = 1 — p. Find the probability P(x) in this case.

1.4. You are gambling against a professional gambler; you start with 20 dollars and the
gambler with 50 dollars; you play a game in which you win one dollar with probability
0.45 and lose one dollar with probability 0.55; play continues until you or the gambler
runs out of money. Find the probability of being ruined.

Definition. An electrical network is a connected finite graph with a positive real number
(conductance® C(xy)) assigned to each edge zy, and two disjoint marked sets of vertices
(P and N). The vertices of the set IV are joined with the ground and the negative pole
of a battery, and the vertices of P are joined with the positive pole; see Figure 2.

The voltages v(x) of the vertices in the network are defined by the following axioms:

1. Boundary condition. If z € N then v(x) = 0; if z € P then v(x) = 1.
2. Kirchhoff current law. 1f z ¢ P UN then >  C(zy) (v(z) —v(y)) = 0, where the
summation is over all the edges xy containing the vertex z.

The number i(zy) = C(zy) (v(z) —v(y)) is the current through edge zy; i(x) :=
>y t(zy) is the current flowing inside the network through vertex z (thus i(z) = 0
for each z ¢ P UN by axiom 2); C := ) _pi(x) is the effective conductance of the
network between the subsets P and N; @ := > C(zy) (v(x) — v(y))?, where the sum-
mation is over all the edges of the network, is the heat power of the network.

1.5. We connect equal resistors in series and put a unit voltage across the ends as in
Figure 2. Find the voltages v(z) established at the points z = 0,1,2,3,4,5. Hereafter
you may use network-simulation software to guess the answer.

| volt

Figure 2: An electrical network; see Problem 1.5.

1.6. Consider the network with the vertices 0,1,...,n, the edges 01,12,...,(n — 1)n of
unit conductance, and marked sets N = {0}, P = {n}.

(A) Mazimum Principle. A function v(x) satisfying the above axiom 2 takes on its
maximum value and its minimum value on the set P U N.

(B) Uniqueness Principle. 1If v(z) and u(z) are two functions satisfying the above ax-
ioms 1-2 then v(z) = u(z) for all x.

(C) Find the voltages v(z) and the effective conductance of the network. To which
numbers tend these values as n tends to infinity?

1.7. State and prove an analogue of the Polya theorem for the 1-dimensional lattice.

2The reciprocal of conductance is called resistance.



2. Walking in two dimensions

2.1. Consider the town in Figure 3 to the left. Segments represent streets. Large dots
marked F indicate escape routes and those marked P are police. Find with 2-digit
precision the probability P(x) that our walker, starting at an interior point x, will reach
an escape route before he reaches a policeman. The walker moves from = = (a, b) to each
of the four neighboring points (a + 1,b), (a — 1,b), (a,b + 1), (a,b — 1) with probability
1/4. If he reaches one of the points E or P, he remains at this point.

2.2. Find the voltages v(x) in the network (of unit resistors) in Figure 3 to the right.

e
[

oL

E P P

Figure 3: Random walk in a town and an electrical network; see Problems 2.1 and 2.2.

2.3. A bug walks randomly on the edges of

(A) a cube; (B) an octahedron; (C) a dodecahedron; (D) an icosahedron;

If the bug starts at a vertex a, what is the probability that it reaches food at the opposite
vertex h before returning to a; see Figure 4 to the left?

Figure 4: Random walk in a cube and an electrical network; see Problems 2.3(A) and 2.5(A).

2.4. The following transformations preserve the effective conductance of a network:
(A) replacing two resistors connected in series by a single resistor whose conductance is
1/ (C% + C%), see Figure 5 to the left;

(B) replacing two resistors connected in parallel by a single resistor whose conductance
is C 4 Cy; see Figure 5 to the right;

(C) shortening together two vertices having the same voltage.

(o] C» ol
, (o0
C s C, e
AN ———AAA——

Figure 5: Series and parallel connections; see Problem 2.4.



2.5. Find the effective conductance between (1) opposite; (2)* adjacent; vertices of
(A) a cube; (B) an octahedron; (C) a dodecahedron; (D) an icosahedron;
with edges of unit conductance; see Figure 4 to the right.

2.6. A drunken tourist starts at her hotel and walks at random through the streets of
the idealized Paris shown in Figure 6 to the left. Find the probability that she reaches
the Arc de Triomphe before she reaches the outskirts of town.

2.7. The conductance between vertices (A)* a and b; (B)** a and ¢; of the 2-dimensional
lattice (of unit resistors) equals to 2 and 7/2, respectively; see Figure 6 to the right.

Notice that for the 2-dimensional lattice we need to modify the definition of the volt-
ages v(x) by adding one more axiom:

3. Condition at infinity. v(z) tends to 1/2 as the distance between z and a fixed vertex
tends to infinity.

It is allowed to use without proof that there exists a function v(z) satisfying axioms 1-3.
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i EE iE b !E': ;4 r J
W-irw‘ AAL " ihw :E ‘-'-'.*::!
"'"l"""'"-'. 1. iy C - bl "‘“‘“‘u"-—-
\ % ; :
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1“--. ___;-‘ _ 1'— jl_- -__._‘..._""’

Figure 6: Paris tourist map and a lattice network; see Problems 2.6 and 2.7.

2.8. Rayleigh’s Monotonicity Law. Cutting certain edges can only decrease the effective
conductance between two given nodes; see Figure 7 to the left. Shorting certain sets of
nodes together can only increase the effective conductance of the network between two
given nodes; see Figure 7 in the middle.

2.9. (A) Prove that the conductance between the center and the boundary of a square
4 x 4 lattice of unit resistors is less than 3; see Figure 7 to the right.

(B) To which number tends the conductance between the center and the boundary of a
square 2n X 2n lattice of unit resistors as n tends to infinity?

2.10. Prove the Polya theorem for the 2-dimensional lattice.
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Figure 7: Cutting, shortening, and a square 4 x 4 lattice; see Problems 2.8 and 2.9.

3. Conductances of symmetric graphs

The problems of this sections may help to solve the problems from the previous one.

A function v(z) on vertices of an electrical network is harmonic, if it satisfies axiom 2
from the definition of an electrical network. The vertices from the set P U N are called
boundary vertices, the remaining vertices are called interior ones.

3.1. (A) Superposition principle. If functions u(x) and v(z) are harmonic and a,b € R
then the function au(x) + bv(z) is harmonic.

(B) Mazimum principle. Prove that a harmonic function u(x) defined on a finite elec-
trical network takes its maximum and minimum values on boundary vertices.

(C) Uniqueness principle. If harmonic functions u(x) and v(x) coincide at each boundary
vertex of a finite network then u(z) = v(x) for each vertex = of the network.

(D) A man randomly walking in a finite town visits all street corners with probability 1.

3.2. (A)* Fredholm’s alternative. Take a system of linear equations

1121 + ...+ a1 nly = bl,

Ap1T1 + ...+ AppTy = b,

in which the number of equations equals to the number of unknowns. Then exactly one
of the following alternatives holds:

1. for any by, ..., b, the system has a unique solution (in particular, for by = ... =
b, = 0 there is only zero solution);

2. for some by, ..., b, the system has no solutions, and for some other (in particular,
for by = ... = b, = 0) it has infinitely many solutions.

(B)* Dirichlet’s problem. Prove that for any finite electrical network there exist a
function v(z) satisfying axioms 1-2.

3.3. (A) Variational principle. Let v(x) be an arbitrary function on vertices of a finite
electrical network satisfying axiom 1, but not necessarily axiom 2. Enumerate the vertices
by 1,...,n and let 1,...,k be the interior vertices. Denote by v := v(1), vo := v(2),

.., Uy = v(n). Consider vy,...,v; as independent variables. Consider the heat power
Quvr, ..y vk) = 3, Clzy) (ve — v,)* as a function in variables vy, ..., v;. Prove that
the function Q(vy, ..., vy) takes its minimum when the function v(x) is harmonic.
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(B) Prove that for the function Q(vy,...,v;) there exist a unique sequence vy, ..., vy,
for which the function takes its minimum. Apply this to obtain the second proof that
for each finite electrical network there is a unique function v(zx) satisfying axioms 1-2.
(C) Energy conservation law. Prove that the minimal value of the heat power Q(vy, ..., vg)
numerically equals to the effective conductance C'.

(D) Rayleigh’s Monotonicity Law. If the conductances of the edges of a network are
increased, the effective conductance can only increase.

(E) One removed an arbitrary set of edges from the 2-dimensional lattice. Prove that a
random walk still returns to the initial vertex with probability 1.

Let I' be an electrical network of unit resistors. Take a pair of adjacent edges AB
and AC' of the network. These edges are called equivalent, if there is a permutation of
vertices of the network, taking adjacent vertices to adjacent ones, and taking A to A and
B to C. A vertex is a symmetry center of the network I', if all the edges containing the
vertex are equivalent. The network I' is regular, if all its vertices are symmetry centers.

Examples of regular graphs: regular polyhedra of arbitrary dimensions, regular lattices
of arbitrary dimensions, regular lattices in a torus etc. A nontrivial example: graph of a
rombododecahedron. The vertices of this polyhedron have different degrees (3 and 4).

3.4. (A) A regular network contains n vertices. Let A; and Ay be two adjacent vertices
of degrees k1 and ko, respectively. Prove that the resistance between them is

1 n 1 1 1
kl ]{32 n .
(B) If the network is 2-dimensional lattice then 1/n should be replaced by 0.

3.5. The battery is joined with two adjacent vertices of (A) an icosahedron; (B) a
dodecahedron; so that the current through the edge joining the two vertices is /. Find
the current through the opposite edge.

1 1 2
3.6. * Prove that the sums D, = > _, o and F, = ?;"% S =

these sums are connected with the conductance of an n-dimensional cube? Apply this to
prove that the order of 2 in the number >7)_, %ﬁ—k tends to infinity as n tends to infinity.

are equal. How

4. Walking in three dimensions

4.1. Find the conductance of a binary tree of depth (A) 3; (B) 2010;
made of unit resistors; see Figure 8 to the left.

4.2. Find the conductance of a modified binary and a trinary trees of depth 2010, in
which each resistor at k-th level is replaced by 2% unit resistors in series; see Figure 8 in
the middle.

4.3. Which trees from (A) Problem 4.1; (B) Problem 4.2; can be cut out from the
3-dimensional lattice?



I+

i

Figure 8: (Left) A binary tree of depth 3; (middle) a modified binary tree of depth 3; (right) allowed
intersections of edges of the trees; see Problems 4.1, 4.2, and 4.4.

I|—

4.4. — And if one allows intersections of edges at equal distance from the root of the
tree; see Figure 8 to the right?

4.5. Prove the Polya theorem for the 3-dimensional lattice.

5. Conductance of a ring*

Consider a metal 2-dimensional lattice with unit resistance of each edge.

5.1. The battery is joined with nodes (0,0) and (1,0). Prove that the voltages at the
nodes (2,2) and (3,2) are the same; see the remark in Problem 3.4(B).

5.2. Prove that the resistance between any node of a square n xn lattice and the boundary
is less than /n.

5.3. The battery is joined with an interior node A of the square n x n lattice and with
the boundary. The voltage at the boundary is zero. Prove that if the current through
node A is ¢, then the voltage at each other node is less than ey/n.

5.4. Denote by Af(z,y) = f(r—1,y)+ f(e+1,9)+ f(z,y—1)+ f(z,y+1)—4f(z,y) and
r(x,y) = /x> +y? If f(x,y) =Inr(x,y) for r(z,y) > 2 then Af(x,y) = O (W}L‘y)) .

Hereafter for two functions A and B we write A = O(B), if there exist a positive
constant ¢ we have |[A| < ¢B.

5.5. A ring with inner radius rn, outer radius ron, and center at the origin is cut out from
the 2-dimensional lattice. If an edge is cut then the resistance of the part is proportional
to its length. Assign the voltage Innrq to the inner boundary circle and Innry — to the
outer one. Let U,(z,y) be the voltage at node (z,y). Prove that for each (x,y) inside
the ring Uy (z,y) = Inr(z,y) + O (=7) -

5.6. Using arctanz = x + O(2?) prove that for each 0 < y < R we have R%y? =
y+1

Y 1
arctan “7= — arctan 4 + O (ﬁ) .

5.7. Prove that 25;01 R%yg =2+0(3)-

5.8. Assume that in Problem 5.5 ro > 3r1/2 (so that our ring contains a square). Prove

that the current incoming through the inner boundary is 27 + O (\%) . Apply this to



get the following formula for the conductance of the ring:

1 1
R(rin,ron) = Dy ln:—i + 0 (%> : (1)

5.9. Prove formula (1) without additional assumption ry > 3r;/2.

5.10. Using (1) make estimations in Problems 5.2, 5.3 more precise and prove more
precise formulas in Problems 5.5, 5.8:

Inn r9 Inn

U (z,1) = Inr(z, y) + O (—)  R(rn,ren) — 2i m2 40 (—> |

n? T n

6. Challenge*

6.1. Liouville’s theorem. Suppose that a function f(m,n) on Z? satisfies the inequality
0 < f(m,n) <1 and the equality

flomn) = 3 (Flm = 1n) & fon+Ln) + fGm,n = 1)+ fmn+1)  (2)

for each m,n € Z. Prove that the function f(m,n) is constant.

6.2. Existence of a voltage. Prove that there exists a function f(m,n) on Z?* such that
f(0,0) =0, f(0,1) = 1, for each (m,n) # (0,0),(0,1) equality (2) holds, and f(m,n)
tends to 1/2 as r(m,n) := vVm? + n? tends to infinity.

6.3. Green’s function. Let f(m,n) be the resistance of the 2-dimensional lattice between
the origin and the point (m,n).

(A) Prove that for each (m,n) # (0,0) equality (2) holds.

(B) Prove that f(m,n) = g(r(m,n)) + O(1) for some function g(x).

(C) Prove that the resistance between the center and the boundary of a disc of radius r

cut from the 2-dimensional lattice equals to 5= In7 + O(1).
(D) Prove that f(m,n) = 5-Inr(m,n) + O(1).

6.4. Find with 2 digit precision the probability that a random walk on a 3-dimensional
lattice eventually returns to the initial point.

6.5. Robot walks on the vertices of the 3-dimensional lattice, each time moving from a
vertex to one of the neighbors. One of the vertices contains a treasure, which is found
when the robot reaches the vertex. Is there a program for a robot using a finite memory
and a random number generator such that the robot finds the treasure with probability 17



7. Hints to the solutions

1.1 (A) To check the correctness of the program we use the following criterion: the difference between
the percentage and the probability should be approximately inverse proportional to the square root of the
number of times the program is run.

(B) See the answer in the table. The proof is straightforward.

Table 2: The probabilities Pr(x) and P(x)

x 0 1 2 3 4 )

T

1 0.00 | 0.00 | 0.00 | 0.00 | 0.50 | 1.00
2 0.00 | 0.00 | 0.00 | 0.25 | 0.50 | 1.00
3

4

0.00 | 0.00 | 0.13 | 0.25 | 0.63 | 1.00
0.00 | 0.06 | 0.13 | 0.38 | 0.63 | 1.00
P(z) | 0.00 | 0.20 | 0.40 | 0.60 | 0.80 | 1.00

(C) Answer: P(x) = x/5; see the last row of the above table.

Proof. Consider a random walk on the integers 0, 1,2,...,n. Let P(x) be the probability, starting at x, of
reaching N before 0. We regard P(z) as a function defined on the points x = 0,1,2,...,n. The function
P(z) has the following properties:

1. P(0) =0 and P(n) = 1.
2. P(x) =4P(x— 1)+ 3P(z +1) for each z =1,2,...,n — 1.

2

Property 1 follows from our convention that 0 and n are traps; if the walker reaches one of these positions,
he stops there; in the game interpretation, the game ends when one player has all of the pennies. Property
2 states that, for an interior point, the probability P(z) of reaching home from z is the average of the
probabilities P(xz — 1) and P(x + 1) of reaching home from the points that the walker may go to from .
We can derive property 2 from the following basic fact about probability:

Basic Fact. Let E be any event, and F' and G be events such that one and only one of the events F' or
G will occur. Then

P(E)= P(F)- P(E given F) + P(G) - P(E given G).

In this case, let E be the event “the walker ends at the bar”, F' the event “the first step is to the
left”, and G the event “the first step is to the right”. Then, if the walker starts at =, P(E) = P(z),
P(F)=P(G)=1/2, P(FE given F') = P(z — 1), P(E given G) = P(xz + 1), and property 2 follows.

Properties 1-2 imply together that P(x) is the arithmetic progression P(x) = x/n.

1.2 Answer: P(z) = x/5; in fact this problem is equivalent to 1.1(C).

1.3 Answer: P(x) = EZ?Z;;:;.
Hint: Argue as in the solution of Problem 1.1(C). Show that properties 1-2 in the solution should be

replaced by

1. P(0) =0 and P(n) = 1.
2. P(x) =qP(x —1)+pP(x+1) foreach z =1,2,...,n — 1.

Show that you can choose A and B so that the function f(x) = A(q/p)® + B satisfies these modified
properties.

1.4 Answer: ~ 99.995%. The exact answer is 1 — %;

1.5 Answer: v(x) = x/5. Hint. Axioms 1-2 imply that v(z) is linear for this network.

1.6 (A) Let M be the largest value of v(z). Then if v(x) = M for x ¢ P U N, the same must be true for
v(x — 1) and v(x + 1) since v(x) is the average of these two values. If 2 — 1 is still an interior point, the
same argument implies that f(xz —2) = M; continuing in this way, we eventually conclude that f(0) = M.
That same argument works for the minimum value m.

the problem is equivalent to 1.3.
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(B) Let h(z) = v(x) — u(x). Then if z is any interior point,

h(zx—1)+h(z+1) v@—-1)+v@+1) wue—1)+u(z+1)
2 h 2 - 2

and h(x) also satisfies axiom 2. But h(xz) = 0 for x in P U N, and hence, by the Maximum Principle, the
maximum and minimum values of i are 0. Thus h(z) = 0 for all x, and v(x) = u(z) for all .

(C) Answer: v(z) =x/n, C =1/n; C — 0 and v(z) — 0 for each fixed z as n — 0.

Hint: Tt is easy to check that the function f(z) := x/n satisfies axioms 1-2. By uniqueness principle it
follows that v(z) = x/n.

1.7 Theorem. A random walk, starting at the origin of the 1-dimensional lattice, eventually returns to
the origin with probability 1.

Proof. Let P be the probability that a random walk, starting at the origin, eventually returns to the origin.
Let P, be the probability that a random walk, starting at the origin, returns to the origin before reaching
the points n and —n. Assume that all these probabilities exist. Clearly, then P, < P <1 for each n.

Let us prove that P, = 1 — 1/n. After first “move” our walker comes to either point 1 or —1 with
probability 1/2. Given that he comes to 1 by Problem 1.1(C) the probability that he returns to the origin
before reaching the point n equals to 1 —1/n. Analogously, given that he comes to —1 the probability that
he returns to the origin before reaching the point —n equals to 1 — 1 / n. Applying Basic Fact from the
solution of Problem 1.1(C) one gets P, = 3 (1 — 1) +1(1—-1) =1 — 1 (Alternatively, one can observe
that P, = 1 — C, where C' = 1/n is the conductance of the network from Problem 1.6.)

So1—1/n < P <1 for each n, hence P must be 1. [

2.1 Answer: see Figure 9 to the left.

1 1

1 1 . .
1 .823 787 1 ' 0

1 .876 .506 323 0
1 0 0 i 0 0

Figure 9: The probabilities P(x) or, equivalently, the voltages v(x); see Problems 2.1 and 2.2.

Hint. The town is shown again in Figure 9 to the right. The probabilities P(x) are denoted by a, b, ¢, d,
and e. Similarly to 1-dimensional case, the function P(x) satisfies axioms 1-2 from the definition of an
electrical network. Thus we get a system os linear equations:

=(b+d+2)/4
=(a+c+2)/4;
= (d+3)/4;
=(a+c+e)/4
= (b+d)/4.

Solving the system, we get the answer.

Remark. Finding the exact solution to a “Dirichlet problem” in two dimensions is not always a simple
matter, so we will consider two methods for generating approximate solutions.

First let us present a method using random walks. This method is known as a Monte Carlo method,
since random walks are random, and gambling involves randomness, and there is a famous gambling casino
in Monte Carlo. We start many random walks at  and count the percentage of walks reaching the points
marked by E. By the law of averages (the law of large numbers in probability theory), the estimate that
we obtain this way will approach the true expected probability P(z). This method is a colorful way to
solve the problem, but quite inefficient.

Now let us present the more efficient method of relaxations. Recall that we are looking for a function
that has specified boundary values, for which the value at any interior point is the average of the values at
its neighbors. Begin with any function having the specified boundary values, pick an interior point, and

11



see what is happening there. In general, the value of the function at the point we are looking at will not
be equal to the average of the values at its neighbors. So adjust the value of the function to be equal to
the average of the values at its neighbors. Now run through the rest of the interior points, repeating this
process. When you have adjusted the values at all of the interior points, the function that results will not
satisfy axiom 2, because most of the time after adjusting the value at a point to be the average value at
its neighbors, we afterwards came along and adjusted the values at one or more of those neighbors, thus
destroying the harmony. However, the function that results after running through all the interior points
is more nearly to satisfy axiom 2 than the function we started with; if we keep repeating this averaging
process, running through all of the interior points again and again, the function will approximate more
and more closely the solution to our problem.

2.2 Answer: see Figure 9 to the left; this problem is equivalent to 2.1.
2.3 Answer: (A) 2/5; (B) 1/2; (C) 2/7; (D) 2/5.
Hint. Reduce to Problem 2.5 using the following simple result:

Physical interpretation of probability. The probability that a random walk in a graph G, starting at
a vertex a, reaches a vertex h before returning to the initial point a, equals to

P =C/dega,

where C' is the conductance of the graph G (of unit resistors) between a and h, and deg a is the number
of edges containing the vertex a.

2.4 (C) Hint. The function v(x) is well-defined on the vertices of the network obtained by the shortening.
Check that v(x) still satisfies axioms 1-2.
2.5 Answer: (1A) 6/5; (1B) 2; (1C) 6/7; (1D) 2.
(2A) 12/7; (2B) 12/5; (2C) 30/19; (2D) 30/11.

For a short solution refer to section 3.
(2A) Hint. We put a unit battery between a and b; see Figure 4 to the right. Then, by symmetry, the
voltages at ¢ and d will be the same as will those at e and f. Thus our circuit is equivalent to the circuit
shown in Figure 10 to the left.

Using the laws for the effective resistance of resistors in series and parallel, this network can be succes-
sively reduced to a single resistor of resistance 7/12 ohms, as shown in Figure 10 to the right. Thus the
effective resistance is 7/12.

2.6 Answer: 1/7. Argue analogously to the solution of Problem 2.3.

2.7 (A). For a short solution refer to section 3.
(B) The authors do not know elementary solution of the problem. A nice solution based on discrete
Fourier transformation can be found in the book [7].

2.8 Refer to section 3.

2.9 (B) Answer: C — 0 as n — 0.

Hint. We apply Monotonicity Law as follows: short together nodes on squares about the origin, as shown
in Figure 11 in the top. The network we obtain is equivalent to the network shown in Figure 11 in the
middle. Now as n 1-ohm resistors in parallel are equivalent to a single resistor of resistance 1/n ohms, the
modified network is equivalent to the network shown in Figure 11 in the bottom. The conductance of this

network is ]

R
D ket T

This number tends to zero as n tends to infinity. As the conductance of the old network can only be

smaller, we conclude that it too must tend to zero.

2.10 Hint. Let P be the probability that a random walk on the 2-dimensional lattice, starting at the
origin, eventually returns to the origin. Let P, be the probability that a random walk, starting at the
origin, returns to the origin before reaching the boundary points of the 2n x 2n square centered at the
origin. Assume that all these probabilities exist. Clearly, then P, < P < 1 for each n. By the physical
interpretation of the probability one gets P,, = 1 — C'/4, where C'is the effective conductance between the

12
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Figure 10: Simplification of a network; see the solution of Problem 2.5.
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Figure 11: Shortening a square network and an equivalent network; see the solution of Problem 2.9.
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center and the boundary of the 2n x 2n square. By Problem 2.9(B) C' tends to zero as n tends to infinity.
Thus P, — 1 as n — oo, hence P must be 1. [J

3.1-3.3 E. g., see [6].

3.4 (A) First consider the following network: a current flowing through the vertex A; equals to “=* and
to —% for all other vertices. Since graph network is regular the current flowing through the edge A; A,

equals to - (1 — %) Now consider a similar network: a current flowing through the vertex As equals

k1
to —21 and to % for all other vertices. Sum two networks and obtain by superposition principle the

network with unit current source connected to A; and A,. The current flowing through the edge A; A,

in obtained network equals to (L + é) (1 — %) Therefore, the resistance between A; and As equals to

k1
(% +a) =)

If the graph is infinite substitute % by zero. An explanation of this answer bases on limiting process.

The formula of the resistance between two adjacent vertices of the regular graph is due to A.B.Hodulev.
The definition of a regular graph and this formula are taken from [4].

(B) First we introduce some physical explanations. Apply a bus of zero resistance to the boundary
of rectangle [-N, N + 1] x [N, N]. Since the potential tends to zero at infinity, applying a bus changes
the resistance a little bit. (Next we give our explanations with error which tends to zero as N grows to
infinity). If a current source of unit current is connected with point (0,0) and the bus then the current
flowing through the edges outgoing from (0,0) equals to %. If current source of unit current is connected
to the bus and the point (1,0) then the current flowing through the edges ingoing to (1,0) equals to 1.
Therefore if both current sources are connected then the current flowing through the edge (0,0) — (1,0)

equals to % So a potential difference between these points equals to % also. But the current flowing
through source connecting these points equals to 1. Therefore the resistance between these points equals
to 1.

2

Now we make our arguments more strict. Again suppose that a current source is connected to the point
(0,0) and a bus of zero resistance applied to the boundary of rectangle [-N, N + 1] x [N, N]. According
to Problem 5.2 the resistance of such graph is at most N'/2. Hence if the bus is joined with the ground,
the potential at the point (0,0) is at most N2:

V=IR=R<NY2 (3)

We will show that the potential at the points which are close to the bus differs from zero a little. Denote
the maximal potential at the points of the boundary of the rectangle [—j,j + 1] x [—7,j] by w;. From
harmonicity of potential distribution it follows that w;_y > 2u; —uj1q (1 < j < N—1). Soif uy_; = ¢ (by
assumption u, = 0) then for all j such that 0 < j < N an inequality u; > (N — j)e holds. In particular,
uy = V > Ne. Using inequality (3), we obtain that ¢ < N~1/2,

This time apply a bus to the boundary of the square [—N, N] x [-N, N|. The obtained potential
distribution is symmetric. Due to the maximum principle it differs from the initial one at most by N~/2.
Therefore, before the moving of the right side of the bus four currents outcoming from the point (0,0)

differed from i at most by N -3 Similarly, if the source is connected to a bus and the point (1,0) then

ingoing currents to the point (1,0) differ from }1 at most by N™z.

Unite these two situations. So by superposition principle we obtain that in the network obtained from
the rectangle by short-circuiting its boundary and connecting the unit current source to the points (0, 0)
and (1,0) the current flowing through the edge (0,0)—(1,0) equals to 1/24+O(N~'/2). Hence the potential
difference and, therefore, resistance equal to 1/2 + O(N~/2).

Consider the initial network. To finish the proof apply the axiom 3. Assume that potentials at the
points (0,0) and (1,0) equal to i and —i respectively. Denote the current flowing through the source by
I. Choose the rectangle [N, N + 1] x [N, N] such that a potential on its boundary is smaller than some
¢ > 0. By maximum principle if one substitute all potentials at the boundary of the rectangle by zero
(fixing the current through the battery) then potentials at all points will change at most by €. In particular
the potential difference between (0,0) and (1,0) will equal to 1/2 + O(e). But resistance between them
equals to 1/2 + O(N~Y2). Therefore I = 14 O(e) + O(N~Y/2). As ¢ tends to zero, N grows to infinity
and we obtain that [ = 1. Therefore the resistance of the lattice between adjacent vertices equals to %
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Figure 12: Calculation of the resistance of a tree; see solution of Problem 4.2.

3.5 Let B; and By be the vertices of the graph which are opposite to A; and A, respectively. By
Problem 3.4(A) the current flowing through the edge A; A, equals to [ = <k—11 + é) (1 — %) if the source

of given network is of unit current. Denote the current flowing through the edge By B; by x. Additionally
connect the unit current source to vertices B; and By such that the current flows in the vertex By. Then
the current flowing through edges A; A, and B;B; equals to I 4+ x. But if one connect two unit current
sources to Ay, By and By, Ay (current flows in A; and in By) then the current distribution will be the same.
By Problem 3.4 the first source gives a current k—ll through A; As and the second — kig Therefore

Tro=(t+ ) (1-t) e byl
v kl k‘g n I—kl ]{?27

1+1 1 x 1
r=\-— — ] — - = .
kl k‘g 7’L7 I n—1

So for icosahedron the answer is ﬁ, for a dodecahedron — %, for a rhombdodecahedron — 1—13, for a
cube — %

: : ) n+1
3.6 Hint. Sums D, and F,, fit the same recurrence relation. For instance, D, = 1 + D, 1. Also

Dy = Fy = 1. Therefore D,, = F,,. So if n > 1 then

ok on A 2" 1
—=—F_1=—Dy1=— T
=k n = Cy

To finish the proof bound the power of the number 2 in the factorization of the common denominator of
the fractions from the obtained sum using Legendre formula for the power of the prime number in the
factorization of a factorial.

The resistance R,, between two opposite vertices of an n-dimensional cube (with unit resistance on each
its edge) is related with the sums D,, and F,, by the relations

Dy =F,=(n+1)Rns

(see details in the paper [5]).

4.1 Hint. Prove by induction that the resistance of a binary tree of depth n constructed of unit resistors
1
equals to 1 — 5.

4.2 Hint. Voltages at points situated at the same distance from the tree root are equal in virtue of
symmetry. Shortening such points in a binary tree we receive a series from Figure 12. It’s resistance
equals to % -n = 4. Similarly for a trinary tree we receive R = % + % +--+ 2;;1. Hence R=1— g—:

4.3 Hint. 1t is not difficult to cut a tree of depth 3. Let us show that it is impossible to cut a tree of depth
2010. Suppose we cut it, thus all it’s vertices are situated at the distance not more than 2010 from the
root; hence the tree is contained in a cube with the side 2 - 2010 + 1. So it has no more than 40213 < 236
vertices. On the other hand the number of it’s vertices equals to 22°'! — 1. The contradiction completes

the proof. The problem of cutting of a modified tree couldn’t be solved easily.

4.4 Hint. A binary tree could not be cut; the arguments are similar to the solution 4.3, taking in account
that more than two vertices could not be glued. A modified binary tree could be cut from the plane(see
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Figure 13: Cutting of a binary tree with intersections from the plain; see solution 4.4.

.IV-

Figure 14: Cutting of a trinary tree with intersections from the space; see solution 4.4.
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Figure 13), and similarly a trinary tree could be cut from the space (see Figure 14). Proofs could be done
using induction by the tree depth.

4.5 Hint. For any n = 2° — 1 let us consider the set of vertices (,y, 2), where |z| +|y| +|z| < n. Let R; be
the resistance between the origin and the border of the figure. As we already know from Problem 4.4, it is
possible to cut from such a part of the lattice a modified trinary tree of depth ¢ with edges intersections at
the same distance from the root. As we know from Problem 4.2, the resistances of modified trinary trees
not more than 1. So the resistances of modified trinary trees also not more than 1. From the monotonicity
law we receive that R; < 1. Hence switching on a battery of 1 Volt the current will be not more than
1. Hence the voltages at the vertices joint to the origin will be not more than 1 — % = %. They equal to
the probability or returning to the origin before reaching of the border. Taking the limit we obtain the
statement we need.

5.1 Consider the points A(2,3), B(3,3), C(1,2), D(2,2), E(3,2), F(4,2), G(2,1), H(3,1). First let the
power supply deliver a unit current to the origin, the second clip being connected to the perimeter of the
square [—R, R]* (we set the zero resistance to this perimeter). From the symmetry reasons we get the
equalities i(C'D) = i(GD) = i(DA) = i(DE) = I for some number [.

Now, consider the second situation, when the same current is delivered to the perimeter of the same
square (with zero resistance as well), the second clip being connected to the point (1,0). Then we get
i(DE) ~ i(HE) = i(EB) =~ i(EF) ~ —I, where the equalties are accurate within some small ¢ which
tends to zero as R — oo (similarly to Problem 3.4, it follows from axiom 3). Combining both situations,
we get the following. Suppose that the power supply is connected to (0,0) and (1,0), while the perimeter
of square [—R, R]? is replaced by a zero resistance loop; then the current flowing through edge DFE is less
than . Taking the limit as R — oo (and applying axiom 3 again), we obtain the desired statement.

Note that we used without proof a difficult fact on the existence and uniqueness.

5.2 Consider an arbitrary tree connecting the given point with the perimeter of the square.
5.3 Apply the maximum principle.
5.4 Write the Laplace operator in the form

Then for the function f(z,y) = Inr(z,y) we get

flx =1Ly + fle+1,y) = 2f(z,y) = %1“ A Lizf;”;"; )

1 27 + 1 27 +1 1 1\? 422

Similarly,

Hence

1 1 1622y 1 1 1

5.5 For a point (z,y) nearby the boundary of the ring, it makes sense to change the definition of the
Laplace operator, in order to agree with the Kirchhoff rules. For instance, if the points (x — a,y) and
(x,y — b) for some a, b € [0,1) lie on the boundary, then we set

f(x—a,y)—f(x,y) +f($,y—b)—f($,y)
a b

Af(x,y) = +flx+1y)+ flz,y +1) = 2f(z,y).
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Thus, considering the function the function f(z,y) = Inr(x,y) in such a point we have

fle—ay) - flz.y) +f(x+1,y)—f(:c,y):%1n <1+_2L2+a2> —|—%ln (1+2x—21-1> :O<i).

a r r r2

Analogously,
f(xay — b) — f(xay)
b

So, we get Af(z,y) = O (r~2); moreover, this estimate remains valid if only one of the points neighboring
to (z,y) lies outside the ring.

Consider now the function f(z,y) = U,(z,y) —Inr(z,y). It vanishes on the boundary of the ring, while
in each interior point it satisfies the equation Af(z,y) = ¢(z,y), where ¢(z,y) = O(n™?) at the points
nearby the boundary, and ¢(z,y) = O(n~*) at all other points of the ring.

Interpret the values ¢(x,y) as the currents delivered to the corresponding points of the ring. The
potentials at the points nearby the boundary can be estimated by the maximum principle (c¢f. Problem 3.1).
Actually, the potential on the boundary is zero, the current between our point (x,y) and the closest point
of the boundary is O(n~?), therefore the potential at (z,y) is O(n~?) as well. By the maximum principle,
all such currents induce the potentials not exceeding O(n~?) in all points of our region.

Now, we are left to estimate the potentials generated by the currents at other points of the ring (that
are those far from the boundary). The number of those points is O(n?), and the current in each of
them induces the potentials not exceeding O(n~"/2) (according to Problem 5.3). Thus, the total potential
generated by our points is O(n~%/2). Hence, we finally get f(z,y) = O(n=%/?).

Ff@y+1) - fay) =0 (l)

r2

5.6 We involve the relation
.1: —
arctan r — arctan y = arctan Y ,
1+ a2y

which holds when |zy| < 1. So, we get
1/R

= arctan =
1+ y(y +1)/R?

Y
R R
—arctan( < )) R2+y+ (ﬁ)

5.7 Sum up the formula from problem 5.6.

Y
arctan — arctan

5.8 To find the resistance of the ring, we find the current flowing through it when the inner and the outer
loops of the ring are under the voltages Innr; and Innry respectively. Let us find the current through
the perimeter of a square [-R — 1/2, R + 1/2]?, where R = [rin] + 1. We will calcuat it approximately,
changing the potentials at all the points by the corresponding values of the function Inr(z,y). Thus, we
sum up O(n) of currents, each with the error of O(n=%/2). Hence the total error is O(n~'/2).

By the symmetry of the square, the current flowing trough its perimeter can be found as

R
= SZ (Inr(R+1,y) —Inr(R,y)) + O (#) :

R 1
R? + 2+O<ﬁ)’

we can apply the formula from problem 5.7 obtaining the desired relation I = 27 + O(n=/2).

Since
Inr(R+1,y) —Inr(R,y) =

5.9 Similarly to the previous problem, to calculate the resistance we will find the current flowing through
some closed broken line. Again, for the approximate calculation we replace the potentials by the values
of the function Inr(z,y). Now let us replace our broken line by the square circumscribed around it; there
will be O(n?) new current sources inside this contour, in each of them there appears an (incoming or
outcoming) current of order O(n~*). Therefore, the desired value of the total current differs from the
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current I = 27 + O(n~'/?) through the perimeter of the square (which was found above) by at most
O(n™2).

5.10 Let us prove that in Problem 5.2 the resistance between any vertex of the square and its boundary
equals to O(Inn). This allows us to multiply residual terms by 22 in solutions of all next problems.

Vn
Instead of the square consider a triangle cut from the square lattice by lines x =0, y =0, v + y = n,

and bound its resistance between its origin and its hypotenuse. Assume that a potential at integer points
of the segment z +y = k, z,y > 0 equals to V}, = 25221% (0 < k < n). In particular the potential at
the origin equals zero. Also assume that the current flowing into each vertex at the line x + y = k equals

to %, i.e. through each level flows unit current. Increase resistances inside the triangle to fit Ohm law.

(Resistances connecting points of the form (0, k), (k,0) with points (0, k + 12, (k +1,0) stay unit.) To

fit Kirchhoff law currents flowing from the point (7, k — j) should equal to k(k_+]1) and k(jk—:—ll) and flow to

the points (j,k —j +1) and (j + 1,k — j) respectively. Since potential difference equals to .= then unit

resistances must be substituted by % and ]% respectively. The resistance of the obtained network equals
to V,, <Inn. So the resistance of the initial network is smaller than Inn also.
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Abstract

This paper is on tilings of polygons by rectangles. A celebrated physical interpretation of
such tilings due to R.L. Brooks, C.A.B. Smith, A.H. Stone and W.T. Tutte uses direct-
current circuits. The new approach of the paper is an application of alternating-current
circuits. The following results are obtained:

e a necessary condition for a rectangle to be tilable by rectangles of given shapes;

e a criterion for a rectangle to be tilable by rectangles similar to it but not all homo-
thetic to it;

e a criterion for a generic polygon to be tilable by squares.

These results generalize the ones of C. Freiling, R. Kenyon, M. Laczkovich, D. Rinne and
G. Szekeres.

Keywords:
Tiling, rectangle, orthogonal polygon, alternating current
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1. Introduction

A rectangle a x b, where a and b are integers, can be tiled by a - b squares. Thus a
rectangle with rational side ratio can be tiled by squares. In 1903 M. Dehn proved the
converse assertion:

Theorem 1.1. [10] A rectangle can be tiled by squares (not necessarily equal) if and only
iof the ratio of two orthogonal sides of the rectangle is rational.

Although this assertion is expectable, the proof is complicated. After original proof,
many improvements have been made [2, 3, 18, 25, 32].

The most interesting for us is the approach of R.L. Brooks, C.A.B. Smith, A.H. Stone
and W.T. Tutte [3]. To a tiling of a rectangle they assign a direct-current circuit, and then
deduce Theorem 1.1 from certain properties of the circuit. They also apply the technique
to find a tiling of a square by squares of distinct sizes, see the figure in the front cover of
the journal [13].
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We study finite tilings by arbitrary nondegenerate rectangles. The sides of rectangles
are assumed to be parallel to coordinate axes, i.e., either vertical or horizontal. By the
ratio of a rectangle we mean the length of the horizontal side divided by the length of the
vertical one. We study the following problem posed in [16, p. 218] and [19, p. 3]:

Problem 1.2. Which rectangles can be tiled by rectangles of given ratios ¢y, ..., ¢,?

A related problem of signed tilings is solved in [19].

For n = 1 and ¢; = 1 the question of Problem 1.2 is answered by Theorem 1.1. A
necessary condition for arbitrary n was actually proved by M. Dehn: if a rectangle of ratio
¢ can be tiled by rectangles of ratios ¢y, ..., ¢, then ¢ is (the value of) a rational function
in ¢, ..., ¢, with rational coefficients.

This function depends only on ”combinatorial structure” of the tiling. For instance, if
a rectangle of ratio ¢ is dissected into 2 rectangles of ratios ¢; and ¢, by a vertical (respec-
tively, horizontal) cut then c(cq, c2) = ¢1+c2 (vespectively, c(ci, ¢2) = ;42 ). The problem
reduces to description of possible functions ¢(cy, . .., ¢,). By the mentioned physical inter-
pretation this is equivalent to a natural problem: describe possible formulas c(c1, ..., ¢,)
expressing the conductance of a planar direct-current circuit through the conductances cq,
..., ¢p of individual resistors.

The main idea of the paper is to apply alternating-current circuits (equivalently, cir-

cuits with complex-valued conductances) to the above problems. Our first result is

Theorem 1.3. Suppose that a rectangle of ratio ¢ can be tiled by rectangles of ratios cq,
ooy Cn. Then ¢ = Clcy, ..., ) for some rational function C(z1, ..., z,) such that

(1) C(z1,-..,2n) has rational coefficients, i.e., C(z1,...,2,) € Q(z1,...,2,);
(2) C(z1,...,2,) is degree 1 homogeneous, i.e., C(tzy,...,tz,) =tC(21,...,2);
(3) if Rezy,...,Rez, >0 then ReC(z1,...,2,) > 0.

Problem 1.4. Is the converse theorem true for n > 37

Parts (1) and (2) of Theorem 1.3 were actually proved by Dehn, see also [17, Lemma 4].
Case n = 1 (respectively, n = 2) of both Theorem 1.3 and its converse is equivalent to
Theorem 1.1 (respectively, to [16, Theorem 5], see also Theorem 3.1 below). For n > 3
the converse theorem cannot be proved by our method, see Example 3.2.

Theorem 1.3 has a clear physical meaning, see §2.4. But this theorem (even together
with its converse) is not algorithmic, i.e., it does not give an algorithm to decide if there
exists a required tiling. Thus it is interesting to get less general but algorithmic results.

A result of this kind was obtained independently by C. Freiling, D. Rinne in 1994 and
M. Laczkovich, G. Szekeres in 1995. It uses the following notion. An algebraic conjugate
of an algebraic number ¢ is a complex root of the minimal integral polynomial of c.

Theorem 1.5. [17, 22] For ¢ > 0 the following 3 conditions are equivalent:

(1) a square can be tiled by rectangles of ratios ¢ and 1/c¢;
(2) the number c is algebraic and all its algebraic conjugates have positive real parts;
(3) for certain positive rational numbers dy, ..., d,, we have

1
d10+ =1.

1
d2C+"'+ac




We present a new short self-contained proof of this result. This new proof is an example
of a natural application of alternating-current circuits. We also get a new algorithmic
result:

Theorem 1.6. For a number ¢ > 0 the following 3 conditions are equivalent:

(1) a rectangle of ratio ¢ can be tiled by rectangles of ratios ¢ and 1/c (in such a way that

there is at least one rectangle of ratio 1/c in the tiling);

(2) the number ¢ is algebraic and all its algebraic conjugates distinct from c?

real numbers.

are negative

(3) for certain positive rational numbers dy, ..., d,, we have
1
=c.
dlc + 1
doc+ -+ 4+ —
2¢ dC

More algorithmic results can be found in [16, p. 224]. For similar results on tiling by
triangles see [29]. For higher dimensional generalizations see [25].

We also consider tilings of arbitrary (not necessarily convex) polygons by rectangles.
This generalization reveals new connections between tilings and electrical circuits.

We apply direct-current circuits with several terminals to get a criterion for a generic
polygon to be tilable by squares (Theorem 4.2 below, again not algorithmic). This result
generalizes Theorem 1.1 and [21, Theorems 9 and 12]. An easier related problem of signed
tiling by squares is solved in [15, 20].

We apply alternating-current circuits with several terminals to get a short proof of
a generalization of Theorem 1.5 to polygons with rational vertices [28] (Theorem 4.3
below). We also give basic results on electrical impedance tomography for alternating-
current circuits, cf. [9, 6, 7, 23].

There is a close relationship among electrical circuits, discrete harmonic functions
and random walks on graphs [11, 24, 1]. Our results have equivalent statements in the
language of each of the theories, e.g., see Corollary 4.9 below.

The paper splits naturally into two formally independent parts: §§1-3 and §§4—6.

The first part contains the proof of Theorems 1.3, 1.5 and 1.6. In §2 the basics of
electrical circuits and their connection with tilings are recalled. In §3 the results of §1 are
proved.

The second part concerns some variations. In §4 the results on tilings of polygons,
electrical impedance tomography and random walks are stated. In §5 the results of §2 are
generalized to electrical circuits with several terminals. In §6 the results of §4 are proved.

2. Main ideas

2.1. Electrical circuits

Our approach is based on electrical circuits theory [26]. However, the reader is not
assumed to be familiar with physics. In this section we recall all the required physical
concepts (although the presentation is formal and physical meaning is explained very
briefly). This section does not contain new results. For short proofs see §5.

An electrical network is a connected graph with a nonnegative real number (conduc-
tance) assigned to each edge, and two marked (boundary) vertices.



For simplicity assume that the graph does not have neither multiple edges nor loops.
Although all the concepts below can be adopted easily for the graphs with multiple edges.
We say that electrical network is planar if the graph is drawn in the unit disc in such
a way that the boundary vertices are in the boundary of the disc and the edges do not
intersect each other.

Fix an enumeration of the vertices 1, 2, ..., n of the graph such that 1 and 2 are the
boundary ones. It is convenient to denote the number of boundary vertices by b = 2. Let
m the number of edges. Denote by ¢ the conductance of the edge between the vertices
k and [. Set ¢ = 0 if there is no edge between k and [ in the graph.

An electrical circuit is an electrical network along with two real numbers U; and U,
(incoming voltages) assigned to the boundary vertices.

Each electrical circuit gives rise to certain numbers Uy, where 1 < k < n (voltages at
the vertices), and Iy, where 1 < k,1 < n (currents through the edges). These numbers
are defined by the following axioms:

(C) The Ohm law. For each pair of vertices k,l we have I, = ¢ (U, — Up).
(I) The Kirchhoff current law. For each vertex k > b we have ;' | Ij; = 0.

Informal meaning of law (I) is that electrical charge is not aggregated at the nonboundary
vertices. In other words, these laws assert that Uy is a discrete harmonic function. The
numbers Uy and [y, are well-defined by these axioms by the following classical result.

Theorem 2.1. [31] For any electrical circuit the system of linear equations (C),(I) in
variables Uy, b < k <n, and I, 1 < k,l <n, has a unique solution.

Denote by I} = >_;_, I1;, the current flowing inside the circuit through vertex 1. The
conductance of an electrical circuit with U; # Us is the number C' = [, /(U; —U,). Clearly,
the conductance does not depend on U; and U,. Thus the conductance of an electrical
network is well-defined. Basic examples of networks and their conductances are shown in
figure 1.

L a s b 2 e —
C(a,b) = & C(a,b)=a+b

Figure 1: Series and parallel electrical networks

2.2. Tilings and networks

There is a close relationship between electrical networks and tilings. We say that an
edge kl of a circuit is essential, if I; # 0. Clearly, the property of an edge being essential
does not depend on U; and Us if Uy # Us.

Lemma 2.2. [3, 4, Theorem 1.4.1] The following two conditions are equivalent:

(1) a rectangle of ratio ¢ can be tiled by m rectangles of ratios cy, ..., Cm;
(2) there is a planar electrical network having conductance ¢ and consisting of m essential
edges of conductances ¢y, ..., Cp.

Let us sketch the proof of assertion (1) = (2). Given a tiling as in (1) construct an
electrical network as follows (see figure 2). Take a point in each maximal horizontal cut
of the tiling and in each horizontal side of the tiled rectangle. These points are vertices
of the network. For each rectangle in the tiling draw an edge between the vertices in the
cuts containing the horizontal sides of the rectangle. Set the conductance of the edge to
be the ratio of the rectangle. The obtained network has conductance c, see §5.2 for the
proof.



?\/

Figure 2: Correspondence between tilings and electrical networks

2.3. Formulas for conductance

Let us summarize some useful properties of formulas for conductance.

Lemma 2.3. Suppose that an electrical network consists of m edges of conductances

Cly .-y Cm. Then the conductance of the network C(cq, . . ., ¢y has the following properties:
(1) [B] Cler, - em) € Qlers s m);
(2) [3] (01, ooy Cm) s degree 1 homogeneous;
(3) [38] &Cler,...,cm) = (gf )2, where k and | are the endpoints of the edge j;
(4) [27] zf Cly. . Cm > 0 then 8—CjC'(cl, ..oy Cm) > 0; if the edge j is essential then the
latter mequalzty 18 strict;
[5

(5)

Remark 2.4. (A. Akopyan, private communication) Property (4) follows from (1), (2)
and (5). Property (5) does not follow from (1), (2) and (4), e.g., the function C(cy,¢2) =

(c1 + CQ)CCQ%_FLQCEQ satisfies (1), (2), (4) but not (5).
1 2

| if Recy,...,Rec,, >0 then ReC(cy,...,cp) > 0.

Property (5) concerns the extension of the function C(cy, . .., ¢,,) to the complex plane.
This fundamental property does not seem to be payed attention for direct-current circuits.
Certainly it is well-known for alternating-current circuits. Short proof of the lemma is
given in §5.1.

2.4. Alternating-current circuits

Let us explain informal physical meaning of fundamental Lemma 2.3(5) and condi-
tion (3) of Theorem 1.3. This is not used elsewhere in the paper and the reader may
easily skip this subsection.

Informally, an alternating-current circuit is a collection of conductors, condensers,
inductors and a single alternating-voltage source connected with each other.

Formally, an alternating-current circuit is a graph with the following structure:

e two marked (boundary) vertices;
e two functions (voltages) U (t) = U coswt and Us(t) = 0 assigned to them;
e division the edges into three types (conductors, condensers and inductors);

e a positive number &, assigned to each edge (called conductance, capacitance or
inductance, depending on the type of the edge).

>



The woltages Uy (t) and the currents Iy (t) are defined by the following axioms:
(C) The generalized Ohm law. For each edge kl we have

e (U(t) — Uy(t)) if k[ is a conductor;
Tu(t) = 6kl%(Uk(t) —U,(t)) if kl is a condenser;
Crl ;/QW(Uk(t) — Uy(t))dt if kl is an inductor.

(I) The Kirchhoff current law. For each vertex k # 1,2 we have .1, I;(t) = 0.

The voltages and the currents can be found using the following well-known algorithm.
Denote by i = v/—1. Put U; = U, Uy =0 and

Cri, if kl is a conductor;
cr = { iwcy, if kl is a condenser;

Lé,,  if kl is an inductor.
iw )

Define the complex numbers Uy, 3 < k < n, and I, 1 < k,l < n, by direct-current laws
(C), (I). Then Ui(t) = Re(Upe™"), Iiy(t) = Re(Iye™"). In this sense alternating-current
circuits are ”equivalent” to direct-current circuits with complex-valued conductances (also
called admittances).

Notice that always Recy > 0. Physically this means nonnegative energy dissipation
at the edge kl (which is Re c|Uy — Uj]?). Thus a physical meaning of Lemma 2.3(5) is:
”a network consisting of elements dissipating energy also dissipates energy”.

2.5. Positive real functions

This subsection is used in the proof of only assertions (2) = (3) in Theorems 1.5
and 1.6.

Consider electrical circuits, in which all the edges have conductances z and 1/z, Re z >
0. (They have a natural physical meaning: circuits consisting of condensers and inductors
with incoming voltage of complex frequency z/i.) Let us describe possible conductances
C(z) of such electrical circuits. By Lemma 2.3(1), (2) and (5) the functions C(z) are
positive real, i.e., satisfy condition (1) of the following lemma. Denote by Reoo = 0,

C(o0) = lim, o C(1/2z) and C'(o0) = lim,_o(C(1/z2))".

Lemma 2.5. [5, 14, 16, Lemma 4] For an odd function C(z) € R(z) the following 5
conditions are equivalent:

(1) if Rez > 0 then ReC(z) > 0;

(2) if C(z) =1 then Rez > 0;
(3) if C(z) =0 then Rez =0 and C'(z) > 0 (here z € C or z = 0);
(4) either C(z) or 1/C(z) equals
22 +a
! 1;[ 22402
for some integer number n > 0 and real numbers dy > 0, a; > by > as > --- > b, > 0;
(5) either C(z) or 1/C(z) equals
1
d12+ 1 ;
doz +---+ @
for some integer number m > 1 and real numbers dy, . .., d,, > 0.

Parts of the lemma are proved in [5, 14] and in [16] using the results of [30]. A short
proof is given in §5.3.



3. Proof of main results

3.1. Proof of Theorem 1.3

Hereafter in an electrical circuit or network we allow the conductances to be arbitrary
complex numbers with positive real part. This generalization of the above notion is moti-
vated by §2.4 (and describes both direct- and alternating-current circuits). Theorem 1.3
is an easy consequence of the results of §2:

Proof of Theorem 1.3. Suppose that a rectangle of ratio ¢ can be tiled by rectangles of
ratios ¢y, ..., ¢,. By Lemma 2.2 there is an electrical network of conductance ¢ consisting
of edges of conductances ¢y, ..., ¢,. Foreach k =1, ..., n replace each edge of conductance
¢k in the network by an edge of complex conductance zx, Re z; > 0. Let C(z1,...,z,) be
the conductance of the obtained network. The function C(z, ..., z,) has the properties
(1)—(3) of Theorem 1.3 by Lemma 2.3(1),(2) and (5). O

3.2. Proof of Theorem 1.5

Proof of Theorem 1.5. (3) = (1) [16] Suppose that condition (3) of Theorem 1.5 holds
and, say, m is odd. Take a unit square. Cut off a rectangle of ratio d;c from the square
by a vertical cut. The remaining part is a rectangle of ratio

1
1—d10:

1
d20+"'+mc

Now cut off a rectangle of ratio 1/dsc from the remaining part by a horizontal cut. We
get a rectangle of ratio

dgC +

1
4C + +dmC

Continue this process alternating vertical and horizontal cuts. Condition (3) guaranties
that after step (m — 1) we get a rectangle of ratio d,,c. We obtain a tiling of the square
by rectangles of ratios dyc, 1/dsc, dsc, 1/dyc, ..., dyc. Since all d, € Q one can chop the
tiling into rectangles of ratios ¢ and 1/c.

(1) = (2). Suppose that a square is tiled by rectangles of ratios ¢ and 1/c. By
Lemma 2.2 there exists an electrical network of conductance 1 with edge conductances
c and 1/c. Replace each edge of conductance ¢ (respectively, 1/c¢) in this network by an
edge of conductance z € C (respectively, 1/z). Let C(z) the conductance of the obtained
network. Then C(z) € Q(z) by Lemma 2.3(1).

Since C'(c) = 1 it follows that ¢ is algebraic (C(z) is nonconstant because C'(—c) =
—(C(c) = —1 by Lemma 2.3(2)). Let z be an algebraic conjugate of ¢. Then still C'(z) = 1.

Let us prove that Rez > 0. Indeed, first assume that Rez < 0. Then Re(—z) > 0
and Re(—1/z) > 0. Thus by Lemma 2.3(5) we have 0 < ReC(—z) = — ReC(2) = —1,
a contradiction. Now assume that Rez = 0. Let z, — z, where each Re z, < 0. Still
0 < ReC(—z) = — ReC(z) — —1, a contradiction. Thus Re z > 0.

(2) = (3) [16] Let p(z) be a minimal polynomial of ¢. Put C(z) = %. Then
C(c) =1, C(2) € Q(z), C(z) is odd and all the roots of the equation C(z) = 1 have
positive real part. By Lemma 2.5(2) = (5) the function C(z) satisfies condition (5)
of Lemma 2.5. Since C(z) € Q(z) it follows by Euclidean algorithm that all d, € Q.
Substituting z = ¢ we get the required condition. O



3.3. Proof of Theorem 1.6
The proof follows the ideas of §3.2 and §5.3.

Proof of Theorem 1.6. (3) = (1) Analogously to the proof of Theorem 1.5(3) = (1).

(1) = (2). Suppose that a rectangle of ratio c is tiled by rectangles of ratios ¢ and
1/c. Rotating through 7/2 and stretching the figure we get a square tiled by squares and
rectangles of ratio ¢>. By Lemma 2.2 there exists an electrical circuit of conductance 1
with edge conductances 1 and ¢?, in which all the edges are essential. Since there is at
least one rectangle of ratio 1/c in the initial tiling, it follows that the network contains at
least one edge of conductance ¢?. Replace each edge of conductance ¢? (respectively, 1)
in the network by an edge of conductance z € C (respectively, w € C). Let C(z,w) the
conductance of the obtained network. Denote by C'(z) = C(z,1).

Let us prove that ¢? is algebraic. Indeed, by Lemma 2.3(4) we have C’(¢?) > 0
because there is at least one essential edge of conductance ¢? in the network. Thus C(z)
is nonconstant. By Lemma 2.3(1) it follows that C'(z) € Q(z). Since C(c?) = 1 it follows
that ¢? is algebraic.

Let z be an algebraic conjugate of ¢? distinct from ¢? itself. Then C(z,1) = C(c?) = 1.

Let us prove that z is a negative real number. First assume Im z < 0. Then Reiz > 0.
By Lemma 2.3(2) it follows that Re C(iz,i) = Re(iC(z,1)) = Rei = 0. Since C(iz,1)
is a rational function it follows that any neighborhood of iz contains a point 2z’ such
that ReC(2',i) < 0. Taking sufficiently small neighborhood we get Rez’ > 0 because
Reiz > 0. By continuity a neighborhood of i contains a point w’ such that Rew’ > 0
and still Re C(z',w’) < 0. The obtained inequalities contradict to Lemma 2.3(5). Case
Imz > 0 is violated similarly. Assume now z > ¢?. Then by Lemma 2.3(4) we have
1=C(z) > C(c?) =1, a contradiction. Case 0 < z < ¢? is violated similarly. Thus z < 0.

(2) = (3) Let p(z) be a minimal polynomial of ¢*. Since the roots of a minimal
polynomial are all simple it follows that p(z?) = (22—c?) [[,_,(2*+b}) for some by > --- >
b, > 0. Take a polynomial ¢(z) with rational coefficients such that ¢(z) = z [[,_,(2*+a3),
where a; > by > ay--- > b, > 0. Consider the odd rational function C'(z) = ¢q(z)/(zq(z) —
p(2%)). We have C(c) = 1/c.

Let us check that the function C(z) satisfies condition (3) of Lemma 2.5. The roots
of C(z) are the numbers 0, +iay, ..., +ia,. A direct evaluation shows that for each [ =
1,....n

. q (Fiay) 2a? a: — a?
R T e TR [ IR ¥ T
by the assumption a; > b; > ags > -+ > b, > 0. Analogously C’(0) = —¢/(0)/p(0) > 0.

Then by Lemma 2.5(3) = (5) the function C'(z) satisfies condition (5) of Lemma 2.5.
Since C(z) € Q(z) it follows by Euclidean algorithm that all d; € Q. Substituting z = ¢
we get the required condition. O

3.4. Remarks to main results

Let us define inductively a series-parallel electrical network. By definition, a network
consisting of a single edge is series-parallel. If a and b are two series-parallel networks
then both their series and parallel "unions” (see figure 1) are series-parallel.

Theorem 3.1. [5] If a function C(cy,ca) satisfies conditions (1)—(3) of Theorem 1.3 then
C(cy, o) is the conductance of a series-parallel electrical network with edge conductances
c1 and cs.



Proof. By conditions (1)—(3) of Theorem 1.3 we have C(cy, c2) = \/c1¢2 C(z,1/2), where
z = y/c1/ce, and the function C(z) = C(z,1/z) satisfies condition (1) of Lemma 2.5. By
Lemma 2.5(1) = (5) it satisfies condition (5). Therefore, say, for m even and C(0) = 0,

1
d 1
—+

C(Cl, 02) = d101 +

Co dm
dzcy + -+ —
Co
All the numbers dp € Q by the Euclidean algorithm. Now the required series-parallel
network is constructed analogously to the proof of Theorem 1.5(3) = (1). O

Example 3.2. A generalization of Theorem 3.1 to the case of 3 variables ¢y, ¢, c3 is
not true. E.g., consider the network with 4 vertices and edge conductances ci3 = ¢y,
Co3 = C9, Cog4 = (1, C1q4 = C2, C34 = c3. By Lemma 2.3(4) and a symmetry argument it
follows that 0C(cy, 2, ¢3)/0cs = 0 if ¢1 = ¢5. So C(cq, 2, ¢3) cannot be the conductance
of a series-parallel network, because all the edges of such networks are essential.

4. Variations

4.1. Tilings of polygons by rectangles
In this subsection we study the following problem.

Problem 4.1. Which polygons can be tiled by rectangles of given ratios ¢, ...,¢,?

Case n = 1, ¢; = 1 of the problem is a description of polygons which can be tiled by
squares, a problem posed in [15]. In case of hexagons such a description was obtained by
R. Kenyon [21]. We give such description for a wide class of polygons.

Hereafter P is an orthogonal polygon, i.e., a polygon with sides parallel to coordinate
axes. Assume that P is simple, i.e., the boundary 0P has one connected component.
Enumerate the sides parallel to the x-axis counterclockwise in OP. Let I, be the signed
length of the side u, where the sign of I, is 7+” (”"—") if the P locally lies below (above)
the side u. Let U, be the y-coordinate of the side u. Assume that P is generic, i.e., the
numbers Uy, ..., U, are pairwise distinct.

We need the following notion [9]. A sequence of boundary vertices (p1, ..., Pk, q1, - - -, qk)
of a planar network is circular, if the sequence (p1, ..., P, Gk, - - -, ¢1) is in counterclockwise
order in the boundary of the unit disc. Denote by €2, the set of real b x b matrices C,,
satisfying the following properties:

e (C,, is symmetric;
e the sum of the entries of C,, in each row is zero;

o if (p1,...,pr,q1,--.,qr) is a circular sequence then (—1)* det{C'],,iqj}ﬁj:1 > 0.

Theorem 4.2. Let P be a generic orthogonal polygon with b horizontal sides having
signed lengths Iy, ..., I, and y-coordinates Uy, ...,U,. Then the following two conditions
are equivalent:

(1) the polygon P can be tiled by squares;

(2) there is a matriz Cy, € Qy with rational entries such that I, = 22:1 CuwU, for each
v=1,...,b.



Cases b = 2 and b = 3 of this theorem are equivalent to Theorem 1.1 and [21, Theo-
rem 9], respectively. Theorem 4.2 is algorithmic in the particular case when Uy, ..., U, are
linearly independent over Q. Proof of the theorem is constructive, i.e., gives an algorithm
to construct the required tiling if the latter exists. Theorem 4.2 does not necessarily hold
for nongeneric polygons, e.g., for an orthogonal polygon with

Ui=Us=0, Up=2, U=-4 §L=V2 ©L=2 L=2-v2 I =-4
We also give a short proof of the following result:

Theorem 4.3. [28] A generic orthogonal polygon with rational vertices can be tiled by
rectangles of ratios ¢ and 1/c if and only if a square can be tiled by rectangles of ratios ¢
and 1/c.

4.2. FElectrical impedance tomography

Our approach to Problem 4.1 follows the idea of [21, 7] and uses electrical networks
with several terminals.

Hereafter we allow electrical circuits to have several boundary vertices 1,...,b with
prescribed voltages Uy, . .., Uy,. If an electrical circuit is planar, we assume that the bound-
ary vertices are enumerated counterclockwise along the boundary of the unit disc. We
do not assume that an electrical circuit is connected but require that each connected
component contains a boundary vertex. The voltages and currents in such circuits are
defined by the Ohm and the Kirchhoff current laws (C) and (I) from §2.

Consider the linear map C® — C® which takes the vector of voltages (Uy,...,U,) to
the vector of incoming currents (Iy,...,Iy) = (O p_; Lk, - -, D p—yq Iox) flowing inside the
network through the vertices 1,...,b, respectively. The matrix C, of this linear map is
called the response of the network. This matrix is symmetric [9)].

We reduce the results of §4.1 to the following problems even more interesting in them-
selves:

e Direct problem. Describe possible responses of electrical networks.
e [nverse problem. Describe possible networks having a given response.

These problems are solved for planar direct-current networks [9, 6, 7, 23|. Let us state
certain deep results of Y. Colin de Verdiere, E.B. Curtis and J.A. Morrow.

Theorem 4.4. [9, 8, 7, Theorem 5] The set of all possible responses of planar electrical
networks with b boundary vertices and positive edge conductances is the set €.

An electrical network is minimal (or critical) if it has minimal number of edges among
all planar electrical networks with positive edge conductances and with the same response.
The minimality of a network depends only on its graph [7]. In [9, 8, §9] an algorithm for
finding edge conductances in a minimal network with given response is presented. This
algorithm implies the following result.

Theorem 4.5. [9, §6.4] Conductances of the edges in a minimal electrical network are
uniquely determined by the response of the network. Each edge conductance is a rational
function with rational coefficients in the entries of the response.

For alternating-current circuits the direct problem is probably open. Let us state some
basic results. The rest of §4 is not used in the proof of the above results.
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Theorem 4.6. For b= 2 or b =3 the following 2 conditions are equivalent:

(1) Cyy is the response of a connected electrical network with b boundary vertices and with
edge conductances having positive real parts;

(2) Cuy is a complex b x b matrixz has the following 4 properties:
o (Cy, is symmetric;
e the sum of the entries of Cy, in each row is zero;
e ReCly, is non-negatively definite;

i Zf Zlgu,vgb Re CuquUv = O th@n Ul —_ ... = Ub-
Problem 4.7. Does this result remain true for arbitrary b > 47

Unlike direct-current networks nonboundary vertices in alternating-current networks
can be detected by the response. For instance, by Theorem 4.6 there are electrical networks

. 2 1 -3 . .
with response ( 12 73); any such network necessarily has nonboundary vertices.
-3 -3 6

4.3. Random walks

A random work on an electrical network (or on a weighted graph) is the Markov
chain with the transition matrix Py, = cx/ Z?:l c;k- Such Markov chain is ergodic and
reversible. Denote by kqly,...,k,l, all the edges of the Markov chain. The following
theorem allows to translate the results of §1-§2 to the language of random walks.

Theorem 4.8. [11, page 42| Let P(cyiys- - - Ck,1,,) be the probability that a random walk
starting at vertex 1 reaches vertex 2 before returning to 1. Let C(Cyyy .- -, Ch,o1,,) be the
conductance of the network (with boundary vertices 1 and 2). Then P(cky,- -, Chpt) =

C(Ckllla s 7Ckmlm)/(012 + -+ Cln)'
For instance, a translation of Lemmas 2.3(1) and (5) is:

Corollary 4.9. The probability P(c,1, - - -, Cr,1,,) 1S a rational function in cxyyy, - - Cr, 1, -
If Recyyyyy ..., Recy,,,, >0 then Re((c1a+ -+ c1n)P(Cytyy - - s Chptr,)) > 0.

The latter result does not necessarily hold for nonreversible Markov chains, e.g., for a
Markov chain with vertices 1, 2, 3, 4 and oriented edges 14, 42, 43.

Nonreversible planar Markov chains have a geometric interpretation as tilings of trape-
zoids by trapezoids [21]. Here a trapezoid is a 4-gon with two sides parallel to the z-axis.
The ratio of the trapezoid is the length of the horizontal middle edge divided by the hight.
Natural problems are: generalize the results of the paper to tilings by trapezoids; infinite
tilings; signed tilings.

5. Generalization of main ideas

5.1. FElectrical circuits

Our approach is based on a generalization of the results of §2 to electrical circuits with
b terminals. Short proofs of the results of §2 are obtained in this section as particular
case b = 2. Our proof of Lemma 5.2(3), generalizing Lemma 2.3(3), is probably new. All
the proofs are based on the following fundamental energy conservation law.

11



Claim 5.1. Let E(U,I) be a bilinear function. Consider an electrical network with the
vertices 1,...,n such that 1,...,b are the boundary ones. Suppose that the numbers Uy,
1 <k<n,and Iy, 1 < k,l <n, satisfy laws (C),(I) from §2. Set I, = ,_, L. Then

Z EU, - U, 1) = Z E(Uy, 1,).

1<k<i<n 1<u<h
We usually apply this claim for the energy dissipation function E(U,I) = Re(UI).
Proof of Claim 5.1. By law (C) we have Ij; = —Ij;. Hence by law (I) we have
> EU-Upln) = ZE Uk,ZIkl > E(U,. L)
1<k<i<n 1<u<b
0

Let us prove Theorem 2.1 for electrical circuits with b boundary vertices and with
complex edge conductances having positive real part.

Proof of Theorem 2.1. Uniqueness. Suppose there are two collections of currents I ,fl’H and
voltages U,""" satisfying laws (C),(I). Then their difference Iy = I}, — I}, Uy = UL = UX

satisfies (C),(I) for zero incoming voltages Uy = -+ - = U, = 0. Then by Claim 5.1 we have
> ReauUn—UP = Y Re((Uy—U)y)= > Re(U,,)
1<k<I<n 1<k<I<n 1<u<b

Here for each k,[ either Recy > 0 or ¢y = 0. Thus each Recy|Uy — Ul\2 = (0. Since all
the connected components of the circuit contain boundary vertices it follows that all Uy
are equal. Hence each Uy = 0, I}y = 0 and thus each I}, = I}, UF = Ul*

Ezistence. The number of linear equations in the system (C),(I) equals the number
of variables. By the previous paragraph the system has a unique solution for U} = --- =
U, = 0. Thus by the finite-dimensional Fredholm alternative it has a solution for any

Ui, ..., U. O
The following result generalizes Lemma 2.3.

Lemma 5.2. Suppose that an electrical network has b boundary vertices and m edges
of conductances ci,...,cy. Then the response of the network Cyy(ci,...,cn) has the
following properties:

(1) Cuvler,.oyem) € Qer, -y )P0

(2) Cuy(er, ..., cm) is degree 1 homogeneous;

(3) %C’w(cl, coirCm) = Viw = Vi) (Viw — Vi), where k and | are the endpoints of the
ed]ge J and V,, is the matm’x of the linear map (Uy,...,Up) — (Uy,...,U,);

(4) ifcry... ¢ >0 then 5 C’uv(cl, ..., Cm) 1S non-negatively definite;

(5) if Recy, ..., Recy, > O then Re Cyy(cy, ..., cm) is non-negatively definite.

Proof of Lemma 5.2. (1) By Theorem 2.1 and the Crammer rule the solution {I,(Uy, ..., Uy)}

of the system of linear equations (C), (I) consists of linear functions in Uy, ..., U, with
coefficients being rational functions in ¢y, ..., ¢,,. So the entries of the matrix of the linear
map (Uy,...,Uy) — > p_ Lue(Us, ..., Up) are rational functions in ¢y, ..., ¢p,.

12



(2) Consider the system of linear equations obtained from laws (C), (I) by substituting
tey, ..., te, for cq, ..., cyp. It defines the same voltages as the initial one and the currents
are scaled by t. So C(tcy, ..., tcy) =tC(cy, ..., cm).

(3) Set E(U,I) = 321 —U . Then E(Up—Ui, Iy) = (Up—U,)* and E(U,—Uy, Iy) =
0 for pq # kl. Thus by Claim 5.1 we have

m
D U= ) EULL)= ) E(U,—Uply) =

Ckl
1<u,v<b 1<u<b 1<p<qg<n

=U=U) = D (Veu— Vi) View = Vi) UuUs.

1<u,v<b

(4) This follows directly from the latter formula.
(5) Assume that for each k,l either Recy > 0 or ¢y = 0. Take Uy,...,U, € R. By
Claim 5.1 we have

> ReCWUU, = Y Re(U,,)=

1<u,v<b 1<u<b

- Z Re((Uy — U)Iy) = Z Re cy|Uy, — Ul|2 > 0.

1<k<i<n 1<k<I<n

]

Remark 5.3. If the network is connected then the latter inequality is strict unless U; =
=,

5.2. Tilings and networks
Part (2) = (1) of the following result is probably new, cf. [1, 21].

Lemma 5.4. Let P be a generic orthogonal polygon with horizontal sides of signed lengths
Ii, ..., I, and y-coordinates Uy, ..., U,. Then the following 2 conditions are equivalent:

(1) the polygon P can be tiled by m rectangles of ratios ¢y, ..., Cm;

(2) there is a planar electrical circuit with b boundary vertices, m essential edges of

conductances ci,...,Cn > 0, tncoming voltages Uy, ..., U, and incoming currents
I, ..., 1.

Remark 5.5. Condition (2) itself does not guarantee the existence of a rectangular polygon
with horizontal sides of signed lengths I4,..., I, and y-coordinates Uy, ..., U,. Lemma
5.4(1) = (2) is not necessarily true for nongeneric polygons.

Proof of Lemma 5.4. (1) = (2). Take a generic polygon P tiled by rectangles.

Let us construct the graph of the required network, see figure 3. Consider the union
of the horizontal sides of all rectangles of the tiling. This union splits into several disjoint
segments called horizontal cuts. Paint red (bold) all horizontal cuts except small neigh-
borhoods of their endpoints. Paint blue (dashed) the vertical centerline of each rectangle
in the tiling.

Contract all red segments. Then the blue set "becomes” a graph G and the polygon
P 7becomes” a topological disc D (since the y-coordinates of the horizontal sides of P
are distinct it follows that each read segment has not more than one common point with
OP). Denote by 1,...,b the vertices of the graph G obtained from the red segments in
the horizontal cuts containing the sides of P and by b+ 1,...,n — the other vertices.

13



Figure 3: Construction of an electrical network

Clearly, G ¢ D, GNID = {1,...,b} and each connected component of G contains a
boundary vertex. Thus G is a graph of a planar network.

Let us define the voltages, currents and conductances in the network. For each vertex
k=1,...,n of the graph G set Uy to be the y-coordinate of the horizontal red segment
contracted to the vertex. For each edge kl of the graph G, obtained from the vertical
centerline of a rectangle in the tiling, set I, and ¢ to be the horizontal side (with an
appropriate sign) and the ratio of the rectangle, respectively. The laws (C), (I) are now
checked directly. The constructed network is the required.

1 A
f(2) Uy P
, P12

= U] P13
2
I:’23
f(3) !
U
3 3

Figure 4: Construction of a tiling

(2) = (1). Take an electrical network as in (2). Construct a tiling of P as follows.

Let e be an edge of the network. Denote by e T (e |) the endpoint of e with higher
(lower) voltage (it is well-defined by the assumption that all the edges are essential). By
a face we mean a connected component of the complement to the network in the unit disc
D. Denote by e < (e —) the face that borders the edge e from the left-hand (right-hand)
side while one moves along the edge e from e T to e |.

By law (I) it follows that to each face f one can assign a number [; in such a way
that Iy — Iy = I;. Without loss of generality assume miny [y = min(, ,)cp ¥, where
the minimum in the left-hand side is over all the faces f meeting 0D.

Let P. be the rectangle with the vertices (I._.,Uet), (Ie—, Ue)), (Ie, Uer), (e, Ue)).
The rectangles P,, where e runs through all the edges of the network, tile the polygon P by
the following two claims (P.-s cover P by Claim 5.6 and do not overlap by Claim 5.7). [
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Claim 5.6. |J, P, = P.

Proof. It suffices to prove that 0|, P. C OP. Since 0P is a simple closed curve in the
plane and (J, P, is bounded, the claim will follow.

We need the following description of the boundary dP, see figure 4. Boundary vertices
split 0D into b arcs. Start from vertex b and move along the circle 9D counterclock-
wise. Enumerate the arcs in the order they appear in the motion. Denote by f(v) the
face containing the arc v. Denote by H, the segment joining the points (If.y,U,) and
(If(w11), Uy). Denote by V, the segment joining the points (I, Uy—1) and (Ifwy), Us),
where we set Uy = U,,. Clearly, 0P = Uzzl(Hv UV,).

Take a ”generic” point p € dJ, P., say, in a horizontal side of the "polygon” |, P..
The point p necessarily belongs to a horizontal side of a rectangle in the tiling, say, to the
top side of a rectangle P.. Denote by v = e T the vertex of e of higher voltage.

Draw a horizontal line H through the top side of the rectangle P,. We say that a
rectangle Py is adjacent if the vertex v is an endpoint of the edge d. Adjacent rectangles
border upon the line H either from above or from below.

First assume that v is nonboundary. A simple induction shows that each point of H
(except a finite set) is bordered by the same number of adjacent rectangles P; from above
and from below. Since the rectangle P, borders upon the point p from below and p is
"generic” it follows that some adjacent rectangle P; borders upon it from above. Thus p
belongs to Int P. U Py C Int|J, P., a contradiction.

So v is a boundary vertex. Analogously to the above each point of H — H, (except a
finite set) is bordered by the same number of adjacent rectangles P; from above and from
below. Hence p € H, and thus p € OP. O

Claim 5.7. ) __Area(FP,) = Area(P).

Proof. This follows immediately from Claim 5.1 because Area(Py) = (Ux — U;)I and
Area(P) = Z1gugb U,l,. O

5.8. Positive real functions

Let us prove Lemma 2.5. For a generalization to the case b > 2 see [12].

Proof of Lemma 2.5. (1) = (2). Indeed, if Rez < 0 then ReC(z) = — ReC(—z) <0
and thus C'(z) # 1.

(2) = (1). Consider the equation C'(z) = w. Move w continuously in the half-plane
Rew > 0. The roots cannot cross the line Re z = 0 (because Re z = 0 implies Re C'(z) =0
for an odd function C(z) € R(z)). Thus for each w in the half-plane Rew > 0 all roots
of C(z) = w are in the half-plane Re z > 0. Since C(z) is odd it follows that the same is
true for the half-planes Rew < 0, Rez < 0. So (1) holds.

(1) = (3). Suppose that C(z) = 0, where z € C. Then Rez = 0 because Rez >
0 = Re(C(z) >0and Rez <0 = Re(C(z) = — ReC(—z) < 0. Since condition (1)
and its converse hold in a neighborhood of the point z it follows that C'(z) > 0. A simple
limiting argument proves the same for z = oo.

(3) = (4) Assume for simplicity that C'(co) # 0. Let 21, ..., 2, be the roots of C(z).
Since C'(z) > 0 it follows that the roots are simple. Thus C(z) has not more than m
poles. The roots split the projective line Rez = 0 into m "segments”. Since C'(z;) > 0
it follows that for sufficiently small € > 0 we have C(z, —i€) < 0 and C(z; + i€) > 0. By
intermediate value theorem it follows that each of the segments contains a pole of C'(z).
Thus all the m poles of C(z) belong to the line Rez = 0 and alternate with the roots.
So (4) holds.
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(4) = (5). Denote by htC(z) the sum of the degrees of the nominator and the
denominator of C'(z). The proof is by induction over ht C(z). If ht C(z) = 1 then there is
nothing to prove. Assume that, say, C'(z) equals the expression from condition (4), where
n > 1 and b, # 0.

Denote by 7(z) = 1/(C(z) — d1z) and ¢q(z) = 1/C(z). Let us prove that r(z) satisfies
condition (3). Indeed, the roots of r(z) are the numbers +iby, ..., £ib,. For each | =
1,....n

v (ib) = ¢ (&iby) = 2 11

di(af = b)

bp = bi

>0
2 2
a, — b

by the condition a; > by > as > --- > b, > 0.

Hence by Lemma 2.5(3) = (4) it follows that r(z) satisfies condition (4) as well. On
the other hand htr(z) < htC(z). By inductive hypothesis, (z) satisfies condition (5).
Thus C(z) = 1/(dyz + r(2)) also satisfies condition (5).

(5) = (1). This follows by a simple induction over m. O

6. Proof of variations

6.1. Proof of Theorem 4.2

Proof of Theorem J.2. (1) = (2). Let the polygon P be tiled by squares. By Lemma 5.4
there is a planar electrical circuit with edge conductances 1, incoming voltages Uy, ..., U,
and incoming currents Iy,...,I,. Let C,, be the response of the circuit. Then I, =
> CuwU,. By Lemma 5.2(1) all the entries of C,, are rational. By Theorem 4.4 we have
Cuv € Q.

(2) = (1). Let Cy, € O be a matrix with rational entries such that I, = > C,,U.,.
By Theorem 4.4 there are planar electrical networks with the response C,,. Take a
minimal network with this property. By Theorem 4.5 the conductances of all the edges of
the network are rational. Set the incoming voltages to be Uy, ..., U,. Then the incoming
currents are Iy,...,I,. Delete all unessential edges from the circuit. By Lemma 5.4 it
follows that the polygon P can be tiled by rectangles of rational ratio, and hence by
squares. ]

Corollary 6.1. (of Lemmas 5.2, 5.4 and Theorem 4.4) If a generic orthogonal polygon
P can be tiled by rectangles of ratios cq, ..., ¢, then there is a function Cyy(21,...,2n)
satisfying conditions (1), (2) and (5) of Lemma 5.2 such that C(cy,...,c,) € 4 and
I, =3 1 cpey Cuvlca, ... cn)U, for eachv=1,...,0b.

6.2. Proof of Theorem 4.3
Proof of Theorem 4.3. <= . This holds because a polygon with rational vertices can be
tiled by squares.

— . Suppose that P can be tiled by rectangles of ratios ¢ and 1/c. Let us prove
analogously to the proof of Theorem 1.5(1) = (2) that all algebraic conjugates of ¢ have
positive real parts. Then Theorem 4.3 will follow from Theorem 1.5(2) = (1).

Consider the circuit given by Lemma 5.4. Replace each edge of conductance ¢ (re-
spectively, 1/¢) in the circuit by an edge of conductance z € C (respectively, 1/z). Let
Cuvo(z) be the response of the obtained circuit. Consider the energy dissipation func-
tion E(z) = Y <, vep Cun(2)ULU,. Since each U, € Q it follows by Lemma 5.2(1) that
E(z) € Q(2). Clearly, E(c) = 3, IuU, = Area(P). Thus E(c) € Q and E(c) > 0.

Since E(z) € Q(z) and E(c) € Q it follows that c is algebraic (E(z) is nonconstant
because E(—c) = —E(c) < 0 by Lemma 5.2(2)). Let z be an algebraic conjugate of c.
Then E(z) = E(c) > 0.
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Let us prove that Re z > 0. Indeed, first assume that Re z < 0. Then by Lemma 5.2(5)
we have 0 < Re F(—z) = — Re E(z) < 0, a contradiction. A simple limiting argument
shows that assumption Re z = 0 also leads to a contradiction. Thus Re z > 0. O

6.3. Proof of Theorem 4.6

Proof of Theorem 4.6. (1) = (2). This follows from Lemma 5.2(5) and Remark 5.3.

(2) = (1). For b = 2 there is nothing to prove. Assume that b = 3. Let 6 > 0 be a
small number, r,, = — ReCy, — 0, my, = — ImC,,. By the assumption of the theorem
it follows that (g; gg) is positively definite. Thus (TSI_;*I;“H n;:lgzg) is positively definite
for sufficiently small §. Hence 115 + 793, 731 4 712, 712723 + 723731 + 731712 > 0. Analogously
ro3 + 731 > 0. Thus at least two of the numbers r19, 193, 731 are positive.

If r19, 793,731 > 0 then the required network is a triangle 123 with edge conductances
Crl = Thl + @My + 0.

Now assume that exactly one of the numbers 715, 123, 731, say, 731 is nonpositive. Take
a large number M and denote by Ay = riaro3 + rogr3r + 131712 + iM (r9g + 712). The
required network is a complete graph on the vertices 1,2, 3,4 with edge conductances

Cl2 = imig + 0, Clqy = A /ras,
Co3 = iMmaz + 0, C34 = Apr /112,
C31 — im31+(5—iM, Coy = AM/(T'gl—i-’iM).

Clearly, for M2 > (7“127”23 + 7ro3T3 + 7’317’12)‘7“31’/(7”23 + 7’12) we have all Re Crl > 0.

Let us show by electrical transformations that the network has response C,. Indeed,
replace the "letter Y” formed by the edges 14, 24 and 34 by a ”triangle A” formed by 3 new
edges of conductances ¢}, = r1a, ¢hy = 193 and ¢ = 131 + iM. This Y A-transformation
does not change the response [21, page 12]. The obtained network has 3 pairs of multiple
edges. Thus it has the same response as a triangle with edge conductances ry5 + imq + 9,
T93 4 iMosg + 0, 131 + im3; + 0. So the network has the response C,,. O
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Preface

Probability theory, like much of mathematics, is indebted to physics as
a source of problems and intuition for solving these problems. Unfor-
tunately, the level of abstraction of current mathematics often makes it
difficult for anyone but an expert to appreciate this fact. In this work
we will look at the interplay of physics and mathematics in terms of an
example where the mathematics involved is at the college level. The
example is the relation between elementary electric network theory and
random walks.

Central to the work will be Polya’s beautiful theorem that a random
walker on an infinite street network in d-dimensional space is bound to
return to the starting point when d = 2, but has a positive probability
of escaping to infinity without returning to the starting point when
d > 3. Our goal will be to interpret this theorem as a statement about
electric networks, and then to prove the theorem using techniques from
classical electrical theory. The techniques referred to go back to Lord
Rayleigh, who introduced them in connection with an investigation of
musical instruments. The analog of Polya’s theorem in this connection
is that wind instruments are possible in our three-dimensional world,
but are not possible in Flatland (Abbott [fl]).

The connection between random walks and electric networks has
been recognized for some time (see Kakutani [[J], Kemeny, Snell, and
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Knapp [[4], and Kelly [[3]). As for Rayleigh’s method, the authors
first learned it from Peter’s father Bill Doyle, who used it to explain a
mysterious comment in Feller ([[], p. 425, Problem 14). This comment
suggested that a random walk in two dimensions remains recurrent
when some of the streets are blocked, and while this is ticklish to prove
probabilistically, it is an easy consequence of Rayleigh’s method. The
first person to apply Rayleigh’s method to random walks seems to have
been Nash-Williams [P4]. Earlier, Royden [B( had applied Rayleigh’s
method to an equivalent problem. However, the true importance of
Rayleigh’s method for probability theory is only now becoming appre-
ciated. See, for example, Griffeath and Liggett [[], Lyons 0], and
Kesten [[I{].

Here’s the plan of the work: In Section [l we will restrict ourselves
to the study of random walks on finite networks. Here we will establish
the connection between the electrical concepts of current and voltage
and corresponding descriptive quantities of random walks regarded as
finite state Markov chains. In Section f] we will consider random walks
on infinite networks. Polya’s theorem will be proved using Rayleigh’s
method, and the proof will be compared with the classical proof using
probabilistic methods. We will then discuss walks on more general
infinite graphs, and use Rayleigh’s method to derive certain extensions
of Polya’s theorem. Certain of the results in Section P were obtained
by Peter Doyle in work on his Ph.D. thesis.

To read this work, you should have a knowledge of the basic concepts
of probability theory as well as a little electric network theory and
linear algebra. An elementary introduction to finite Markov chains as
presented by Kemeny, Snell, and Thompson [[[3] would be helpful.

The work of Snell was carried out while enjoying the hospitality of
Churchill College and the Cambridge Statistical Laboratory supported
by an NSF Faculty Development Fellowship. He thanks Professors
Kendall and Whittle for making this such an enjoyable and rewarding
visit. Peter Doyle thanks his father for teaching him how to think like a
physicist. We both thank Peter Ney for assigning the problem in Feller
that started all this, David Griffeath for suggesting the example to be
used in our first proof that 3-dimensional random walk is recurrent
(Section R.2.9), and Reese Prosser for keeping us going by his friendly
and helpful hectoring. Special thanks are due Marie Slack, our secre-
tary extraordinaire, for typing the original and the excessive number of
revisions one is led to by computer formatting.



1 Random walks on finite networks

1.1 Random walks in one dimension
1.1.1 A random walk along Madison Avenue

A random walk, or drunkard’s walk, was one of the first chance pro-
cesses studied in probability; this chance process continues to play an
important role in probability theory and its applications. An example
of a random walk may be described as follows:

A man walks along a 5-block stretch of Madison Avenue. He starts
at corner x and, with probability 1/2, walks one block to the right and,
with probability 1/2, walks one block to the left; when he comes to
the next corner he again randomly chooses his direction along Madison
Avenue. He continues until he reaches corner 5, which is home, or
corner 0, which is a bar. If he reaches either home or the bar, he stays
there. (See Figure [I].)

Bar & M+ — O Home
0 1

2 3 4 5

Figure 1: &

The problem we pose is to find the probability p(x) that the man,
starting at corner x, will reach home before reaching the bar. In looking
at this problem, we will not be so much concerned with the particular
form of the solution, which turns out to be p(z) = z/5, as with its
general properties, which we will eventually describe by saying “p(x) is
the unique solution to a certain Dirichlet problem.”

1.1.2 The same problem as a penny matching game

In another form, the problem is posed in terms of the following game:
Peter and Paul match pennies; they have a total of 5 pennies; on each
match, Peter wins one penny from Paul with probability 1/2 and loses
one with probability 1/2; they play until Peter’s fortune reaches 0 (he



is ruined) or reaches 5 (he wins all Paul’s money). Now p(x) is the
probability that Peter wins if he starts with x pennies.

1.1.3 The probability of winning: basic properties

Consider a random walk on the integers 0,1,2,..., N. Let p(z) be the
probability, starting at z, of reaching N before 0. We regard p(z) as
a function defined on the points x = 0,1,2,..., N. The function p(z)
has the following properties:

(a) p(0) = 0.
(b) p(N) = L.
(c) p(z) = 3p(xz = 1)+ sp(x + 1) forz =1,2,...,N — 1.

Properties (a) and (b) follow from our convention that 0 and N are
traps; if the walker reaches one of these positions, he stops there; in
the game interpretation, the game ends when one player has all of the
pennies. Property (c) states that, for an interior point, the probability
p(z) of reaching home from x is the average of the probabilities p(x —1)
and p(x + 1) of reaching home from the points that the walker may
go to from x. We can derive (c) from the following basic fact about
probability:

Basic Fact. Let E be any event, and I’ and G be events such that
one and only one of the events F' or G will occur. Then

P(E)=P(F)-P(FE given F') + P(G) - P(E given G).

In this case, let E be the event “the walker ends at the bar”, F'
the event “the first step is to the left”, and G the event “the first
step is to the right”. Then, if the walker starts at =, P(E) = p(z),
P(F)=P(G) = 3, P(E given F) = p(z—1), P(E given G) = p(z+1),
and (c) follows.

1.1.4 An electric network problem: the same problem?

Let’s consider a second apparently very different problem. We connect
equal resistors in series and put a unit voltage across the ends as in
Figure .

Voltages v(x) will be established at the points z = 0,1,2,3,4,5. We
have grounded the point z = 0 so that v(0) = 0. We ask for the voltage
v(x) at the points z between the resistors. If we have N resistors, we

4



Figure 2: &

make v(0) = 0 and v(N) = 1, so v(x) satisfies properties (a) and (b) of
Section [[.T.3. We now show that v(z) also satisfies (c).

By Kirchhoff’s Laws, the current flowing into x must be equal to
the current flowing out. By Ohm’s Law, if points x and y are connected
by a resistance of magnitude R, then the current 4., that flows from z
to y is equal to

() — o)
xry R .
Thus for x =1,2,...,N — 1,

vz —1)—v(x) v(x+1)—v(x)
R R

Multiplying through by R and solving for v(zx) gives

~v(r+1) Fou(r—1)
v(z) = 5

forx =1,2,...,N — 1. Therefore, v(z) also satisfies property (c).

We have seen that p(z) and v(z) both satisfy properties (a), (b),
and (c) of Section [[.L1.3. This raises the question: are p(x) and v(z)
equal? For this simple example, we can easily find v(x) using Ohm’s
Law, find p(z) using elementary probability, and see that they are the
same. However, we want to illustrate a principle that will work for very
general circuits. So instead we shall prove that these two functions are
the same by showing that there is only one function that satisfies these
properties, and we shall prove this by a method that will apply to more
general situations than points connected together in a straight line.



Exercise 1.1.1 Referring to the random walk along Madison Avenue,
let X =p(1),Y =p(2), Z =p(3),and W = p(4). Show that properties
(a), (b), and (c) of Section determine a set of four linear equations
with variables X, Y, Z and W. Show that these equations have a
unique solution. What does this say about p(z) and v(z) for this special
case?

Exercise 1.1.2 Assume that our walker has a tendency to drift in one
direction: more specifically, assume that each step is to the right with
probability p or to the left with probability ¢ = 1 — p. Show that
properties (a), (b), and (c) of Section should be replaced by

(a) p(0) = 0.
(b) p(N) = 1.

(¢)p(x) =q-plr —1)+p-plx+1).

Exercise 1.1.3 In our electric network problem, assume that the re-
sistors are not necessarily equal. Let R, be the resistance between x
and z + 1. Show that

1 1

o(z) = (=2 y(x — 1) + ——L=—v(z 4+ 1),
Rxfl R_z Rmfl R_CL‘

How should the resistors be chosen to correspond to the random walk

of Exercise [.T.2?

1.1.5 Harmonic functions in one dimension; the Uniqueness
Principle

Let S be the set of points S = {0,1,2,..., N}. We call the points of
the set D = {1,2,..., N — 1} the interior points of S and those of
B = {0, N} the boundary points of S. A function f(z) defined on S is
harmonic if, at points of D, it satisfies the averaging property

fle—1)+ flz+1)
: :

flz) =
As we have seen, p(x) and v(z) are harmonic functions on S having

the same values on the boundary: p(0) = v(0) = 0; p(N) = v(N) =
1. Thus both p(z) and v(z) solve the problem of finding a harmonic
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function having these boundary values. Now the problem of finding
a harmonic function given its boundary values is called the Dirichlet
problem, and the Uniqueness Principle for the Dirichlet problem asserts
that there cannot be two different harmonic functions having the same
boundary values. In particular, it follows that p(z) and v(z) are really
the same function, and this is what we have been hoping to show. Thus
the fact that p(z) = v(z) is an aspect of a general fact about harmonic
functions.

We will approach the Uniqueness Principle by way of the Mauxi-
mum Principle for harmonic functions, which bears the same relation
to the Uniqueness Principle as Rolle’s Theorem does to the Mean Value
Theorem of Calculus.

Maximum Principle . A harmonic function f(z) defined on S
takes on its maximum value M and its minimum value m on the bound-
ary.

Proof. Let M be the largest value of f. Then if f(z) = M for x
in D, the same must be true for f(z — 1) and f(z + 1) since f(x) is
the average of these two values. If x — 1 is still an interior point, the
same argument implies that f(x — 2) = M; continuing in this way, we
eventually conclude that f(0) = M. That same argument works for
the minimum value m.

Uniqueness Principle. If f(z) and g(z) are harmonic functions
on S such that f(z) = g(x) on B, then f(z) = g(x) for all z.

Proof. Let h(z) = f(z) — g(x). Then if z is any interior point,

h(x—1)+h(x+1) flx=1)+ f(z+1) glx—-1)+glx+1)

2 2 2 ’

and h is harmonic. But h(x) = 0 for = in B, and hence, by the Max-
imum Principle, the maximum and mininium values of A are 0. Thus
h(z) =0 for all z, and f(x) = g(z) for all z.

Thus we finally prove that p(z) = v(x); but what does v(x) equal?
The Uniqueness Principle shows us a way to find a concrete answer:
just guess. For if we can find any harmonic function f(z) having the
right boundary values, the Uniqueness Principle guarantees that

pla) = v(x) = f(2).

The simplest function to try for f(z) would be a linear function; this
leads to the solution f(z) = /N. Note that f(0) = 0 and f(N) =1
and

fle=1)+fle+1l) z-1+a+1 =x
2 B 2N N

= f(z).



Therefore f(z) = p(z) = v(x) = x/N.

As another application of the Uniqueness Principle, we prove that
our walker will eventually reach 0 or N. Choose a starting point x with
0 < x < N. Let h(x) be the probability that the walker never reaches
the boundary B = {0, N}. Then

h(z) = %h(m +1)+ %h(:c —1)

and h is harmonic. Also h(0) = h(N) = 0; thus, by the Maximum
Principle, h(x) = 0 for all .

Exercise 1.1.4 Show that you can choose A and B so that the func-
tion f(x) = A(q/p)* + B satisfies the modified properties (a), (b) and
(c) of Exercise [.1.9. Does this show that f(x) = p(x)?

Exercise 1.1.5 Let m(z) be the expected number of steps, starting at
x, required to reach 0 or N for the first time. It can be proven that
m(x) is finite. Show that m(x) satisfies the conditions

Exercise 1.1.6 Show that the conditions in Exercise [.I.J have a unique
solution. Hint: show that if m and m are two solutions, then f = m—m
is harmonic with f(0) = f(N) = 0 and hence f(z) = 0 for all .

Exercise 1.1.7 Show that you can choose A, B, and C' such that
f(z) = A+ Bx+ Ca? satisfies all the conditions of Exercise [[I.5. Does
this show that f(x) = m(z) for this choice of A, B, and C?

Exercise 1.1.8 Find the expected duration of the walk down Madison
Avenue as a function of the walker’s starting point (1, 2, 3, or 4).



1.1.6 The solution as a fair game (martingale)

Let us return to our interpretation of a random walk as Peter’s fortune
in a game of penny matching with Paul. On each match, Peter wins
one penny with probability 1/2 and loses one penny with probability
1/2. Thus, when Peter has k pennies his expected fortune after the
next play is . .
2(1{: 1)+ 2(k+1) =k,

so his expected fortune after the next play is equal to his present for-
tune. This says that he is playing a fair game; a chance process that can
be interpreted as a player’s fortune in a fair game is called a martingale.

Now assume that Peter and Paul have a total of N pennies. Let
p(z) be the probability that, when Peter has x pennies, he will end up
with all V pennies. Then Peter’s expected final fortune in this game is

(1 =p(@))-0+p(x) - N =p(z)-N.

If we could be sure that a fair game remains fair to the end of the
game, then we could conclude that Peter’s expected final fortune is
equal to his starting fortune z, i.e., x = p(z) - N. This would give
p(z) = x/N and we would have found the probability that Peter wins
using the fact that a fair game remains fair to the end. Note that the
time the game ends is a random time, namely, the time that the walk
first reaches 0 or N for the first time. Thus the question is, is the
fairness of a game preserved when we stop at a random time?

Unfortunately, this is not always the case. To begin with, if Peter
somehow has knowledge of what the future holds in store for him, he
can decide to quit when he gets to the end of a winning streak. But
even if we restrict ourselves to stopping rules where the decision to
stop or continue is independent of future events, fairness may not be
preserved. For example, assume that Peter is allowed to go into debt
and can play as long as he wants to. He starts with 0 pennies and
decides to play until his fortune is 1 and then quit. We shall see that
a random walk on the set of all integers, starting at 0, will reach the
point 1 if we wait long enough. Hence, Peter will end up one penny
ahead by this system of stopping.

However, there are certain conditions under which we can guarantee
that a fair game remains fair when stopped at a random time. For our
purposes, the following standard result of martingale theory will do:

Martingale Stopping Theorem. A fair game that is stopped at
a random time will remain fair to the end of the game if it is assumed



that there is a finite amount of money in the world and a player must
stop if he wins all this money or goes into debt by this amount.

This theorem would justify the above argument to obtain p(x) =
x/N.

Let’s step back and see how this martingale argument worked. We
began with a harmonic function, the function f(x) = z, and inter-
preted it as the player’s fortune in a fair game. We then considered the
player’s expected final fortune in this game. This was another harmonic
function having the same boundary values and we appealed to the Mar-
tingale Stopping Theorem to argue that this function must be the same
as the original function. This allowed us to write down an expression
for the probability of winning, which was what we were looking for.

Lurking behind this argument is a general principle: If we are given
boundary values of a function, we can come up with a harmonic function
having these boundary values by assigning to each point the player’s
expected final fortune in a game where the player starts from the given
point and carries out a random walk until he reaches a boundary point,
where he receives the specified payoff. Furthermore, the Martingale
Stopping Theorern allows us to conclude that there can be no other
harmonic function with these boundary values. Thus martingale theory
allows us to establish existence and uniqueness of solutions to a Dirich-
let problem. All this isn’t very exciting for the cases we’ve been con-
sidering, but the nice thing is that the same arguments carry through
to the more general situations that we will be considering later on.

The study of martingales was originated by Levy [[J and Ville
B4]. Kakutani [[J] showed the connection between random walks and
harmonic functions. Doob [f] developed martingale stopping theorems
and showed how to exploit the preservation of fairness to solve a wide
variety of problems in probability theory. An informal discussion of
martingales may be found in Snell [BZ].

Exercise 1.1.9 Consider a random walk with a drift; that is, there is
a probability p # % of going one step to the right and a probability
g = 1 — p of going one step to the left. (See Exercise [.1.9.) Let
w(z) = (¢/p)*; show that, if you interpret w(z) as your fortune when
you are at x, the resulting game is fair. Then use the Martingale
Stopping Theorem to argue that

w(x) = p(x)w(N) + (1 = p(z))w(0).

10



Solve for p(z) to obtain

Exercise 1.1.10 You are gambling against a professional gambler; you
start with A dollars and the gambler with B dollars; you play a game
in which you win one dollar with probability p < % and lose one dollar
with probability ¢ = 1 —p; play continues until you or the gambler runs
out of money. Let R4 be the probability that you are ruined. Use the
result of Exercise to show that
B
p
RA _ 1 (‘1)

= N
1= (5)
with N = A+ B. If you start with 20 dollars and the gambler with 50
dollars and p = .45, find the probability of being ruined.

Exercise 1.1.11 The gambler realizes that the probability of ruining
you is at least 1 — (p/q)? (Why?). The gambler wants to make the
probability at least .999. For this, (p/q)? should be at most .001. If
the gambler offers you a game with p = .499, how large a stake should
she have?

1.2 Random walks in two dimensions
1.2.1 An example

We turn now to the more complicated problem of a random walk on a
two-dimensional array. In Figure | we illustrate such a walk. The large
dots represent boundary points; those marked E' indicate escape routes
and those marked P are police. We wish to find the probability p(z)
that our walker, starting at an interior point z, will reach an escape
route before he reaches a policeman. The walker moves from x = (a, b)
to each of the four neighboring points (a + 1,b), (a — 1,b), (a,b + 1),
(a,b—1) with probability i. If he reaches a boundary point, he remains
at this point.

The corresponding voltage problem is shown in Figure . The
boundary points P are grounded and points E are connected and fixed
at one volt by a one-volt battery. We ask for the voltage v(z) at the
interior points.
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1.2.2 Harmonic functions in two dimensions

We now define harmonic functions for sets of lattice points in the plane
(a lattice point is a point with integer coordinates). Let S = DU B
be a finite set of lattice points such that (a) D and B have no points
in common, (b) every point of D has its four neighboring points in S,
and (c) every point of B has at least one of its four neighboring points
in D. We assume further that S hangs together in a nice way, namely,
that for any two points P and () in S, there is a sequence of points
P; in D such that P, Py, P, ..., P,,Q forms a path from P to A. We
call the points of D the interior points of S and the points of B the
boundary points of S.

A function f defined on S is harmonic if, for points (a,b) in D, it
has the averaging property

fla+1,b)+ f(a—1,b) + f(a,b+ 1)+ f(a,b—1)

f(a,b) = 1 )

Note that there is no restriction on the values of f at the boundary
points.

We would like to prove that p(x) = wv(z) as we did in the one-
dimensional case. That p(x) is harmonic follows again by considering
all four possible first steps; that v(z) is harmonic follows again by
Kirchhoff’s Laws since the current coming into = = (a, b) is

v(ia+1,b) — v(a, b)+v(a —1,b) —v(a, b)+v(a, b+ 1) —v(a, b)+v(a, b—1)—v(a,b)

R R R R =0

Multiplying through by R and solving for v(a, b) gives

o(a,b) = v(a+1,b)+v(a—1,b)j‘:v(a,b+1)+u(a’b_1)'

Thus p(z) and v(x) are harmonic functions with the same boundary
values. To show from this that they are the same, we must extend the
Uniqueness Principle to two dimensions.

We first prove the Maximum Principle. If M is the maximum value
of f and if f(P) = M for P an interior point, then since f(P) is the
average of the values of f at its neighbors, these values must all equal
M also. By working our way due south, say, repeating this argument at
every step, we eventually reach a boundary point () for which we can
conclude that f(Q) = M. Thus a harmonic function always attains
its maximum (or minimum) on the boundary; this is the Maximum
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Principle. The proof of the Uniqueness Principle goes through as before
since again the difference of two harmonic functions is harmonic.

The fair game argument, using the Martingale Stopping Theorem,
holds equally well and again gives an alternative proof of the existence
and uniqueness to the solution of the Dirichlet problem.

Exercise 1.2.1 Show that if f and g are harmonic functions so is
h=a-f+b-g for constants a and b. This is called the superposition
principle.

Exercise 1.2.2 Let By, B, ..., B, be the boundary points for a region
S. Let e;(a,b) be a function that is harmonic in S and has boundary
value 1 at B; and 0 at the other boundary points. Show that if arbitrary
boundary values vy, vy, ..., v, are assigned, we can find the harmonic
function v with these values from the solutions eq, es,...,€,.

1.2.3 The Monte Carlo solution

Finding the exact solution to a Dirichlet problem in two dimensions is
not always a simple matter, so before taking on this problem, we will
consider two methods for generating approximate solutions. In this
section we will present a method using random walks. This method
is known as a Monte Carlo method, since random walks are random,
and gambling involves randomness, and there is a famous gambling
casino in Monte Carlo. In Section [.2.4], we will describe a much more
effective method for finding approximate solutions, called the method
of relazations.

We have seen that the solution to the Dirichlet problem can be
found by finding the value of a player’s final winning in the following
game: Starting at x the player carries out a random walk until reaching
a boundary point. He is then paid an amount f(y) if y is the boundary
point first reached. Thus to find f(x), we can start many random walks
at x and find the average final winnings for these walks. By the law of
averages (the law of large numbers in probability theory), the estimate
that we obtain this way will approach the true expected final winning
f(@).

Here are some estimates obtained this way by starting 10,000 ran-
dom walks from each of the interior points and, for each x, estimating
f(z) by the average winning of the random walkers who started at this
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point.
1 1

1.824 785 1
1 87 .503 317 O
1 0 0

This method is a colorful way to solve the problem, but quite inef-
ficient. We can use probability theory to estimate how inefficient it is.
We consider the case with boundary values I or 0 as in our example.
In this case, the expected final winning is just the probability that the
walk ends up at a boundary point with value 1. For each point x, as-
sume that we carry out n random walks; we regard each random walk
to be an experiment and interpret the outcome of the ith experiment
to be a “success” if the walker ends at a boundary point with a 1 and
a “failure” otherwise. Let p = p(x) be the unknown probability for
success for a walker starting at x and ¢ = 1 — p. How many walks
should we carry out to get a reasonable estimate for p? We estimate p
to be the fraction p of the walkers that end at a 1.

We are in the position of a pollster who wishes to estimate the
proportion p of people in the country who favor candidate A over B.
The pollster chooses a random sample of n people and estimates p
as the proportion p of voters in his sample who favor A. (This is a
gross oversimplification of what a pollster does, of course.) To estimate
the number n required, we can use the central limit theorem. This
theorem states that, if .S,,, is the number of successes in n independent
experiments, each having probability p for success, then for any k > 0

P <—k: <O k) ~ A(k),
\/Pq

where A(k) is the area under the normal curve between —k and k.
For k£ = 2 this area is approximately .95; what does this say about
p = S,/n? Doing a little rearranging, we see that

P(—2<7Lf<2)z.95

Vi
(2

or

<p—p<?2

@> ~ .95.

Since /pq < %,



Thus, if we choose % = .01, or n = 10, 000, there is a 95 percent chance
that our estimate p = S, /n will not be off by more than .01. This is
a large number for rather modest accuracy; in our example we carried
out 10,000 walks from each point and this required about 5 seconds on
the Dartmouth computer. We shall see later, when we obtain an exact
solution, that we did obtain the accuracy predicted.

Exercise 1.2.3 You play a game in which you start a random walk
at the center in the grid shown in Figure . When the walk reaches

+1 @ 9 i1

-1 @— ° -

Figure 5: &

the boundary, you receive a payment of +1 or —1 as indicated at the
boundary points. You wish to simulate this game to see if it is a
favorable game to play; how many simulations would you need to be
reasonably certain of the value of this game to an accuracy of .017
Carry out such a simulation and see if you feel that it is a favorable
game.

1.2.4 The original Dirichlet problem; the method of relax-
ations

The Dirichlet problem we have been studying is not the original Dirich-
let problem, but a discrete version of it. The original Dirichlet problem
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concerns the distribution of temperature, say, in a continuous medium;
the following is a representative example.

Suppose we have a thin sheet of metal gotten by cutting out a small
square from the center of a large square. The inner boundary is kept
at temperature 0 and the outer boundary is kept at temperature 1 as
indicated in Figure j.  The problem is to find the temperature at

u=1
e A s S e O s SO0
: : " o

Figure 6: &

points in the rectangle’s interior. If u(x,y) is the temperature at (x,y),
then u satisfies Laplace’s differential equation

Ugg + Uyy = 0.
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A function that satisfies this differential equation is called harmonic.
It has the property that the value u(z,y) is equal to the average of the
values over any circle with center (z,y) lying inside the region. Thus to
determine the temperature u(x,y), we must find a harmonic function
defined in the rectangle that takes on the prescribed boundary values.
We have a problem entirely analogous to our discrete Dirichlet problem,
but with continuous domain.

The method of relazations was introduced as a way to get approx-
imate solutions to the original Dirichlet problem. This method is ac-
tually more closely connected to the discrete Dirichlet problem than
to the continuous problem. Why? Because, faced with the continuous
problem just described, no physicist will hesitate to replace it with an
analogous discrete problem, approximating the continuous medium by
an array of lattice points such as that depicted in Figure [], and search-
ing for a function that is harmonic in our discrete sense and that takes
on the appropriate boundary values. It is this approximating discrete
problem to which the method of relaxations applies.

Here’s how the method goes. Recall that we are looking for a func-
tion that has specified boundary values, for which the value at any
interior point is the average of the values at its neighbors. Begin with
any function having the specified boundary values, pick an interior
point, and see what is happening there. In general, the value of the
function at the point we are looking at will not be equal to the average
of the values at its neighbors. So adjust the value of the function to be
equal to the average of the values at its neighbors. Now run through
the rest of the interior points, repeating this process. When you have
adjusted the values at all of the interior points, the function that re-
sults will not be harmonic, because most of the time after adjusting the
value at a point to be the average value at its neighbors, we afterwards
came along and adjusted the values at one or more of those neighbors,
thus destroying the harmony. However, the function that results after
running through all the interior points, if not harmonic, is more nearly
harmonic than the function we started with; if we keep repeating this
averaging process, running through all of the interior points again and
again, the function will approximate more and more closely the solution
to our Dirichlet problem.

We do not yet have the tools to prove that this method works for
a general initial guess; this will have to wait until later (see Exercise
[313). We will start with a special choice of initial values for which
we can prove that the method works (see Exercise [.2.3).
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We start with all interior points 0 and keep the boundary points
fixed.

o O O
o OO =
S =

After one iteration we have:

1 1

1 .547 648 1

1 .75 188 .047 O
1 0 0

Note that we go from left to right moving up each column replacing
each value by the average of the four neighboring values. The compu-
tations for this first iteration are

75 =(1/49)1+1+1+0)

1875 = (1/4)(.75+ 0+ 0+ 0)
5469 = (1/4)(\1875+ 1+ 1+0)
0469 = (1/4)(.1875+ 040+ 0)

64844 = (1/4)(.0469 + .5769 + 1 + 1)

We have printed the results to three decimal places. We continue the
iteration until we obtain the same results to three decimal places. This
occurs at iterations 8 and 9. Here’s what we get:

1 1

1 823 .787 1

1 876 .506 .323 0
1 0 0

We see that we obtain the same result to three places after only nine
iterations and this took only a fraction of a second of computing time.
We shall see that these results are correct to three place accuracy. Our
Monte Carlo method took several seconds of computing time and did
not even give three place accuracy.

The classical reference for the method of relaxations as a means
of finding approximate solutions to continuous problems is Courant,
Friedrichs, and Lewy [B]. For more information on the relationship
between the original Dirichlet problem and the discrete analog, see
Hersh and Griego [L{].
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Exercise 1.2.4 Apply the method of relaxations to the discrete prob-
lem illustrated in Figure [7.

Exercise 1.2.5 Consider the method of relaxations started with an
initial guess with the property that the value at each point is < the
average of the values at the neighbors of this point. Show that the
successive values at a point w are monotone increasing with a limit
f(u) and that these limits provide a solution to the Dirichlet problem.

1.2.5 Solution by solving linear equations

In this section we will show how to find an exact solution to a two-
dimensional Dirichlet problem by solving a system of linear equations.
As usual, we will illustrate the method in the case of the example
introduced in Section [[.2.]. This example is shown again in Figure
B; the interior points have been labelled a, b, ¢, d, and e. By our

1 |

' 9

a b
?7 @ |
c d e
| @ +— - ()

Figure 8: &

averaging property, we have

" _$b—|—l’d—|—2
‘o 4
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_ Xgt T+ 2
B 4
_ Tgt 3
4
To + Te + Ze

4
v, = Ty + Zlfd.

4

We can rewrite these equations in matrix form as

Ly

Le

Tqg —

1 -1/4 0 -1/4 0 Ta 1/2
—1/4 1 0 0 —1/4 || = 1/2

0 0 1 —1/4 0 z. | =|3/4
~1/4 0 -1/4 1 —=1/4]|| = 0

0 -1/4 0 -1/4 1 e 0

We can write this in symbols as
Ax =nu.
Since we know there is a unique solution, A must have an inverse and
x = A"
Carrying out this calculation we find

.823
787
Calculated x = | .876
.506
323

Here, for comparison, are the approximate solutions found earlier:

.824
785
Monte Carlo x = | .876
503
317

.823
787
Relaxed x = | .876
.506
323
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We see that our Monte Carlo approximations were fairly good in that
no error of the simulation is greater than .01, and our relaxed approx-
imations were very good indeed, in that the error does not show up at
all.

Exercise 1.2.6 Consider a random walker on the graph of Figure f.
Find the probability of reaching the point with a 1 before any of the

0 0

I

Y S— b 9 0
¢ d

<o
<o

Figure 9: &

points with 0’s for each starting point a, b, ¢, d.

Exercise 1.2.7 Solve the discrete Dirichlet problem for the graph shown
in Figure [J. The interior points are a,b,c,d. (Hint: See Exercise

73)

Exercise 1.2.8 Find the exact value, for each possible starting point,
for the game described in Exercise [.2.3. Is the game favorable starting
in the center?
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1.2.6 Solution by the method of Markov chains

In this section, we describe how the Dirichlet problem can be solved by
the method of Markov chains. This method may be viewed as a more
sophisticated version of the method of linear equations.

A finite Markov chain is a special type of chance process that may
be described informally as follows: we have a set S = {si,59,...,5.}
of states and a chance process that moves around through these states.
When the process is in state s;, it moves with probability Pj; to the
state s;. The transition probabilities P;; are represented by an r-by-r
matrix P called the transition matriz. To specify the chance process
completely we must give, in addition to the transition matrix, a method
for starting the process. We do this by specifying a specific state in
which the process starts.

According to Kemeny, Snell, and Thompson [[§], in the Land of
Oz, there are three kinds of weather: rain, nice, and snow. There are
never two nice days in a row. When it rains or snows, half the time it
is the same the next day. If the weather changes, the chances are equal
for a change to each of the other two types of weather. We regard the
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weather in the Land of Oz as a Markov chain with transition matrix:

R N S

R/1/2 1/4 1/4
P=N[1/2 0 1/2
S \1/4 1/4 1/2

When we start in a particular state, it is natural to ask for the
probability that the process is in each of the possible states after a
specific number of steps. In the study of Markov chains, it is shown
that this information is provided by the powers of the transition matrix.
Specifically, if P" is the matrix P raised to the nth power, the entries
P represent the probability that the chain, started in state s;, will,
after n steps, be in state s;. For example, the fourth power of the
transition matrix P for the weather in the Land of Oz is

R N S

R /.402 .199 .398
P*= N[ .398 .203 .398
S \.398 .199 .402

Thus, if it is raining today in the Land of Oz, the probability that
the weather will be nice four days from now is .199. Note that the
probability of a particular type of weather four days from today is es-
sentially independent of the type of weather today. This Markov chain
is an example of a type of chain called a regular chain. A Markov chain
is a regular chain if some power of the transition matrix has no zeros.
In the study of regular Markov chains, it is shown that the probability
of being in a state after a large number of steps is independent of the
starting state.

As a second example, we consider a random walk in one dimension.
Let us assume that the walk is stopped when it reaches either state 0
or 4. (We could use 5 instead of 4, as before, but we want to keep the
matrices small.) We can regard this random walk as a Markov chain
with states 0, 1, 2, 3, 4 and transition matrix given by

o 1 2 3 4

o/1 0 0 0 0
112 0 1/2 0 0
P=20 1/2 0 1/2 0
3l o 0o 1/2 0 1/2
4\0o 0 0 0 1



The states 0 and 4 are traps or absorbing states. These are states
that, once entered, cannot be left. A Markov chain is called absorbing
if it has at least one absorbing state and if, from any state, it is possible
(not necessarily in one step) to reach at least one absorbing state. Our
Markov chain has this property and so is an absorbing Markov chain.
The states of an absorbing chain that are not traps are called non-
absorbing.

When an absorbing Markov chain is started in a non-absorbing
state, it will eventually end up in an absorbing state. For non-absorbing
state s; and absorbing state s;, we denote by B;; the probability that
the chain starting in s; will end up in state s;. We denote by B the
matrix with entries B;;. This matrix will have as many rows as non-
absorbing states and as many columns as there are absorbing states.
For our random walk example, the entries B, 4 will give the probability
that our random walker, starting at x, will reach 4 before reaching 0.
Thus, if we can find the matrix B by Markov chain techniques, we will
have a way to solve the Dirichlet problem.

We shall show, in fact, that the Dirichlet problem has a natural
generalization in the context of absorbing Markov chains and can be
solved by Markov chain methods.

Assume now that P is an absorbing Markov chain and that there are
u absorbing states and v non-absorbing states. We reorder the states
so that the absorbing states come first and the non-absorbing states
come last. Then our transition matrix has the canonical form:

I 0O
P-(r o)
Here I is a u-by-u identity matrix; 0 is a matrix of dimension u-by-v

with all entries 0.
For our random walk example this canonical form is:

o 4 1 2 3
o/1 0 0 0 0
alo 1 0 o0 o0
1112 0 0 1/2 0
2l o 0 172 0 172
3lo 172 0 1/2 o0

The matrix N = (I — Q)~! is called the fundamental matriz for the
absorbing chain P. The entries N;; of this matrix have the following
probabilistic interpretation: Nj; is the expected number of times that
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the chain will be in state s; before absorption when it is started in s;.
(To see why this is true, think of how (I — Q)~! would look if it were
written as a geometric series.) Let 1 be a column vector of all 1’s. Then
the vector t = NI gives the expected number of steps before absorption
for each starting state.

The absorption probabilities B are obtained from N by the matrix
formula

B=(1I-Q)'R.

This simply says that to get the probability of ending up at a given
absorbing state, we add up the probabilities of going there from all the
non-absorbing states, weighted by the number of times we expect to be
in those (non-absorbing) states.

For our random walk example

0 1 0
Q=% 0
0 3 0
1 -1 0
— | 1 1
I-Q=|— 1 —
0 —3 1
1 2 3
1/3 1 3
N=I-Q'=2|1 21
3\s 1 3
21 1\ /1 3
t=N1=|1 2 1]|[1|=]4
1 3
i1 3\ 3
0 4
2 Log) (2 0y 1/y .
B=NR=[1 2 1[|0 0]=2]|3 3
1 3
3 L3/ N0 3/ 3\5 3

Thus, starting in state 3, the probability is 3/4 of reaching 4 before
0; this is in agreement with our previous results. From t we see that
the expected duration of the game, when we start in state 2, is 4.

For an absorbing chain P, the nth power P" of the transition prob-
abilities will approach a matrix P°° of the form

r- (5 3)
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We now give our Markov chain version of the Dirichlet problem. We
interpret the absorbing states as boundary states and the non-absorbing
states as interior states. Let B be the set of boundary states and D the
set of interior states. Let f be a function with domain the state space
of a Markov chain P such that for ¢ in D

Fi) = Y0 Pyf(i).

Then f is a harmonic function for P. Now f again has an averaging
property and extends our previous definition. If we represent f as a
column vector f, f is harmonic if and only if

Pf =f.

This implies that
P =P.-Pf=Pf=f

and in general
Pt =f.

Let us write the vector f as

where fg represents the values of f on the boundary and fp values on
the interior. Then we have

()= (5 a) (i)

fp = Bf;.

and

We again see that the values of a harmonic function are determined
by the values of the function at the boundary points.

Since the entries B;; of B represent the probability, starting in 1,
that the process ends at j, our last equation states that if you play a
game in which your fortune is f; when you are in state j, then your
expected final fortune is equal to your initial fortune; that is, fairness
is preserved. As remarked above, from Markov chain theory B = NR
where N = (I — Q)~'. Thus

fp = (I- Q) 'Rf.
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(To make the correspondence between this solution and the solution of
Section [.2.5, put A =1 — Q and u = Rf3.)

A general discussion of absorbing Markov chains may be found in
Kemeny, Snell, and Thompson [L7].

Exercise 1.2.9 Consider the game played on the grid in Figure [[].
You start at an interior point and move randomly until a boundary

—1

?

-1 @ T—l
—1 @ @ |

Figure 11: &

point is reached and obtain the payment indicated at this point. Using
Markov chain methods find, for each starting state, the expected value
of the game. Find also the expected duration of the game.

1.3 Random walks on more general networks
1.3.1 General resistor networks and reversible Markov chains

Our networks so far have been very special networks with unit resistors.
We will now introduce general resistor networks, and consider what it
means to carry out a random walk on such a network.

A graph is a finite collection of points (also called vertices or nodes)
with certain pairs of points connected by edges (also called branches).
The graph is connected if it is possible to go between any two points
by moving along the edges. (See Figure [[2)

We assume that GG is a connected graph and assign to each edge xy
a resistance R,,; an example is shown in Figure [3. The conductance
of an edge xy is Cyy = 1/R,,; conductances for our example are shown
in Figure [[4.
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Connected graph Disconnected graph

Figure 12: &

Resistances

Figure 13: &
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Conductances

Figure 14: &

We define a random walk on G to be a Markov chain with transition

matrix P given by
Cay

Cy
with C, = 3, Cyy. For our example, C, = 2, C, = 3, C. = 4, and
Cy =5, and the transition matrix P for the associated random walk is

Py, =

QO O Qe
Ulkislm O O Q
gk O O O

G O WI-NI= O
O Wb =

Its graphical representation is shown in Figure [I3.

Since the graph is connected, it is possible for the walker to go
between any two states. A Markov chain with this property is called
an ergodic Markov chain. Regular chains, which were introduced in
Section [L.2.6), are always ergodic, but ergodic chains are not always
regular (see Exercise [.3.])).

For an ergodic chain, there is a unique probability vector w that is
a fixed vector for P, i.e., wP = w. The component w; of w represents
the proportion of times, in the long run, that the walker will be in state
j. For random walks determined by electric networks, the fixed vector
is given by w; = C;/C, where C' =3, C,. (You are asked to prove this
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Figure 15: &

in Exercise [.3.2.) For our example C, = 2, C, = 3, C. =4, Cy = 5,
and C' = 14. Thus w = (2/14,3/14,4/14,5/14). We can check that w
is a fixed vector by noting that

o o L 1L
0 o I 2
(liii) 33_(£iii)
14 14 14 14 1101_14 14 14 14
4 4 2
12 2
5 5 5

In addition to being ergodic, Markov chains associated with net-
works have another property called reversibility. An ergodic chain is
said to be reversible if w, P, = w, Py, for all ,y. That this is true for
our network chains follows from the fact that

Cay Coz _
C, c,

Thus, dividing the first and last term by C, we have w, P,, = w,Py,.

To see the meaning of reversibility, we start our Markov chain with
initial probabilities w (in equilibrium) and observe a few states, for
example

CoPyy = Cp—l = Cyy = Cpo = C,

CyPys.

acbd.
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The probability that this sequence occurs is

2 11 2 1
aPacPcP = T 55 P
v M T 9 1 3 T ’a

The probability that the reversed sequence
dbca

occurs 1s £ o9 1 1 1
WPy PyePog = — - = = -

Thus the two sequences have the same probability of occurring.

In general, when a reversible Markov chain is started in equilibrium,
probabilities for sequences in the correct order of time are the same as
those with time reversed. Thus, from data, we would never be able to
tell the direction of time.

If P is any reversible ergodic chain, then P is the transition ma-
trix for a random walk on an electric network; we have only to define
Cypy = wyPyy. Note, however, if P,, # 0 the resulting network will
need a conductance from x to x (see Exercise [:3-4). Thus reversibility
characterizes those ergodic chains that arise from electrical networks.
This has to do with the fact that the physical laws that govern the
behavior of steady electric currents are invariant under time-reversal
(see Onsager [29)).

When all the conductances of a network are equal, the associated
random walk on the graph G of the network has the property that, from
each point, there is an equal probability of moving to each of the points
connected to this point by an edge. We shall refer to this random walk
as stmple random walk on G. Most of the examples we have considered
so far are simple random walks. Our first example of a random walk
on Madison Avenue corresponds to simple random walk on the graph
with points 0,1,2,..., N and edges the streets connecting these points.
Our walks on two dimensional graphs were also simple random walks.

Exercise 1.3.1 Give an example of an ergodic Markov chain that is
not regular. (Hint: a chain with two states will do.)

Exercise 1.3.2 Show that, if P is the transition matrix for a random
walk determined by an electric network, then the fixed vector w is given
by w, = % where C, = 37, Cpy and C' = 35, C,.
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Exercise 1.3.3 Show that, if P is a reversible Markov chain and a, b, ¢
are any three states, then the probability, starting at a, of the cycle
abca is the same as the probability of the reversed cycle acba. That
is PypbPyP., = P,.P.yP,,. Show, more generally, that the probability
of going around any cycle in the two different directions is the same.
(Conversely, if this cyclic condition is satisfied, the process is reversible.
For a proof, see Kelly [[J].)

Exercise 1.3.4 Assume that P is a reversible Markov chain with P,, =
0 for all . Define an electric network by C,, = w,F,,. Show that the
Markov chain associated with this circuit is P. Show that we can allow
P,. > 0 by allowing a conductance from z to x.

Exercise 1.3.5 For the Ehrenfest urn model, there are two urns that
together contain N balls. Each second, one of the N balls is chosen at
random and moved to the other urn. We form a Markov chain with
states the number of balls in one of the urns. For N = 4, the resulting
transition matrix is

O OwIm O O
OoON- O = =
Orlw Orlw O N
— OO O W
Orimr O O O

W
(@)

0

Show that the fixed vector w is the binomial distribution w = (55, 16, 16> 16> 16)-
Determine the electric network associated with this chain.

1.3.2 Voltages for general networks; probabilistic interpreta-
tion

We assume that we have a network of resistors assigned to the edges of
a connected graph. We choose two points a and b and put a one-volt
battery across these points establishing a voltage v, = 1 and v, = 0,
as illustrated in Figure [§.  We are interested in finding the volt-
ages v, and the currents i,, in the circuit and in giving a probabilistic
interpretation to these quantities.

We begin with the probabilistic interpretation of voltage. It will
come as no surprise that we will interpret the voltage as a hitting prob-
ability, observing that both functions are harmonic and that they have
the same boundary values.
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I volt

Figure 16: &

By Ohm’s Law, the currents through the resistors are determined
by the voltages by

I (Vi = 0,)Cly.

lpy =
R,
Y

Note that i,, = —iy,. Kirchhoftf’s Current Law requires that the total
current flowing into any point other than a or bis 0. That is, for z # a, b

> gy = 0.
Y

This will be true if

Z(Ux —vy)Cyy =0

Y

Uy Z Cry = Z Cryvy.
y y

Thus Kirchhoft’s Current Law requires that our voltages have the prop-
erty that

or

Cy
VU, = Z Cyvy = Znyvy
z y

Y
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for x # a,b. This means that the voltage v, is harmonic at all points
x # a,b.

Let h, be the probability, starting at x, that state a is reached before
b. Then h, is also harmonic at all points x # a,b. Furthermore

Vg = hyg =1

and
Vp = hb = 0.

Thus if we modify P by making a and b absorbing states, we obtain
an absorbing Markov chain P and v and h are both solutions to the
Dirichlet problem for the Markov chain with the same boundary values.
Hence v = h.

For our example, the transition probabilities P,, are shown in Figure
[M. The function v, is harmonic for P with boundary values v, =

c
@
1 I
4 4
2 |
1 e 2 = - b
5 2 ¢
| 2
S P N
d
Figure 17: &

1, Vp = 0.

To sum up, we have the following:

Intrepretation of Voltage. When a unit voltage is applied be-
tween a and b, making v, = 1 and v, = 0, the voltage v, at any point x
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represents the probability that a walker starting from z will return to
a before reaching b.

In this probabilistic interpretation of voltage, we have assumed a
unit voltage, but we could have assumed an arbitrary voltage v, be-
tween a and b. Then the hitting probability h, would be replaced by
an expected value in a game where the player starts at  and is paid
v, if a is reached before b and 0 otherwise.

Let’s use this interpretation of voltage to find the voltages for our
example. Referring back to Figure [[7, we see that

Ve, = 1
Vp = 0
1 1
Ve = Z + §'Ud
12
Vg 5 + 5110
Solving these equations yields v, = % and vy = %. From these
voltages we obtain the current ¢,,. For example 7.4 = (% - %) -2 = %.
The resulting voltages and currents are shown in Figure [§.  The

voltage at c is % and so this is also the probability, starting at ¢, of

reaching a before b.

1.3.3 Probabilistic interpretation of current

We turn now to the probabilistic interpretation of current. This in-
terpretation is found by taking a naive view of the process of electri-
cal conduction: We imagine that positively charged particles enter the
network at point a and wander around from point to point until they
finally arrive at point b, where they leave the network. (It would be
more realistic to imagine negatively charged particles entering at b and
leaving at a, but realism is not what we’re after.) To determine the
current ., along the branch from x to y, we consider that in the course
of its peregrinations the point may pass once or several times along the
branch from x to y, and in the opposite direction from y to z. We may
now hypothesize that the current i,, is proportional to the expected net
number of movements along the edge from x to y, where movements
from y back to x are counted as negative. This hypothesis is correct,
as we will now show.

The walker begins at a and walks until he reaches b; note that if
he returns to a before reaching b, he keeps on going. Let u, be the
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expected number of visits to state x before reaching b. Then wu, = 0
and, for x # a, b,
Uy = Z Uy Py
)

This last equation is true because, for x # a, b, every entrance to x

must come from some y.
We have seen that C, P, = C,P,;; thus

Pmny
Uy = Uu

or u u
Ys _yp,
C, " c,
This means that v, = u,/C, is harmonic for x # a,b. We have also
v, = 0 and v, = u,/C,. This implies that v, is the voltage at x when
we put a battery from a to b that establishes a voltage u,/C, at a and
voltage 0 at b. (We remark that the expression v, = u,/C, may be
understood physically by viewing u, as charge and C, as capacitance;

see Kelly [[3] for more about this.)
We are interested in the current that flows from z to y. This is

Uy U Uy Cry UyCla

Gay = (V—0y)Cy = <C_:c - FZ) Cpy = o y_yTyy = Uy Pry—uy Py
Now u, P,, is the expected number of times our walker will go from x
to y and u, Py, is the expected number of times he will go from y to
x. Thus the current i,, is the expected value for the net number of
times the walker passes along the edge from x to y. Note that for any
particular walk this net value will be an integer, but the expected value
will not.

As we have already noted, the currents ,, here are not those of our
original electrical problem, where we apply a 1-volt battery, but they
are proportional to those original currents. To determine the constant
of proportionality, we note the following characteristic property of the
new currents i,,: The total current flowing into the network at a (and
out at b) is 1. In symbols,

D gy = 1.
y

Indeed, from our probabilistic interpretation of ¢,, this sum represents
the expected value of the difference between the number of times our
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walker leaves a and enters a. This number is necessarily one and so the
current flowing into a is 1.

This unit current flow from a to b can be obtained from the currents
in the original circuit, corresponding to a 1-volt battery, by dividing
through by the total amount of current 37, 7, flowing into a; doing
this to the currents in our example yields the unit current flow shown
in Figure [[J.

l — _——
19

The untt current How

Figure 19: &

This shows that the constant of proportionality we were seeking to
determine is the reciprocal of the amount of current that flows through
the circuit when a I-volt battery is applied between a and b. This
quantity, called the effective resistance between a and b, is discussed in
detail in Section [L.3.4.

To sum up, we have the following:

Interpretation of Current. When a unit current flows into a
and out of b, the current 4., flowing through the branch connecting x to
y is equal to the expected net number of times that a walker, starting
at a and walking until he reaches b, will move along the branch from x
to y. These currents are proportional to the currents that arise when a
unit voltage is applied between a and b, the constant of proportionality
being the effective resistance of the network.
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We have seen that we can estimate the voltages by simulation. We
can now do the same for the currents. We have to estimate the expected
value for the net number of crossings of xy. To do this, we start a large
number of walks at a and, for each one, record the net number of
crossings of each edge and then average these as an estimate for the
expected value. Carrying out 10,000 such walks yielded the results
shown in Figure 0.

.4754/

Estimates of currents by simulation Calculated currents

Figure 20: &

The results of simulation are in good agreement with the theoretical
values of current. As was the case for estimates of the voltages by
simulation, we have statistical errors. Our estimates have the property
that the total current flowing into a is 1, out of b is 1, and into any
other point it is 0. This is no accident; the explanation is that the
history of each walk would have these properties, and these properties
are not destroyed by averaging.

Exercise 1.3.6 Kingman [[[7] introduced a different model for current
flow. Kelly [[3] gave a new interpretation of this model. Both authors
use continuous time. A discrete time version of Kelly’s interpretation
would be the following: At each point of the graph there is a black
or a white button. Each second an edge is chosen; edge xy is chosen
with probability C,/C where C' is the sum of the conductances. The
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buttons on the edge chosen are then interchanged. When a button
reaches a it is painted black, and when a button reaches b it is painted
white. Show that there is a limiting probability p, that site x has a
black button and that p, is the voltage v, at x when a unit voltage is
imposed between a and b. Show that the current i,, is proportional to
the net flow of black buttons along the edge xy. Does this suggest a
hypothesis about the behavior of conduction electrons in metals?

1.3.4 Effective resistance and the escape probability

When we impose a voltage v between points a and b, a voltage v, = v
is established at a and v, = 0, and a current i, = >, %4, will low
into the circuit from the outside source. The amount of current that
flows depends upon the overall resistance in the circuit. We define
the effective resistance Rog between a and b by R.g = va/i,. The
reciprocal quantity Cog = 1/ R = ia/va is the effective conductance.
If the voltage between a and b is multiplied by a constant, then the
currents are multiplied by the same constant, so R.g depends only on
the ratio of v, to 7,.

Let us calculate Ry for our example. When a unit voltage was im-
posed, we obtained the currents shown in Figure [§. The total current
flowing into the circuit is i, = 9/16410/16 = 19/16. Thus the effective

resistance is
Vg 1 16

ta 16

We can interpret the effective conductance probabilistically as an
escape probability. When v, = 1, the effective conductance equals the
total current i, flowing into a. This current is
. C
la = Z(,Ua - ’Uy)cay = Z('Ua - 'Uy)#ca = Ca(l - Z Payvy) - CapeSC

Yy Yy a Yy

where pesc is the probability, starting at a, that the walk reaches b
before returning to a. Thus

Ceff = Cupesc
and o
Pesc = Cef
In our example C, = 2 and we found that i, = 19/16. Thus
19
Pesc = 39

42



In calculating effective resistances, we shall use two important facts
about electric networks. First, if two resistors are connected in series,
they may be replaced by a single resistor whose resistance is the sum of
the two resistances. (See Figure R1.) Secondly, two resistors in parallel

R, R,
—_—_——AMAN —&- WAAN
R| ‘+ RZ
AN
Figure 21: &

may be replaced by a single resistor with resistance R such that

1ol 1 Ry
R R, Ry Ri+Ry,

(See Figure P2.)

Figure 22: &
The second rule can be stated more simply in terms of conductances:

If two resistors are connected in parallel, they may be replaced by a
single resistor whose conductance is the sum of the two conductances.
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We illustrate the use of these ideas to compute the effective resis-
tance between two adjacent points of a unit cube of unit resistors, as
shown in Figure PJ. We put a unit battery between a and b. Then,

Figure 23: &

by symmetry, the voltages at ¢ and d will be the same as will those at
e and f. Thus our circuit is equivalent to the circuit shown in Figure

.

{c,d}

{e, I}

Figure 24: &

Using the laws for the effective resistance of resistors in series and
parallel, this network can be successively reduced to a single resistor
of resistance 7/12 ohms, as shown in Figure P§.  Thus the effective
resistance is 7/12. The current flowing into a from the battery will be

44



N | —
N |

b9 | —

a
! |
N
2+ =
1 2
b 2
a
7z
S
b
a
| 7
[ 4 12
b
Figure 25: &

45



lg = RL = 12/7. The probability that a walk starting at a will reach

e
b before returning to a is

i L2y
- 2 = e = —.
besc = =3 T 7

This example and many other interesting connections between elec-
tric networks and graph theory may be found in Bollobas [P].

Exercise 1.3.7 A bug walks randomly on the unit cube (see Figure
PA). If the bug starts at a, what is the probability that it reaches food

Figure 26: &

at b before returning to a?

Exercise 1.3.8 Consider the Ehrenfest urn model with N = 4 (see
Exercise [.3.]). Find the probability, starting at 0, that state 4 is
reached before returning to 0.

Exercise 1.3.9 Consider the ladder network shown in Figure P7.  Show
that if R,, is the effective resistance of a ladder with n rungs then R; = 2

and
24+ 2R,

2+ R,
Use this to show that lim,_., R, = V2.

Rn-‘rl -

Exercise 1.3.10 A drunken tourist starts at her hotel and walks at
random through the streets of the idealized Paris shown in Figure P§.
Find the probability that she reaches the Arc de Triomphe before she
reaches the outskirts of town.

46



-

Figure 28: &

47



1.3.5 Currents minimize energy dissipation

We have seen that when we impose a voltage between a and b voltages v,
are established at the points and currents i, flow through the resistors.
In this section we shall give a characterization of the currents in terms of
a quantity called energy dissipation. When a current i,, flows through
a resistor, the energy dissipated is

.2 .
Uy Ry

this is the product of the current i, and the voltage v,y = iy Rsy. The
total energy dissipation in the circuit is

1,
E = 5 Z Zmery'
.,y
Since iy, Ry, = v, — vy, We can also write the energy dissipation as
1 .
E = 3 D gy (Vs — vy).
@y

The factor 1/2 is necessary in this formulation since each edge is counted
twice in this sum. For our example, we see from Figure [[§ that

E_(9>21+(m)21+<7>21+(2)21+(m>21_19
~\16 16 16 16 2 16 2 16

If a source (battery) establishes voltages v, and v, at a and b, then
the energy supplied is (v, — vp)i, Where i, = 3, i4,. By conservation

of energy, we would expect this to be equal to the energy dissipated.

In our example v, — v, = 1 and 7, = %, so this is the case. We shall

show that this is true in a somewhat more general setting.
Define a flow j from a to b to be an assignment of numbers j,, to
pairs xy such that

() Joy = —Jya
(b) Eijy =0 lf'I 7é CL,b
(¢) jzy = 0 if z and y are not adjacent.

We denote by j, = >, jay the flow into x from the outside. By (b)
jz = 0 for x # a,b. Of course j, = —j,. To verify this, note that

. ‘ ‘ . 1 ‘ ‘
Ja+ 6 = Z]x = ZZ]xy = 52(]:{:3/ _l']yx) = 07
x y

z z,y
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SINCe Jrpy = —Jyao-

With this terminology, we can now formulate the following version
of the principle of conservation of energy:

Conservation of Energy. Let w be any function defined on the
points of the graph and j a flow from a to b. Then

. 1 .
(Wq — W) Jo = 2 Z(wm - wy)Jwy-
zy
Proof.
Z(wr —Wy)Jay = Z W Zhy Z Wy ijy
zy
= waZ]ay‘l‘wa]by waZ]xa_waij
wa]a + wb]b - a(_]a) - 'lUb(_jb)
2(wa - wb)jw
Thus 1
(We — wp)ja = 2 Z(wx — Wy ) Jy
zy

as was to be proven. <

If we now impose a voltage v, between a and b with v, = 0, we
obtain voltages v, and currents i,,. The currents i give a flow from a
to b and so by the previous result, we conclude that

1

Ua'éa = 5 Z(U:c Z:(:y szy TY*

x?y

Recall that Reff = v, /1,. Thus in terms of resistances we can write this
as

:vy eff szy Ty

If we adjust v, so that 7, = 1, we call the resulting flow the unit
current flow from a to b. The unit current flow from a to b is a particular
example of a unit flow from a to b, which we define to be any flow i,
from a to b for which i, = —i;, = 1. The formula above shows that the
energy dissipated by the unit current flow is just R.g. According to a
basic result called Thomson’s Principle, this value is smaller than the
energy dissipated by any other unit flow from a to b. Before proving
this principle, let us watch it in action in the example worked out above.
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Recall that, for this example, we found the true values and some
approximate values for the unit current flow; these were shown in Figure
P0. The energy dissipation for the true currents is

16
E=R.g= 10~ .8421053.

Our approximate currents also form a unit flow and, for these, the
energy dissipation is

_ 1
E = (.4754)2-1+(.5246)2-1+(.3672)2-1+(.1082)2-§+(.6328)2- = .8421177.

N —

We note that E is greater than E, though just barely.

Thomson’s Principle. (Thomson [B3]). If i is the unit flow
from a to b determined by Kirchhoff’s Laws, then the energy dissipation
5 >0y 12, Ry minimizes the energy dissipation >, , 72, Ry, among all
unit flows j from a to b.

Proof. Let j be any unit flow from a to b and let dyy = juy — tay-
Then d is a flow from a to b with d, = >, d,, =1—1=0.

ngyR:cy = Z(ny + dxy)2ny
x,y z,y
= Z ’iinyy + 2 Z igcngcydacy + Z d?cyRmy
T,y T,y T,y
= Z ’éinyy + 2 Z('Ux - 'Uy)d:cy + Z d?cnyy‘
T,y x,y z,y

Setting w = v and j = d in the conservation of energy result above
shows that the middle term is 4(v, — v)d, = 0. Thus

2 2 2 2
Z]xnyy = Z Z:cnyy + Z d:cnyy > Z nyny‘
T,y T,y z,y T,y

This completes the proof.

Exercise 1.3.11 The following is the so-called “dual form” of Thom-
son’s Principle. Let u be any function on the points of the graph G of
a circuit such that u, = 1 and u, = 0. Then the energy dissipation

1
9 Z(um - uy>2cry
T,y

is minimized by the voltages v, that result when a unit voltage is es-
tablished between a and b, i.e., v, = 1, v, = 0, and the other voltages
are determined by Kirchhoft’s Laws. Prove this dual principle. This
second principle is known nowadays as the Dirichlet Principle, though
it too was discovered by Thomson.
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Exercise 1.3.12 In Section [.2.4 we stated that, to solve the Dirichlet
problem by the method of relaxations, we could start with an arbitrary
initial guess. Show that when we replace the value at a point by the
average of the neighboring points the energy dissipation, as expressed in
Exercise [[.3.T]], can only decrease. Use this to prove that the relaxation
method converges to a solution of the Dirichlet problem for an arbitrary
initial guess.

1.4 Rayleigh’s Monotonicity Law
1.4.1 Rayleigh’s Monotonicity Law

Next we will study Rayleigh’s Monotonicity Law. This law from electric

network theory will be an important tool in our future study of random

walks. In this section we will give an example of the use of this law.
Consider a random walk on streets of a city as in Figure B9. Let

Figure 29: &

pesc be the probability that a walker starting from a reaches b before
returning to a. Assign to each edge a unit resistance and maintain a
voltage of one volt between a and b; then a current 4, will flow into the
circuit and we showed in Section [[.3.4] that

. ZG, ZG,
Pesc = c. =7
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Now suppose that one of the streets (not connected to a) becomes
blocked. Our walker must choose from the remaining streets if he
reaches a corner of this street. The modified graph will be as in Figure
B(J. We want to show that the probability of escaping to b from a is

Figure 30: &

decreased.

Consider this problem in terms of our network. Blocking a street
corresponds to replacing a unit resistor by an infinite resistor. This
should have the effect of increasing the effective resistance R.g of the
circuit between a and b. If so, when we put a unit voltage between a
and b less current will flow into the circuit and

Dose = e 1
“CT 4T AR g
will decrease.

Thus we need only show that when we increase the resistance in one
part of a circuit, the effective resistance increases. This fact, known as
Rayleigh’s Monotonicity Law, is almost self-evident. Indeed, the father
of electromagnetic theory, James Clerk Maxwell, regarded this to be
the case. In his Treatise on Electricity and Magnetism ([R1)], p. 427),
he wrote

If the specific resistance of any portion of the conductor
be changed, that of the remainder being unchanged, the
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resistance of the whole conductor will be increased if that
of the portion is increased, and diminished if that of the
portion is diminished. This principle may be regarded as
self-evident . ...

Rayleigh’s Monotonicity Law. If the resistances of a circuit
are increased, the effective resistance R, between any two points can
only increase. If they are decreased, it can only decrease.

Proof. Let i be the unit current flow from a to b with the resistors

R,,. I:et j be the unit current flow from a to b with the resistors R,
with R, > R,,. Then

> Il 2 5 L2
Reft = 5 D JayRay > 5 > Jay PRy
x,y x,y

But since j is a unit flow from a to b, Thomson’s Principle tells us that
the energy dissipation, calculated with resistors R,,, is bigger than that
for the true currents determined by these resistors: that is

1 . 1 )
B) Z]:%nyy > ) Zlinyy = Reff'
T,y T,y

Thus Reff > Ry The proof for the case of decreasing resistances is
the same.

Exercise 1.4.1 Consider a graph G and let R,, and R,, be two differ-
ent assignments of resistances to the edges of G. Let ny = ny + Ry
Let R, Reffv and Reﬂ? be the effective resistances when R, R, and R,
respectively, are used. Prove that

Reff > Reﬂ? + Reff .

Conclude that the effective resistance of a network is a concave function
of any of its component resistances (Shannon and Hagelbarger [BI].)

Exercise 1.4.2 Show that the effective resistance of the circuit in Fig-
ure Bl is greater than or equal to the effective resistance of the circuit
in Figure BJ. Use this to show the following inequality for R;; > 0:

1 1 1
1 1 - +

1 1
Ri1+Ra2 + Ra1+Ra2 R + Ro1

See the note by Lehman [[§] for a proof of the general Minkowski
inequality by this method.

1 1
Ri2 + Ra2
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Figure 31: &

R“ Rll

Figure 32: &

Exercise 1.4.3 Let P be the transition matrix associated with an elec-
tric network and let a, b, 7, s be four points on the network. Let P be a
transition matrix defined on the state-space S = {a,b,r,s}. Let P; =0
and for i # j let P;; be the probability that, if the chain P is started
in state 7, then the next time it is in the set S — {i} it is in the state j.
Show that P is a reversible Markov chain and hence corresponds to an
electric network of the form of a Wheatstone Bridge, shown in Figure
B3. Explain how this proves that, in order to prove the Monotonicity
Law, it is sufficient to prove that R.g is a monotone function of the
component resistances for a Wheatstone Bridge. Give a direct proof of
the Monotonicity Law for this special case.

1.4.2 A probabilistic explanation of the Monotonicity Law

We have quoted Maxwell’s assertion that Rayleigh’s Monotonicity Law
may be regarded as self-evident, but one might feel that any argument
in terms of electricity is only self-evident if we know what electricity is.
In Cambridge, they tell the following story about Maxwell: Maxwell
was lecturing and, seeing a student dozing off, awakened him, asking,
“Young man, what is electricity?” “I’'m terribly sorry, sir,” the student
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Figure 33: &

replied, ‘I knew the answer but I have forgotten it.” Maxwell’s response
to the class was, “Gentlemen, you have just witnessed the greatest
tragedy in the history of science. The one person who knew what
electricity is has forgotten it.”

To say that our intuition about the Monotonicity Law is only as
solid as our understanding of electricity is not really a valid argument,
of course, because in saying that this law is self-evident we are secretly
depending on the analogy between electricity and the flow of water (see
Feynman [{], Vol. 2, Chapter 12). We just can’t believe that if a water
main gets clogged the total rate of flow out of the local reservoir is
going to increase. But as soon as we admit this, some pedant will ask
if we're talking about flows with low Reynolds number, or what, and
we’ll have to admit that we don’t understand water any better than we
understand electricity.

Whatever our feelings about electricity or the flow of water, it seems
desirable to have an explanation of the Monotonicity Law in terms of
our random walker. We now give such an explanation.

We begin by collecting some notation and results from previous
sections. As usual, we have a network of conductances (streets) and a
walker who moves from point x to point y with probability

Cay
s

where Cy, is the conductance from x to y and C, = >°, Cy,,. We choose
two preferred points a and b. The walker starts at a and walks until
he reaches b or returns to a. We denote by v, the probability that the
walker, starting at a, reaches a before b. Then v, = 1, v, = 0, and the

P, =
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function v, is harmonic at all points x # a,b. We denote by pesc the
probability that the walker, starting at a, reaches b before returning to
a. Then

Pesc = 1 — Zpaxvx~

Now we have seen that the effective conductance between a and b

is
Cupesc-

We wish to show that this increases whenever one of the conductances
C,s is increased. If a is different from r or s, we need only show that pesc
increases. The case where r or s coincides with a is easily disposed of
(see Exercise [.4.4). The case where r or s coincides with b is also easy
(see Exercise [[47). Hence from now on we will assume that r, s # a
and r, s # b.

Instead of increasing C.;, we can think of adding a new edge of
conductance € between r and s. (See Figure B4.) We will call this

Figure 34: &

new edge a “bridge” to distinguish it from the other edges. Note that
the graph with the bridge added will have more than one edge between
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r and s (unless there was no edge between r and s in the original
graph), and this will complicate any expression that involves summing
over edges. Everything we have said or will say holds for graphs with
“multiple edges” as well as for graphs without them. So far, we have
chosen to keep our expressions simple by assuming that an edge is
determined by its endpoints. The trade-off is that in the manipulations
below, whenever we write a sum over edges we will have to add an extra
term to account for the bridge.

Why should adding the bridge increase the escape probability? The
first thing you think is, “Of course, it opens up new possibilities of
escaping!” The next instant you think, “Wait a minute, it also opens
up new possibilities of returning to the starting point. What ensures
that the first effect will outweigh the second?” As we shall see, the
proper reply is, “Because the walker will cross the bridge more often in
the good direction than in the bad direction.” To turn this blithe reply
into a real explanation will require a little work, however.

To begin to make sense of the notion that the bridge gets used more
often in the good direction than the bad, we will make a preliminary
argument that applies to any edge of any graph. Let G be any graph,
and let rs be any edge with endpoints not a or b. v, > v,. Since the
walker has a better chance to escape from s than from r, this means
that to cross this edge in the good direction is to go from r to s We
shall show that the walker will cross the edge from r to s more often
on the average than from s to r.

Let u, be the expected number of times the walker is at z and u,,
the expected number of times he crosses the edge xy from x to y before
he reaches b or returns to a. The calculation carried out in Section
[3:3 shows that u,/C, is harmonic for x # a,b with u,/C, = 1/C,
and b,/C, = 0. But the function v, /C, also has these properties, so by
the Uniqueness Principle

Uy (%
C, Co
Now
. P . CTS o CT’S
uT’S - u?“ rs — u?” C - ,UT’ C
T a
and
o P = Csr o Csr
uS'f‘ - uS sr T uS - US M
Cs C,

Since C,, = (4, and since by assumption v, > v, this means that
Ups > Ug.. Therefore, we see that any edge leads the walker more often
to the more favorable of the points of the edge.
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Now let’s go back and think about the graph with the bridge. The
above discussion shows that the bridge helps in the sense that, on the
average, the bridge is crossed more often in the direction that improves
the chance of escaping. While this fact is suggestive, it doesn’t tell us
that we are more likely to escape than if the bridge weren’t there; it
only tells us what goes on once the bridge is in place. What we need is
to make a “before and after” comparison.

Recall that we are denoting the conductance of the bridge by €. To
distinguish the quantities pertaining to the walks with and without the
bridge, we will put (€) superscripts on quantities that refer to the walk
with the bridge, so that, e.g., pgs)c denotes the escape probability with
the bridge.

Now let d© denote the expected net number of times the walker
crosses from r to s. As above, we have

(© ul®
4o —yo_¢ o _f % U ‘
" " Crte Cote)f

P(eﬁs)c = pesc + (v, — Us)d(e)-

Why. Every time you use the bridge to go from r to s, you improve
your chances of escaping by

(I_US)_(I_UT’)ZUT’_US

assuming that you would continue your walk without using the bridge.
To get the probability of escaping with the bridge, you take the prob-
ability of escaping without the bridge, and correct it by adding in the
change attributable to the bridge, which is the difference in the origi-
nal escape probabilities at the ends of the bridge, multiplied by the net
number of times you expect to cross the bridge. ©

Proof. Suppose you're playing a game where you walk around the
graph with the bridge, and your fortune when you'’re at z is v,, which
is the probability that you would return to a before reaching b if the
bridge weren’t there. You start at a, and walk until you reach b or
return to a.

This is not a fair game. Your initial fortune is 1 since you start at
a and v, = 1. Your expected final fortune is

1-(1 —pgs)c) +0 ‘Pgs)c = —Pgs)c-
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The amount you expect to lose by participating in the game is

p(ees)c-
(Note that escaping has suddenly become a bad thing!)
Let’s analyze where it is that you expect to lose money. First of all,
you lose money when you take the first step away from a. The amount
you expect to lose is

1> P9, = pesc.

Now if your fortune were given by v{¢) instead of v,, the game would
be fair after this first step. However, the function v, is not harmonic
for the walk with the bridge; it fails to be harmonic at r» and s. Every
time you step away from 7, you expect to lose an amount

Chrs € B €
vy — <Z Cr+€vx+ Cr+€v5> = (v, US)CT%—E'

T

Similarly, every time you step away from s you expect to lose an amount

€

('US — 'Ur)m.

The total amount you expect to lose by participating in the game
is:

expected loss at first step +
(expected loss at r) - (expected number of times at r) +

(expected loss at s) - (expected number of times at s)

= Pesc t+
€
_ = (9
(v, US)CT +€uT +
€
(€)
Vs — Up) =1y
( )Cs + €

= pesc + (v, — Us)d(g)-

Equating this with our first expression for the expected cost of playing
the game yields the formula we were trying to prove.
According to the formula just established,

() (e)
€ U, Ug
p(es)c — Pesc = (Ur - Us) ( ) €.

C’r+e_08+e
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For small €, we will have

ul® ul® Uy Ug Uy Vg

T S 7= e

C.+e¢ C.+e C, C, C, O,

so for small €
2 €
c,

This approximation allows us to conclude that

Pgs)c — Pesc ~ (vr — Vg)

P(eﬁs)c > pesc > 0

for small €. But this is enough to establish the monotonicity law, since
any finite change in € can be realized by making an infinite chain of
graphs each of which is obtained from the one before by adding a bridge
of infinitesimal conductance.

To recapitulate, the difference in the escape probabilities with and
without the bridge is obtained by taking the difference between the
original escape probabilities at the ends of the bridge, and multiplying
by the expected net number of crossings of the bridge. This quantity
is positive because the walker tends to cross the bridge more often in
the good direction than in the bad direction.

Exercise 1.4.4 Give a probabilistic argument to show that C,pesc
increases with Cy, for any r. Give an example to show that pesc by
itself may actually decrease.

Exercise 1.4.5 Give a probabilistic argument to show that C,pesc
increases with C, for any r.

Exercise 1.4.6 Show that when v, = v,, changing the value of C,,
does not change pesc.

Exercise 1.4.7 Show that
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Exercise 1.4.8 In this exercise we ask you to derive an exact formula
for the change in escape probability

pg,szc — Pesc,

in terms of quantities that refer only to the walk without the bridge.

(a) Let N, denote the expected number of times in state y for a
walker who starts at x and walks around the graph without the bridge
until he reaches a or b. It is a fact that

€

Cs+e

u = uy + 0l (N + 1= Npy) + 0

r r C i (NT’T’_NST’)'

Explain in words why this formula is true.
(b) This equation for u{? can be rewritten as follows:

Cy

© = d9 (N, — N,).
e Uy + d*(Ng — Nyp)

Prove this formula. (Hint: Consider a game where your fortune at z is
N,,, and where you start from a and walk on the graph with the bridge
until you reach b or return to a.)

(c) Write down the corresponding formula for «{, and use this
formula to get an expression for d() in terms of quantities that refer to
the walk without the bridge.

(d) Use the expression for d© to express pi2e — pesc in terms of
quantities that refer to the walk without the bridge, and verify that
the value of your expression is > 0 for € > 0.

Exercise 1.4.9 Give a probabilistic interpretation of the energy dissi-
pation rate.

1.4.3 A Markov chain proof of the Monotonicity Law

Let P be the ergodic Markov chain associated with an electric network.
When we add an e bridge from r to s, we obtain a new transition
matrix P that differs from P only for transitions from r and s. We
can minimize the differences between P and P(©) by replacing P by the
matrix P corresponding to the circuit without the bridge but with an €
conductance added from r to r and from s to s. This allows the chain
to stay in states r and s but does not change the escape probability
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from a to b. Thus, we can compare the escape probabilities for the two
matrices P and P, which differ only by

r === P9 =0

2 )
Pir Cr+e
_ Crs (6) Crs+€
PiTS T Crte P Cr+e
__ _¢€ (e)
PiSS - CS+€ P 0
_ Csr P(E) — C’s'r‘l’6
ST T Cg+e st T Cs+e

We make states a and b into absorbing states. Let N and N© be
the fundamental matrices for the absorbing chains obtained from P and
P© respectively. Then N = (I — Q)~"' and N© = (I — Q©)~! where
Q and Q' differ only for the four components involving only 7 and s.
That is,

r S
Q-a+ (77T 7T )-qink
s Cs+€ _Cs+ﬁ

where h is the column vector with only components r» and s non-zero

€
n-(z)
S _ €
Cs+e

and k is a row vector with only components r and s non-zero

r s
k= (-1 1)
J. G. Kemeny has pointed out to us that if A is any matrix with
inverse N and we add to A a matrix of the form —hk, then A — hk
has an inverse if and only if kNh # 1 and, if so, N = (A — hk)~!

given by ~
N = N + ¢(Nh)(kN)

where ¢ = 1/(1 —kNh). You are asked to prove this in Exercise [.4.10.
Adding —hk to A =1 — Q and using this result, we obtain

N© = N 4 ¢(Nh)(kN).

Using the simple nature of h and k we obtain

. Nipe  Nie \ o«
N = Ny P ) (N — Ny
Y j+<C’r+e C’s—l—e>( ’ i)
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and
1
Cc = = = = = .
1 _I_ Nyre _ Nsre Nsse _ Nrse
Chr+e Chr+e Cs+e Cs+e

Since N,, is the expected number of times in r starting in r and N,,
is the expected number of times in r starting in s, N,, > N,,. Similarly
Nss > Nrs and so the denominator of ¢ is > 1. In particular, it is
positive.

Recall that the absorption probabilities for state b are given by

Bu =Y NuyPy.
)

Since P = Py,

A ~

€ ~ ere NISE A A
B:E:b) = B:(:b +c < ) (Bsb - Br’b)'

C,+e B Cs+e
Since P9 = P,

e = pesc + ¢ (26 = 55 ) (B B
where 4, is the expected number of times that the ergodic chain P,
started at state a, is in state x before returning to a reaching b for
the first time. The absorption probability B,, is the quantity v, intro-
duced in the previous section. As shown there, reversibility allows us
to conclude that . .
,&’CC BZ‘(I BSC(I

C. C, Ca

so that
ec
Ca
and this shows that the Monotonicity Law is true.

The change from P to P was merely to make the calculations easier.
As we have remarked, the escape probabilities are the same for the two
chains as are the absorption probabilities B;,. Thus we can remove the
hats and write the same formula.

Pgs)c = Pesc + (Bsb — Brb)2

ec
Ca

The only quantity in this final expression that seems to depend upon
quantities from P is ¢. In Exercise [[Z.1]] you are asked to show that ¢
can also be expressed in terms of the fundamental matrix N obtained
from the original P.

p(ees)c = pesc + —(Bg, — B)*.
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Exercise 1.4.10 Let A be a matrix with inverse N = A~! Let h be a
column vector and k a row vector. Show that

N = (A —hk)™*
exists if and only if kINh # 1 and, if so,

< (Nh)(kIN)
N=N+ T kNhL

Exercise 1.4.11 Show that ¢ can be expressed in terms of the funda-
mental matrix N of the original Markov chain P by

1

Cc = .
Nrre _ Nsre Nsse _ Nrse
1_'_ Cr Cr + Cs Cs

2 Random walks on infinite networks

2.1 Polya’s recurrence problem
2.1.1 Random walks on lattices

In 1921 George Polya [Pg] investigated random walks on certain infinite
graphs, or as he called them, “street networks”. The graphs he con-
sidered, which we will refer to as lattices, are illustrated in Figure B

To construct a d-dimensional lattice, we take as vertices those points
(71, ..., 74) of R? all of whose coordinates are integers, and we join each
vertex by an undirected line segment to each of its 2d nearest neighbors.
These connecting segments, which represent the edges of our graph,
each have unit length and run parallel to one of the coordinate axes of
R?. We will denote this d-dimensional lattice by Z¢. We will denote
the origin (0,0,...,0) by 0.

Now let a point walk around at random on this lattice. As usual,
by walking at random we mean that, upon reaching any vertex of the
graph, the probability of choosing any one of the 2d edges leading out
of that vertex is 2—1d. We will call this random walk simple random walk
in d dimensions.

When d = 1, our lattice is just an infinite line divided into segments
of length one. We may think of the vertices of this graph as represent-

ing the fortune of a gambler betting on heads or tails in a fair coin
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Figure 35: &

tossing game. Simple random walk in one dimension then represents
the vicissitudes of his or her fortune, either increasing or decreasing by
one unit after each round of the game.

When d = 2, our lattice looks like an infinite network of streets and
avenues, which is why we describe the random motion of the wandering
point as a “walk”.

When d = 3, the lattice looks like an infinite “jungle gym”, so per-
haps in this case we ought to talk about a “random climb”, but we will
not do so. It is worth noting that when d = 3, the wanderings of our
point could be regarded as an approximate representation of the ran-
dom path of a molecule diffusing in an infinite cubical crystal. Figure
shows a simulation of a simple random walk in three dimensions.

2.1.2 The question of recurrence

The question that Polya posed amounts to this: “Is the wandering
point certain to return to its starting point during the course of its
wanderings?” If so, we say that the walk is recurrent. If not, that is,
if there is a positive probability that the point will never return to its
starting point, then we say that the walk is transient.

If we denote the probability that the point never returns to its
starting point by pesc, then the chain is recurrent if pesc = 0, and
transient if pegc > 0.
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We will call the problem of determining recurrence or transience of
a random walk the type problem.

2.1.3 Polya’s original question

The definition of recurrence that we have given differs from Polya’s
original definition. Polya defined a walk to be recurrent if, with prob-
ability one, it will pass through every single point of the lattice in the
course of its wanderings. In our definition, we require only that the
point return to its starting point. So we have to ask ourselves, “Can
the random walk be recurrent in our sense and fail to be recurrent in
Polya’s sense?”

The answer to this question is, “No, the two definitions of recurrence
are equivalent.” Why? Because if the point must return once to its
starting point, then it must return there again and again, and each
time it starts away from the origin, it has a certain non-zero probability
of hitting a specified target vertex before returning to the origin. And
anyone can get a bull’s-eye if he or she is allowed an infinite number of
darts, so eventually the point will hit the target vertex.

Exercise 2.1.1 Write out a rigorous version of the argument just given.

2.1.4 Polya’s Theorem: recurrence in the plane, transience
in space

In 2§, Polya proved the following theorem:

Polya’s Theorem. Simple random walk on a d-dimensional lattice
is recurrent for d = 1,2 and transient for d > 2.

The rest of this work will be devoted to trying to understand this
theorem. Our approach will be to exploit once more the connections be-
tween questions about a random walk on a graph and questions about
electric currents in a corresponding network of resistors. We hope that
this approach, by calling on methods that appeal to our physical intu-
ition, will leave us feeling that we know “why” the theorem is true.

Exercise 2.1.2 Show that Polya’s theorem implies that if two random
walkers start at 0 and wander independently, then in one and two
dimensions they will eventually meet again, but in three dimensions
there is positive probability that they won'’t.
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Exercise 2.1.3 Show that Polya’s theorem implies that a random walker
in three dimensions will eventually hit the line defined by = = 2,z = 0.

2.1.5 The escape probability as a limit of escape probabilities
for finite graphs

We can determine the type of an infinite lattice from properties of
bigger and bigger finite graphs that sit inside it. The simplest way to
go about this is to look at the lattice analog of balls (solid spheres) in
space. These are defined as follows: Let r be an integer—this will be the
radius of the ball. Let G be the graph gotten from Z? by throwing out
vertices whose distance from the origin is > r. By “distance from the
origin” we mean here not the usual Euclidean distance, but the distance
“in the lattice”; that is, the length of the shortest path along the edges
of the lattice between the two points. Let dG() be the “sphere” of
radius r about the origin, i.e., those points that are exactly r units
from the origin. In two dimensions, G looks like a square. (See
Figure B7.) In three dimensions, it looks like an octahedron.

N\

/ AN X
3GV inZ°

/N
\V/

G"WinZz’ N4

Figure 37: &

We define a random walk on G() as follows: The walk starts at
0 and continues as it would on Z¢ until it reaches a point on G
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and then it stays at this point. Thus the walk on G is an absorbing
Markov chain with every point of dG(") an absorbing state.

Let p(ers)c be the probability that a random walk on G starting at 0,
reaches dG") before returning to 0. Then pgs)c decreases as r increases
and pesc = lim,_ p(ers)c is the escape probability for the infinite graph.
If this limit is O, the infinite walk is recurrent. If it is greater than 0,
the walk is transient.

2.1.6 Electrical formulation of the type problem

Now that we have expressed things in terms of finite graphs, we can
make use of electrical methods. To determine pegc electrically, we sim-
ply ground all the points of G, maintain 0 at one volt, and measure
the current i) flowing into the circuit. (See Figure Bg.)

— 1 volt

Figure 38: &

From Section [.3.4, we have

o
esC 2d )
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where d is the dimension of the lattice. (Remember that we have to
divide by the number of branches coming out of the starting point.)
Since the voltage being applied is 1, i) is just the effective conductance
between 0 and 0G| i.e.,

where Rgf)f is the effective resistance from 0 to G . Thus

(r) 1

Pesc =

(r)
QdRe i

Define R, the effective resistance from the origin to infinity, to be

_ 7 (r)
Reff o TILn(;lo Reff

This limit exists since Rgf)f is an increasing function of . Then

1
Pesc = 575 -
QdReff

Of course R.g may be infinite; in fact, this will be the case if and only
if pesc = 0. Thus the walk is recurrent if and only if the resistance to
infinity is infinite, which makes sense.

The success of this electrical formulation of the type problem will
come from the fact that the resistance to infinity can be estimated using
classical methods of electrical theory.

2.1.7 One Dimension is easy, but what about higher dimen-
sions?

We now know that simple random walk on a graph is recurrent if and
only if a corresponding network of 1-ohm resistors has infinite resistance
“out to infinity”. Since an infinite line of resistors obviously has infinite
resistance, it follows that simple random walk on the 1-dimensional
lattice is recurrent, as stated by Polya’s theorem.

What happens in higher dimensions? We are asked to decide whether
a d-dimensional lattice has infinite resistance to infinity. The difficulty
is that the d-dimensional lattice Z¢ lacks the rotational symmetry of
the Euclidean space R? in which it sits.
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Figure 39: &
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Figure 40: &
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To see how this lack of symmetry complicates electrical problems,
we determine, by solving the appropriate discrete Dirichlet problem,
the voltages for a one-volt battery attached between 0 and the points
of 9G¥ in Z2. The resulting voltages are:

0
0 091 O
0 182 .364 .182 0
0 .091 364 1 .364 .091 O.
0 182 364 .182 0
0 091 O
0

The voltages at points of 0G) are equal, but the voltages at points of
0G®@ are not. This means that the resistance from 0 to dG® cannot
be written simply as the sum of the resistances from 0 to 0G™", 0G")
to 0GP and 0G® to OG®). This is in marked contrast to the case of

a continuous resistive medium to be discussed in Section P.1.8.

Exercise 2.1.4 Using the voltages given for G® | find R(egf)f and p(egs)c.

Exercise 2.1.5 Consider a one-dimensional infinite network with re-
sistors R, = 1/2" fromnton+1forn=...,-2,-1,0,1,2,.... De-
scribe the associated random walk and determine whether the walk is
recurrent or transient.

Exercise 2.1.6 A random walk moves on the non-negative integers;
when it is in state n, n > 0, it moves with probability p, to n + 1 and
with probability 1 —p,,, to n —1. When at 0, it moves to 1. Determine
a network that gives this random walk and give a criterion in terms of
the p,, for recurrence of the random walk.

2.1.8 Getting around the lack of rotational symmetry of the
lattice

Suppose we replace our d-dimensional resistor lattice by a (homoge-
neous, isotropic) resistive medium filling all of R? and ask for the ef-
fective resistance to infinity. Naturally we expect that the rotational
symmetry will make this continuous problem easier to solve than the
original discrete problem. If we took this problem to a physicist, he or
she would probably produce something like the scribblings illustrated
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in Figure f], and conclude that the effective resistance is infinite for
d = 1,2 and finite for d > 2. The analogy to Polya’s theorem is ob-
vious, but is it possible to translate these calculations for continuous
media into information about what happens in the lattice?

\ dr = oo for d=1,2

R_ ~ —

J, ril < oo for d <3
Figure 41: &

This can indeed be done, and this would certainly be the most
natural approach to take. We will come back to this approach at the
end of the work. For now, we will take a different approach to getting
around the asymmetry of the lattice. Our method will be to modify the
lattice in such a way as to obtain a graph that is symmetrical enough
so that we can calculate its resistance out to infinity. Of course, we will
have to think carefully about what happens to that resistance when we
make these modifications.

2.1.9 Rayleigh: shorting shows recurrence in the plane, cut-
ting shows transience in space

Here is a sketch of the method we will use to prove Polya’s theorem.
To take care of the case d = 2, we will modify the 2-dimensional

resistor network by shorting certain sets of nodes together so as to get a

new network whose resistance is readily seen to be infinite. As shorting
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can only decrease the effective resistance of the network, the resistance
of the original network must also be infinite. Thus the walk is recurrent
when d = 2.

To take care of the case d = 3, we will modify the 3-dimensional
network by cutting out certain of the resistors so as to get a new network
whose resistance is readily seen to be finite. As cutting can only increase
the resistance of the network, the resistance of the original network must
also be finite. Thus the walk is transient when d = 3.

The method of applying shorting and cutting to get lower and up-
per bounds for the resistance of a resistive medium was introduced
by Lord Rayleigh. (Rayleigh R9]; see also Maxwell [21]], Jeans [[1],

Polya and Szego [P§]). We will refer to Rayleigh’s techniques collec-
tively as Rayleigh’s short-cut method. This does not do Rayleigh justice,
for Rayleigh’s method is a whole bag of tricks that goes beyond mere
shorting and cutting—but who can resist a pun?

Rayleigh’s method was apparently first applied to random walks
by C. St. J. A. Nash-Williams [4], who used the shorting method to

establish recurrence for random walks on the 2-dimensional lattice.

2.2 Rayleigh’s short-cut method
2.2.1 Shorting and cutting

In its simplest form, Rayleigh’s method involves modifying the network
whose resistance we are interested in so as to get a simpler network. We
consider two kinds of modifications, shorting and cutting. Cutting in-
volves nothing more than clipping some of the branches of the network,
or what is the same, simply deleting them from the network. Shorting
involves connecting a given set of nodes together with perfectly con-
ducting wires, so that current can pass freely between them. In the
resulting network, the nodes that were shorted together behave as if
they were a single node.

2.2.2 The Shorting Law and the Cutting Law; Rayleigh’s
idea

The usefulness of these two procedures (shorting and cutting) stems
from the following observations:

Shorting Law. Shorting certain sets of nodes together can only
decrease the effective resistance of the network between two given nodes.
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Cutting Law. Cutting certain branches can only increase the
effective resistance between two given nodes.

These laws are both equivalent to Rayleigh’s Monotonicity Law,
which was introduced in Section [[.4.] (see Exercise P.2.1)):

Monotonicity Law. The effective resistance between two given
nodes is monotonic in the branch resistances.

Rayleigh’s idea was to use the Shorting Law and the Cutting Law
above to get lower and upper bounds for the resistance of a network.
In Section we apply this method to solve the recurrence problem
for simple random walk in dimensions 2 and 3.

Exercise 2.2.1 Show that the Shorting Law and the Cutting Law are
both equivalent to the Monotonicity Law.

2.2.3 The plane is easy

When d = 2, we apply the Shorting Law as follows: Short together
nodes on squares about the origin, as shown in Figure f[J. The network
we obtain is equivalent to the network shown in Figure [{4).

Now as n 1-ohm resistors in parallel are equivalent to a single resistor
of resistance % ohms, the modified network is equivalent to the network
shown in Figure ifJ. The resistance of this network out to infinity is
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Figure 43: &
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As the resistance of the old network can only be bigger, we conclude
that it too must be infinite, so that the walk is recurrent when d = 2.

Exercise 2.2.2 Using the shorting technique, give an upper bound for
pg’s)c, and compare this with the exact value obtained in Exercise P.1.4]

2.2.4 Space: searching for a residual network

When d = 3, what we want to do is delete certain of the branches of
the network so as to leave behind a residual network having manifestly
finite resistance. The problem is to reconcile the “manifestly” with the
“finite”. We want to cut out enough edges so that the effective resis-
tance of what is left is easy to calculate, while leaving behind enough
edges so that the result of the calculation is finite.

2.2.5 Trees are easy to analyze

Trees—that is, graphs without circuits—are undoubtedly the easiest to
work with. For instance, consider the full binary tree, shown in Figure
1. Notice that sitting inside this tree just above the root are two
copies of the tree itself. This self-similarity property can be used to
compute the effective resistance R, from the root out to infinity. (See
Exercise R.2.3.) It turns out that R, = 1. We will demonstrate this
below by a more direct method.

To begin with, let us determine the effective resistance R,, between
the root and the set of nth generation branch points. To do this, we
should ground the set of branch points, hook the root up to a 1-volt
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battery, and compute

1

R, = .
current through battery

For n = 3, the circuit that we would obtain is shown in Figure [i§.

— ground

||

1 volt

Figure 48: &

In the resulting circuit, all branch points of the same generation are
at the same voltage (by symmetry). Nothing happens when you short
together nodes that are at the same potential. Thus shorting together
branch points of the same generation will not affect the distribution of
currents in the branches. In particular, this modification will not affect
the current through the battery, and we conclude that

1 1
current in original circuit  current in modified circuit

For n = 3, the modified circuit is shown in Figure f§. This picture

shows that
pool 1o
279 s 2%

W

More generally,
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Letting n — oo, we get

Roo = Jip Ro = lim 1 =5, =1
Figure p(] shows another closely related tree, the tree homogeneous
of degree three: Note that all nodes of this tree are similar—there is no
intrinsic way to distinguish one from another. This tree is obviously
a close relative of the full binary tree. Its resistance to infinity is 2/3.

Exercise 2.2.3 (a) Show, using the self-similarity of the full binary
tree, that the resistance R, to infinity satisfies the equation

R +1
2

Ry =
and conclude that either Ry, = 1 or R, = 00.

(b) Again using the self-similarity of the tree, show that

R,+1
2

Rn-‘,—l -

where R,, denotes the resistance out to the set of the nth-generation
branch points. Conclude that

Ry :nh_)IIoloRn: 1.
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etc. etc.

ete.

The tree homogenceous of degree 3

Figure 50: &

2.2.6 The full binary tree is too big

Nothing could be nicer than the two trees we have just described. They
are the prototypes of networks having manifestly finite resistance to
infinity. Unfortunately, we can’t even come close to finding either of
these trees as a subgraph of the three-dimensional lattice. For in these
trees, the number of nodes in a “ball” of radius r grows exponentially
with r, whereas in a d-dimensional lattice, it grows like r, i.e., much
slower. (See Figure B1.) There is simply no room for these trees in
any finite-dimensional lattice.

2.2.7 NT;: a “three-dimensional” tree

These observations suggest that we would do well to look for a nice tree
NT3 where the number of nodes within a radius r of the root is on the
order of 3. For we might hope to find something resembling NT; in
the 3-dimensional lattice, and if there is any justice in the world, this
tree would have finite resistance to infinity, and we would be done.
Before introducing NTj3, let’s have a look at NT5, our choice for
the tree most likely to succeed in the 2-dimensional lattice (see Figure
F2). The idea behind NTy is that, since a ball of radius r in the graph
ought to contain something like r? points, a sphere of radius r ought
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Figure 52: &
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to contain something like r points, so the number of points in a sphere
should roughly double when the radius of the sphere is doubled. For
this reason, we make the branches of our tree split in two every time
the distance from the origin is (roughly) doubled.

Similarly, in a 3-dimensional tree, when we double the radius, the
size of a sphere should roughly quadruple. Thus in NT3, we make the
branches of our tree split in four where the branches of NTy would have
split in two. NTj3 is shown in Figure pJ. Obviously, NTj is none too

Figure 53: &

happy about being drawn in the plane.

84



2.2.8 NT; has finite resistance

To see if we're on the right track, let’s work out the resistance of our
new trees. These calculations are shown in Figures p4 and p3.

As we would hope, the resistance of NTy is infinite, but the resis-
tance of NT3 is not.

Exercise 2.2.4 Use self-similarity arguments to compute the resis-
tance of NTy and NTj.

2.2.9 But does NT; fit in the three-dimensional lattice?

We would like to embed NT3 in Z3. We start by trying to embed NT,
in Z?. The result is shown in Figure .

To construct this picture, we start from the origin and draw 2 rays,
one going north, one going east. Whenever a ray intersects the line
x+y = 2" —1 for some n, it splits into 2 rays, one going north, and one
going east. The sequence of pictures in Figure p7 shows successively
larger portions of the graph, along with the corresponding portions of
NTs,.

Of course this isn’t really an embedding, since certain pairs of points
that were distinct in NTy get identified, that is, they are made to
correspond to a single point in the picture. In terms of our description,
sometimes a ray going north and a ray going east pass through each
other. This could have been avoided by allowing the rays to “bounce”
instead of passing through each other, at the expense of embedding
not NT, but a close relative—see Exercise .2.7. However, because the
points of each identified pair are at the same distance from the root of
NT,, when we put a battery between the root and the nth level they
will be at the same potential. Hence, the current flow is not affected
by these identifications, so the identifications have no effect on R .
For our purposes, then, we have done just as well as if we had actually
embedded NTs.

To construct the analogous picture in three dimensions, we start
three rays off from the origin going north, east, and up. Whenever a
ray intersects the plane x4y + 2z = 2" —1 for some n, it splits into three
rays, going north, east, and up. This process is illustrated in Figure
by, Surprisingly, the subgraph of the 3-dimensional lattice obtained
in this way is not NT3! Rather, it represents an attempt to embed
the tree shown in Figure pY. We call this tree NTg 5549 . because it
is 2.5849 .. .-dimensional in the sense that when you double the radius
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of a ball, the number of points in the ball gets multiplied roughly by 6

and
6 = 2log26 — 22.5849...

Again, certain pairs of points of NT5 5g49. . have been allowed to corre-
spond to the same point in the lattice, but once again the intersections
have no effect on Rg.

So we haven’t come up with our embedded NTj yet. But why
bother? The resistance of NTg 5849 out to infinity is

1

1
- =1
31—

bz, 4, —1@+2+8F+ )—
39 27 73 3% ) 2

Thus we have found an infinite subgraph of the 3-dimensional lattice
having finite resistance out to infinity, and we are done.

Exercise 2.2.5 This exercise deals with the escape probability pesc
for simple random walk in 3 dimensions. The idea is to turn upper
and lower bounds for the resistance of the lattice into bounds for pesc.
Bounds are the best we can ask for using our method. The determina-
tion of the exact value will be discussed in Section P.3.5. It is roughly
.66.

(a) Use a shorting argument to get an upper bound for pesc.

(b) We have seen that the resistance of the 3-dimensional lattice is
at most one ohm. Show that the corresponding lower bound for pegc is
1/6 Show that this lower bound can be increased to 1/3 with no extra
effort.

Exercise 2.2.6 Prove that simple random walk in any dimension d >
3 is transient.

Exercise 2.2.7 Show how the not-quite embeddings of NTy and N'T'5 5849, .
can be altered to yield honest-to-goodness embeddings of “stretched-
out” versions of these trees, obtained by replacing each edge of the tree
by three edges in series. (Hint: “bounce”.)

2.2.10 What we have done; what we will do

We have finally finished our electrical proof of Polya’s theorem. The
proof of recurrence for d = 1,2 was straight-forward, but this could
hardly be said of the proof for d = 3. After all, we started out trying
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to embed NT3 and ended up by not quite embedding something that
was not quite NT5!

This is not bad in itself, for one frequently sets out to do something
and in the process of trying to do it gets a better idea. The real prob-
lem is that this explicit construction is just too clever, too artificial.
We seem to be saying that a simple random walk in 3 dimensions is
transient because it happens to contain a beautifully symmetrical sub-
graph that is in some sense 2.5849 .. .-dimensional! Fine, but what if
we hadn’t stumbled upon this subgraph? Isn’t there some other, more
natural way?

We will see that indeed there are more natural approaches to show-
ing transience for d = 3. One such approach uses the same idea of em-
bedding trees, but depends on the observation that one doesn’t need to
be too careful about sending edges to edges. Another approach, based
on relating the lattice not to a tree but to Euclidean space, was already
hinted at in Section P.I.§. The main goal for the rest of this work
will be to explore these more natural electrical approaches to Polya’s
theorem.

Before jumping into this, however, we are going to go back and take
a look at a classical—i.e., probabilistic—approach to Polya’s theorem.
This will give us something to compare our electrical proofs with.

2.3 The classical proofs of Polya’s Theorem

2.3.1 Recurrence is equivalent to an infinite expected num-
ber of returns

For the time being, all of our random walks will be simple. Let u be
the probability that a random walker, starting at the origin, will return
to the origin. The probability that the walker will be there exactly &
times (counting the initial time) is u*(1—w). Thus, if m is the expected
number of times at the origin,

1
1—u’

m = ocku* (1 —u)=
k=1

If m = oo then v = 1, and hence the walk is recurrent. If m < oo then
u < 1, so the walk is transient. Thus m determines the type of the
walk.

We shall use an alternate expression for m. Let u,, be the probability
that the walk, starting at 0, is at 0 on the nth step. Since the walker
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starts at 0, ug = 1. Let e,, be a random variable that takes on the value
1 if, at time n the walker is at 0 and 0 otherwise. Then

T = Z €n
n=0
is the total number of times at 0 and
m=E(T) =) E(e,).
n=0

But E(e,) =1-u, +0- (1 —u,) = u,. Thus

00
n=0

Therefore, the walk will be recurrent if the series > 7° , diverges and
transient if it converges.

Exercise 2.3.1 Let Ny, be the expected number of visits to y for a
random walker starting in x. Show that Nyyis finite if and only if the
walk is transient.

2.3.2 Simple random walk in one dimension

Consider a random walker in one dimension, started at 0. To return
to 0, the walker must take the same number of steps to the right as
to the left; hence, only even times are possible. Let us compute us,.
Any path that returns in 2n steps has probability 1/2". The number
of possible paths equals the number of ways that we can choose the n
times to go right from the 2n possible times. Thus

2n\ 1
Ugy = —.
2 n 22n
We shall show that ", us, = 0o by using Stirling’s approximation:

n!l ~ vV2mrne "n".

Thus
(2n!) 1 V2 - 2ne=?"(2n)%" 1

Uop = —— ~ =

nin! 220 (\/27rne—"n")222" v
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Therefore, .
2 X =

and a simple random walk in one dimension is recurrent.
Recall that this case was trivial by the resistor argument.

Exercise 2.3.2 We showed in Section [.I.§ that a random walker
starting at = with 0 < = < N has probability /N of reaching N
before 0. Use this to show that a simple random walk in one dimension
is recurrent.

Exercise 2.3.3 Consider a random walk in one dimension that moves
from n to n+1 with probability p and to n—1 with probability ¢ = 1—p.
Assume that p > 1/2. Let h, be the probability, starting at x, that the
walker ever reaches 0. Use Exercise [[I.9 to show that h, = (¢/p)* for
x>0 and h, =1 for x < 0. Show that this walk is transient.

Exercise 2.3.4 For a simple random walk in one dimension, it follows
from Exercise [L1.7 that the expected time, for a walker starting at z
with 0 < x < N, to reach 0 or n is (/N — ). Prove that for the infinite
walk, the expected time to return to 0 is infinite.

Exercise 2.3.5 Let us regard a simple random walk in one dimension
as the fortune of a player in a penny matching game where the players
have unlimited credit. Show that the result is a martingale (see Section
[.1.d). Show that you can describe a stopping system that guarantees
that you make money.

2.3.3 Simple random walk in two dimensions

For a random walker in two dimensions to return to the origin, the
walker must have gone the same number of times north and south and
the same number of times east and west. Hence, again, only even
times for return are possible. Every path that returns in 2n steps has
probability 1/4?". The number of paths that do this by taking k steps
to the north, k£ south, n — k east and n — k west is

2n B 2n!
kkon—kn—k)  Ekl(n—E)(n—Fk)
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Thus

1 & (2n)!
Yo = ,;0 KE(n — &) (n — &)!
1 & (2n)! nln!

= nin! Kk (n —E)!(n —k)!
1 (2n) & (n)?
- =56

But Y7, (2)2 = (27?) (see Exercise B.3.9). Hence

1 (2n))’
Uy = | == :
2 22n\ n
This is just the square of the one dimension result (not by accident,
either—see Section R.3.6). Thus we have

1
m=> Uy X Y — = Q.
; 2n ; J.
Recall that the resistor argument was very simple in this case also.

Exercise 2.3.6 Show that > ;_, (2)2 = (277) (Hint: Think of choosing
n balls from a box that has 2n balls, n black and n white.)

2.3.4 Simple random walk in three dimensions

For a walker in three dimensions to return, the walker must take an
equal number of steps back and forth in each of the three different
directions. Thus we have

1 (2n)!

Y2 = o jZk R —j — k) (n—j — k)

where the sum is taken over all j, k with j + k£ < n. Following Feller
B, we rewrite this sum as

1 (2n 1 n! 2
2 22”<n> ]Zk: <3"j!k!(n—j —l{;)!)
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Now consider placing n balls randomly into three boxes, A, B, C. The
probability that j balls fall in A, kin B, and n — j — k in C' is

i n _i n!
3n\jkon—j—k)  3njkl(n—j—k)

Intuitively, this probability is largest when j, k, and n — j — k are as
near as possible to n/3, and this can be proved (see Exercise R.3.7).
Hence, replacing one of the factors in the square by this larger value,
we have:

1 (2n 1 n! 1 n
Ugp < ﬁ(n) (@W) (]zk: 3n jlkl(n —j —k)!> ’

where |n/3] denotes the greatest integer < n/3. The last sum is 1 since
it is the sum of all probabilities for the outcomes of putting n balls into

three boxes. Thus
< 1 [2n 1 n!
gy < —— — .
2 22n n 3n \‘%Jlg

Applying Stirling’s approximation yields

K

Uy < —75
=3

for suitable constant K. Therefore

1
m:Zu2n§sz<oo,

n

and a simple random walk in three dimensions is recurrent.
While this is a complex calculation, the resistor argument was also
complicated in this case. We will try to make amends for this presently.

Exercise 2.3.7 Prove that (k i_k)
]7 7n ]
are as close as possible to n/3.

is largest when j, k, and n—j—Fk

Exercise 2.3.8 Find an appropriate value for the ”suitable constant”
K that was mentioned above, and derive an upper bound for m. Use
this to get a lower bound for the probability of escape for simple random
walk in three dimensions.
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2.3.5 The probability of return in three dimensions: exact
calculations

Since the probability of return in three dimensions is less than one, it is
natural to ask, “What is this probability?” For this we need an exact
calculation. The first such calculation was carried out in a pioneering
paper of McCrea and Whipple [27]. The solution outlined here follows
Feller [{], Exercise 28, Chapter 9, and Montroll and West [23].

Let p(a, b, ¢;n) be the probability that a random walker, starting at
0, is at (a, b, ¢) after n steps. Then p(a, b, ¢;n) is completely determined
by the fact that

p(0,0,0;0) =1
and

1 1

p(aab>c;n) = Bp(a—1,b,c,n—1)+6p(a+1,b,c7n—1)+
1 1
gp(a,b—1,c;n—1)+6p(a,b+1,c;n—1)+
1 1
gp(a,b,c—1;n—1)+6p(a,b,c—|—1;n—1).

Using the technique of generating functions, it is possible to derive
a solution of these equations as

pla,b,c;n)
B 1
(2m)°
/7r /7r /w (cos T+ cogs Y + cos Z) cos(za) cos(yb) cos(zc)dxdydz.

Of course, we can just verify that this formula satisfies our equations
once someone has suggested it. Having this formula, we put a = b =
¢ = 0 and sum over n to obtain the expected number of returns as

3 ™ iy s 1
= —— dxdydz.
" (2m)3 /_W/_ﬂ/_w?)—(cosx—i-cosijcosz) rayez

This integral was first evaluated by Watson [B in terms of elliptic
integrals, which are tabulated. A simpler result was obtained by Glasser
and Zucker [§] who evaluated this integral in terms of gamma functions.
Using this result, we get

V6 1 5 7 11
= V(2 ( 2\ (L (=) = 1.516386059137 . . .
"= 397 <24) <24) <24) <24) ’
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where

I(x) = /OO et
0

is Euler’s gamma function. (Incidentally, the value given by Glasser and
Zucker [f for the integral above needs to be corrected by multiplying
by a factor of 1/(384).)

Recall that m = 1/(1 — u) so that w = (m — 1)/m. This gives

u = .340537329544 . . ..

2.3.6 Simple random walk in two dimensions is the same as
two independent one-dimensional random walks

We observed that the probability of return at time 2n in two dimensions
is the square of the corresponding probability in one dimension. Thus
it is the same as the probability that two independent walkers, one
walking in the x direction and the other in the y direction, will, at time
2n, both be at 0. Can we see that this should be the case? The answer
is yes. Just change our axes by 45 degrees to new axes ¥ and ¥ as in

Figure 0.

Figure 60: &

Look at the possible outcomes for the first step using the x,y coor-
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dinates and the Z,y coordinates. We have

x,1y coordinates Z,%y coordinates

(0,1) (1/v/2,1/3/2)
(0,~1) (~1/v2,~1/v2) .
(—1,0) (—1/v2,1/v?2)

Assume that we have two independent walkers, one moving with step
size % randomly along the Z axis and the other moving with the same
step size along the g axis. Then, if we plot their positions using the
x,y axes, the four possible outcomes for the first step would agree with
those given in the second column of the table above. The probabilities
for each of the four pairs of outcomes would also be (1/2)-(1/2) = 1/4.
Thus, we cannot distinguish a simple random walk in two dimensions
from two independent walkers along the T and 7 axes making steps of
magnitude 1/1/2. Since the probability of return does not depend upon
the magnitude of the steps, the probability that our two independent
walkers are at (0,0) at time 2n is equal to the product of the prob-
abilities that each separately is at 0 at time 2n, namely (1/ 22”)(27?).
Therefore, the probability that the standard walk will be at (0,0) at

time 2n is ((1/ 22")(277))2 as observed earlier.

2.3.7 Simple random walk in three dimensions is not the
same as three independent random walks

In three dimensions, the probability that three independent walkers are
each back to 0 after time 2n is

w= ()%

This does not agree with our result for a simple random walk in three
dimensions. Hence, the same trick cannot work. However, it is interest-
ing to consider a random walk which is the result of three independent
walkers. Let (i, j, k) be the position of three independent random walk-
ers. The next position is one of the eight possibilities (i1 +1,j+1,k+1)
Thus we may regard their progress as a random walk on the lattice
points in three dimensions. If we center a cube of side 2 at (i, j, k),
then the walk moves with equal probabilities to each of the eight cor-
ners of the cube. It is easier to show that this random walk is transient
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(using classical methods) than it is for simple random walk. This is be-
cause we can again use the one-dimension calculation. The probability
Uugy, for return at time 2n is

o () - ()

1 3/2
m_;uznwg(wj <o
and the walk is transient.

The fact that this three independent walkers model and simple ran-
dom walk are of the same type suggests that when two random walks
are “really about the same”, they should either both be transient or
both be recurrent. As we will soon see, this is indeed the case. Thus we
may infer the transience of simple random walk in 3 dimensions from

the transience of the three independent walkers model without going
through the involved calculation of Section P.3.4].

Thus

2.4 Random walks on more general infinite net-
works

2.4.1 Random walks on infinite networks

From now on we assume that G is an infinite connected graph. We
assume that it is of bounded degree, by which we mean that there is
some integer E such that the number of edges from any point is at
most /. We assign to each edge xy of G a conductance C,, > 0 with
R,, = Ciw The graph G together with the conductances C = (Cy,) is
called a network and denoted by (G, C). Given a network (G, C), we
define a random walk by

Cay

Cx

where C, = 37, Cpy. When all the conductances are equal, we obtain
a random walk that moves along each edge with the same probability:
In agreement with our previous terminology, we call this walk simple
random walk on G.

We have now a quite general class of infinite-state Markov chains.
As in the case of finite networks, the chains are reversible Markov
chains: That is, there is a positive vector w such that w, P, = w,P,,.
As in the finite case, we can take w, = Cj, since Cp Ppy = Cyy = Cpp =
CyPys.

Py, =
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2.4.2 The type problem

Let (G,C) be an infinite network with random walk P. Let 0 be a
reference point. Let pesc be the probability that a walk starting at 0
will never return to 0. If pesc = 0 we say that P is recurrent, and if
pesc > 0 we say that it is transient. You are asked to show in Exercise
P.4.7) that the question of recurrence or transience of P does not depend
upon the choice of the reference point. The type problem is the problem
of determining if a random walk (network) is recurrent or transient.

In Section P.I.§ we showed how to rephrase the type problem for
a lattice in terms of finite graphs sitting inside it. In Section P.1.9 we
showed that the type problem is equivalent to an electrical network
problem by showing that simple random walk on a lattice is recurrent
if and only if the lattice has infinite resistance to infinity. The same
arguments apply with only minor modifications to the more general
infinite networks as well. This means that we can use Rayleigh’s short-
cut method to determine the type of these more general networks.

Exercise 2.4.1 Show that the question of recurrence or transience of
P does not depend upon the choice of the reference point.

2.4.3 Comparing two networks

Given two sets of conductances C and C on G, we say that (G,C) <
(G,C) if C,, < Cyy for all zy, or equivalently, if R,, > R,, for all
xy. Assume that (G,C) < (G,C). Then by the Monotonicity Law,
Reff > Ry Thus if random walk on (G, C) is transient, i.e., if Reff <
00, then random walk on (G, C) is also transient. If random walk on
(G, C) is recurrent, i.e., if Rog = oo, then random walk on (G, C) is
also recurrent.

Theorem. If (G,C) and (G, C) are networks, and if there exist
constants u, v with 0 < u < v < 0o such that

ucmy < C’:vy < UCmy

for all # and y, then random walk on (G, C) is of the same type as
random walk on (G, C).

Proof. Let U,, = uC,, and V,, = vC,,. Then (G,U) < (G,C) <
(G, V). But the random walks for (G, U) and (G, V) are the same as
random walk on (G, C). Thus random walk for (G, C) is of the same
type as random walk on (G, C). &
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Corollary. Let (G,C) be a network. If for every edge zy of G
we have 0 < u < Uy < v < oo for some constants u and v, then the
random walk on (G, C) has the same type as simple random walk on

G.

Exercise 2.4.2 Consider the two-dimensional lattice. For each edge,
we toss a coin to decide what kind of resistor to put across this edge.
If heads turns up, we put a two-ohm resistor across this edge; if tails
turns up, we put a one-ohm resistor across the edge. Show that the
random walk on the resulting network is recurrent.

Exercise 2.4.3 Consider the analogous problem to Exercise P.4.3 in 3
dimensions.

2.4.4 The k-fuzz of a graph

For any integer k, the k-fuzz of a graph G is the graph Gy obtained
from G by adding an edge zy if it is possible to go from x to y in at
most k steps. For example, the 2-fuzz of the two-dimensional lattice is
shown in Figure [6]]; please note that horizontal and vertical edges of
length 2, such as those joining (0,0) to (0, 2), have not been indicated.

Figure 61: &

Theorem. Simple random walk on G and on the k-fuzz Gy of G
have the same type.
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Proof. Let P be simple random walk on G. Define P = (P + P2 +
...+P¥)/k. Then P may be considered to be P, watched at one of the
first k steps chosen at random, then at a time chosen at random from
the next k steps after this time, etc. Thinking of P in this way, we see
that P is in state 0 at least once for every time P in state 0. Hence, if
P is recurrent so is P. Assume now that P is transient. Choose a finite
set S so that 0 cannot be reached in k steps from a point outside of S.
Then, since the walk P will be outside S from some time on, the walk
P cannot be at 0 after this time, and P is also transient. Therefore, P
and P are of the same type.

Finally, we show that P has the same type as simple random walk
on Gj. Here it is important to remember our restriction that G is of
bounded degree, so that for some E no vertex has degree > E. We
know that P is reversible with wP = w, where w, is the number of
edges coming out of . From its construction, P is also reversible and
wP = w. P is the random walk on a network (Gj,C) with C,, =
wy Pyy. If Py, > 0, there is a path z, 2y, 29, ...,2y_1,y in G from z to
y of length m < k. Then

_ 1.1 1.1
> ()M > Z(2)k,
Thus
11, -
0<_<E) <P,<l1
and
0<l(i)k<é <E
kES — W=

Therefore, by the theorem on the irrelevance of bounded twiddling
proven in Section 4.3, P and simple random walk on G}, are of the
same type. So G and Gy, are of the same type.

NOTE: This is the only place where we use probabilistic methods
of proof. For the purist who wishes to avoid probabilistic methods,
Exercise indicates an alternative electrical proof.

We show how this theorem can be used. We say that a graph G
can be embedded in a graph G if the points  of G can be made to
correspond in a one-to-one fashion to points Z of G in such a way that
if 7y is an edge in G, then Zy is an edge in G.

Theorem. If simple random walk on G is transient, and if G can
be embedded in a k-fuzz G) of G then simple random walk on G is
also transient. Simple random walk on G and G are of the same type
if each graph can be embedded in a k-fuzz of the other graph.
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Proof. Assume that simple random walk on G is transient and that
G can be embedded in a k-fuzz G, of G. Since R for G is finite and G
can be embedded in Gy, Rug for Gy, is finite. By our previous theorem,
the same is true for G and simple random walk on G is transient.

If we can embed G in G}, and G in Gy, then the random walk on G
is transient if and only if the random walk on G is.

Exercise 2.4.4 We have assumed that there is a bound E for the
number of edges coming out of any point. Show that if we do not
assume this, it is not necessarily true that G and Gy are of the same
type. (Hint: Consider a network something like that shown in Figure

2)

LV~ AP

Figure 62: &

2.4.5 Comparing general graphs with lattice graphs

We know the type of simple random walk on a lattice Z%. Thus to
determine the type of simple random walk on an arbitrary graph G, it
is natural to try to compare G with Z?. This is feasible for graphs that
can be drawn in some Euclidean space R? in a civilized manner.

Definition. A graph G can be drawn in a Euclidean space R? in a
civilized manner if its vertices can be embedded in R? so that for some
r<oo,s>0

(a) The length of each edge is < r.
(b) The distance between any two points is > s.

Note that we make no requirement about being able to draw the
edges of G so they don’t intersect.

Theorem. If a graph can be drawn in R? in a civilized manner,
then it can be embedded in a k-fuzz of the lattice Z.

Proof. We carry out the proof for the case d = 2. Assume that G
can be drawn in a civilized manner in R%2. We want to show that G
can be embedded in a k-fuzz of Z?. We have been thinking of Z? as
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being drawn in R? with perpendicular lines and adjacent points a unit
distance apart on these lines, but this embedding is only one particular
way of representing Z2. To emphasize this, let’s talk about L? instead
of Z?. Figure [6J shows another way of drawing L? in R?. From a

[ [/ /
[ [ ]
[/

///////
/777

Figure 63: &

graph-theoretical point of view, this is the same as Z?. In trying to
compare G to L, we take advantage of this flexibility by drawing L? so
small that points of G can be moved onto points of L? without bumping
into each other.

Specifically, let L? be a two-dimensional rectangular lattice with
lines a distance s/2 apart. In any square of L?, there is at most one
point of G. Move each point x of G to the southwest corner T of the
square that it is in, as illustrated in Figure [64.

Now since any two adjacent points x, y in G were within r of each
other in R?, the corresponding points Z, 7 in L? will have Euclidean
distance < r + 2s. Choose k so that any two points of L? whose
Euclidean distance is < r + 2s can be connected by a path in L? of
at most k steps. Then 7 and § will be adjacent in L? and—since the
prescription for k does not depend on x and y—we have embedded G
in the k-fuzz L.

Corollary. If G can be drawn in a civilized manner in R! or R?,
then simple random walk on G is recurrent.

Proof. Assume, for example, that G can be drawn in a civilized
manner in R%. Then G can be embedded in a k-fuzz Z; of Z2. If simple
random walk on G were transient, then the same would be true for Z
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Figure 64: &

and Z?. But we know that simple random walk on Z? is recurrent.
Thus simple random walk on G is recurrent.

Our first proof that random walk in three dimensions is transient
consisted in showing that we could embed a transient tree in Z3. We
now know that it would have been sufficient to show how to draw a
transient tree in R? in a civilized manner: This is easier (see Exercise
R-49).

The corollary implies that simple random walk on any sufficiently
symmetrical graph in R? is recurrent. For example, simple random
walk on the regular graph made up of hexagons shown in Figure g is
recurrent.

We can even consider very irregular graphs. For example, on the
cover of the January 1977 Scientific American, there is an example due
to Conway of an infinite non-periodic tiling using Penrose tiles of the
form shown in Figure 6g. It is called the cartwheel pattern; part of
it is shown in Figure 4. A walker walking randomly on the edges of
this very irregular infinite tiling will still return to his or her starting
point.

Assume now that G can be drawn in a civilized manner in R3. Then
to show that simple random walk on G is of the same type as Z*, namely
transient, it is sufficient to show that we can embed Z? in a k-fuzz of
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Figure 65: &

Figure 66: &
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Figure 67: &

G. This is clearly possible for any regular lattice in R3. The three
lattices that have been most studied and for which exact probabilities
for return have been found are called the SC, BCC, and FCC lattices.
The SC (simple cubic) lattice is just Z*. The walker moves each time
to a new point by adding a random choice from the six vectors

(£1,0,0), (0,£1,0), (0,0, £1).

For the BCC (body-centered cubic) lattice, the choice is one of the eight
vectors

(£1,£1,+1).
This was the walk that resulted from three independent one-dimensional
walkers. For the FCC (face-centered cubic) lattice, the random choice
is made from the twelve vectors

(£1,41,0), (£1,0,£1), (0, £1, £1).

For a discussion of exact calculations for these three lattices, see Mon-
troll and West [BJ]

As we have seen, once the transience of any one of these three walks
is established, no calculations are necessary to determine that the other
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walks are transient also. Thus we have yet another way of establishing
Polya’s theorem in three dimensions: Simply verify transience of the
walk on the BCC lattice via the simple three-independent-walkers com-
putation, and infer that walk on the SC lattice is also transient since
the BCC lattice can be embedded in a k-fuzz of it.

Exercise 2.4.5 When we first set out to prove Polya’s theorem for
d = 3, our idea was to embed NTj5 in Z3. As it turned out, what
we ended up embedding was not NT5 but NTssg49., and we didn’t
quite embed it at that. We tried to improve the situation by finding
(in Exercise £.2.7) an honest-to-goodness embedding of a relative of
NTo5849.., but NT3 was still left completely out in the cold. Now,
however, we are in a position to embed NTj, if not in Z3 then at least
in a k-fuzz of it. All we need to do is to draw NT3 in R? in a civilized
manner. Describe how to do this, and thereby give one more proof of
Polya’s theorem for d = 3.

Exercise 2.4.6 Find a graph that can be embedded in a civilized man-
ner in R? but not in R?, but is nonetheless recurrent.

Exercise 2.4.7 Assume that G is drawn in a civilized manner in R3.
To show that simple random walk on G is transient, it is enough to know
that Z? can be embedded in a k-fuzz of G. Try to come up with a nice
condition that will guarantee that this is possible. Can you make this
condition simple, yet general enough so that it will settle all reasonably
interesting cases? In other words, can you make the condition nice
enough to allow us to remember only the condition, and forget about
the general method lying behind it?

2.4.6 Solving the type problem by flows: a variant of the
cutting method

In this section we will introduce a variant of the cutting method whereby
we use Thomson’s Principle directly to estimate the effective resistance
of a conductor.

Thomson’s Principle says that, given any unit flow through a resis-
tive medium, the dissipation rate of that flow gives an upper bound for
the effective resistance of the medium. This suggests that to show that
a given infinite network is transient, it should be enough to produce a
unit flow out to infinity having finite energy dissipation.
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In analogy with the finite case, we say that j is a flow from 0 to
infinity if

(a) j:cy - jy:c-
(b) 3, jey = 0 if 2 # 0.

We define jo = 32, joy. If jo = 1, we say that j is a unit flow to
infinity. Again in analogy with the finite case, we call % >y jgnyy the
enerqy dissipation of the flow j.

Theorem. The effective resistance R, from 0 to oo is less than
or equal to the energy dissipation of any unit flow from 0 to infinity.

Proof. Assume that we have a unit flow j from 0 to infinity with
energy dissipation

1 .
E = 5 Z]inyy
z,Y

We claim that R g < E. Restricting j,, to the edges of the finite graph
G, we have a unit flow from 0 to 9G) in G"). Let i) be the unit
current flow in G from 0 to 9G"). By the results of Section [[.3.5,

r 1 ()N 2 1 .2 1 -2 _
RePf =5 ;(Z;y)) Ryy < B} z(:)nyRwy < 9 Zj:vyRmy =L,
alr G(r z,y

where )"~ indicates the sum over all pairs x, y such that xy is an edge
of G,

Exercise 2.4.8 We have billed the method of using Thomson’s Prin-
ciple directly to estimate the effective resistances of a network as a
variant of the cutting method. Since the cutting method was derived
from Thomson’s Principle, and not vice versa, it would seem that we
have got the cart before the horse. Set this straight by giving an infor-
mal (“heuristic”) derivation of Thomson’s Principle from the cutting
method. (Hint: see Maxwell [2]], Chapter VIII, Paragraph 307.) For
more on this question, see Onsager [27.

Exercise 2.4.9 Let GG be an infinite graph of bounded degree and Gy,
the k-fuzz of G. Using electric network arguments, show that R.g < oo
for G if and only if R.g < oo for Gy.
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2.4.7 A proof, using flows, that simple random walk in three
dimensions is transient

We now apply this form of the cutting method to give another proof
that simple random walk on the threedimensional lattice is transient.
All we need is a flow to infinity with finite dissipation. The flow we are
going to describe is not the first flow one would think of. In case you are
curious, the flow described here was constructed as a side effect of an
unsuccessful attempt to derive the isoperimetric inequality (see Polya
B7)) from the “max-flow min-cut” theorem (Ford and Fulkerson []).
The idea is to find a flow in the positive orthant having the property
that the same amount flows through all points at the same distance
from O.

Again, it is easiest to show the construction for the two-dimensional
case. Let G denote the part of Z? lying in the first quadrant. The graph
G is shown in Figure 68.

Figure 68: &

We choose our flow so that it always goes away from 0. Into each
point that is not on either axis there are two flows, one vertical and
one horizontal. We want the sum of the corresponding values of j,, to
be the same for all points the same distance from 0. These conditions
completely determine the flow. The flow out of the point (x,y) with
x+y =nis as shown in Figure p9. The values for the currents out to
the fourth level are shown in Figure [[J. In general, the flow out of a
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point (z,y) with z +y = n is

r+1 y+1 1
Mt mr2m+l) nil

and the flow into this point is

T Y 1

n(n+1)+n(n+1) n+1

Thus the net flow at (z,y) is 0. The flow out of 0 is (1/2) + (1/2) = 1.
For this two-dimensional flow, the energy dissipation is infinite, as it
would have to be. For three dimensions, the uniform flow is defined as
follows: Out of (z,y, z) with z 4+ y + 2z = n we have the flow indicated
in Figure [[]. The total flow out of (z,y, 2) is then

2z + 1) 1
(n+ 3)n + 2)n + 1) /
20y + 1)
(n+ 3)n+ 2)n +1)

—
2(x + 1)
(n + 3)n + 2)n +1)

Figure 71: &
2(z+1) 2(y+1) 2(z+1)
m+3)(n+2)(n+1) n+3)(n+2)(n+1) N+3)(n+2)(n+1)

2
(n+2)(n+1)

The flow into (x,y, z) comes from the points (z — 1,¥, 2), (z,y — 1, 2),
(x,y,z — 1) and, hence, the total flow into (z,y, z) is

2x 2y 2z 2

2t n mr2)ntn mtDm+ln mL2)n+l)
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Thus the net flow for (x,y, z) is 0. The flow out of 0 is (1/3) + (1/3) +
(1/3) = 1 We have now to check finiteness of energy dissipation. The
flows coming out of the edges at the nth level are all < 2/(n + 1)%
There are (n + 1)(n + 2)/2 points a distance n from 0, and thus there
are (3/2)(n+ 1)(n +2) < 3(n + 1)? edges coming out of the nth level.
Thus the energy dissipation E has

Egznj:a(nﬂ)? (ﬁ) :12%3@ < 00,

and the random walk is transient.

2.4.8 The end

We have come to the end of our labors, and it seems fitting to look
back and try to say what it is we have learned.

To begin with, we have seen how phrasing certain mathematical
questions in physical terms allows us to draw on a large body of physical
lore, in the form of established methods and ways of thought, and
thereby often leads us to the answers to those questions.

In particular, we have seen the utility of considerations involving
energy. In took hundreds of years for the concept of energy to emerge
and take its rightful place in physical theory, but it is now recognized
as perhaps the most fundamental concept in all of physics. By phrasing
our probabilistic problems in physical terms, we were naturally led to
considerations of energy, and these considerations showed us the way
through the difficulties of our problems.

As for Polya’s theorem and the type problem in general, we have
picked up a bag of tricks, known collectively as “Rayleigh’s short-cut
method”, which we may expect will allow us to determine the type of
almost any random walk we are likely to embark on. In the process, we
have gotten some feeling for the connection between the dimensionality
of a random walk and its type. Furthermore, we have settled one of
the main questions likely to occur to someone encountering Polya’s
theorem, namely: “If two walks look essentially the same, and if one
has been shown to be transient, must not the other also be transient?”

Another question likely to occur to someone contemplating Polya’s
theorem is the question raised in Section P.I.§: “Since the lattice Z¢ is
in some sense a discrete analog of a resistive medium filling all of R,
should it not be possible to go quickly and naturally from the trivial
computation of the resistance to infinity of the continuous medium to
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a proof of Polya’s theorem?” Our shorting argument allowed us to do
this in the two-dimensional case; that leaves the case of three (or more)
dimensions. Again, it is considerations of energy that allow us to make
this connection. The trick is to start with the flow field that one gets
by solving the continuous problem, and adapt it to the lattice, so as to
get a lattice flow to infinity having finite dissipation rate. We leave the
working out of this as an exercise, so as not to rob readers of the fun
of doing it for themselves.

Exercise 2.4.10 Give one final proof of Polya’s theorem in 3 dimen-
sions by showing how to adapt the 1/7? radial flow field to the lattice.
(Hint: “cubes”.)

Acknowledgements

This work is derived from the book Random Walks and FElectric Net-
works, originally published in 1984 by the Mathematical Association
of American in their Carus Monographs series. We are grateful to the
MAA for permitting this work to be freely redistributed under the terms
of the GNU General Public License. (See Figure [[2.)

116



Subject: Carus Monograph

From: J. Laurie Snell <jlsnell@Dartmouth.EDU>
Date: 15 October 19%9
Dear Don,

Peter and T are delighted that we have the MAA’'s permission to distribute
our Carus Monograph ‘Random Walks and Electric Networks’ under the terms
of the GNU General Public License, as published by the Free Software
Foundation. We believe that in allowing the public to distribute and
modify this work freely, the MAA will be contributing to the diggemination
of mathematical knowledge in a way that is entirely consistent with the
goals of the Carus Monograph Fund.

For our records, we would appreciate it if you would sign an return to us
the enclosed copy of this letter.

Thanks so much for your help!

Sincerely yours,

5. Laurie sne N &GM
R V’\wiMM |
gy renif o /i’h\m

(B} \lb\qc\"

Figure 72: &

117



References

1]
2]
3]

[4]

Edwin Abbott. Flatland. 1899.
B. Bollobas. Graph Theory. 1979.

R. Courant, K. Friedrichs, and H. Lewy. Uber die pertiellen
Differenzengleichungen der mathematischen Physik. Math. Ann.,
100:32-74, 1928.

J. L. Doob. Stochastic Processes. 1953.

[5] W. Feller. An Introduction to Probability Theory and Its Applica-

[10]

[11]

[12]

[13]
[14]

[15]

[16]

tions, volume I. 1968.
R. P. Feynman. The Feynmann Lectures on Physics. 1964.

L. R. Ford and D. R. Fulkerson. Maximal flow through a network.
Can. J. Math., 8:399-404, 1956.

M. L. Glasser and I. J. Zucker. Extended Watson integrals for the
cubic lattice. Proc. Natl. Acad. Sci., USA, 74:1800-1801, 1977.

D. Griffeath and T. M. Liggett. Critical phenomena for Spitzer’s
reversible nearest particle systems. Ann. Probab., 10:881-895,
1982.

R. Hersh and R. J. Griego. Brownian motion and potential theory.
Scientific American, pages 66—74, March 1969.

J. Jeans. The Mathematical Theory of Electricity and Magnetism,
5th Edition. 1966.

S. Kakutani. Markov processes and the Dirichlet problem. Proc.
Jap. Acad., 21:227-233, 1945.

F. Kelly. Reversibility and Stochastic Networks. 1979.

J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable Markov
Chains. 1966.

J. G. Kemeny, J. L. Snell, and G. L. Thompson. Finite Markov
Chains, 3rd Edition. 1974.

Harry Kesten. Percolation Theory for Mathematicians. 1982.

118



[17]

[18]

[19]
[20]

[21]

[22]

[25]

[20]

[27]
28]

[30]

[31]

[32]

J. F. C. Kingman. Markov population processes. J. Appl. Prob.,
6:1-18, 1969.

A. Lehman. A resistor network inequality, Problem 60-5. SIAM
Review, 4:150-154, 1965.

Paul Lévy. Théorie de l’addition des variable aléatoires. 1937.

T. J. Lyons. A simple criterion for transience of a reversible Markov
chain. Ann. Probab., 11:393-402, 1983.

J. C. Maxwell. Treatise on Electricity and Magnetism, 3rd Edition.
1891.

W. H. McCrea and F. J. W. Whipple. Random paths in two and
three dimensions. Proc. of the Royal Soc. of Edinburgh, 60:281—
298, 1940.

E. W. Montroll and B. J. West. Fluctuation phenomena. In Studies
in Statistical Mathematics, volume 7, pages 61-175. 1979.

C. St. J. A. Nash-Williams. Random walk and electric currents in
networks. Proc. Camb. Phil. Soc., 55:181-194, 1959.

L. Onsager. Reciprocal relations in irreversible processes I. Phys.
Rev., 37:405-426, 1931.

G. Polya. Uber eine Aufgabe betreffend die Irrfahrt im Strassen-
netz. Math. Ann., 84:149-160, 1921.

G. Polya. How to Solve It, 2nd Edition. 1957.

G. Polya and G. Szego. Isoperimetric Inequalities of Mathematical
Physics. 1951.

J. W. S. Rayleigh. On the theory of resonance. In Collected sci-
entific papers, volume 1, pages 33-75. 1899.

H. L. Royden. Harmonic functions on open Riemann surfaces.
Trans. Amer. Math. Soc., 73:40-94, 1952.

C. E. Shannon and D. W. Hagelbarger. Concavity of resistance
function. J. of Appl. Phys., 27:42-43, 1956.

J. L. Snell. Probability and martingales. The Mathematical Intel-
ligencer, 4, 1982.

119



[33] W. Thomson and P. G. Tait. Treatise on Natural Philosophy. 1879.
34] J. Ville. Etude critique de la notion de collectif. 1939.

[35] G. N. Watson. Three triple integrals. Quarterly J. Math., 10:266—
276, 1939.

120






Hepagsencrso Ianupo

A. Xpabpos
Bagaay npeacrasisin . Borganos, B.Byraenko, K. Kyromxusu, K.Koxach, A.CkoreHkoB,
[Yennokon
1 Hepaserncmeo ILllanupo

B oktabpe 1954 r. B xxypnase “American Mathematical Monthly” mosiBuiiacs 3ajada aMepuKaHCcKOro MareMaTnka ['apoiib-
na [lamupo:

LA NOAOHCUMENOHDIT HUCEA T1, X2, ..., Tn 00KAHCUME HEPAGEHCMEO
X1 i) Tn—1 Tn n
+ +... B (1)
To+ T3 T3+ T4 Tn+z1  x1+T2 2

NPUYEM DABEHCTNEO MONHCEM AOCTNULGMBCA, MONDKO ECAU BCE SHAMEHAMEAU PABHVL MEHCIY COOOT.

B “Monthly” B omnmune, manpumep, ot xypnasia “KBanT’ momyckajach IyOJMKanus 3a71ad, KOTOPble HUKTO HE yMeJl
pernaTh, mpudeM duTaresieil 06 3TOM He TpeaynpexIaarn. 1ak ObLI0O W Ha 3TOT pa3. Y aBTOpa OBLIO PEIeHne TOJBKO st
n=3mu4.

B npeuraraembix Hrrke 3a/1adax BMECTO IOJIOXKHUTEIBHOCTH BCEX HMCEN T MOXKHO TpeGOBaTh, YTOOBI BCE UHCJIA Tj OBLIN
HEOTPHUIATEIbLHBIMY, & BCE 3HAMEHATEJN — HEHYJIEBBIMU. KC/im HepaBeHCTBO AJIsI MOJIOXKUTEIBHBIX UHCEI y2Ke JTOKAa3aHO, TO
13 HETrO HECJIOKHO BBIBECTU HEPABEHCTBO JJIsi HEOTPHUIATEJbHBIX YHCEJ, /IS KOTOPHIX 3HAMEHATE/N He OOPAIaloTCsd B HYJIb.

O6o3na9UM
1 T2 Tn—1 In

+ .. .
T2 +x3 T3+ x4 Tp + 21 x1 + T2

f(zi,22,... xn) =

1.1. Toxkaxxute HepaseHcTso (1) mpu n = 3, 4, 5, 6.
1.2. JTokaxkute, 910 HepaBeHCTBO (1) HEBEpHO:
a) npu n = 20; b) npu n = 14; ¢) npu n = 25.
1.3. Tokaxkute HepaseHCTBO (1) 1171 MOHOTOHHBIX IIOCJIE0BATEIBHOCTEA.
1.4. JTokaxkuTe, 9TO ecjiu HepaBeHCTBO (1) HEBEPHO IPU 1 = M, TO OHO HEBEPHO W IIpH 1 = M + 2.

1.5. Jlokaxkure, 4To ecau HepaseHCTBO (1) HEBEpHO NpM N = M, TJie M HEYeTHO, TO OHO HEBEPHO U IIPH BCEX N,
OGJILIIUX M.

1.6. Tokaxkure, uro HepaseHcTBO (1) BepHO mpu n =8, 10, 12 un =17, 9, 11, 13, 15, 17, 19, 21, 23. Kak caexnyer u3
YTBepXKJIeHnd 3372491 1.4, TOCTATOYHO JOKA3aTh HEPABEHCTBO JIUMIL Ipu . = 12 u n = 23.

1.7. Hokaxure, uro f(x1,Ta,...,Tn) + f(Tn, Tno1,.-.,21) = n.
1.8. TIpernosoKUM, 9TO B TOUKE a1, A2, - - -, A > 0 dynkmus f(ry1, T2, ..., T, ) UMEET JOKATLHBI MAHAMYM.
a) Ecau n gerno, nokaxure, uro f(ai,as,...,a,) =n/2.

b*) okaKkuTe aHAJOTMIHOE YTBEPZKICHUE JJIsl HEUETHBIX 7.
¢) JokakuTe ¢ IOMOIILIO IIyHKTOB &) U 6) HEPABEHCTBO JId N =7 U n = 8.

1.9. Jokaxkure HepaBeHCTBO f(x1,Ta,...,T,) 2 cn Ui CIELYIONUX 3HAYEHUIT ¢

a) c=1/4; b) c= (V2 -1); c) c=5/12.

2 Iloae3nwie u podcmeerHbvie HEPABEHCMEA

JlokazknTe cileyIoliie HEPaBEHCTBA B IIPEJIIIOJIOYKEHHM, UTO BCe UHCJIA T) IOJIOKHUTENIbHBI. [IpoBephbTe, UTO BBIIEIEeHHbIE
JKUPHBIM IPU(MTOM KOHCTAHTHI HEJIb3sT 3aMEHUTh Ha OObImue (TIpU KaXKIoM 7).

2.1. Hepasenctso Mop/iesura.
a) Jluis J100bIX HEOTPUIATEBHBIX YUCET X1, L2, - . ., Ly UMEET MECTO HEPABEHCTBO

n 2 n
. (n
(kg_lxk> > min {57 3} . g_l Tk (Tp41 + Tht2)-

b) Ycranosure, jjig KaKuX HEOTPUIATEIBHBIX YUCEN X1, X2, - .., L, HepaBeHcTBO Mopzeaia obpamaercs B pa-
BEHCTBO.



2.2. JIna BCceX HEOTPHUIATENbHBIX YUCENT T1, L2, ..., Ly JOKAKATE HEPABEHCTBO

n

n 2
8
<Z Ik) > min {g, 3} : ;l’k(ﬂfkﬂ + Tpt2 + Thys).

k=1

2.3. a) IIpu n < 8 joKaxKuTe HEPABEHCTBO

1 Z2 Tn—1 Tn n
+ +..+ > —.
To+r3+x4 T3+ x4+ TH Tp+2T14+2x2 1+ X9+ T3 3
b*) BepHo /i1 9TO HEPABEHCTBO eIlle IPU KaKUX-HUOY/Ib HATYPAJBbHBIX N7
2.4, (z1+ a2+ ... —|—xn)2 > 4(z1me + 2223+ ... F Tpo1Ty +Tpx1); N =4
n n
x T
2.5. 7k22¢.
o Tkt T T2 Tht Tt
x x Ty x
26, — 4 2 4 4 —ml " >2; n>A4.
Tp+22 T1+T3 Tp—2+Tn Tp—1+ 21
T+ o+ Tp_1+T Ty +T
P RRSE N S SN I S TR T
T1+x3 T2+ T4 Tp—1+T1  Tp+ T2
x x Ty x
28— 4+ "2 4 nl " >3; n>6
Tp+T3 T1+ T4 Tp—2+T1 Tp—1+ T2
To+ T T3+ T Tp+ T T+ T
2,9 23 8T,y T LTI 56, 6.
T1+Ty T2+ Ts Tp—1+ Tz Tp+ X3
T+ T To+ T T +x
210, 224278 L 20T > 6,
T1+T4 T2+ Ts T2004 + T3
T T Ty T
2.11. LS. 2 4+ nol i > 4, rje n — 4YeTHoe 9ucio, bosbiree 7.
Tn+2s T1+25 Tp—2+ T2 Tp-1+23
n 2
T n+1
2.12. ) — k — > [ .
1 Tha1 ~ Tht1Th2 T Tppo 2



HepasenctBo lllammpo

3 /lobasaerue nocae npomercymouwrozo0 guruwa

1.10. a) st s1:060ro HATYPAJILHOIO N CYIIECTBYET TAKOE YHUCJIO ¢, > 1, 4TO UPU BCEX BEINECTBEHHBIX YUCJIAX T1,
T2, ..., Ty € [qi; ¢n) mMeer MecTO HepaBeHCTBO (1).

b*) Cymecrsyer jin Takoe ¢ > 1, 4To Ipu BCexX HATYPAJIbHBIX 7 U IPU BCEX X; € [%; (] BBIIIOJIHEHO HEpPABEH-
crBo (1)?
1.11. IIycrs S = f(x1,22,...,T,) — JeBas dacTb HepaseHcTBa [Ilanupo. O6Go3HaMMM [epes aj, g, ..., G YUCIA
X2/x1, T3/T2, ..., Tn/Tp_1, T1/Tyn, PACIOIOKEHHbIE B NOPSIJIKE BOBPACTAHMUS.

> ! ot s
a) Jokaxnre, ato S > alren T oz T T araran

PP Appyi—k = 1
6) ycTs by, = { kOn+l=k 9 JoxrazknTe, 910 25 > by + by + ... + by;

, Aplpyp1—k < 1.
AkOn+1—k + /0kOnt1—k
B) Ilycrh g — Haubosibiias By KJIas (DYHKIWS, He npeBocxosias dbyukimii e~ u 2(e* 4+ e/ 2)~1. Mokaxmure,
qaro 25 > g(In(aray,)) + g(In(azan—1)) + ... + g(ln(anai)) = ng(0).
r) Hokaxure, uro i jwoboro A > ¢(0)/2 cymecrByer Takoe HATYPAJIbHOE YHCJIO 7 U TAKHUE II0JIOXKUTEJIbHBIE
qucaa Xy, Xo, ..., Tn, 970 S < An.

Pemenuga

1.1. n = 3. Ilycrs S = x1 + 22 + x3. Kak werpyauo Bugers, byukius f(t) = ﬁ BBINYKJIa Ha mpoMexyTke [0; S).

Sanmmiem Jiiist Hee HepaBeHCTBO VeHcena

f($1)+f(§2)+f(m3) >f($1+3;2+$3> :f<§> 1

910 U ecTh TpebyeMoe HEPABEHCTBO.

n = 4. HepaserncrBo muknaeckoe. Hammiem fgaHHbIe YnC/Ia MOCIeI0BaTEIBHO B BepInHax kBajapara. [lo aquaro-
HAJIU IIPOBEJIEM CTPEJOYKHM OT MEHBINNEro ducia K OosbimeMy. Torma y oaHONM U3 CTOPOH KBajpara 0b6e BepITHHBI —
KOHITHI cTpesiodek. Ilepenymepyem umnciia Tak, 9TOOBI 9TO ObLIa CTOPOHA T4T1. TaKuM 00pa3oM, MOKHO CIUTATD, ITO
T1 = X3, Tg4 = To. I8 IEPEMEHHBIX, YIIOPSIOYEHHBIX STUM CIIOCOOOM, MMEET MECTO OYEBHJIHOE HEPABEHCTBO

X1 + X3 S X1 + T3
> .
To + I3 T4+ X1 T4+ 23 To + X1

Bocmonb3yemcest um iyt jokazaresnbcra HepaBeHncTBa [llammpo

1 T2 x X4 xr1 T2 T X4 r1+To2 XT3+ 24
+ +—2 > + — = >
To+2x3 T3+T4 XT4+T1 T1+T2 g+ T3 T3+xg4 T2+T1 X1+T2 T3+ T4 X1+ T2

=qa+a ! > 2.

n = 5. BamernM, uro byakuus f(t) = 1/(S — t) Bbmykia Ha unTepsaie [0;.5). Bocnonbsyemes: Torma HepaBeH-
cTBOM lleHceHa Jist MSITH YuCes

a1 f(t1) + asf(ta) + asf(t3) + aaf(ta) + asf(ts) = flarts + asta + asts + asts + asts), (2)
rie a; > 0, Y a; = 1. B kagecTse a; BO3bMEM a; = G, W MyCTh t; = T; + T;—1 + Tj_2, 4 =1, ..., 5 (camraem, 4ro
HyMepallys [IePEeMeHHBIX IUKJINIeCKast: To = &5, T_1 = &4). Torma f(t;) = Sit, = :6'+ﬁ1~z'+2’ U 3HAYWT, JIEBas JaCTh

HepaBeHCTBa (2) ecTb B TOYHOCTH JieBas dacTh HepasencTsa [amupo. [Tocmorpum, aro npezcrasiser coboii npasast

JaCTb.
1 1 S

S — Z?:1 at;  S— Z?:1 (i + w1+ 140) 52— 2?11 xi(x; + i1 + xi—2)

Kak HerpyHO yOenInThCs, PACKPBIB CKOOKH, 3HAMEHATEJb IIPEJICTABIIAET COOON B TOYHOCTH CyMMY IIOHIAPHBIX IPO-
n3BejieHUl Habopa [EPEeMEHHBIX T;. 3aMeTHM €Ille, ITO CHJLY OJHOPOJHOCTH JOKA3bIBAEMOIO HEPABEHCTBA, MOXKHO
CUATATh, YT0 S = X1 + T3 + 3 + T4 + x5 = 1. Urak, npasas yactb HepaBeHCTBa (2), eCcTb BeJIMUMHA, OOpaTHAsI
CyMMe MOIIAPHBIX [IPOM3BENEHNIl IePEMEHHBIX Z;, HOMMUHEHHBIX YCJIOBUIO X1 + T2 + 23 + x4 + =5 = 1. OueBuamo,
MHHEMYM IPABOIl 9aCTH JJOCTUTAETCS B TOM CJIydae, KOrja CyMMa IIOMapHBIX [IPOU3BEICHNI MaKCHMAIbHA. XOPOIIO
M3BECTHO, 9TO 9TO OyleT B Cilydae, KOIJa BCe IEepPEeMEHHBbIe paBHBL HeTpyaHo BHIETH, 4TO mpaBas 4acTh B 9TOM
citydae pasHa 5/2.




Kcratu, npu n = 4 anagormdHoe J0Ka3aTEILCTBO TOXKE pabOTaeT.

n = 6. Anasiornuno upenpiaymemy pemenuto. Oyuxiusa f(t) = 1/(S — ) Bouiykia na uarepsade [0;.5) Pacemor-
PHUM HEpaBeHCTBO VleHceHa s NIECTH YUCeT

f:aif(ti) = f(zﬁ: aiti)~
i=1 i=1

IIyctp a; = %, ti=x; +2Ti—1 +xi—o+Ti—3, 1 :11, ..., 6 (lchTaeM, 9TO HyMepalys IIePEMEeHHBIX ITUKINYecKasd:
To = Tg, T_1 = Ty, T_og = x4). Torma f(t;) = S—7 = zigws M SHAUMT, JleBas 4acTh HEPABEHCTBA (1.1) ecrb
B TOYHOCTH JieBast 9acTh HepaserncTBa [Ilammpo. [TocMoTpuM, 9TO TIpecTaBiaseT coOOi mpaBasi YacTbh.

1 1 S

S — 2?21 at;  S— Z?:l (@i w1+ w0+ 1i3) 52— Z?:l xi(x; + i1 + xi—o + x5-3)

Kak meTpyaHo y6emuThes, PACKPBIB CKOOKH, 3HaMeHaTelb MPeJCTaBIseT co0oi B TOYHOCTH CYMMY IIONapHBIX IIPO-
U3BeJIeHNIt HAabOpa MepeMeHHBIX T;, KpOMe IIPOM3BeICHNH X1T4, Tols, T3Te. DTy CYMMY MOXKHO 3allicaTbh B BUJE
(21 + x4) (22 + x5) + (21 + 24) (25 + 26) + (22 + x5) (25 + 26). O603HAUMB A = 21 + x4, B = x5 + 25, C = 23 + X,
MBI MOYKEM 3allICATh IPABYIO YacTh HAIIErO HEPABEHCTBA VleHceHa B BUe

A+B+C 3)
AB+ BC + AC

B cuty oHOpOMHOCTY JIOKA3BIBAEMOTO HEPABEHCTBA, MOXKHO CUATATh, 9T0 S = 1+ To+r3+x4+x5 = A+ B+C = 1.
Toryia oueBuIHO, UTO BhIpazkenue (3) He menbine 3, B cuity Hepasenctsa (A + B+ C)? > 3(AB + BC + AC). 4T

Sameuanue. K coxajeHuto, jajblie 3TOT crocob He pabortaer. Ecim Mbl NpuMeHsieM MeTOJ MHOXKUTEJIEH
Jlarpanzka, 9To0bl HATH MaKCHUMyM 3HaMeHaTeJel B npaBoii qactu (npu GUKCUPOBAHHON CyMMe [EPEMEHHBIX ), TO
CHCTEMa yPABHEHUH ITOJIydaeTcs JUHEIHHON, CIe0BATEIbHO, TOI03PUTEIbHAS TOUKa eauHcTBeHHA. [Ipn n = 6 kBaI-
paruunas ¢dopma Broporo mauddepenHnnaia B 9TOH TOUKe SBIISIETCS MOJIOKUTETBHO OIPEIEIEHHON 1 BBIPOXKIEHHO.
IIpu n = 7 ona yxke He sBisercs 3uakoonpeenennoit (¢ nposepusa sro B Maple. KK). Takum obpazom, ipu n = 7
HepaBeHCTBO Vlencena jaeT CIMMIKOM rpyOyio OIEHKY CHI3Y.

Jlpyroe pereHre 3TON 3aJa9u IOJIYYUTCsI, €CJIU MPUMEHUTH HepaBeHCTBO Kommm-ByHsikoBckoro st Habopos

qucesn
1 T T,
\/1a-+:r3’ \/13-+:z4’ 0 Nare
Vi(za +x3), Vaoles+z4), ..., Tn(x1 + 22)
Ionyaurcs
1 T T (v + 20+ ... +2,)?

+ + ...+ > .
Ty +x3 T3+ T4 X1+ 22 xp(xo+w3) +xe(zs +24) + ..+ 2p (21 + 22)

ITo mepasenctBy Mopzemta (3amada 2.1) nupu n < 6 mpaBasi 9acTh 3TOrO0 HEPABEHCTBA HE MEHbIIE, deM 1/2.

1.2. a) Ecau B Kauectse x1, Za, ..., Tag B3ATH
1+ be, 6e, 1+ 4e, 5e, 1+ 3¢, 4e, 1+ 2¢, 3e, 1+¢, 2e,
1+ 2¢, £, 1+ 3¢, 2e, 1+ 4e, 3e, 1+ be, 4e, 1+ 6e, 5e,

TO JIeBas JacTh HepaBeHCTBa Oyzer Menbine geM 10 — €2 + ce? jama mexoroporo c. CrieoBaTeIbHO, IPU JI0CTATOYHO
MaJIoM £ oHa Oyger menbine 10. dror npumep npunaiexur Jlahrxuuty; onybaukosad B “Monthly” [22].

b) Eciu B KavyecrBe x1, T3, ..., T14 B34Th

147e, 7e, 14+4e, 6, 14+¢, be, 1, 26, 1+¢€, 0, 1+4e, €, 14 6¢, 4e,

TO IMpaBas YacTh HepaBeHCTBa OyjeT MeHbIne deM 7 — 22 + ce® u, cieoBaTenbHo, TIPH JIOCTATOYHO MAJOM £ OHA
Gyzser menbiie 7. 9to upumep Lynayda [27].
A Bor emie npumep [24], 1e70UUCIEHHBIN, B HEM HEKOTODPbIE II€PEMEHHbBIE DABHBI HYJIIO.

0, 42, 2, 42, 4, 41, 5, 39, 4, 38, 2, 38, 0, 40.

¢) TIpumMepsl, MOATBEPKIATOIINE UTO IPU 1 = 25 HEPABEHCTBO HEBEPHO, OBLIN TIOCTPOEHBI Ha KOMITbIoTEpe B 1970 T
Hetikuabiv [10] 1 Maskoasmom [18]. Huzke npusenen npumvep eiikuaa (oH B osimune or mnpuMepa Maiikoabma
[eJIOUUCIIEHHBII ) :

0, 85, 0, 101, 0, 120, 14, 129, 41, 116, 59, 93, 64,71, 63, 52, 60, 36, 58, 23, 58, 12, 62, 3, T71.



A Bor eme npumep P. Anexceesa u E. @omkuna (npusezen B [3]).

32, 0, 37, 0, 43, 0, 50, 0, 59, 8, 62, 21, 55,29, 44, 32, 33, 31, 24, 30, 16, 29, 10, 29, 4.

1.3. YrBepxienue 3aa9u omy6mkosano B [13]. Mbl IPHBOIMM KOPOTKOE U3AIIHOE PelleHwe.
IycTs 71 = 29 = -+ = xn > 0. 3aMeTHM, 9T0 IpOH3Be/ieHne n Apobeii —tEtiktl

asuo 1. Torna us HepaBeHCTBa,
Th+1+tTh42 p at p
O CpeJHUX 3aKJII0TaeM, ITO

n n
Z Tk + Tht1 S = Z Tht1 + The2
= - .
o1 Tht1 Tt T2 o1 Tht1 Tt T2

CireoBaTesibHO,
n

Sy ey @
k k=

= k1t Tht2 1 Tht1 Tt T2 T+ g1

Tenepb MBI BOCIIOJIB3yeMCd CJACAYIOININM M3BECTHBIM HEPaBEHCTBOM, KOTOPOE 6y,HGM Ha3bIBaTh TPpaHCHEPaBEHCTBOM:

IIyCTh UMEIOTCS JiBa HAbOpa 9ucesa a = ... = ap, u by > ... > b, Torma mist mroboit mepecranoBku ki, ..., ky, aucen
1, ..., n ©UMeeT MeCTO HEPABEHCTBO
a1by 4+ az2ba + ... anby > a1by, + agby, + ... anby, = a1by, +asby_1 + ... anbs

JlBa pa3a BOCIIOJIb3yeMCsl TPAHCHEPABECTBOM

n n—2
2t - e
= =
=1 Tk+1 + Thy2 17 Tkl + Ty Tnt+T1 T+ T2 (%)
n—2 2 z .
-1
> Z k n n >
T Tkl T T2 Tt T2 Tn T T (6
= T
> § '7’€
T+
oy Tk T Trtn
3aecy mepasencTBo (*) — 3TO TPAHCHEPABEHCTBO Ijisi HAOOPOB M3 JIBYX UHUCEN: Ty_1 = Tn U xlﬁ > m;
n
a HepaBeHcTBO (**) — 9T0 TpaHcHepaBeHCTBO st OOPATHO YHODPSIJIOYEHHBIX HAGOPOB YUCET L1, X2, ..., Tp_1 U
1 1 1
Ti4xo’ xotxz’ ") Tp_14Ta
Takum obpazom,
n P n T n T
k k k+1
P SES o SR S N
Th41 + Th42 Tk + Thi1 Tk + Tht1

k=1 k=1 k=1

g yopiBaomero Habopa 9HCeJl X; PelleHne aHAJOIMYHO, IIOCKOJIbKY IPUMEHdAs HEPABEHCTBO O CPEJIHUX MBI

BOOOINEe He TOJIb30BAJIMCH YIOPSIIOYEHUEM, a IIPUMEHsIS TPAHCHEPABEHCTBO, MCIIOJIB30BaJU TO, UTO HAOOpPBI T; U

1 -
7o, YUOPAJO0UCHBL HO-PasHOMY.

A Bor Goustee npsimosinHeliHOe pererne u3 [3).

Pasbepem craugana cayuait 1 > ro = -+ = x, > 0. g kpaTkocTn 0603HAYUM JIEBYIO 9aCTh HEPABEHCTBA, IepPes3
fu(z1,22,. .., 2,). Bamerum, a0 fo(x1,z2)=1. IlosTOMY €csiu MbI IOKaXKEM, UTO
1
fn+1(x17x27 ey Ty ‘rn+1) - fn(xlﬂ T2y 7xn) > 5 )

TO, BOCIIOJIb30BaBIINCH METOI0M MaTeMaTUuYIeCKON UHAYKIUH, TTOJIyYUM

1 n—2 n
fn(90179627-~,$n)>fnf1(5817$2,-~,$n71)+§>fn72($17$2,~-,96n72)+12'-'>f2($1,$2)+ 5 T3
Paccevorpum pasnocts

Tn—1 T Tn+1 Tp—1 x
for1(@1, @0, ., Tpg1) — fo(T1, T2, Tp) = i n n E— — n

+ .
Tp +Tpt1  Tpt1+T1 T1+2T2 Tp+T1 T1F T2

Ona He 3aBHUCUT OT YUCEN T3, X4, ..., Tp_2, TOITOMY MBI MOXKEM CUHTATHL HX JIOOBIMHA YHCJIAMH M3 HHTEPBAJIA
[€2; ,—1]. Cnaraemble, copepKaliyie Ty, 1, UMEIOT BHL

Tn—1 Tn—1 L1 — Tn+1
— Tp—1° )
Tp+ Tny1  Tp+ a1 (@n + Tpg1)(@n + 1)




T.€. PaBHBI Tj_1, YMHOXKEHHOMY Ha HeoTpularejbHoe uuncjio. CjeaoBare/ibHO, IIPU YMEHBIIEHUU X, 1 PA3HOCTH
MOXKET TOJIBKO YMEHBIMUTHCsI. [109TOMY MOXKHO CUUTATD, UTO Tj,_1 = &p. Cllaraembie, cojilepKaliye o, JAK0T

Tpn+1 — Tn
1+ o

)

YTO YMEHBIIAETCS IIPY YMEHbIIEHUHU Lo, IIOITOMY MOMXKHO CUUTATD, UTO Ty = Lyp_1 = &p. CIIEI0BATEIBLHO, JJOCTATOYHO
J0Ka3aTh HEPaBEHCTBO

1
0< fn—i—l(xlvx?w cee s Ty xnaxn-i-l) - fn(mlaxnv s 71:7L7xn) - 5 =
| Tpg1 — 2@, Ty, L T 1 (zn— Tpt1) (@3 + 222 + TpTpg1 — T1Tp — T1Tpg1 — 222 )
Ty + Ty Tp+ Tpy1 Tl +Tppr 2 (21 + xn) (21 + Tng1) (@ + Tny1) '

TaKI/IM ()6[)3301\/[, J0CTATOIHO ,H()Ka3aIb, q9TO
2 2 2 2 2 > 0
:,E] + "En + xn.’I;n+ — 1Ty — T :L‘n+ - :En 1 = .

ITocnemnmee BrIparkeHne YMEHBITAETCS IIPU YBEJIUIEHUU Ly 41, [IOITOMY MOXKHO CIUTATH, 9YTO Tp41 = Tp. HO B 3TOM
CcTydae HepaBeHCTBO MPEBPAIaeTcs B OUeBUIHOE: T3 + 12 — 2211, = 0.

Temnepn pazdepem ciaydait 0 < 1 < T2 <+ -+ < Tp,. 3aMETUM, 9TO

T1+T2 | T2+ T3 Tn + 21 T2 T3 1
iot—m —n + +... .+ —
To + I3 T3 + T4 T+ X9 xr1 + T2 To + I3 Ty + 21

fn(xlal‘27"-7‘rn) =

IlepBasg cymMma He MeHBINE N, TaK KaK MPOU3BEJICHNE cilaraeMblx paBHo 1. IlosToMy mocTarodno moka3arb, UTO

( ) i) + I3 + + X1 S n
T1,22,...,T = R — —=.
gn\T1, T2, s 4n 1+ 2o T3+ 23 T + 21 = 9

Tak Kak gs(r1,22) = 1, TO JOCTATOYHO IPOBEPUTH, ITO

1
g’n(xlvav L J‘TTL) - gnfl(xl,:EQ, e 7*%.77,71) 2 5 .
9TO AEHCTBUTETHHO TaK:
T 1 T 1
gn(xhx%"wxn)_gnfl(wlawanaxnfl)_*: + - - < =
2 Tp_1+2Tp Tn+T Tp_1+ 1 2

_ (@ —m)(@n — wn) (20 — 21)
2(xp—1 + xpn)(xn + 1) (21 + Tpe1)

= 0.

Sameganue. jgg MOHOTOHHO BO3PACTAIONIEN OCIEIOBATEIHHOCTH YACE HEPABEHCTBO HE MOXKET OBITH JOKa-
3aHO 110 MHAYKIUN 0e3 HOMOJHUTEIbHBIX TPIOKOB, ITOCKOJIBKY

n+1 n—2 1 1 n+1 n+1 1
fa(0,1,...,1) = u for1(0,1,. . L15G) = ——+ 1+ T+ -7 =~ +0,4852 < —— + .
2 2 16 29 2
1.4. [3] Kak merpynuo yoeaurbest, fnio(x1,Ta,. .. &y, T1,22) = fn(x1,22,...,2,) + 1. Orciona cpasy cieiyer, 4ro
ecm [ (21,22, .., Tn) < N/2, TO fria(T1, T, ..., Tn,x1,22) < (n+2)/2.
1.5. [3] peanonoxum, 9to fp, (21,22, . .., Tm) < G . BoraucanM pasnocts
1
fm-‘,—l(l‘l; sy Tk Ly Tt 1y - - - 7xm) - f’m(x17x27 ... )mm) - 5 =
_ Tk—1 Tk . o SR (@) — xp—1) (T — Tht1)
2r, Tk +Tpp1 Tk T 2 2z (xk + Trg1)
Eciu (z, — 2k—1)(zk — 2k41) < 0, TO
m+1
fn+1<$1,$27-..,xk7xk7mk+17--.7$m) T

7 yTBep:KJeHne JoKa3ano. Ilpn HedeTHOM m Takoil mHAeKC k 00sg3aTeNbHO HANAETCsI, TOCKOJBKY €CIU MpHU Bcex k
(2 — Tk—1)(Tk+1 — Tx) < 0, TO IEPEMHOXKUB ITH HEPABEHCTBA (UX HEUETHOE YUCJIO!), OIyInM, 9TO

(zg — 1’1)2(1’3 — xg)Q R xm_l)z(acl — :cm)2 <0.



Wrak, ecan jjisi HEYETHOTO M HEPABEHCTBO HEBEPHO, TO W it m + 1 oHo Toxke HeBepHO. OCTAIOCH BOCIIOJIB30-
BAThCS YTBEPXKJIEHUEM IPEJIBLIYIIEN 3a/a91.

1.6. HaubGosiee KOPOTKUE M3 U3BECTHBIX JIOKA3ATEIbCTB 1 7 < n < 12 onyGuaukosannt B [7, 8. Jas 66abmux n
JOKA3aTeILCTBA OIMUPAIOTCS Ha KOMIIBIOTEPHBIH mepebop.

1.7. 28] IlycTh yi = 2 + x11. Torma

1+ x4 +x2+x5 +.”+xn+x3 _ Yk — Ykt1 + Yhio _ S ﬂ—&—i:m—”—n}n,
T2+ T3 X3+ T4 Ttz Y41 oYk T Yk
TOCKOJIbKY KasKJasd U3 CyMM TI0 HEPABEHCTBY O CPeJIHIX He MeHBIIe N.
1.8. YrBepxkuenus a), b) B3sarel u3 [21]. TlomoxumM mis Kpatkoctu a = (a1,az2,...,0,), & = (T1,%2,...,Tp) X

w=(-1,1,-1,1,...,~1,1).
a) 3amerum, 4To

-1 1
fla+tu) = f(a) +t + +...
To+T3 X3+ T4
Takum obpaszoM, f(a + tu) — suneiinas dyskiwsa. B Touke a y Hee HabIIIOJaeTCs JOKAJIBHBIT MUHUMYM, CJIE/I0Ba-
TeJIbHO, OHA IOCTOSIHHA U HECTPOI'Hil JIOKAJIBbHBI MUHUMYM HAOJIIOMAETCS BO BCEX TOYKAX ¢ + (U, UMEOIIUX [TOJI0XKH-
TeJbHBbIE KOOPJAWHATHI. Tak Kak

8f (CC) _ 1 _ Tl—2 o Th—1
Oz, Tht1 + Thto  (Th—1 +2k)? (Tk + Tp41)?
U B HAIIAX TOYKAX MUHUMYMa
0 0
I =0, s =o,
8xk 8£Ek
BBIIIOJIHAIOTCS COOTHOIICHUS
1 a2 ap—1
- 2 5 =0
ap+1+akr2  (ak—1+ ax) (ak + ak+1)
u
1 agp—2 + lf(—l)k*2 akp—1 + t(—l)kil —0
ap+1 + Qg42 (ap—1 + ap)? (ar + apq1)?
BblunTast 13 BTOpOro paBeHCTBa IIepBOe MOJIYyUUM COOTHOIIEHUE
t t
5 — 5 =0.
(ag—1 + ax) (e + ak41)
Taxum obpaszom,
ag—1+ ap = ag + apy1-
CraJio OBITH,
] — Qa3 — A5 = " =0Up—-1 MU A = a4 = Qg = -+ = Qp.
A snauur, f(a) =n/2.
b) Dro koporkoe mokazaresbcrBo omybsukosano B [7]. Tlosoxkum juist kparkocru a = (a1, as,...,a4,), T =
(1,22, Zn)s Y= (Y1,Y2,- - Yn)s 2 = (21,22, ..,2n), D€ Yk = Tk + Tht1 U 2k = 1/Ynt1—k-
TTooxum
T x z x i
1 2 n—1 n k
S(x) = + +... = :
To+x3 T3+ T4 Tp+T1 T1+ T2 =Ykt
3amernm, 9TO
of 2) = 1 _ Tp—2 _ Th—1
Oxy, Tht1 + Thre  (Th—1 +2k)? (Tk + Tpg1)?

Jlerko IIPOBEPUTDH TOZKJIECTBO




Takum obpazom,

Tk—2 n Tk—1
Tp—2 Tho1 Tp—o + Tp—1 (@e—1 +2)?  (@p + The1)? _
Tp—1+ 2Tk Tk + Tgt1 (xp—1 +2r) + (T + Try1) 1 1

Th—1+ Tk Tk + Tkt
af( )
Zn—k — ——\X
Yk—2 =k 8£Uk

Yk—1+ Yk Zn—k+1 T Zn—k+2

CireoBaTesibHO,

of
—(x
&tk

Zn—k+1 + Zn—k+2

25(x) = S(y) + S(z) — Z

k=1
Eciii B TOUKe & TOCTHrAeTCst JIOKATBHBIA MEHIMYM, T0 25(x) = S(y)+5(z). Taknm obpazom, S(z) = S(y) = S(z).
Ob6o3HaunM cpejiHee apuGMETUIECKOe IUCET L1, Lo, - .., Ty depe3 u. PaccMoTpum mpeobpa3oBanue
M(z) = (f”l t@ T2t s ‘”"”1)
2 2 2
Yepes My () oboznaaum ero k-0 urepanuio. 3amerum, aro S(x) = S(y) = S(M(z)) = --- = S(Mg(z)). cuo, aro
klim My (z) = (u,u,...,u). Torna
S(a) = lim S(My()) = S((u,u,...,u)) = g
c) [16], [7, 8]

1.9. Pemenusi Bcex IyHKTOB MbI B3sii U3 [3].

a) 3azaua npemiaraiach Ha Tperbeii Beecoosnoii onumnuae o maremaruke, 1969 r. Tyna ona, BuzmuMo, nonaJsa
u3 [14]; pemenue u3 3Toil cTaTby OIyOIMKOBAHO II0-PYCCKU B [3].

Ilycte z;, — Haubosblllee U3 4uCeNI 1, T2, ..., Tn; Ti, — HAUOOJIbIIIEE U3 JBYX CJIEJIYIOIINX 38 T;, UUCEN; Tj, —
HaubOoJIbIIee U3 JBYX CJIEAYIOMINX 33 X, YUACEJ U T. 1. ByleM CTpOUTH 3Ty IIOC/IeI0BATEIHHOCTh YUCEJI JO TeX 0P
IIOKa He JOfJeM JIO TAKOIo k, 94TO HauOOJIbIIee U3 IBYX CJIEHAYIOMIUX 34 X, HUCEJI — ITO Tj, .

Scno, uro k > n/2, a Takxke
1 T T T T; T,
+ .4 noy Ty e
To+x3 X3+ T4 T+ X9 2z, 2z, 2z,

ITo HepaBeHCTBY O cpegHeM apudMETHIECKOM U CPEJHEM T€OMETPUIECKOM IIOCJIETHEE BhIDAYKEHHe He MeHbIne k/2,
a 3HAYWT, He MEeHbIe n/4.

Tk

m, k= ].7 2, ..., N, 3aIIxIIeM B BUJIE

b) Kaxkmyto u3z apobeit

1 1
Tk Tkt 5Tkt 5Tk+1 T T2

Tht1 + Tht2  Thyl T Tit2 Thy1 + Tit2

Mpsr nmomyamm 2n gpobeit. CrpynmnupyeM #X 10 mapaM — IMEPBYIO C 2n-if, BTOPYIO C TPeTheil, 9eTBEPTYIO C ISATOM
u T. ;1. OneHnM CHU3Y CyMMy JIpo0Oeii 13 OJHON maphl:

1 1 1 1
5Tk T Tht1 + Tk + 5%Tk41 S 9 (32K + Tp41) @k + 5Th41)

> =
Tk +The1  The1 + Thao (@ + T 1) (Tot1 + Tit2)

_ 9 (1 L TRTRn ) Th + Tpy1 W5 Tp + Tpy1
2 Arp+ap41)? ) Thpr F Ty V Tyt + Trpo
T1+x2 To+x3 Tnt+o1
Tax xax mpomssesenne n umcen y/TEE2, ) [T [2eEE pagno 1, To u3 nepasencrsa Komm caenyer, 1o nx

cymMMma He MeHbIe 7. 1109TOMy mCXomHas cyMMa B JIeBOit gacTi Hepasencrsa Illammpo me Menbime, gem v/2n — n =

(V2 - 1)n.

¢) AHaJIOPMYHO OPEABIAYIIEMY [IYHKTY KarxKJIyIo u3 Apobeil Mﬁ’ k=1,2, ..., n, 3anumeM B BUJIE
Tk _ Tp+ BT N BTri1 + Thio
— etedie e R
Th+1 + Tht2  Th41l + Thy2 Th41 + The2



a mapaMerpbl & M 3 moa0epeM Tak, 9To0BI 3TO PABEHCTBO OKA3aJI0Ch BEPHBIM. Kak HETPYJHO BHJIETH, JJIs 3TOTO
HY?KHO, 9T00bl 8 + aff = o, T.e. f = o/ (o + 1). Torga

Ty + BTyt o By + Thy1 S 9 a(xk + Bxpq1)(Brr + Thy1) _
Th4+1 + T2 Tk + Tr41 (xk + Tht1)(Trht1 + Tha2)

_ 9 8@k @i1)? + (B = V2@ fap et e 20 ot
(2 + Trg1) (Trr1 + Tri2) Th+1 + Tht2 Va+1 Tl + Tpgo
Suagur,

x T Ty T 2« T+ To+ T, +T
1 n 2 T n—1 I n_ s <\/1 2+\/2 3+”.+/n 1)an>
To+2x3 T3+ x4 Ty, +T1 X1+ T2 Va+1 To + X3 T3 + T4 T1 + o
2a ( 2a )
n—an=|——a|n.

Maxkcumym Bbipaxkenus g(a) = \/(2)% — « jocTuraercsd upu o = ag ~ 1.1479 (kopeHb KyOUYeCKOro ypaBHEHUs
¢'(a) = 0), npu srom g(ag) ~ 0.4186. IIpu v = 2 g(a) = & ~ 0.416 — Hemoxoe npuGIIKEHNE.

1.10. a) Yreepxkaenune npunamiexkur B. Koiproaxe [9)].
TosoxkuM Jiyisi KPATKOCTH Y = Tk +Tp+1. B HOBBIX 0603HAYeHUAX HEpaBeHCTBO (1) mpumer Buj

Erme nemuoro ero mpeobpasyem:

" 2¢2xy, —

Z InTk — Yk+1 n(qz —
= i

k=1 Ykt1 "

31€Chb ¢, — 3TO IIapaMeTp, 3HaYeHUe KOTOPOI'O MbI HOﬂ6ep€M II032Ke TaK, 9T00BI BCE paccMaTpuBaeMbIe HEpaBEeHCTBa
OKa3aJIUCb BEPHBbIMHU. HOCKO.HI)Ky

205 %% — Yes1 = (GaTk — Tpg1) + (Ghop — Tpga) =0,

o HepaBeHCTBY Komu—ByHSIKOBCKOTO [11st HAOOPOB [UmCelT

[2q2 21 — Yrt1
{ ZnTh — Yitl n {\/(2%21% - yk+1>yk+1}
Yk+1

2
n 9,2 (Z (2%%351@ - yk+1)>
Z dnTk — Yk+1 S k=1

=
Yk+1

nmMeemM

- )
k=1 > 2627k — Ykt 1) Y1

k=1
Takum 06pa30oM, JOCTATOYHO MMOKA3ATH, ITO

n

n 2
2 = (S @aan ) > (e~ DY oo~ v =n(ad — VB,
k=1 k=1

n n
IMockombKy > yr =2 > &), IMeeM PaBEHCTBa
k=1 k=1

k=1

n

n n n
B=2q2) wkyksr— D vk =240 > ykykr1 — (@h + 1)) _ vk
k=1 k=1 k=1 k=1

CienoBarebHO, OCTAJIOCH JOKA3aTh, YTO

(gn —1) (; yk)2 > n(2q721 zn:ykykJrl —(gh +1) i:yi) (5)

k=1 k=1



IIpeobpa3yem JieByIO 9acTh C OMOIIBIO COOTHOIIIEHUS

(;yk) —nZyk > Wi — )

i<k

HepaBeHCTBO (5) mpumer Buj
n
1
n> (k= ki)’ = (1 - 7) > (i —yr)”
k=1

IIo mepaBencTBYy Komm-Byrsakosckoro

n k—1 1 k—1 2 1 1
Sk ki) =Dy — i)’ = T (Z(yj - yj+1)) =i~ yk)? > T Wi — k).
k=1 =i —IN\S —J n-
CirenoBaresbHO,
n(n —1) & 1 9
5 2 e~ uke)’ > = Sy~ )
k=1 i<k
" MOXKHO B34Tb 1 — é = ﬁ, T.€. ¢ = \/ﬁﬁ > 1.
Sameudanue. C pocroM n HallJIEHHbIE ¢, CTPEMSITCS K €JIMHUIIE.
b)
1.11.
1.11. (a) O6oznauum k; := x;41/xz;. Torna
L S S S — ! b —
k‘1(k52 + 1) k‘g(k‘3 + 1) k‘n(k}l + 1) ~ al(an + 1) G,Q(an_l + 1) an(al + 1) '

(b) HepaBeHCTBO ClpaBeInBo, TTOCKOIBbKY

aiant1—i—1

1 n 1 _ Fa)(Fani=) 5
ai(any1—i+1)  apyi-i(a; +1) ;1

rJie ToCJIe/IHee HEPABEHCTBO CHPABEeINBO, OCKOJIbKY (1 + a;)(1 + an+1_i) > (1+ Jfaiani1_:)>.
(c) Hepsoe mepasencrso 25 > g(In(aian)) + g(In(azan—1)) + - -+ + g(In(aya1)) cupasesmso, nockonsbKy g(z)
MeHbIIe U €~ ¥, u 2(ez+ez/ 2)~1. Bropoe HepaBeHCTBO CIPABE/IABO, IO HEPABEHCTBY Memncena, OCKOIBKY ¢ BBITYKIIA.

(d) [2]
2.1. D10 HEpaBEHCTBO JIoKa3aHo B crarbe [20].
a) Ilpu n = 3 u n = 5 nocjie packpbITUA CKOOOK IIOJIyIUM HEPABEHCTBO

2
(n—1)(a1 +as+...+a,)” =2n E a;ay. (6)
i<k
OHo Jrerko BeIBoIUTCs 13 HepaBeHcTBa Komu—ByHrskosekoro. [elicrBureibao, HanuiieMm HepaBeHcTBO Komu-Bynsikos-
CKOTO Jjisi HabOpOB a1, A2, ..., 4y uw 1, 1, ... 1:

n(ad +a3+...+a2) > (a1 +ag+ ... +ay)’
Jaee 3ameTuM, ITO

nlar +as+...+ay)? =n(a? +a3+...+ —|—2nZaZak (a1 +ag +. —|—an)2—|—2n2aiak,

i<k i<k
OTKY/Ia U cJieflyeT HepaBeHCTBO (6).

IIpu n = 4 Hy>KHO IPOBEPUTH HEPABEHCTBO
(x1 + 22 + 23+ x4)2 > 22129 + 2xox3 + 22374 + 22471 + 4123 + 4074 .
PackpoeM CKOOKZ U IpuBefeM IMOJOOHBIE CIaraeMble, IIOJIyIUM OYeBUIHOE HEPABEHCTBO
o2 a3 4 2%+ 2k > 203 + 2001y

Ilepeitmem Temeps K ciaydaio n > 6. IlepeaBunyB, ecin HY>KHO, UHUCIa MO MIHUKIIY, MOYKHO JOOHUTHCS TOTO, UTO
T3 = T1 U X3 = To, HAIIPUMED, cAeaaB x3 HanbogbmuM. [Ipu r = 1, 2 wim 3 06o3HATIMM Yepe3 a, CYMMY BCEX THCE
T, JJIsL KOTOPBIX k = r (mod 3)7 k < n.Torma x1+xo+...+x, = a1 +as+az u, cjaegoBaTe/IbHO, IO HEPABEHCTBY (6)

(r1 4+ 22+ ... +2,)% = (a1 + a2 + a3)? > 3(araz + asas + azay) Z T;T -
(i—k)/3
10



Tlonoxum JJId KPaTKOCTH

A= Z T; T W B:Zxk($k+l +xk+2)
(i—k)73 k=1

u nposepuM, uto A > B. leficteurensro, npu n = 0 (mod 3) Bee ciaraemble U3 cyMMbl B coziepKarcst B cymMMe A;
npun =1 (mod 3) B cymme A 1o cpaBHEHHUIO ¢ CyMMOii B HEJOCTAET JIMIIb CJIATaeMOr0 Xy, L1, KOTOPOE HE IIPEBOCXO-
JIAT COJEPIKAIIEr0Cs B HEll CJIAraeMoro T, rs; U HakoHell, upu n = 2 (mod 3) B cymme A 1o cpaBHeHUIO ¢ cymMMOi B
HEJIOCTAET CJIATAEMBIX Ty 1T1 U TpT2, KOTOPBIE HE IIPEBOCXO/IAT COOTBETCTBEHHO CJATAEMBIX Typ_1T3 U TpL3.

Nrak, Bo Beex cayuasx A > B. Takum obpasom,

(x1 +x2+...+ xn)Q >3A>3B= 3Z$k(l‘k+1 + Zpyo).
k=1

HeynyuamaemocTs KOHCTAHTBI min {%, 3} oueBngHa. [Ipm n < 6 10CTATOYHO MOJOKATH T1 = To = ... = Ty = 1,
anmpun=>6 —ry=x9s=ax3=1lnary=25=...=x, =0.

b) Cayuaii n < 6 rpusuasen. st n = 6 paBeHCTBO JOCTUrAETCS IIPU X1 + Ty = To + T5 = X3 + xg. L n > 6
PaBEHCTBO JIOCTUTaeTCst Ha MHOXKecTBax Buja (t,1,1,1 —¢,0,...,0), rue ¢ € [0, 1], ¥ UX IUKIMIECKAX CIBUTAX.

2.2. D70 HepaBeHCTBO JoKa3aHo B crarbe [20]. Haunem ¢ n < 8.

Ilpu n =4 un = 7 310 yacrHblii ciay4dail HepaBencrsa (6).

IIpu n = 5 HEPaBEHCTBO COBMAIAET C HEPABEHCTBOM Y (T — 2%k 12 + Trpia)? = 0.

IIpu n = 6 mocse pacKpbITUs CKOOOK ¥ NMPUBEIEHUs TOJO00HBIX CAAraeMbIX TOJIYIUTCsI OYEBUTHOE HEPABEHCTBO
x% + x% + ...+ x% > 2x174 + 22975 + 22376.

Jlns nokasaTenbCTBa HEPABEHCTBA B Clydae 1. = 8 PACKpOeM CKOOKM B OYEBHJIHOM CJIEJICTBUHM HEPABEHCTBA
Komu-Bynsakosckoro

4zt i+ ad) > (21 + 2o+ a3+ 24)?

u IIO.HyLII/Il\’I
3(90% + x% + x% + xi) > 2(x129 + 123 + X124 + TaTy + ToXg + T3Ty).

CirenoBaTesbHO,
(1 + 22+ a3+ $4)2 > 8(z1x2 + 2123 + T124 + ToT3 + Toky + T3T4), (7)

9TO COBITAJAET C TpeOyeMbIM HEPABEHCTBOM it 1 = 8.

Ilepeiigem Terepb K ciaydairo n > 8. IlepenBunyB, ecjii HYy»KHO, YUC/Ia 10 [UKJIY, MOYXKHO JIOOUTHCSI TOTO, 9TO
Ty = Ty, Tq = Ty U Ty > T3, HAIIPUMED, ClesaB x4 HanbosbmuM. [lpu r = 1, 2, 3 uwin 4 0603HAYNM Yepe3 a, CyMMY
BCEX YuCeN Ty, i Kotopeix k = 1 (mod 4), k < n. Torna x1 +x2 + ...+ x, = a1 + as + as + a4 u, ciaegOBaATEIBHO,
10 HepaBeHCTBY (7)

3(xy + a9+ ... +x,) =3(ay +as + a3 + as)? > 8(araz + azasz + azas + agar) = 8 - Z TiT .

(i—k)/4
Tlomoxkum 111 KpaTKOCTH

n
A= Z r,xr u B= ka(xk—H + T2 + 17k+3)
(i—k) 74 k=1

u uposepuM, uro A > B. HeiicrBuresnbuo, npu n = 0 (mod 4) Bce ciaraemble u3 cyMMbl B coziepzkarcst B cymme A;
upun =1 (mod 4) B cymme A 110 cpaBHEHHUIO ¢ CyMMOil B HeJ0CTaeT JIMIIb CJIAraeMoro &, L1, KOTOpoe He IPEeBOCXO-
JIUT COJEPIKAINEroCsl B Hell CIaraeMoro p,rq; npu n = 2 (mod 4) B cymme A 1o cpaBHEHHIO ¢ cyMMoii B Hemocraer
CJIATAEMBIX Xp,_1%1 U TypTo, KOTOPBIE HE MPEBOCXOIST COOTBETCTBEHHO CJIATaEMbIX Tj_1T4 U TpX4; U HAKOHEI, IIPU
n =3 (mod 4) B cymme A 110 CpaBHEHUIO ¢ CyMMOI B HEIOCTAeT CJIAraeMbIX Tp_oX1, Tp—1Ly U T,T3, KOTOPbIE He
IIPEBOCXOIAT COOTBETCTBEHHO CJIATAEMBIX Tp_9L4, Tp—_1T4 U Tply.

Urak, Bo Becex cayuasx A > B. Takum obpasom,

n

3(171 + 2o+ ...+ xn)2 >8A>8B = Ska(Ik_H + Xy + -Tk+3)~
k=1

2.3. a) DT0 HEpaBeHCTBO J0Ka3aHo B craThe [11] ¢ ucnonb3osanneM npeodbpasopanust @ypre. Mbl npuBOIUM SJ1€MEH-
Tapuoe paccyxkjenune. [lo nepasencrBy Kormu—-ByHsakoBckoro nmeem

1 n To - Tpn_1 n T (r1 + 20+ ... + 22
To+x3+m4 T3+ Ta+Ts Tyt x T2 1+ T2+ 33 Y Tk(That + Thro + Thts)

n
/g,

11



nocJieJiHee 1o 3aja4de 2.2.

b)
2.4. 3agava B. T'unzbypra [1, 3agaua 187], upemaranacs na Beecorosnoit onumnuaze no maremaruke 1972 r. C mo-
MOIIBIO IUKJINIECKON MIEPECTAHOBKU THCEJ MOXKHO JOOUTHCS TOTO, 4TO X1 < L. llyctb S = 1 + 20 + ... + Ty,

Si=x1+a3+...,8 =x9+ 74 +.... Torma S? + 53 > (S1 + S2)?/2 = 5?/2, orxyna
52
7>52—55—S§=2 > wiag. (8)
(k)2

Ecim n — YeTHO, TO B nocJjaeHei CYMME COJEP2KaTCsA BCE CJaraeMble BUJAA T Tk41, & €CJIA HEIETHO, TO OTCYTCTBYET
cjlaraeMoe r,ri, 3aTO BMECTO HEIr'0O NMMeeTCd OOJIBITIEE CJIAaraeMoe Tnd2. Takum o6pa30M,

52
5> > 2(x1xe + o3 + ... + Tpx1).

2.5. Cwm. perrenue 3aga4u 1.3 10 HepaBercrsa (4) (K 9TOMYy MOMEHTY B YIOMSIHYTOM DEILEHUH YIIOPsiJOYeHue epe-
MEHHBIX eIlle He UCIIOJIb30BAJIOCh).

2.6. 9o zamaua A. IIpokonnesa, Typuup ropogos, 1981-82; [4], rakxke onybiaukosana B xkypHase “Kpanr”, 1982,
Ne6, zamaga MT749.
O6o3HaUNM JIEBYIO YaCTh HepaBeHCTBa depe3 L,. Ilpu n =4
1+ 3 Xo + X4

L, = + =a+at>2
4 To + T4 r1 + I3 ~

HpI/I n > 4 paccCyzKJaeM 11O NHIAYKITNN. Ta.K KaK HEPaBEHCTBO HUKJ/INYIECCKOE, MOXKHO CIUTATh, 9YTO T'yp41 — HaUMEHBbIIIECE
n3 Beex uucest. Torja oré6pocum B cymme L, 1 HOCTenHee cjaaraeMoe, a IOTOM YMEHBIIUM JBa JPYTUX, HOJIYIUM
T Tp A T

Lpog > —4 4 > N — .
" i + T Tpo1+ Tpg1  Tp + To Ty + Ty

Yro0BI TOKa3aTh, YTO KOHCTAHTA B IIPABOI YaCTU TOYHAS, BO3bMEM

Ti=x0=1, xz3=1t, x4=1>, ..., xp=1t""2.

IIpu t — 40 nepsbie aBa ciaraemMbix cTpemMsarcs K 1, ocragbable — K 0.

Wcnonbsys HepaercTBo Komu—ByHIKOBCKOrO 10100HO TOMY KaK 3TO JeJIaeTCs B PEIIeHUH CJIeIyIONeil 3a1a49u,
quTaTes b 0e3 Tpyla MPUIyMaeT JAPYyroe JO0KA3aTeIbCTBO, CBOJMAIIEE JTAHHOE HEPABEHCTBO K HEPABEHCTBY W3 3aJ1a-
qn 2.4.

2.7. Msl movepnHynu ycsiosue 310l 3amaan B crarbe [10]. Hosmoxum gus kpatkoct S = 21 + g + ... + Tp.

Bocnosbsyemcs Hepasencrsom Komm—ByHsakoBekoro jyist HaGopoB ducest {%} u {(xr + Tp+1) @k + o) }s

TIOJIyIUM

1+ T2  To+ T3 Tyl + Tn mn—l—a:1> 41+ a2+ ... +2,)?

r1 +x3 To + Ty Tp_1+ T Tn + T2 - i($k+$k+1)($k+$k+2)'
k=1

Takum 06pa3oM, JOCTATOYHO YCTAHOBUTH HEPABEHCTBO

n n

n n
S? 2 (k4 wpan) @k + Tog2) = D4R +H2D TpTrir + Y TrTria,
k= k=1 k k=1

1 =1

KOTOPO€ IIOJIy9YaeTCs C MOMOIIBIO PACKPBITUS CKODOK B JIEBOW 4acTd, 10O mpu n > 4 CjaraeMble TyTgi] U TpTk42
npu k=1, 2, ..., n pa3JIMIHBIL.

ITokazkeM, 9TO KOHCTAHTY 4 Heab3s yBeanuuThb. llomoxum 2, = a* 'upun k=1,2, ..., n—1uz, = a" 2. Ilpu
a — 00 TEPBBIE N — 3 CJAraeMbIX CTPEMSTCA K HYJIO, a ocTaBmmecsd K 1, 2 m 1.

2.8. MbI nouepnHysm yeaoBue 3T0M 3amaun B crathe [6]. Bocmonbsyemcs: mepasercTBoM Komu—ByHAKOBCKOTO Jist

Tk

Zositanis | B {Zp(Tp—1 + Tpy2)}, HOMyaHM

HabOpOB Yuces

U B Tn_1 T, - (r1+ 22+ ... +2,)?
Tpt+az i txy 0 Xpotx Ty +xo (TiTo A+ Toxz ...+ Tpwy) + (w123 + Toxg ... 2pT)

IIpaBag 9acTh IOJIy4EHHOIO HEPABEHCTBA He MeHblle 3 B cuily Hepasercrsa Mopueswia (3amada 2.1).
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ITokazkeM, 9TO KOHCTAHTY 3 HeJb3sl yBeJIMUNTh. BosbMem Habop wmcen x = o ' mpu k = 1,2, ..., n —2
U Tp_1 =T, = 1. [Ipu a — 0 mepBoe u jBa MOCIEIHUX CJIATAEMBIX CTPEMSITCS K €JIMHUIIE, & OCTAJIbHbIE K HYJIIO.

2.9. MblI iouepnHysu ycaoBue 3Toi 3anauu B crarbe [5]. Ciioxkum aBa HepaBeHcTBa U3 2.8 (1715 IPAMOro U 06paTHOrO
HOPSIIKOB IHCEII).

ITokaskeM, 9TO KOHCTaHTy 6 HeIb3s yBeamdnTh. BosbMem Habop umcen x = a* ' mpu k = 1,2, ..., n — 2
a Xp_1 = T, = 1. [Ipu a — 0 mociieinre eTHIpPE CAAraeMbIX CTPEMTCS COOTBETCTBeHHO K 1, 2, 2, 1; ocTanabHbIe
cJlaraeMble CTPEMSTCS K HYJIIO.

k—

2.10. B [19] a0 yTBEp:KACHME JJIS IPOU3BOJIBHOTO 71 BBICKA3AHO B KAUECTBE TUIIOTE3HL.
ABTOpBI CIIeyIONIero goKa3aTebecTBa — ydacTHukru KoHdepenuun P.MiloSevié u M. Bukié.
JlokasbiBaeMOe HEPABEHCTBO €CTh CyMMa JBYX HepaBeHCTB npu n = 2004 — HepaBeHCTBa u3 337a4u 2.8 U Hepa-

BEHCTBAa
X1 x2 T

+ +o.+—>
r1+ x4 T2+ X5 Tn + T3

HoxkazkeM mocsieHee HepaBeHCTBO. [Ipu n = 3m oHO gB/sIeTCs CyMMOM TpeX HEpPaBEHCTB:

Z1 T4 Lp—2
+ I S
r1+ x4 Tyt w7 Tn—2 + T1
T2 x5 Tp—1
-+ + ... —>1.
T2+ x5 T5+ T8 Tn—1+ T2
x3 Te Tn

>1.

- o
T3+ T T+ Tg Tn + T3
Ka}Kﬂoe U3 3TUX HEPABEHCTB 3allUCbIBACTCA B BUIE

1 1 1

- 4 4 4+——>1 € a1az...0a;, = 1.
1+a; 1+as 1+apn, e b "

OT0 HEPABEHCTBO JIOKA3BIBAETCS 110 MHAYKIMHU. baza m = 2

! + ! =121
ltar  1+2L 777
st 000CHOBaHUS TTEPEX0JIA MPOBEPSIAEM UTO
1 1 1
>

1+b+1+c/1+m'

9o JeJIa€TCdA HEIIOCPEeACTBEHHO C IIOMOIIBIO JJOMHO2KEHNA Ha 3HaAMEHATE/IN U PaCKPbITHUA CKODOK.
HpI/IBOI[‘I/II\/I J0Ka3aTeJIbCTBO A. Xpa6pOBa. By,aeM JIOKa3blBaThb HEPABEHCTBO

T T T T T T
1+ 22 2+ 3 3n + LS

7 = >
r1+x4 X2+ s T3n + T3

st ynobersa GyieM CIUTATH, ITO HyMepalisl ePeMEeHHbIX [UKIHIECKAs: Lantk = Lk. 1I0JIOKHUM [Isi KPATKOCTH
(r=0,1u2)

n n

n
Z Z T3k T3ktr+1
S, = T3k, X, = B s S n Y. = $7
1 1 T3ktr T T3k+3+r oy T3kt T L3k434r

JokaxkeMm cHagajia, 9To X, > 1. UToOBI HE YCIOXKHSTH (POPMYJIbI, OrPAHUYUMCs ciy4daeMm r = 0. 3amerum, 4To

n n n
2 2 2
XoS3 > Xo [ D a3+ > wsrwsnis | = Xo | > wan(wsk + warsa) | > S5,
k=1 k=1 k=1

mocsieinee — 1o HepasencTBy Komu-Bynrskosckoro. I[lostomy, X > 1.
Hasee nposepum HepaBeHCTBO Y;. = S,.41/S, (Mbl nomaraem Ss = Sp). Ouarh paccMOTpuM Jiuiib ciaydaii r = 0.

n n n
2
Y5051 2 Yy E T3pT3k41 + g T3k4+173k43 | = Yo E T3p41(T3k + T3k43) | = ST,
k=1 k=1 k=1

B I[IOCJIE/THEM HEPABEHCTBE Mbl CHOBa IpUMeHMIN HepaeHcTBo Konm-ByHnskosckoro. Craso 6biTh, Yy > S1/S0.
CroxuM Bce JTOKa3aHHBIE HEPABEHCTBA M BOCIIOJIB3YEMCS HEPABEHCTBOM O CPEIHUX, ITOJIYIUM

S1 Sy S
Z=Xo+Xi+Xo+Yo+Yi+Y2 23+ o+ o+ 2 >6.
So S1 S
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ITokazkeM, ITO KOHCTAHTY 6 HeJIb3sl YBEJHInThb. BosbMeM HAGOp wmcenr 1 = xp = 23 = 1, 2 = a” ! npu

k=3,4,...,n.IIpua — 0 nepBoe u Bropoe cjiaraeMoe CTPEMsITCS K 2, TPEThe, a TaKKe IMocje Hee — K 1, OCTaJIbHbIe
cJlaraeMble CTPEMATCS K HYJIIO.

2.11. [okazarenbcrBo A. Xpabposa. Ilomoxum miusg kparkoctu S = x1 +xo + ...+ x, u T = > z;xp. o
(i—k)r2
Tp

nepapencTsy Komu—ByHsKoBCKOro 1151 HaGOpOB 9mcest {m} u {xp (k-1 + Trys3)} uMeem

1 n To n Tp_1 Tn S (v + 20+ ... +2,)?
Tp+zy T1+T5 Tpot+ Ty Tpog -tz (172 + Towz ...+ Tumy) + (T124 + D275 + ..+ TpT3)

TakuM 06pazoM, JJOCTATOYHO [TOKA3aTh, UTO
2
Sz 4(x120 + oz + ..+ Tpx1) + 4124 + o5 + ..+ Tp23).

B pemtennn 3ama9u 2.4 MBI yCTaHOBHIN HepaBeHCTBO S2 > 4T, cum. (8). TI09TOMY TOCTATOMHO ITOKA3ATH, UTO
) b

T > (129 + xow3 + ... + Tpxy) + (2124 + o225 + ... + TpT3). 9)
ITocKOMbKY 1 9eTHO, TO BCe cJaraeMble U3 IIPaBOil CyMMbI COIEPKATCS W B JIEBOI CyMMe.
[TokaskeM, 9TO KOHCTAHTY 4 HeJb3sl yBeaumdnTh. Bospmem HaGop umcen xp = o mpu k = 1,2, ..., n—3
U Typ_o9 = Tp_1 =T, = 1. [Ipu a — 40 mepsoe ciaraemMoe U TPH IIOCAEJIHUX CTPEMATCS K €JIMHUIIE, a OCTAILHBIC
K HYJIIO.

2.12. Mur B3st 9Ty 3a7a4y B craThe [14].

Bamerum, uro a? — ab + b*> < max{a, b}?.

IIycrs x;, — HAUOOIIBIIEE U3 UUCET L1, X2, - .., Ln; Ti, — HAUOOJBIIEE U3 ABYX CJACAYIOUIUX 34 Tj, THCEIl; Tj, —
HanboJIbIlee U3 JBYX CJAEIAYIONMX 38 Tj, IUCET U T.J. ByJaeM CcTpOMTb Ty MOCIEI0BATENBHOCTD YUCE JI0 TEX MOp
HOKa He JIOHEeM 70 Takoro k, 9ro HaubOJIbIIee U3 ABYX CACAYIONHX 38 Tj, TUCET — ITO Tj, .

dcuo, uro k > n/2 u nostomy k > [”TH}

S

2 T

2
€T ;.
k 1
E: 3 T2 > 7 =k,
o1 Thal T ThAITRA2 T Ty T T

IocJie/IHnee 1o HEpaBEHCTBY O CpeJIHEM apI/ICbIVIeTI/ILIeCKOM n cpeaHeM reoMeTpuvdeCckKoM.
Bpra)KeHI/Ie |:n7+1:| B HpaBOﬁ TJaCTU HEJIb3d YBC/JIUMYUTDH, IIOCKOJIBKY €CJIN IIOJIOXKUTDL T = 1 IIPU HEYETHDBIX ku

T = 0 IIpU 9€THBIX k, TO JieBagd 9aCTb 6y;;eT B TOYHOCTHU paBHa |:nT+1:| .

2.13. a) Mer B3sutn 3Ty 3a7a41y B crathe [10].
MOKHO cYnMTaTh, 9TO T3 — Hambosbinee. Torma mepsoe claaraeMoe He MeHbIIE eIUHMIBI. KpoMe Toro 3aMeTuM,
YTO CyMMa, JIBYX COCEJHHUX CJIATraeMbIX TOXKE HE MEHbBIIe €JIUHUIbI:
2
Tk + T2 n Tpt1 + Thts TkTht1 T Tqo T ThTh43 T Tht1Th+3

= > 1.
Th 4 Thi1  Thit + Thao (g + Tpg1) (Ty1 + Trr2)

b) Msl B3su 91Ty 3a5a49y B crarbe [17].

¢) Cayuait n < 4 pazobpan B [10], cayqait n = 5 — B [25].

d) Bor korTpupumeps u3 [25]. n = 6: 381, 0, 334, 29, 340, 49;
n=13: 41, 0, 28, 0, 19, 4, 17, 10, 18, 18, 20, 29, 18.

2.14. a) ([11]) u b) ([12]) crenyror u3 nepasencrsa Komu—Bymskosckoro u 3aza4 2.2 a) u b).
c) [11]
d, e, f)

2.15. MsI B3sisiu 9Ty 3a3ja4y B crarhe [15].

IIyctb 2;, — HAUOOJBINEE U3 YUCET T1, T2, .., Tpn; Ti, — HAUOOJBIIEE U3 1M CACHYIONHX 38 T GUCENT; Ty —
HanbOoJIbINeE U3 M CJAEJYIONHX 38 T, YUCEN U T.JI. ByJIleM CTPOUTH 3TY II0CJIE0BATELHOCTD YUCET JI0 TEX TI0p MOKa
He JIoHIeM JI0 TaKoro k, 4To HaubOJIbINee U3 1M CJELYIONIUX 38 T, IUCEJ — ITO Ty, .

n+m—1
m

HAcno, aro k > n/m u nosromy k > [ ] Takum obpazom,

n
2 :
T

>
o Thtl T T2+ Thgm

M-
3
8
V
S |~

Lijp
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IIOCJIe/IHEee — II0 HEPABEHCTBY O CpPeJHEM apu(pMETUIECKOM U CPETHEM I'eOMETPUYECKOM.

2.16. a) Mebr B3sn 91y 3a7a4y B crarbe [20].

IIpu n = m umeem odeBmaHOE paBeHCTBO. IIpy n = m + 1 u n = 2m + 1 3TO HEPABEHCTBO — YACTHBLIN CJIydait

nepasencTsa (6). IIpu n = 2m HepaBeHCTBO MOXKHO IIEPEIKCATH B BUJIE

(‘rl - xm+1)2 + (‘rZ - xm+2)2 + o+ (xm - me)2 =0,

B KOTOPOM OHO OY€BU/THO.

IIycte Terteps n = m + 2. Ilosokum Jitst KpaTKOCTH S = T1 + X2 + . . . + T,,. HaMm HYKHO IIpOBEPUTH HEPABEHCTBO

n

n n
Th(Thi1 + gz oot Togm) = D Tk(S — Tk — Thgn-1) = 5° — Y T(Th + Thyn_1)-
1 k=1 k=1

-2
522
n

n

k

Wi, gro Toxke camoe,

n

> (@ 4 hin-1)?

k=1 k=1

252

n
. < Zﬂﬂk(a?k + Tpyn—1) =

DN =

Hocneﬂﬂee HEpaBEHCTBO ABJIfA€TCA OYEBUIHBIM CJICICTBUEM HEpaBE€HCTBa KOH_II/I*ByHHKOBCKOI‘OZ

n 2

n
n > (@h 4 Thgn-1)® = | (@ + Thano1)

k=1 k=1

Ilepeitmem Temepns K cay4aio n = 2m + 2. IIpu 1 < r < m + 1 obo3HaINM Yepe3 a, CyMMY BCEeX THUCET X, s

koropbiXx k =7 (mod m + 1), k <n. Torma z1 + 2+ ...+ x, = a1 + az + ... + ap,. 3amernu™, uTO

n

T
E ajap =

ot o Tetl T T2 o Thgm

Takum ob6pa3oM, HYKHO JTOKA3aTh HEPABEHCTBO

2m + 2
(a1 +ag+ ...+ apmy1)? > —= E aia,
i<k

HO 9TO OISITh HEPABEHCTBO (6).

b, ¢) MbI B3sim 9Ty 33789y B cTarbe [12].

2.17. a) [20]

b) [12
) [20]
a), e) [12

2.18. Cayuait s =n u m = 1 pasobpan B crarbe [23]; obmmit ciayvaii — B crarbe [26].

2.19. a) Ananormano 2.12.
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Shapiro’s inequality

A. Khrabrov

1 Shapiro’s inequality

In October, 1954 the American Mathematical Monthly published the following problem of Harold Shapiro

Prove the following inequality for positive numbers 1, x2, ..., Tn:
1 T2 Tn—1 Tn n
.. > — 1
$2+€E3+9€3+9€4+ Tht+z1  T1tE 2] )

the equality holds only if all the denominators are equal.

In contrast to, say, “Kvant” magazine, it was allowed to publish problems in the Monthly, which were not solved by the
proposer, and the readers had not been informed about this nuance. This time the situation was exactly like that. The author
had a solution for partial cases n = 3 and 4 only.

In the following problems we can replace the condition that all the x;’s are positive with the condition that all the xj’s
are nonnegative and all the denominators are nonzero. Indeed, if the inequality is proven for positive numbers, then it is not
difficult to deduce the inequality for nonnegative numbers (and nonzero denominators). Let

1 T2 Tn—1 In
+ +... .
To+ T3 X3+ x4 Tn+T1 T1+ X2

flzi,ma,... ,xn) =

1.1. Prove the inequality (1) for n =3, 4, 5, 6.

1.2. Prove that the inequality (1) is wrong
a) for n = 20; b) for n = 14; c) for n = 25.

1.3. Prove the inequality (1) for monotonic sequences.
1.4. Prove that if the inequality (1) does not hold for n = m, then it does not hold for n = m + 2.
1.5. Prove that if the inequality (1) does not hold for n = m, where m is odd, then it does not hold for all n > m.

1.6. Prove the inequality (1) for n =8, 10, 12 and for n =7, 9, 11, 13, 15, 17, 19, 21, 23. Due to the statement of
the previous problem it is sufficient to prove the inequality only for n = 12 and n = 23.

1.7. Prove that f(x1,29,...,24) + f(Tn, Tp—1,...,21) Zn.
1.8. Assume that the function f(z1,za,...,z,) has a local minimum in the point (a1, asg, ..., a,), a1, as, ..., a, > 0.
a) Prove that f(a1,aq,...,a,) =n/2if n is even.

b*) Prove the same statement for odd n.
c¢) Use the statements niSa) and b) to prove the inequality for n = 7 and n = 8.

1.9. Prove the inequality f(x1,zs,...,2,) > cn for the following values of the constant c:

a) c=1/4; b) c= (V2 -1); c) c=5/12.

2 Useful and related inequalities

Prove the following inequalities assuming that all the xx’s are positive. Prove that the constants printed in bold can not
be decreased (for each n).

2.1. Mordell’s inequality.

n 2 n
. n
a) (E xk) 2111111{5,3}' E Tg(Th41 + Tht2)-
k=1

k=1
b) Find all n-tuples x1, xa, ..., x, such that the equality is achieved.
n 2 n 8 n
2.2. <;xk> > min {3, 3} : ;l’k(ﬂ?kﬂ + it + Tht3).

2.3. uiSa) Prove that for n < 8

€ T2 Tn—1 T

w3

+ + ...+ =
To + T3+ X4 T3+ T4 + 5 Ty + 21+ T2 r1 + T + X3

b) For which n > 8 this inequality is also true?



24, (z14+ o+ ...+ a,)? > 4(x120 FTox3 4+ F Ty 1Ty FTpmy); N4

n

n
Tk Tr+1
2.5. _ > _.
> > o e

Thy1 + Tit2

k=1 k=1
26, — L T2 4 el L T S o0 p>4
Ty +2x2 X1+ T3 Tp—2+Tp Tp_1+21
1+ To+ T Tpo1+T x x
g, D1t T2 Tatds | T e InHIL S Sy
r1+x3 T2t T4 Tn-1+T1 Tp+ T2
T T Ty T
2.8. LI £ ST Ut S " >3, n>d
Tn+2x3 X1+ 24 Tp—2+T1 Tp-1+ T2
To+ T T3+ T T 1+
9.9 T2TTs  FTatTa o IntTL | TP g S
T1+T4 T2+ X5 Tpn—1+T2 Tp+23
T+ To+ T T x
910, DLt T2 T2h Ty T T g
1+ x4 To + Ts 2004 + T3
2.11. 1 + 2 + ...+ Tn-1 + In > 4, where n > 5 is even.
Tnt+T4 x1+T5 Tn—2+T2 Tp-1+T3
n 2
n+1
2.12. 5 - "k - 2[ o1
T Ty~ Tk 1Tk42 + 250 2

3 After the intermediate finish

1.10. a) Prove that for each n there exists ¢, > 1, such that for all real z1, 29, ..., z, € [qi; @r] the inequality (1)
holds. '
b*) Is it possible to choose ¢ > 1, such that for all integers n > 0 and for all x; € [%; q] the inequality (1) holds?

1.11. Let S = f(x1,22,...,2,) be the left hand side of Shapiro’s inequality. Denote by aq, ag, ..., a, the numbers
xo/x1, X3/T2, ...y Tn/Tn_1, T1/Ty, arranged in increasing order.
1 1 .
a) Prove that S > oty T amra o T T oy

— kOnt1—k = 1
b) Let by, = { “kn+i=k Prove that 25 > by + by + ... + by;

Gt 1—k + /ThGni1—k Oitint1—k < 1
¢) Let g be the maximal convex function that does not exceed both functions e~* miS 2(e* 4 ¢*/2)~1. Prove that
25 > g(in(ara,)) + g(In(asan_1)) + ... + glin(ana)) > ng(0).
d) Prove that for each A > g(0) there exist a nonnegative integer n and positive numbers 1, xa, ..., &, such
that S < An.




Solutions
1.1. n=3. Let S = 1 + 22 + x3. It is easy to see that the function f(t) = s%

[
Apply the Jensen inequality to it:

f(I1)+f(§2)+f(l’3) >f(:v1+9;2+x3> —f<§) _%.

is convex on the interval [0;.5).

We are done.

n = 4. This inequality is cyclic. Write down the values of x;’s successively at the vertices of a square. Then
on each diagonal put an arrow leading from the smaller value to the greater one. Notice that there is a side of the
square with two tails on it. Re-number the z;’s in such a manner that this side becomes z4x;. Now we may assume
that x1 > x3, x4 > x2. For the variables with these restrictions the following inequality is true:

Ty 4 z3 S T + Z3
= .
To+x3 T4+T1 T4+ 2x3 T2+ 21

Indeed, re-write it in the following way:

( 1 1 )> ( 1 1 )
T — > - — .
! To+x3 X4+ T3 K To+T1 Tyt X1

Reduce both hands to a common denominator, cancel x4 — o in both hands (if x4 — 29 = 0, we already have the
equality), and multiply both hands to the product of denominators. We obtain the evident (since z1 > x3) inequality

z1(z2 + z1) (s + 1) = 23(22 + 3) (24 + 3) -

Use it to prove Shapiro’s inequality:

T1 T2 T3 T4 1 T2 T3 Ty T1+ T2 X3+ T4 1
+ + + P> + + + = + =ata " =2.
To+T3 xT3+x4 Ty+xT1 T+ T2 Ty+T3 x3+T4 To+T1 T+ T2 xr3+x4 T+ T2

n =5. Notice that the function f(¢) = 1/(S — t) is convex on the interval [0;.5). So we can apply the Jensen
inequality with n = 5:

a1 f(t1) + asf(t2) + asf(ts) + asf(ta) + asf(ts) = flarts + asta + asts + asts + asts), (2)

where a; > 0, > a; = 1. Take a; = %, and let t; = x; + ¢;—1 + ®;—2,i =1, ..., 5 (we assume that the variables are
enumerated cyclically: xg = x5, x_1 = x4). Then f(t;) = Sit’_ = m, and it means that the left-hand side of
inequality (2) coincides with the left-hand side of Shapiro’s inequality. Now consider the right-hand side of 2:

1 1 S

S — Z?Zl ait; S — Z?:l G(vit+ w1+ wi0) S — 2?21 xi(r; + i1 + Ii—2)'

Open the brackets. It is easy to see that the denominator is the sum of pairwise products of the set of variables
x;. Since the initial inequality is homogeneous, we may assume that S = z; + 2o + 23 + 4 + 5 = 1. Now the
right-hand side of inequality (2) is the inverse number to the sum of pairwise products of the variables x;, satisfying
one condition z1 + x2 + 3 + x4 + x5 = 1. The right-hand side reaches its minimum when the sum of pairwise
products reaches its maximum. It is well-known that for it all the variables should be equal. But the right-hand
side equals 5/2 in this point.

The analogous proof also works for n = 4.

n =6. Proceed as above. The function f(t) = 1/(S —t) is convex on the interval [0; S). So we can apply the

Jensen inequality with n = 6:
6 6
Z Clif(ti) = f (Z aiti) .
i=1 i=1

Let a; = %, ti=x;+xi—1+xi—2+x-3,0=1,..., 6 (we assume that the variables are enumerated cyclically:

To = T, T_1 = T, T_o = x4). Then f(t;) = ﬁ = m, and this means that the left-hand side of the

inequality (1.1) coincides with the left-hand side of Shapiro’s inequality. Now consider the right-hand side of (1.1):
1 1 S

S— Z?:1 a;t; S — Z?:1 %(CCZ + 21+ Timo + T-3) 52 — Z?:1 (@ + xim1 + Tima + :17,-_3).



Open the brackets. It is easy to see that the denominator is the sum of pairwise products of the variables x;’s but the
products 124, X225, and x3x6. This sum can be re-written as (z1+x4) (z2+x5)+ (21 +24) (x3+26)+ (22 +25) (T3 +26).
Denote A = x1 + x4, B = 29 + x5, C = 23 + x6. The right-hand side of (1.1) can be re-written as

A+B+C 3)
AB + BC + AC

Since the initial inequality is homogeneous, we may assume that S =1 +zo + 23+ x4 +25 = A+ B+C = 1. Now
it is clear that the expression (3) is greater than or equal to 3, since (A + B + C)? > 3(AB 4 BC + AC). miStiSiisS

Remark. Unfortunately, this method does not work for n > 6.
Second solution. Apply the Cauchy-Bunyakovsky inequality to the sets of numbers

T T2 Tn
, T, and
\/LL‘Q + x3 \/{E3 + x4 T+ o
\/xl(z2+a:3), \/xg(ac3+:c4), ce Tp(T1 + 22)
We obtain
1 To Ty (v + 20+ ... +2,)?

+ + ...+ > .
To+x3 T3+ T4 21+ a2 xy(we+x3) +22(w3 +T4) + ..+ 2p(T1 + 22)

Use Mordell’s inequality (problem 2.1). When n < 6, it gives us that the right-hand side of this inequality is
greater than or equal to n/2.

1.2. a) [22] Take as x1, 9, ..., x99 numbers
1+ be, 6e, 1+ 4e, 5e, 1+ 3¢, 4e, 1+ 2¢, 3e, 1+¢, 2e,
1+ 2¢, g, 1+ 3¢, 2e, 1+ 4e, 3e, 1+ be, 4e, 1+ 6e, He.
Then f(z1,...,29) < 10 — &2 + c3 < 10 for some ¢ and small enough .
b) [27] Take as z1, x2, ..., 14 numbers

14+7e, Te, 1+4¢e, 6, 1+¢, be, 1, 26, 1+¢, 0, 1 +4e, &, 1+ 6¢, 4e.

Then f(1,...,290) < 7 — 2e2 + ce3 < 7 for some ¢ and small enough &.
An alternative example [24]:

0, 42, 2, 42, 4, 41, 5, 39, 4, 38, 2, 38, 0, 40.
¢) [10], [18]. Take
0, 85, 0, 101, 0, 120, 14, 129, 41, 116, 59, 93, 64,71, 63, 52, 60, 36, 58, 23, 58, 12, 62, 3, 71.
Alternatively, in [3]| the following example is given:

32, 0, 37, 0, 43, 0, 50, 0, 59, 8, 62, 21, 55,29, 44, 32, 33, 31, 24, 30, 16, 29, 10, 29, 4.

1.3. The statement of the problem is published in [13]. We present here a short nice solution.
Let z1 > 9 > --- > x, > 0. Observe that the product of n fractions m is equal to 1. Then by Cauchy
inequality we conclude that

n n
Z Tk + Th41 S = Z Th+1 + Th42
= - —_— .
o Tht1 T T2 o Tht1 t T2

Hence
n

n
T Tr42 _ LE+1
Z z ; Z T+ Thg1 )

T Tkl t Tht2 i Thetl t Tht2

Now we will apply the rearranging inequality: Let a1 > ... > a, and by > ... > b, be two sets of numbers. Then
for each permutation ki, ..., k, of numbers 1, ..., n the following inequality holds

a1by + agbs + ... anby = arby, + asbi, + ... anby, = a1b, +azby_1 + ... a,b1.



Use the rearranging inequality twice

n z n—2 z x z
k k n—1 n
E —— = + + =
o Tkl Tet2 ST Tepl T Ttz Tn T T T1F T2 (%)
=2 x x x
2 Z k n—1 n >
D Tkl T T2 Tt T2 Tp T T (e
- T
>y
T+ T
o Tk Tt
The inequality (*) here is the rearranging inequality for two pairs of numbers: z,,_1 > x, and xlﬁ > m; and
n
. . Kok s . . . 1 1 1
the inequality (**) is the rearranging inequality for the sets x1, xa, ..., ©,—1 and i Es Tt ) TooTEn that

have opposite ordering.
Thus

n n

n
T T Th+1
2D D et Db Dbl
T x T T
oy Tk T Tet1 T Tk T Tkt

T ZT
1 Tht1 t Tkt

For the decreasing set x; the solution is similar because we do not use the order of the variables When we apply the
Cauchy inequality, and for the rearranging inequalities we need the fact that the sets z; and have different

x; +:Jc
orderings.
1.4. (3] Tt is easy to see that f,yo(x1,2a,...,2n, T1,22) = fu(x1,22,...,2,) + 1. Therefore if f,,(z1,22,...,2,) <
’I’L/2, then fn+2(x17x27 ceey Ty 1’1,.’32) < (TL + 2)/2
1.5. [3] Assume that fp,(21,72,...,2,) < 5. For each k let us calculate the difference
1
fmr1(Z1, - Ty Ty Thot 1y - -+ Tm) — [ (@1, T, oo Ty) — 5=
_ Tk—1 Tk . e S (@) — xp—1) (T — Tht1)
2x, Tk +Tpp1 T+ Tpp1 2 2wk (x) + Trg1) )

If (z — zp—1)(xk — Tp41) < 0, then

m+1

2

and we are done. If n is odd, we can always choose k such that (ry — xx—1)(zr — zr11) < 0 because otherwise the
product of the (odd number of) inequalities (z) — zx—1)(Xx+1 — x) < 0 for all k is

fn+1(x17x2a oy Tk They Thet-1y - - - 7x'm) <

(zg — x1)2(m3 — x2)2 N xm,1)2(x1 — xm)2 <0.

Thus if for odd n the Shapiro inequality is wrong then for n+1 it is wrong, too. It remains to apply the statement
of the previous problem.

1.6. [7, 8]
1.7. [28] Let yp = 2 + xk+1. Then

r1+x To+x Tnt+ - - +
1 4, %2 5, 4 InTIs Z Yk — Yk+1 T Ykt2 Z Yk Z Yetz S
Tot+T3 X3+ T4 itz Yk+1 ooy Ykl Ykl

because by Cauchy inequality each sum is at least n.

1.8. The statements a), b) were published in [21].
a) Il This short proof is taken from [8].
Denote for brevity a = (a1, as,...,ay), € = (£1,22,...,2Zy), and v = (=1,1,-1,1,...,=1,1).

Observe that
of 1 Tp_2 Tp_1

x )
Oxy, Trt1 + T2 (Te—1+2K)? (g + Trg1)?

It is easy to see that we have an identity

f(x + tu) +tz k;i

Since a is the minimum point, we have
of

al'k

o5-—(a) =



Therefore f(a+tu) = f(a) if all the coordinates of the point a + tu are positive. Hence a + tu is the minimum point
of the function f as well. Hence,

of
—(a+tu) =0.
Dy (@ T 1)
So
1 af—2 ap—1 _
_ - =0
ap1+apy2 (ag-1 +ar)?  (ak + apgr)
and
1 ag—2 +t(-1)"2  ap_q + (-1 0
o1 F Aot (a1 + ax)® (ak + ag+1)? '
Subtract the first equality from the second:
t t _0
(ah-1+ax)?  (ap+apen)?
Therefore,
k-1 + ar = ak + ap41.
and hence
ap] =a3 =0a5 = *** = Qp—1 and Ao = Q4 =Ag = """ = QUp.
Thus, f(a) =n/2.
b) This short proof is taken from [7]. Denote for brevity a = (a1, az2,...,as), = (T1,T2,...,%), Y =
(y1, Yo, ... ,yn), z = (21, 22y ey Zn), where yp = 2 + 2111 and 2z, = 1/yn+17k~

Set

—

n—

T T Ty x T
S@)=—"—+ 24 oyl m N
To+ T3 X3+ X4 Tn+2x1 X1+ T2 o Jk+1

Observe that
of _ 1 Tk—2 Th—1

—A\T .
Oxy, Tht1 + Thpe  (Th—1 + k)% (Tk + Tpg1)?

It is easy to check the following identities:

a c
a n c_a +c 2 + d2
b d b+d }+ I
b d
Hence,
LTk—2 n Tk—1
Tk—2 Th-1  _ Th—2 + Tk—1 (g1 + )% (T + Tpg1)? _
Tp—1+ Tk Tk + Try1 (@p—1 +2r) + (T + Try1) 1 + 1
Th—1+ 2Tk Tk + Tkt
of
_ Y2 Fn—k T Oxy, (@)
Uk—1+ Yk Zn—kt1 + Zn—kt2
Therefore,
9 .
- 8xk

25(z) = S(y) + S(z) =

k=1

If  is a minimum point then we have 25(z) = S(y) + S(z). Hence S(z) = S(y) = S(2).
Let u:= (21 + 22 + - - - + x,)/n. Consider the transformation M : R" — R™ defined by

Zn—k+1 T Zn—k+2

. 1+ Ty To+ X3 Ty + 21
M(:c)_< - B, )
Let My (z) be its k-th iteration. Observe that S(z) = S(y) = S(M(z)) = --- = S(Mg(x)). It is clear that
klim My (z) = (u,u,...,u). Then
— 00



c) [16], [7, 8]

1.9. These solutions are taken from [3].

uiS) The problem was presented at the Third USSR mathematical olympiad, 1969. Probably it was originally
published in [14].

Let x;, be the maximal number among z1, xa, ..., Tn; T;, be the maximum of the two next numbers after x;,
(i.e. of x;, 41 and x;, 42); x;, be the maximum of the two next numbers after z;,, and so on. We will continue this
sequence till the step number k when the maximum of the two next after z;, numbers is z;, .

It is clear that k > n/2. We have

T T2 Tn Liy Liy Ly,

+ +...+ + 4+ ...+ .
To+x3 X3+ T4 x1+ 29 2z, 2z, 2z,

The last expression is at least k/2 by the Cauchy inequality therefore it is at least n/4.

m,k::l’ 2,...,”, intheform

b) Rewrite each of the fractions

1 1
Tk Tkt 5Tk41 | 3Th41 T The2

Th41 + Tht2  Thtl T Tht2 Tht1 + Tht2

We obtain 2n fractions. Combine them by pairs: the first and the last, the second and the third, the fourth and the
fifth and so on. Now estimate the sum of each pair from below

(h + Tpq1) (Trg1 + Trg2)
_ (1 4 kTR 2) Th + Thy1 -3, | Tk + Thy1 .
2w+ Tt1)? ) Thr + Tha2 Tyl + Thyo

Since the product of n numbers 4/ i;iig, 1/ igiﬁi, el % equals 1, then by the Cauchy inequality their sum
is at least n. Therefore f(z1,...,2,) > Von—n= (\/5 — 1)n.

%xk + Tk+1 n Tr + %$k+1 S 2\/(%% + 2pq1)(zr + %$k+1) _

=
Tk + Tp41 Tyl + T2

¢) As in the previous solution rewrite each of the fractions m, k=1,2,...,n,in the form
Ty T+ BT N Brpy1 + Trgo
= kAL TR
Tttt Tht2  Thtl + Thi2 Tht1 + T2

where a and § are parameters chosen to make the equality true. For such a choice of o and 3 we need 8+ af = «,
ie. B =a/(a+1). Then

Tk + Prrs ta. Bz + g4 S 9 a(xk + Bxiy1) (B + Tryr) _
Th+1 + Thto Tk + Tpt1 (Tk + Tpy1) (Tr1 + Trg2)

_9 aﬂ(tﬂk + .%'k+1)2 + (5 — I)kaxkﬂ > 9, JafB T + Tr41 _ 20 . Tk + Tht1
(g + Tpt1) (Trg1 + Thg2) V Tht1 +Th+2 Va+1 Tht1 + Thyo
Therefore

x T Ty T 2 T+ To+x T, +T
1 + 2 +.F n—1 + n 2 \/ 1 2+\/ 2 3++ n 1 —an >
To+x3 T3+ x4 T, +T1 X1+ T2 Vvo+1 T2 + X3 T3+ 2y \/ 1+ X9

- 2a ( 2a )
n—on=|——aln.
va—+1 va—+1

For a = 5 we have ¢ = 5/12.
Remark. This is a good approximation.The expression g(«) = \/i"ﬁ — « reaches its maximal value at «

o ||

ap ~ 1.1479 (this is a root of the cubic equation ¢’(«) = 0), and the minimum value is g(ag) ~ 0.4186. For a =
we have g(a) = 3 ~ 0.416.

1.10. [9]. Set yx = zr+xk4+1. We need to prove that



or

! 26]12ka — Yk+1 2
k=1 Ykl

We suppose that the parameter g, will be chosen later. Since
2q5ak — Y1 = (@nan — Tei1) + (Ghzr — Tyo) 2 0,

by the Cauchy-Bunyakovsky inequality for sets

[2q2xy —
{ ZnTh Ykl } and {\/(QQ%J?k*ka)ykﬂ}
Yk+1

(i (2qp 21 — yk+1)>2

k=1

we have

i 202y, — Yrt1

/ n N
k=1 Yr+1 > 2627k — Ykt 1) Yt
k=1

So it suffices to prove that

n

n 2
A= (Y — ) ) nlad = DY (@0~ )i = (e - DB

k=1 k=1

n n
Since > yr =2 > xx, we have
k=1 k=1

3

A:(‘ﬁ_l) Yk »

n = n n n
B=2¢2Y wiyki1— D Ui =202 Y urvks1 — (G2 +1) D> _vP-
k=1 k=1 k=1 k=1
So it remains to prove that
n 2 n n
(gn—1) (Z yk) > n(qu > vy — (2 +1)Y yi)
k=1 k=1 k=1

Transform the left-hand side using the relation
(o) =Xt~ w
k=1 i<k

The inequiality (5) will be transformed to

n> (e = ki)’ = (1 - iz) > (i —ww)*.
k=1

In i<k

By the Cauchy-Bunyakovsky inequality

n k—1 =, 2 1 1
_ 2 2
> Wk — yer)? Z —yjr1)? > - (Z(yj - yj+1)) =% _j(yl k)™ 2 i =)™
k=1 Jj=1 j=i
Hence .
n(n—1) 1
Z v = yren)® = — D (i — )
k=1 i<k
Sowecantakel—q—” ﬁ,i.e. qn:\/ﬁﬁ>l.

Remark. When n tends to infinity, the values ¢, which are found above tend to 1.
b)

1.11. (a) Denote k; := ;41/2;. Then

1 1 1 1 1 1
S = + ot > + o ——
ki(ka +1)  ko(ks+1) kn(k1 +1) 7 ai(an+1)  az(an—1+1) an(a; +1)




(b) The inequality holds because

Aian41—i—1
1 4 1 _ 1+ (ta)(1tanti—i) - b:
ai(Gnt1—i +1)  ant1-i(a; +1) ;i y1—; -

where the latter inequality holds because (14 a;)(1 + ani1—i) = (1 + /GiGnr1_1)>.
(c) The first inequality 25 > g(In(a1a,)) + g(In(azan—1)) +- - -+ g(In(ana1)) holds because g(z) is less than both
e ™ and 2(e” + e/ 2)~1. The second inequality holds by the Jensen inequality because g is convex.

(d) [Dr]

2.1. a) [20]
For n = 4 we need to prove that

(1’1 + 19 + T3 + $4)2 2 2I1I2 + 21721’3 -+ 2173:64 + 2I’4I1 + 4:61133 + 4582174 .

This follows from the inequality
o2 a3 4 2%+ 2k > 2003 + 2001y

For n = 3 and n = 5 re-write the inequality. We need to prove that

(n—1)(a1 +ag+ ...+ a,)? >2n2aiak. (6)
i<k

Indeed, notice that the Cauchy—Bunyakovsky inequality applied to sets a1, asg,...,a, and 1,1,...,1 gives us:
n(ad +a3+...+a2) = (a1 +as + ... +an)*
Now we have

n(ay +ag + ...+ a,)? :n(a%+a§+...+ai)+2n2aiak > (aq +a2+...+an)2+2n2aiak,
i<k i<k
which implies (6).
Now assume that n > 6. We may suppose that x3 > x1 and x5 > x2 (e.g. make a cyclic shift of variables such
that 3 becomes the maximum). For r = 1, 2, and 3 denote by a, the sum of all z; such that £k = r (mod 3) and
k <n. Then z1 + x2 + ...+ x, = a1 + a2 + as. Hence by (6) we have

(r1+ 22+ ...+ ;vn)Q = (a1 +az+ ag)2 > 3(ara2 + asas + asa;) =3 - Z T;T .
(i=k)/3
Set

A= Z z;zr and B::sz(xk+1+xk+2).
(i—k)/3 k=1

e for n =0 (mod 3) all the summands of B are contained in A;

e for n =1 (mod 3) the sum A contains all the summands of B except z,z1, but x,21 does not exceed x,x3;

e for n =2 (mod 3) the sum A contains all the summands of B except z,_121 and z,x2, but these summands
do not exceed x,_1x3 and x,x3, respectively.

We have A > B because

Hence .
(k1 422+ ...+ .Z‘n)Q >3A>3B= 3Z$k(l‘;€+1 + Tpq2).
k=1
In order to show that min {%, 3} is the sharp constant for n < 6 weset z1 =22 =... =z, =1 and for n > 6 we
set vty =29 =2z3=landzy=25=... =2, =0.

b) The case n < 6 is trivial. For n = 6 the equality is achieved when z1 + x4 = 2 + x5 = 23+ x6. For n > 6 the
equality is achieved for the sets of form (¢,1,1,1 —¢,0,...,0), where ¢ € [0, 1], and their cyclic shifts.

2.2. [20]
For n =4 and n = 7 this is a particular case of (6).
For n = 5 the inequality coincides with > (zx — 2zx12 + T14)? > 0.
For n = 6 the inequality follows from x% + x% +...+ x% > 2x124 + 22915 + 22376.
For n = 8 open brackets in the following corollary of the Cauchy—Bunyakovsky inequality

4x? + a2+l +22) > (2 + 2o + 23+ 24)2

‘We obtain
3(33% + x% + 0:§ + :cZ) > 2(x1xe + w123 + T1X4 + T2T3 + ToTy + T3T4).



Hence
3(1‘1 +xo + 23 + 374)2 > 8($1$2 + T123 + X124 + T2x3 + Tox4 + JI3$4), (7)

This is the required inequality for n = 8.
Now assume that n > 8. We may suppose that x4 > x1, ©4 > 22, and x4 > 3. For r = 1, 2, 3, and 4 denote by
a, the sum of all xy, such that £ =r (mod 4) and k < n. Then z1 +x2+...+x, = a1 + as + a3 + a4. Hence by (7)

3(xy + 29+ ... +x,)? =3(a1 + ag + a3 + as)? > 8(araz + azaz + azas + asar) = 8- Z TiT .
(i=k) 74
Set

A= Z zixr and B = Zxk(wk+1 + Zpto + Tpis).
(i—k) /4 k=1

We have A > B because

e for n =0 (mod 4) all the summands of B are contained in A;

e for n =1 (mod 4) the sum A contains all the summands of B except x,z1, but z,21 does not exceed x,x4;

e for n =2 (mod 4) the sum A contains all the summands of B except =,,_121 and x,x2, but these summands
do not exceed x,,_1x4 and x,x4;

e for n = 3 (mod 4) the sum A contains all the summands of B except z,_2%1, p_122 and x,z3, but these
summands do not exceed x,_o%4, Ty_124, and T, x4.

Hence
n

3z +x2+...+ xn)2 >8A>8B = 8Z$k($k+1 + Xy + $k+3>~
k=1

2.3. a) Cf. [11]. By the Cauchy—Bunyakovsky inequality and Problem 2.2 we have

1 T Tp_1 T (r1+ 22+ ... + 22
+ +or - > >
To+ 23+ 24 T3+ Tg+Ts Tn+x1+22 21+ 22+x3 D Tp(Th1 + Thro + Thys)

c,o.\ 3

b) 777
2.4. [1, Problem 187]. We may assume that z; < z3. Set

S=r14+x2+...42,, S1:=x14+23+..., Soi=x04T4+....
Then S7 + 5% > (S1 + S2)?/2 = S?/2. Hence

SZ

5 252—512—5’22:2 Z T;Tk- (8)

(i—k)2

If n is even, then the last sum contains all the summands of form xzk41. If n is odd, then the summand z,x; is
missing, however the sum contains a greater summand =, z3. So

52
7 2 2(3313)2 + ToX3 + ...+ anl‘l).

2.5. See the solution of 1.3 up to the inequality (4).

2.6. Induction on n > n = 4. Denote the left-hand side by L,,. We have

X X X X
Li= 1+ 8 2+ 4:a+a’1>2.
To + T4 xr1 + T3

Let us prove the inductive step. We may assume that x,, 1 is the minimal of all x;’s. Now remove the last summand
from L1, and then decrease two others. We obtain

T1 Tn Z1 T
— .+ > o —"
anrl + T2 Tp—1 + xn+1 T + T2 Tn—1 + T

Ty =x2=1, x3=1, $4=t2, cey xn:tn_Q.

When t — +0, the first two summands tend to 1 and the remaining tends to O.

10



2.7. [10]. Set S := =z + 22 + ... + z,. Use the Cauchy-Bunyakovsky inequality for sets {ﬁ%ﬁi:} and
{(zx + xp+1)(zk + Try2)}. We obtain

1+ To  To+ T3 Tpno1+ Tn xn+x1> 4(xy + a2+ ..+ 1)

r1+x3  Totms | Tpo1t T x"+x2/i(mk+xk+1)($k+xk+2).
k=1

So it suffices to prove that

n n n n
5% > Z(xk + Tpq1) Tk + Thgo) = Z z3 +2 Z TpTp41 + Z T2
k=1 k=1 k=1 k=1

This can be shown by opening brackets in the left-hand side, because for n > 4 all the summands zpxi4+1 and
TkTpyo, where k =1, 2, ..., n, are different.

In order to show that the constant 4 is sharp, take z, = a* ' for k =1, 2, ..., n— 1 and z, = a" 2. When
a — 00, the first n — 3 summands tend to 0 and the remaining summands tend to 1, 2 and 1.

Using the Cauchy—Bunyakovsky inequality as it is done in the solution of the next problem, the reader will easily
find another solution of this problem reducing it to the inequality from Problem 2.4.

2.8. [6]. Use the Cauchy-Bunyakovsky inequality for sets {17’“} uiS {xk(zr—1 + Tr12)}. We obtain

Tk—1+Tky2

2 W B Tn1 T, - (r1+ 22+ ... +2,)?
Tpt+xz i +xy  Xpotxy Ty +xo (TiTo+Toxz ...+ Tpxy) + (2123 + Toxg ... F 2pT)

So it suffices to prove that

52 > (129 + 203 + ...+ xpx1) + (123 + X244 + ... + THTe) =: 3Y]
where S :=x1 + 29 + ...+ x,. Set

Si=x1+xz4+..., So=xz9+w5+... and Sz3=z3+T6+....

Then S = S; + S + S3 and S? + 53 + 57 > 5?/3. We may assume that x3 > z; and 3 > x5. Notice that

52 >

N | W

(=87 —S3—-53)=3 ) wm,=:3Z
(i—k)/3

e If n =0 (mod 3), then all the summands of Y are contained in Z.

e If n =1 (mod 3), then Z contains all the summands of Y except x,z1, but this summand does not exceed
ITns.

e If n =2 (mod 3), then Z contains all the summands of Y except z,_12; and z,z2, but these summands do
not exceed x,_1x3 and r,x3.

Hence S? > 3Y > 3Z, which proves the initial inequality.

In order to show that the constant 3 is sharp, take x), = a* ' fork=1,2,...,n—2and z,_; = 2, = 1. When
a — 0, the first and the last two summands tend to 1, while the remaining summands tend to 0.

2.9. [5]. The inequality is obtained by summing two inequalities of 2.8 (for the direct and the opposite order of
variables).

In order to show that the constant 6 is sharp, take x = ak~1 for k = 1,2,...,n—2and x,_1 =z, = 1. When
a — 0, the last four summands tend to 1, 2, 2, 1, respectively; the remaining tend to 0.

2.10. This is conjectured in [19].
The following proof is due to P.MiloSevi¢ miS M. Bukié, participants of the Conference.
This inequality can be represented as sum of two inequalities for n = 2004 — the inequality from Problem 2.8
and the inequality
ST T
T+ X4 To + Ts Ty + T3

Prove the last inequality. For n = 3m it is the sum of three inequalities:

x Ty Tp—2
+ +.. .z
r1+x4 T4t T7 Tn—2+ T1
1) Ts Tn—1
+ >
To + T5 Ts + X8 Tp—1+ T2
x3 Te Tn

+ o>
T3 +xs T+ Tg Tn + T3

11



Each of these inequalities can be re-written as

1 1 1

Tha 1tam T Tiam

>1 where ajas...a,, = 1.

This can be shown by induction. The base m = 2 is the following inequality:

! + L =121
ldar  1+2L 77
To prove the induction step, let us check that
1 1 1

> .
T+0 " 14e¢” T+be
This can be done directly by reducing to a common denominator and opening brackets.

Here is the proof of A. Khrabrov. Let us prove that

T1+T2 | T2+ T3 T3n + T1
Z = /2
1+ T4 T2HTs T3p + T3
Set x4k := x and, for r = 0,1, 2,
3k 3k4r+1
S, = g T3htr, Xy = é, and Y, := g S L S
o1 oy T3kt T T3k434r iy Toktr t T3k434r

First we prove that X, > 1. Consider only the case » = 0. Then

X055 > Xo <Z x5, + Z$3k$3k+3> = Xo (Z T3k (T3 + $3k+3)> > 53,
k=1 k=1

k=1

where the last inequality holds by the Cauchy-Bunyakovsky inequality. So Xy > 1.
Now prove that Y,. > S,11/S5, (we set S3 := Sp). Consider only the case r = 0.

n n n
Y5051 2 Yo (Z T3kT3k41 + Zx3k+1ﬂ$3k+3> =Y (Z T3k+1 (3K + 933k+3)> > 5%,
k=1 k=1 k=1

where the last inequality holds by the Cauchy—Bunyakovsky inequality. So Yy > S1/50.
Summing up all the proved inequalities we obtain

S S S
Z=Xo+X1+Xo+Yo+YV1+Ye 23+ 42420 >
So ST S
In order to show that the constant 6 is sharp, take z, = 2o = 23 = 1, 1, = o™ **! for k =3, 4, ..., n. When

a — 0, the first and the second summands tend to 2, the third and the last tend to 1, and the remaining summands
tend to 0.

2.11. This proof is due to A. Khrabrov. Set S = z14+22+... 42, and T = Y x;x%. By the Cauchy—Bunyakovsky

Gy
x
inequality for sets {k} and {zg(xp—1 + Tr4+3)} we have
Tk—1 + Thk+3
N B Tp_1 T, - (1 + 22+ ... +2,)2
Tp+zy x1+T5 Tpot+ Ty Tpog+ w3 (21T + 20wz ...+ 2umy) + (2124 + D225 + ..+ Tpas)

So it suffices to prove that
S? > A(x120 4+ Tox3 4 ...+ Tpxy) + A(T174 + Toxs 4 ...+ TpT3).
In the solution of problem 2.4 we proved that S? > 4T, see (8). So it suffices to prove that
T > (129 + x0w3 + ... + Tpx1) + (2124 + o225 + ... + TpT3). (9)
Since n is even, all the summands of the right-hand sum are contained in the left-hand sum.

In order to show that the constant 6 is sharp, take z, = a* ' and k=1,2,...,n—3 and zy_9 = ,_1 = T, = 1.
When a — +0 the first summand and the three last summands tend to 1, and the remaining summands tend to 0.
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2.12. [14]. Note that a® — ab + b* < max{a, b}>.
Let x;, be the maximal number of 1, xs, ..., x,. Let x;, be the maximal number of x;, +; and x;,+2. Let x;, be
the maximal number of ;, 1 and z;,,2, and so on. There exists a number k such that x;,,, = z;,. Hence

n 2 2
x z; n—+1
k > Yo>k>
22— Tpa1Theo + 22 o 7 x2 T 2 I
=1 k+1 k+1Lk+42 k+2 j=1 ij+1

where the latter inequality holds because k > n/2.

In order to show that the constant [”—*1] is sharp, take xx = 1 for odd k and z = 0 for even k. Then the

2
left-hand side is [”T'H]
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TPOIINMYECKAA 'rEOMETPUA

A. BacnaBckmuii, ®. HuiioB, A. CkontenkoB, M. CKOIleHKOB

Kpatknii 0630p. !

16-a npobsiema ['mabbepTa cripammBaer, Kakum Mootcem O6vimyd KOAUMECNEO U 83AUMHOE DACTLONOHCE-

HUE KPUBHIT, 00PA3YIOWUT NOOMHONCECEO NAOCKOCU, 3adannoe ypashenuem » . a;x'y! = 0. Boaee
i+j<d

aKKypaTHas (bOpMYIHPOBKa U HPUMEPHI IpHBoAaATcs B dacT A. ? Lleas ganHoro Mukia 3a1ad — 9acTud-

Hoe perenne 16-it mpobsiembr ['ubbepra jisd d = 6, a UMEHHO, nocmpoerue TPeOYEeMbIX TIOJIMHOYKECTB B

HanboJiee comepkaTesbHOM cirydae (M. OcnoBHyto Teopemy HuKe).

JLst TOIMHOXKECTBa IIJIOCKOCTH, 33/ JaHHOTO MHOTOYJIEHOM OT JIBYX IT€PEMEHHBIX C HEKOTOPBIMHU KOH-
KpeTHbIMU KO3(hMUIMEHTaMU, OIPEIE/IUTh YUCIO0 U PACIIONOKEHHe KPUBBIX HE TAK-TO MPOCTO (Jaxe
BOODYZKUBIINCH COBPEMEHHBIM KOMITbIoTepoM). [lpu perrernnn 3amad wactu B Ber mamynaere ¢bop-
MYJIUPOBKY OCHOBHOH JIEMMBI, KOTOPas IMO3BOJUT JIEFKO CJEJIATh 9TO JId MHOTOYJEHOB HEKOTOPOIO
CHeNraJbHOIO BHUA. BBl yBUMTE, KAK P PUCOBAHUU IOJIMHOXKECTB, 3aJ[AHHBIX yYPABHEHUSIMU BUJIA

> (aijz'y?)N =0, rae N — Gosblioe HEYETHOE YUCII0, €CTECTBEHHO BO3HUKAET MPONUYECKAs 2€0MEM-
i+j<d
pus. Ucnonbs3ys ee, Bel cMoKeTe CTPOUTH TaKHe IOAMHOXKECTBA C PA3IMIHBIM PACIIOJIOKEHIEM OBAJIOB.

I/ICXO,ZLHI)IQ COO6pa}KeHI/IH TpOHI/I‘IGCKOﬁ reoMeTrpun dJeMEHTapPHDbI. SaMeHuM

YMHOXKEHUE Ha, CJIOXKEeHUe, a CJIOXKEHNe — Ha, OlePalliio, CBSI3aHHYIO CO CJIOKEHUEeM

TaKUM Ke QUCmpubymu6HbLM 3aKOHOM, KAKUM CJIOXKEHUE CBSI3aHO C YMHOYKEHUEM.

B kauecTBe Takoil oneparyu MOXKHO B3ATb Mmakcumym max{a,b} maper ducesn a

u b. IIpn Takoit 3amene dyrkuus ». byz'y’ nepeiner B dbynkmmo Bujga (po-
i+j<d

Bepbre!): f(z,y) = irﬁagz (i + jy + bi;). MHOXKecTBO TOUeK H3/I0Ma TaKol (DYyHKIIUH

HA3BIBACTCH MPONuueckoti xpueot. >

Hanpuwmep, npsimast Ha mrockoctu 3ajaercs ypasuenuem Axr + By + C = 0. Prc. 1:

JleBast 9acTh JAHHOTO ypaBHEHUs IIPU HAIEH 3aMeHe TepexXouT B (DYHKITIIO BHUIA

f(z,y) = max{x + a,y + b, ¢}. MHOXKecTBO TOYEK MU3JI0Ma, TIOJYUEHHON DYyHKITHN

f(z,y) umeer B, nokazaHHblil Ha pucyrke 1 (mposepbre!). Tak omnpeeseTcs mponuveckas NPAMas.
Jl1st TPONMYECKUX TPSAMBIX COXPAHAIOTCS MHOI'HME CBONCTBA OOBIYHBIX MPAMBIX.  DKCIIEPUMEHTATbLHON
IIPOBEPKE ITUX CBOMCTB mocsmieHa dactsb C.

A. IIpumeps! ajredbpandeckmnx KpUBBIX.

Mmnozouserom (0T IBYX epeMeHHbIX) HasbiBaercsd Gynkiusa F : R? — R, s KOTOpOii CymecTByIoT

ancaa d u a;j, 0 < i,j < d, rakue uro F(z,y) = Y. a;x'y’. Bl Moxere HoIb30BaThCA 0€3 JOKa3a-
i+j<d

TeJILCTBA CJIEYIONUM (akToM: das dannol pyrrkyuu F maxue vucaa eQuHCmMBEHHbL ¢ MOYHOCTIBIO 00

yeeaurenus d u 6v00pa HOGHIT (;j PAGHBLMU HYAO.

Mnooicecmeom nyaetdi muorounena I naswpisaerca muoxectso F~1(0) := {(z,y) € R* | F(z,y) = 0}.
A1l. Opnnosnauno ju muoxkectBo F~1(0) onpenensier muorounen F?

A2. Kakue u3 cJIeyromux MHOKECTB SBISIOTCS MHOXKECTBAME HyJIell MHOTOYJIEHOB?
(a) mpsimasi;  (b) okpyxHOCcTh;  (¢) Touka;  (d) orpesok; (e) obbeauHEHUE JBYX MPSIMbIX;
(f) "xprorika” (06beuHeHre 6 OKPYKHOCTEl) Ha PUCYHKE 2.

'He nepesxupaiite, eciu BaM uTo-HUOY/IH HEIIOHATHO B STOM KPATKOM 0630pe. BB MOKeTe IPOIyCTUTH €ro U HaYaTh
pemaTh 3ajadu ¢ J0b60i n3 gacreit A wu C.

2TIpu d < 5 orser 6BLT m3BecTeH eme B 19-M Bexe. ['minbepT opMyIMpOBaa cBoIO mpobiaemy mis d = 6, B 3TOM
ciydae perrenue ObL1o mosrydeno ['ynkoseiMm. [List d = 7 npobiiema 6bita pemena O.9. Bupo ¢ ucnonb3oBanneM MeTO/I0B
Tpormyeckoit reomerpun. st d > 8 JgaHHBIN BOIIPOC JI0 CUX IIOP OTKPBHIT.

3He coeyer gyMaTh, 9TO MHOTOWIEHY OT JIBYX IEPEMEHHBIX C HEKOTOPLIME KOHKPETHBIME KO3(MQHUIUIEHTAMI COOTBET-
CTBYET KaKas-TO OlpeJieJIeHHast Tpornnydeckas KpuBas. CBa3b MeXK/Iy MHOIOUJIEHAMHI U TPOIMYECKUMU KPUBBIMU CJIOYKHEE.
B mexkoropom cmbicie, Tponnyueckas KpUBas sIBJIAETCH TPEIeoM’ IEJOTO cemeticmea MOIMHOXKECTB, 3aJaHHbIX MHOTO-
YJIeHAMU OT JIBYX MMEPEMEHHBIX — CM. 4acTh B.



Cmenens MHOTOUJIEHA — 9TO HAMMEHBIIIee BO3MOXKHOE YUCTIO d, JIjIT KOTOPOro HaillyTcst TpedyeMbie
a;j. (Kommernmaput. Crenenb — 310 HanboIIbIIee BO3MOXKHOE d, J1JIs KOTOPOT'O a; 4—; 7 0 Ji/Ist HEKOTOPOTO
[PEJICTABJICHNsT MHOTOWIEHA U HEKOTOPOTO 1. )

A3. (a) CKOJIBKO TOUYEK MOXKeT ObITh B I[IEPECEYeHUH HPSMON ¢ MHOYKECTBOM HyJIeHl MHOIOUJIEHA
crerenu d?

(b) MHOXKecTBO HyJeii MHOrOYJIeHa HEYETHOI CTeleHn HeOrPAHUIEeHO (TO eCTh, He COJIEPXKUTCS HU B
KaKOM B JIVICKE).

Mpmuorowiren F npusodum, eciiu F' = G - H njisg HekoTopbix MHOTOWIeHOB G 1 H.
Kpussie!. Oyukims v : [a,b] — R masbiBaercs duddeperyupyemoti B ToUKe by, €CIM JJisi HEKOTOPOI'O YnCJIa,
A u moboro £ > 0 cymecTByeT §, Takoe, 9TO JiJIsl JIIOOOro

t € (to— 0,t0 +96) Bomosaneno |y(t) —y(to) — A(t — to)| < |t — tol.

Orobpaxenne v : [a,b] — R? MoxkHO paccMaTpuBaTh Kak yHOpsI0UeHHyo mapy dyHkmait v1,72 © [a,b] — R.
Huddepennupyemocts orobpazkenusi v = (71, y2) paBHOocHIbHA JuddepeniupyeMoctu yHKIU v, 1 Yo.
(T'nadxoti) wpueoti Ha TIOCKOCTH HasbiBaeTca muddepentmpyemoe otobpaskenue vy : [a,b] — R? (mm v :
R — R?). Kpusas v : [a,b] — R? maswisaercs samxnymot, ecm y(a) = v(b).
B zamagax Ad.cfg m A7 mocrarodHo nmpuBecTH mpuMep MHOTOUIEHA; JOKA3aTETLCTBO €ro CBONCTB He
TpedyeTcs.

A4. (a) CymecTByer HEIPUBOJMMBINA MHOIOUJIEH CTENEHH 3, MHOXKECTBO HyJIeif KOTOPOTO COJIEPZKUT
3aMKHYTYIO KPUBYIO.

(b) To ke mst crenenn 4.

(c) CymecTByer HEIPUBOIMMBII MHOTOUIEH CTEleHH 4, MHOYKECTBO HyJIeil Ko-

TOPOTO COJEPKUT J[BE 3aMKHYTBIX KPUBBIE, OJJHY BHYTDH JIPYTOIi.

(d) Ecsin MHO)KeCTBO HyJIeii MHOTOUJIEHA CTEIEeHH 4 CONEPXKUT JIBE 3aMKHYTHIX o o
KpUBbIE, OJIHY BHYTPHU JIPDYTOi, TO 3TO MHOXKECTBO He COJEPKUT HUKAKUX JPYIHUX
TOYEK.

(e) Bepen i anasior yreepxenns (d) i HEIPUBOJAUMOIO MHOTOWIEHA CTe-
nenn 57

(f) CymecrByer MHOrOUIEH cTeneHn 4, MHOKECTBO HyJIeli KOTOPOTO COJIEPZKUT Puc. 9:
4 3aMKHYTBIE KPUBBIE. T

(g) CymiecTByer MHOIOUIEH CTeleHr 4, MHOXKECTBO HYJIEH KOTOPOIO COJIEPZKUT
3 3aMKHYTBIE KPUBBIE.

OBasibl . KOMIIOHEHTBI CBSI3HOCTH, HA KOTOPBIE PACIAIAeTCs MHOXKECTBO HyJiell MHOTOUJIEHA, HA3BIBAKOT-
cs1 semeamu. (Hammane HeorpaHUYeHHBIX BETBEH yCIOXKHSET M3yUeHHE MHOMKECTB HyJieii MHOro4sIeHOB.) s
HEOIDAHWYEHHOI BeTBU B IpsiMble, COeIMHSONINE Hada10 KoopauHat O ¢ TOYKaMU Ha BETBU I3, CTPeMSIIITUMUCS
K "6eCKOHETHOCTH , CTPEMSITCS K HEKOTOPOH ’ipenesbHoil’ mpsamoii. JIBe HeorpaHWYeHHbIE BETBU IAEMEHMADHO
IKBUBAAEHMHDL, €CITH WX TIPeJaebHbIe” MPSIMbIE COBITAIAIOT.

A5. HeorpanndeHHble BETBU runiepbosibl oy = 1 sjieMeHTapHO SKBUBAJIEHTHBL.

JlBe HeOTpaHUYEHHBIE BETBU IKGUGAACHMHbL, €CITH CYTIECTBYET COEIUHSIIONIAS WX MEMOYKa BETBEl, B KOTOPOi
KasKIIble JBE COCETHUE BETBU HJIEMEHTAPHO SKBUBAJCHTHBI. MHOXKECTBO HyJIefl MHOTOWIEHA HEBbLPONCOENO, €CITN
BCE €r0o BETBU — IVIaJiKue KpuBble. (J6a.4 HEBBIPOXKIEHHOTO MHOYXKECTBA HYyJIell MHOTOUJICHA — 9TO JTUOO 3aMKHYTast
KpuBas (COJePKAIAsiCsl B 9TOM MHOYKECTBE), JIM0O KJIacC SKBUBAJIEHTHOCTU HEOIDAHUYEHHBIX BeTBeil. (3amernm,
9TO 9TO ONpeJIeJIeHIe OTJIMYHO OT ~TPABUJILHOIO”, TIPUBOJISIIEroCcs: B yuIeOHUKAX. )

A6. Haiizure Bee h, 1pu KOTOPBIX MHOXKECTBO HyJI€il HEBBIPDOXKJICHO, U IIOCYUTAiTe KOJMIECTBO OBAJIOB JIsI
MHOIOUJIEHA,
(@) zy(x+y—1)—h. (b) 23—z +h—y? (oTBer MOKeT 3aBHCETH OT h).

AT. CymecTByeT MHOTOWIEH CTEIIEHU 5, MHOYKECTBO HYJIell KOTOPOI'0 HEBBIPOXKJIEHO M COCTOUT U3 7 OBAJIOB.

16-a mpobsiema I'masbepra. Kakxum moorcem 6bimbd KOAUUECTNBO U 63GUMHOE PACTLONONHCEHUE 08ANOE Y
HEBBLPOHCIEHHO20 MHONCECTNEA HYAET MHO20UAEHG ceneny, d?

Mgl He mpuBOgEM (POPMAILHOIO OIpEIe/IeHUs pacioioxKenns’ oBajoB. Takoe ompejesneHne moTpeboBaJIo
OBl TIOHSITHE NPOEKMUBU3AUUL MHOTOUICHA.

4Ceyromue onpe/e/IeHns Hy KHbBI TOJIBKO JJIsS aKKypPaTHOIO OOOCHOBAHUS IIPUMEPOB B 3ajade Ad.



OcuoBHast TeopeMa. (a) Cywecmeyem mmozouaen cmenenu 6, MHOACECNEO HYAET KOMOPO20 HEGVLPONHCIEHO
u cocmoum u3 11 osanos.

(b) Cywecmeyrom mpu mmnozouaena cmeneny 6, MHOAHCECMBO HYAET KAHCAO20 U3 KOMOPHLT HEBBPOHCIEHO U
cocmoum u3 11 06a.408, a Pacnosodcenue 08ar08 0N GCET MPET MHO20UAECHOE PA3AUNHO.

B. Tponnyeckasi kKpuBasi Kak mpe/iesi ajareopandeckKmnx.

B1. Hapucyiite MHO2KeCTBO HyJI€il MHOTOUIEHA
( ) r—y— 1; (a>) xlOOl . ylool . 1;

(b) x -+ y— 1; (ba) xlOOl + ylool _ 1;

) ay=z+y; (<) 100141001 — 41001 4 1001,
(

(

d) 2+ y2 —dr—dy—2=0; (d) 22002 4 y2002 _ 410011001 _ 41001y1001 _ gloot,

e’) {L‘3003 + 210011.1001 2002 __ 310011,1001 1001 + y2002 _ 1.1001 _ 21001'

) Y

Ob6osHaunMm yepes
_ i, I\N
Fy(z,y) = ) (aya'y’)
i+j<d
ceMeiicTBO MHOIOYJIEHOB, 3aBUCIIIEE OT Hewemtozo anciaa N > 1.

— N _ N o N i
HpI/I 3aMeHe IIEPEMEHHbIX U = I,V = Y Ka2zKJ/IbIi MHOT'OYJIEH FN HeEpexoIUuT B MHOT'OYJIEH Z aiju v/

i+j<d
crenrenu d. [Tosromy mist pemenust 16-it npobsiemsr ['nibbepra MOJIE3HO HAYYUTHCS OLUPEIEIIATD YUCIO U
PACTIONIOZKEHHS OBAJIOB JyTst MHOzKecTBa Fi ' (0).

B2. Komrectso opasos s Fiy'(0) MoskeT oTmuathes oT KommdecTsa osasos y FyH(0).

Oboznaunm yepe3 Br Kpyr pajuyca R ¢ menTpoM B Havaje KoopanHat 0.

B3. /g mobbix €, R > 0 naiigerca Ny > 0, Takoe 9TO Jijid Beex HedeTHbIX N > Ny 1epecedenne
MHOXKECTBa HyJIell MHOIOYJIeHA

(a) 22N — 2N —yN ¢ kpyrom Bp cOIepKUTCA B €-OKPECTHOCTH 06beiuHeHns IpaMbIX @ = 0, © = 1,
r = 4y u napabon y = £z

(b) F' ¢ kpyrom Bpr COAEPXKHUTCSI B £-OKPECTHOCTH OObEIMHEHUS MHOXKECTB HYJI€il BCEBO3MOXKHBIX
MHOTOWIEHOB a;; 7'yl + apa™y', B koropeix (i,7) # (k,1), i +j <d, k+1<d.

O6osnasum Ry := (0, 400) MHOXKECTBO HOJIOKHTENBHBIX umcen u uepes RI := (0,400)? yrou,
3a/jaHHbLi HepasencrBamu © > 0, y > 0. Oupenennm orobpazxkenne LOG : RZ — R? by LOG(z,y) =
(log, @, log, y).

B4. (abcde) Hapucyiite LOG-06pa3 (to ectb, 06pa3 npu orobpazxkennn LOG) mepecedeHusi MHO-
xKecTB HyJteil mHorounenos (a’b’c’d’e’) u3 sazaqu Bl ¢ yrimom R?.

Tponuueckum MHO204ACHOM HASHIBACTCHA PYHKIIUS
T = max (ix + jy + b;;).
f(z,y) Z.Hgd( Jy + bij)

O6osznaunm muoxkectBa fP? = {(x,y) € R? | f(z,y) = pr + qy + by, }. HekoTopble mapbl TakKnx MHO-
JKECTB IlepeceKarTest Apyr ¢ Apyrom (mo rpaxuie). OObenHeHne BCeX TaKUX IONAPHBIX ITepeceveHuil
HA3bIBACTCS MPonuveckol kpueotl (cmenenu d). (ITo B TOTHOCTH MHOKECTBO TOUYEK, B KOTOPBIX T'Pad UK
dyukmun f(z,y) umeer "uzmom”.)

Hanee Oyznem camrars, uTO a;j # 0 IPH BCex i, j, yA0BJICTBOPAIOMUX HepaBeHCTBY ¢ + j < d. Tpo-
II9ecKasi KPUBAsL COOMBEMCMsyem ceMeficTBy MHOro4IeHOB Fy, ecin b;; = logy |a;;|. D10 onpeneerne
MOTHBUPOBAHO BaxKHOU 3atadeit B6b nuxke.

B5. Hapucyiite TponmuuecKyio KpUByIO, COOTBETCTBYIOILYIO CEMEHCTBY MHOIOUYJICHOB
(a) (ax)™ + (by)N¥ + N7 (D) (az®)N + (2bzy)N + (cy®)V?  (OTBer MoxeT 3aBUCETD OT a, b, C.)
O6osznauum yepes Ag TpeyroJbHUK, 3a/laHHbIi HepaBeHcTBamu = > —R,y > —R,x +y < R.

B6. (a) s aobbix £, R > 0 Haiimerca Ny, Takoe 49To Jyist Beex HedeTHbix N > Ny nepecedenue

LOG-o6pasa MuOKecTBa Hydsteit muorowrena 2" — oV — ¢V ¢ Tpeyrombaukom Ap comepxuTced B e-

OKpeCcTHOCTU o0be innenus jgy4da y = 2x,x > 0 u ayua z = 0,y > 0.



(b) Hust sobbix wncen {a;j }bivj<a # €, R > 0 maiigerca Ny > 0, Takoe 910 1151 Bcex HedeTHbIX N > N
muokecTBo LOG(Fyt(0)) N AR comepskutes B £-0KPeCTHOCTH TPOTIMHECKOil KPUBOii, COOTBETCTBYIOMIeH
cemeiicTBy Fly.

C. Tponudeckue npsiMble U OKPY2KHOCTH.

Ima wacmov yukaa 3aday npedcmasasem cobot TYAIoAHCeCMBEHHBLT KONKYDC: NPEOAG2AeMCA IKCNEPUMEH-
MAADHO NPOGEPUMDH HEKOMOPYLE MEOPEMDL MPONUNECKOT, 2E0MEMPUY NYMEM DPUCOBGHUA GKKYPIMMHLT “epme-
oiceti. M3bpannvie pucynky 6ydym svicmasaerv, daa eceobusezo 0bosperus. “3adavu” C1-C10 ne ouyenusaromes
(romsa mounvie GOPMYAUPOSKU U JOKAZAMEALCNEA KAKUT-HUOYb U3 amux ymeepacdenuds 6ydym razpastcdamo-
ca "nmocuramu”). Dacmo “3adawu” mookcHo nponycmums, €Cal YRnOMUHAEMAA MEOPEME e6KAUIOEOT 2E0MEMPUL
Bam neussecmna. Bea wacmv C He nyostcra dan pewenus 16-1 npobaemv, uavbepma u mootcem 6vimsd onyuweHa.

%

Pacemorpum m10cKOCTD ¢ (DUKCHPOBAHHON CHCTEMOl KoopauHAT. Tponuveckots npamot (“ranoti”) HasbiBa-
ercsi 0ObeIMHeHNe TPeX JIydell Ha [JIOCKOCTHU, BBIXOJSIIMX U3 OJHON TOUKM (Ha3bIBAeMO 6epuiunol), OJUH U3
KOTOPBIX HAIPABJIEH CTPOrO BJIEBO, JPYroil CTPOro BHH3, & TPeTHii (Ha3bIBAEMBIH Jua20HAAbHBIM) — BIPABO-
BBEPX IIOJ YIJIOM POBHO 45°.

C1. CyimecTByIOT JBe pa3jIudHble TPOIUIECKHUE MIPSIMBbIE, EPECEKAIOITNECs] B JBYX PA3JIMIHBIX TOUKAX.

Bynem roBoputb, 9TO JBE TOUKU HAXOMAATCH G 00ULEM MOAOAHCEHUU, €CIIN eBKJIMIOBA IPIMAas, TPOXOIAIIas
qepe3 3TU TOYKH, He HapaJsiiejibHa KOOPANHATHBIM OCSAM U IPIMON T = .

C2. (a) Yepes jsBe TOUKHU OOIIErO MOJOXKEHHs TIPOXOJUT €IMHCTBEHHAS TPOIMYECKAs! TIPSIMAasi.
(b) Ecin Beprusbl 1By X TPOMMYECKUX MPSIMBIX HAXOJSITCS B OOIIEM MOJIOKEHUHI, TO T TPOIUIECKHUE TPSIMble
HMMEIOT €JINHCTBEHHYIO OOIIYIO TOYKY.

Bynem roBopuTbh, UTO JIBE TPOIUYECKUE IMPsMbIC MAPAJIICIbHBI, €C/IU BepPIIUHA OJHON W3 HUX JIEXKUT Ha
JUaroHaJbHOM JIyde JpPYTOil.

C3. [lycth Touka A 1 BepHIInHA TPOMMIECKOH TPIMOi b HAXO/IsITC B OOIEM MOJIOKeHNH. 'Toraa yepe3 TOUKy
A MOXKHO IIPOBECTU €JMHCTBEHHYIO TPOIUYECKYIO MPSIMYIO, ITapaJlIeJIbHYIO b.

Bynem roBoputhb, 9TO JBE TPOIUYUECKUE IPSMBIE MMEPIEHIUKYJIAPHBI, €CJIN MPSIMbe, KOTOPbIE COJEPXKAT UX
JUaroHajbHbIE JIy49d, CAMMETPUYIHBI OTHOCUTEJIBHO MPAMON T = .

CA4. Ilycre Touka A u BepIIHA TPOIMUIECKON MPSMOil b HaXOSITCsI B O0IIEM MMOJIOXKeHNU. 'Toria 1epes TOUKy
A MOXKHO IIPOBECTU €IUHCTBEHHYIO TPOIMYECKYIO IPSMYIO, EPIEHIUKY/IIPHYIO b.

Tponuneckutdi mpeyzoavruk (nayk”) — 310 0ObEIUHEHNE TPEX TPONUYECKUX IIPSAMBIX, BEPIINHBI KOTOPBIX
HAXOJIATCsI ([IOIIAPHO) B ODIIEM HOJIOYKEHWH.

C5. Hapucyiite 4epre:ku K TPOIMYECKUM AHAJIOTaM CJIEIYIONUX TEOPEM.
(a) BbICOTBI TpeyroIbHUKA [IEPECeKAIOTCsI B OJJHON TOUKE.

(b) Teopema ITanma.

(c¢) Teopema [dezapra.

&7

[Tycrs ganbr e Troukn A u B. Tponuueckot oxpyorcnocmovro ("yanaed”) nazopem I'MT X rakux, 4ro cy-
[ECTBYIOT JIBE IEePIEeHIUKYJISPHbIE TPOIMYECKUX IPsIMbIe, OJHA M3 KOTOPLIX HPOXoauT depe3d A u X, a apyras
— uepe3 B u X. (He zabeiBaiite, uro 4epes jipe Touku A u X, BooOIe roBopsi, MOXKHO IIPOBECTH HECKOJBKO
TPOMMYIECKHUX MPIMBIX!)

C6. (a) HapucyiiTe Tponnieckyto OKpy?KHOCTb. Kak 3aBHCHT 9TO MHOYKECTBO OT PACIIOJIOKEHUsT TOYeK A u
B?

(b) ¥V sr060oro Jim TpeyroJbHIKa CyIEeCTBYeT OIUCAHHAST OKPYKHOCTH?

(c) Teopema ITackauist.

CT7*. [IpujymaiiTe MOHSITHE CEPEJMHBI OTPE3KA B TPOIIMYECKON MeOMETPHH, TaK YTOOBI BBITOJHSIACH TEOpeMa
0 MeJIMaHaX TPEYTOJTbHUKA.



TPOIIMYECKA{4A T’EOMETPUA

A. 3acaasckuii, ®. Hunos, A. CkonenkoB, M. CkonneHKOB

OcHoBHas cepusl 3aj1a4 COCTOUT M3 JIBYX dacTell - okoHdanusi 4acTu B u Hooit wactu D. Samaun qactu D He
UCIOJIB3YIOT (38 UCKJIFOUEHUEM sIBHO OIOBOPEHHBIX CJIy9aeB) MOHATUN M PE3y/JabTATOB JPYTUX YacTeill IPOEKTa.
IlosToMy WX MOYXKHO pellaTh, He IPUHAMAsS YYacTHs B JIDYTUX YaCTAX IPOEKTA.

B. Teopema Bupo o ckieiike.

B3. s mobbix €, R > 0 naitaercs Ny > 0, Takoe 910 st BceX HedeTHBIX N > Nj mepecedenre MHOXKECTBA
HyJIeii MHOI'OYJIeHa

(c) 22N — 2N — yN ¢ xpyrom Bp u ¢ mepsoit gerseprbio (z > 0, y > 0) comep:KUTCA B £-OKPECTHOCTH
00 bEeIMHEHNSI MHOYKECTB

{Ly) |0<y<1}, 0<z=y<1 n y=2a>>1

(d) 22N — 2N — yN ¢ xpyrom Bp u co Bropoit werseprhio (x < 0, y > 0) COmEPKHUTCA B £-OKPECTHOCTH
MHOKECTBa, CUMMETPUIHOIO 00'beIMHEHNIO U3 (¢) orHOCHuTEabHO ocu Oy.

B7. Cdopmynupyiite u pokaxkure anajor nyakrTa B3d jyist Tperkeil u ueTBepTOil YeTBEpTEI.

2N _ N N

B8. Ilepeceuenne MHOXKecTBa HyJIell MHOTOUJIEHA T C TpeTbell 4eTBEPTHIO IIyCTO.

B9. Jlna aobbeix €, R > 0 Haitaercss Ng > 0, Takoe UTO 11T Bcex HedeTHBIX [N > N mmepecedeHne MHOXKECTBA
mysteit muorowiena 2N — 2V — yN ¢ kpyrom Br n

(a) mepBoii YeTBEPTHIO CONEPKUTCST B £-OKpecTHOCTH obbepuuennst Muoxkects {(1,y) |0 <y < 1} my =
2 >1

(b) BTOpOIl Y€TBEPTHIO CONEPIKUTCS B £-OKPECTHOCTH 00be tiHenust MHOXKecTB 0 < —z =y < luy = 2 > 1.

B10. CdopmysupyiiTe n qokaxkuTe aHaor 3a1aqu B9 Jj1s1 yeTBepToil YeTBEpTH.

Cdopmynupyem Teopemy Bupo o ckieiike, KoTopast MO3BOJISET HANTH YHUCJIO U B3AWNMHOE PACIIOJIOXKEHUE
OBAJIOB J[JIsI HEKOTOPBIX aJIreOpanvIecKnX KPUBbIX.

B11. Ka}K,ZLaH Tpoln4decCKasd KpuBasl ABJIAETCA KOHECIHBIM O6’])€,ZLI/IH6HI/IGM OTPE3KOB 1 nyqeﬁ.

Onpenenenne KpuBoii Bupo n ee oBajioB. BosbMmeM TponuyecKyo KpUByIO, COOTBETCTBYIONLYIO HAbOpy
qnciient a;j 7 0. Tponmdeckas KpuBast sIBJISeTCs KOHETHBIM 00beIMHEHIEeM pebep (oTpesKoB U Jiyueil), KOTOpbIe
nepecekaroTcss B eepwunar (T.e. B 00UmMX TouKax pebep). I'parsvio TPOIMIecKoil KpPUBOH HA3BIBAETCS KOMIIO-
HEHTA CBSI3HOCTH ee JIONOJIHeHus B iockoctu. Kakimoit rpaHu coorBercrByer mapa (p,q) TAKUX YHCENI, UTO

pr + qu + logy |apg| = Inax ¢0(ix + jy + log, |a;j]) mnst Todex (x,y) SToif TpaHM, a TaKKe COOTBETCTBYET
1+j<d, a;;

3HaK KO9(DPUIHEHTa Apg. B amom onpedeaenuu mor ucnoavsyem ne {a;j}, a mponuveckyio xpusyio, na epaHAL
KOMOPOTi PACCMAGAEHDL NAPYL YUCEA U SHAKUS .

[TepeneceM TPONUYECKYIO KPHUBYIO NMapaJslleIbHO, 9TOOBI €¢ BEPIIMHBI OKazaguch B yriae x > 0,y > 0. O6o-
sHauuM depe3 Uy, 400 00pas Ipu 3TOM IlepeHoce IpaHM TPOIMYECKOH KPHUBOil, Ha KOTOPOIl CTOUT mapa (p, q).
O6osuaunm Uy 401, Up.g,10 1 Up g11 — 006passr muozkecrsa U, 00 IPU CHMMETPHSIX OTHOCHTEIBHO OCH &, OCH Y I
(0,0), coorBercrBenno. [TpooIZKIM PACCTAHOBKY 3HAKOB € MEPBOi KOOPMHATHON YeTBEPTH HA BCIO ILIOCKOCTD
10 CJIeLYIOMIeMy IIpaBUILy: pu orpaxkennn obmactu Uy, orHOCHTENBHO OcH O 3HAK OOIACTH yMHOXKAETCS Ha
(—1)4, a npu orpaxennu orHocuteabuo ocu Oy — na (—1)P. (To ectb, sgn Uy 4 5 = (—1)P T sgn U, 4 09.) Onpe-
nemnM kpusyro Bupo xak oobemunerne U{U, NUg | sgnU, # sgnUg} Tex pebep Tpormdeckoii KpHBOii, KOTOPbIe
pa3JIe/IIIOT I'PAHU Pa3HbIX 3HAKOB. JIBe HeOrpaHMYEHHbIE KOMIIOHEHTBI CBA3HOCTH KPUBOH BHpo HasbIBaloTCs

® INEMEHMAPHO IKBUBANEHMHYL, €CJIT OHU COJIEPKAT JIy4dH, CAMMeTpHUIHble oTHOcHTebHO Touku (0,0).

® SKGUGAACHMMHDL €CJIU CYIIECTBYET MOCJIEI0BATEILHOCTh KOMIIOHEHT OT OJHON K JPYTOil, B KOTOPOii JI0ObIE
JIBE TI0CJIE/IOBATEIbHbIE KOMIIOHEHTBI 9JIEMEHTAPHO SKBUBAJIEHTHDI.

Osanom KpuBoit Bupo naswiBaeTcst mb0 3aMKHyTasl JIoMaHas, cofepkamascs B Kpusoil Bupo, mwimm kiacc
9KBUBAJIECHTHOCTU KOMIIOHEHT CBA3HOCTU.

Cresryrommeil TeopeMoii pazpemaercst NoJIb30BaThCsl 6€3 JT0KA3aTeIbLCTBA:

TeopeMa XapHaKa. H€6’bbp0()de€HHO€ MHONHCECTNEO Hy/Le’lZ MHO204AEHA CMeENneHY d He Moxcem coc?epwcamb

d—1)(d—2
boavuwe % + 1 osanos.
B12.* Teopema Bupo o ckieiike. [[ycmo xpusas Bupo, nocmpoennas no nabopy wucer a;j # 0, codep-
(d—1)(d—2)

aHCUM POBHO + 1 osanos. Tozda cywecmeyem makxoe N, wmo MmHoicecmso HYael MHOZOUAENA

2

STlapy uuces (p, q), COOTBETCTBYIONIYIO IPAHH, JIETKO BOCCTAHOBUTH II0 CAMON TPOIMIECKOH KpuBoii (mogymaiite, Kak!)



> af}f u'v? nesuposcdeno, a YUCA0 U B3GUMHOE PACTLONOINICEHUE €20 08AA06 MAKOE JiCe, KAK Y COOMBEMCMEY-
i+j<d
rouet xpusoti Bupo.

D. ITocTtpoenne npumepoB B 16-it mpobiaeme I'manbepra.
Hesb 3ayiaa cepun D — HayduThesd ONMMCBHIBATH TPONUYECKUE KPHUBBIE HA YUCTO KOMOWHATOPHOM SI3BIKE, W
TEM CAMbBIM TOJIYIUTb KOMOMHATOPHBIN METOJ, IIOCTPOEHUs IPUMEPOB KPUBBLIX B 106-it nmpobseme ['manbepra.
Hanomuum, dro mponuueckas kpusas crenieHn d — 3TO MHOXKECTBO TOYEK H3JioMa rpaduka yHKIUNA

max {iz + jy + bij} (moxpobuee cM. BbIIIe, ab3ary ocse 3ajaun B4).
i+j<

D1. (a) [TpoBepbre, uTo TpOIMYECKasi KpUBasi CTElleHN 1 BBINVISIIUT TaK, Kak Ioka3aHo Ha pucytke 1. (Cpas-
HUTE C OIpeJIeJIeHneM TPOIM4IecKoil mpsimoit B gactu C).
(b) M3 kaK/10if BEepIIUHBI TPOIMYECKON KPUBOI BBIXOJIUT KaK MUHUMYM 3 pebpa.

[Tpunuiem KaxkaoMy pedpy TPOIMUYECKOW KPHUBOH Kpammocmsb MO cjemayionemMy npasuiy. lIpeamosoxnM,
49TO B OIHON u3 objacTeil, rpaHMYAIINX C 3TUM pPeOpPOM, MaKCHMAIbHOI sBJjgeTcs BeauduHa ir + jy + bij,
a Jipyroit — emuuuna 'z + j'y + by jr. Torja mpsiMasi, cojeprKaliasi JJaHHbIN OTPe30K, 3a/1aeTcsl ypaBHeHueM
(i—i")x+(j—7")y+ (bij —bij) = 0. Byaem cautars KpamHocmuio JaHHOTO peGpa HanbOIBIIIiA OB e THTeb
ancen 1 — i u j — j'.

Bynem obo3nauaTh Ha pucyHKax KpaTHbIe pedpa TPONUYIeCKOH KPUBOH IBONHBIMU (TpOﬁHbIMI/I U T.J1.) JIUHU-
SAMMU.

D2. Tpomnuveckue KpuBble cTerieHu d 00JIAIAI0T CJICLYIONIUMA CBOCTBAMMU:

(a) HakJion KaxK/10r0 pebpa paloHaJIeH.

(b) B kaxk0ii BepIiHe BBINOJHAETCS CIIEYIONIee yeaoBue coanancupoanaoctu. OBG03HAYNM UYepes3 v; BEK-
TOp C Ha4YaJOM B JAHHON BEpIINWHE, UMEIOINIl HalpaB/ieHne -ro pedpa, BBIXOMIMAIIEr0 U3 BEPIIUHBI, U PABHBIN
KpaTJaiiieMy IeJIOYUCJICHHOMY BEKTODPY C JAHHBIM HAIPABJIEHUEM, YMHOXKEHHOMY Ha KpaTHOCTb pebpa. Torma
> w; = 0 jyist KaxKJ10il BEPITUHBL.

(c) Nmeercst 3d GecKOHEIHBIX PEGED, B3ATHIX C yUETOM KpaTHOCTEN, d U3 KOTOPBIX HAIIPABJIEHBI CTPOIO BJIEBO,
d HaIpaBJIEHBI CTPOTO BHU3, U d HAIIPABJIEHBI BIIPABO-BBEPX C YIVIOM HaKJIOHA 45°.

D3. (a) Tponmueckuit Muorowien max {ix + jy + b;j} BoccraHaBIMBaeTCs 10 CBOEH TPONIYECKON KPUBOIL
i+j<d

OJIHO3HAYHO C TOYHOCTHIO JI0 J00ABJIEHUS] TOCTOSTHHOM.
(b) Besikuit rpad Ha MI0CKOCTH € IPSIMBIME pefpaMu U MPEJIIUCAHHBIMU KPATHOCTSIMUA, YJIOBJIETBODSTIOIIHI
cpoiictBaM (a), (b) u (c¢) 3amaan D2, siBisiercst Tponmyeckoit Kpupoii crenenu d.

MsI rOoBOpHM, YTO JiBe TPOIMYECKUE KPUBBIE UMEIOT 0JUMHGKOBYIO KOHWPU2YPauul0, €Cau y HUX COBIIAJIAET
KOMOMHATOPHBII THIl Tpada U HAKJIOH ero pébep (HO He 00s3aTeIbHO MX JIJIMHBI M TOJIOXKEHHUE).

D4. Hapucyiite 5 pa3audubix KOHGUTYPAIUH TPOIUIECKUX KPUBBIX BTOPOIl CTEIIEHMN.

st pertierust CaeAyoOIMUX 3aa9 JJOCTATOYHO TPOYUTATh B IPEIbLIyIIeM MyHKTe ab3ar "OrnpeiesieHne Kpu-
Boit Bupo u ee oBaJion”.

D5. U3 kakoro MakCHMaJIbHOIO UHCJIa OBAJIOB MOXKET COCTOATH KpuBasi Bupo npu d =
(a) 2; (b) 3; (c) 4; (d) 57  (/okazarenpcTBa MaKCHMAJIBLHOCTH MBI He TpebyeM. CpaBHHTE OTBET C 33/ adaMu

Adf u A7)

D6*. Hanumure nporpamMmy Ha KOMIIBIOTEPE, KOTOPAasi:

(a) pucyer Bce KOHMbUIYpAIMU TPOMUIECKUX KPUBBIX JAHHON cTereHn d;

(b) mo manHOil KOH(HUIYpAIUN TPOIUIECKOiT KPHBOi 1 HAOOPY 3HAKOB, MPUIHCAHHBIX obsactsam Us; fomos-
HEHUS K Hell, OlpeJiesisieT KOJIMIeCTBO OBAJIOB y KpuBoi Bupo.

D7*. (ab) Hokaxkure OcHOBHYIO TeopeMy (pasperiaeTcsi HOJIb30BaThCsl TeopeMoii Bupo o ckieiike 6e3 jo-
Ka3aTesIbCTBA).



PEIIMEHNA 3AJTAY

A1l. Orser: ner. Hanpumep, npsivast © = 0 sIBJIsieTcsi MHOYKECTBOM HyJieli pa3HbIX MHOrOWIeHOB F'(x,y) =
u G(x,y) = 2°.

A2. Otser: a, b, c, e, f.

[Tpumepst. (a) JIrobast npsiMast Ha JI0CKOCTH 3ajaeTcst ypasaeaneM Az + By+C = 0 ¢ HEKOTOPBIME YHCIAMU
A, B, C.

(b) Ypasnenne okpyzkuoctu: (1 —x0)%+ (y—y0)? — R? = 0, e (w0, yo) — KOOp@HATHI TleHTpa, R — pajmyc.

(c) Ypasnenue Touxu (z9,yo): (z — x0)% + (y — v0)? = 0.

(e) Vpasuenue oobenunenust apyx upsambix: (Azx + By + C)(ax + by +¢) = 0, tne Az + By+C =0 —
ypaBHeHue 1epBoii, ax + by + ¢ = 0 — ypaBHeHUe BTOPOii MPsIMOIi.

6
(f) Ypapuenue o6benunennst 6 oxpyzxuocreit: [[ ((z — zx)? + (y — yx)> — R}) = 0, tne (z — z)? + (y —
k=0

yr)? — R? = 0 — ypasHenue k-it OKpy>KHOCTH.
Hesosmoxkuocts B mynkre (d) HanpsiMyio ciaeyer us 3agaun A3a.

A3. (a) Orser: u60 or 0 710 d, 16O UpsiMasi COAEPIKUTCS B HAIIIEM MHOXKECTBE HYJIEii.

[Tapamerpusyem npsimyto I: © = xo+a-t, y = yo+ - t. [logcrasisis 5Tu BbIpaykeHns B MHOTOUJIEH, TTOJIY IUM
muorousieH P(t) crenenu e 6osee, gem d. Muorowren P(t) mmubo numeer He 6oJiee, 4eM d BEIECTBEHHBIX KOPHEIi,
b0 ToXxkKIecTBeHHO paBeH ().

[MTokazkem, uTo s oboro d < d, cymecTByer Kpubas crenenu d u upsMas [, KOTOpBIE II€PECeKaloTcsd B
d'" Toukax. PaccMoTpum ypaBHeHust d IpsIMBIX, OTJMYHBLIX OT [, Cpe/ld KOTOPLIX poBHO d — d' mapaJiiejbHbl [.
[IpoussesieHne 3TUX ypaBHEHUIA sIBJISIETCS] HYKHBIM MHOTOYJIEHOM.

O6osnaunM vepe3 d creneHb JaHHoro mMuorowieHa F(z,y) = > al-j:ciyj . Tlokaxkem, 4uTO cywecmeyem

itj<d
nesvipoiclennas samena xoopounam r = a1x’ + 1y, y = ax’ + Boy’ (nesvipoosicdennocmo osznanaem, wmo
a1y — agfy #0), nocae xomopoti koapuyuerm npu odnounene (x’ )d'6ydem HEHYNEBDIM.

Kosddunuent A(ag,as) upu omnouwrene (z')? pasen Y aijo/loé. Tak Kak He Bce a;; pasubI 0, TO CyIe-

it+i<d
CTBYIOT Takue (q ¥ (2, He PaBHbIe OJJHOBPEMEHHO HyI0, 4T0 A(ay,as) # 0. Ionbupasi kosbdunmentsr 51 u
B2, Tax, 9TOOBI OHU He OBLIM MPOMOPIMOHAIBHBI (p U (g (T.e. 9TOOBI (133 — a3 # (), MBI MIOJIyYUM HYKHYIO
3aMeHy.

Bepuemcs k pemenumio 3amaun. Tak Kak IpU 3aMeHe U3 JIEMMbl OFPAHUYEHHDLIE MHOXKECTBA IIEPEXONAT B

d

OTpaHUYEHHBIC, TO MOXKHO CIUTATDH, 9TO Kodddunment npu x* Henymesoi. Tak Kak d HEIETHO, TO JJIsI KAXKJIOTO

y ypasnerue F(z,y) = 0 umeer pentenme. 3naunt, F~1(0) neorpamuueno.

A4. (a) Hanpumep, nogoitier muorowiern zy(z +y — 1) + ﬁ.

O6o3HaunM Yepe3 ¢ MHOKECTBO ero Hyseil. ITokazkeM, 9To JIaHHbIH MHOrOWIEeH HenpuBouM. JleficTBure b
HO, MHa4Ye OH Pa3/iaraeTcs Ha NPOU3BEJEHHEe MHOIOYJIEHOB, CTEIEeHb OJHOTO M3 KOTOPbIX paHa 1. [Tosromy ¢
COJIEP’KUT MPsIMYT0. DTa NpsiMas obsizaHa nepecekarb ojHy u3 npsaMbix Ox u Oy, KOTOpbIEe He IepeceKaioT .
[TosyuenHoe POTUBOPEUNE JOKA3BIBAET HEIPUBOIUMOCTb.

Koop/iHaTbI = TOUeK Iiepecedenns IpsiMoil Y = ¢ ¢ ¢ yioBiersopsior ypasuennio 2 + (¢ — 1)z 4 155 = 0.
Huckpuvmnant D = D(c) storo ypasnernust pasen (¢ — 1)% — 2%5(: Pagencreo D(c) = 0 paBHOCHIBHO PABEHCTBY
f(e) :=25¢(c— 1)2 —1 = 0. 9710 ypaBHEeHHE TPETbE CTEIEHN, KOTOPoe nMeeT He Hostee Tpéx KopHeitl. [Tockombky
fl355) <0, f(3) >0, f(1) <0, f(2) > 0, To aBa KOpHs ¢1 U ¢z ypasHenns f(c) = 0 Jexar Ha HHTepBase
(0,1), a Tperuit kopenb Jexxut Ha unTepsase (1,2). ITostomy D(c) = 0 poBHO B JIByX TOYKaX €] U ¢y MHTEPBAJA
(0,1), mpuaém D(c) > 0 ms soboro ¢ € (c1,¢2) u D(c) < 0 syt ocTajbHBIX TOUYEK rToro maTepsasa. (s
OIPEJIEJIEHHOCTH CYUTAEeM, UTO ¢ < Cp.) SHAUUT, IIPH €, PABHOM €] WU C2, IIpsiMasi Yy = C II€PeceKaerT ¢ POBHO
B ofuoit Touke. [Tosromy npu ¢ € (c1,c2) npsimast y = ¢ nepecekaer ¢ B aByX Toukax (xi(c),c) u (z2(c),c), rae

VD —(c—1)

z12(c) = 5 . IIpu ocranbubix 3uadennsx ¢ € (0,1) npsMast y = ¢ He IepeceKaer ¢.

Orpeiesium

v le1, 2¢0 — 1] — R? cbopmyinoit (21(8), 1) te el
(.%'2(202 — t), 2c9 — t) te [02, 2c9 — Cl]
Tak kak dynkuun z1(c) n xao(c) muddepennupyembe, 10 orobpazxkenue 7y(t) nuddepeHEpyemMoe B TOUKAX,
OTJIMYHBIX OT C2. Tak Kak 2¢co —t =t qysa t = co u (21) (c2) = (22) (¢2), TO OTOGpakenne y(t) riagkoe BO BCex
toukax. Tenepsb sicHo, 4To ([) ecTb 3aMKHYyTasi KpUBasi, COJEPKAIAsiCs B KPUBOH .
(b) Ykasanne. Pacemorpure muorounen (z + 1)(z — 1)(y + 1)(y — 1) + 135
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(c) Ykasanue. Pacemorpure muorowren (2% + y? — 1)(22 + y* — 9) + 1i5.

(d) IIpemamosoKum IIPOTHBHOE, IYCTh €CTh XOTst ObI OjHa Jpyrasi Touka X . Paccmorpum Touky Y BHyTpH
BHyTpeHHell 3aMKHyToil KpuBoil. Torja npsimast XY repecedér MHOKECTBO HyJieil JJAHHOIO MHOTOUJICHA HE MEHee,
9YeM B [sITH TOYKAX, YTO IIPOTHBOPEYUUT yTBEPXKIeHUo 3a1auu A3(a).

(e) Orser. Her. Ykasanue. Paccmorpure muorounen z(z? + y? — 1)(z? 4 y* — 9) + 155

(f) Ykaszanme. Paccmorpure muorounen (22 + 2y? — 3)(222 + y? — 3) + ﬁ.

(g) Vkazanme. Pacecmorpute muorowten (22 +y? — 1)(z —y— D)(x +y—1) + Wlo'

A5. Hanpasnenue npsimoit OM, coeuusioneit Hadaso koopaunar O ¢ toukoit M(z,y) BerBu rumep6o-
Jbl £y = 1, jexareil B MOJOKUTEJLHOM KBaJpaHTe, CTPEMUTCS K HampaBjeHuio npsMoil Oxr npun x — +00.
[Mosromy Oz siBisieTcst MpeJebHOl IPsIMOii /st BeTBU Tuepbosbl £y = 1, jexareil B HOJI0KUTETHHOM KBaJI-
paHTe. AHAJIOTUYHO OHA SIBJISIETCS [IPEJIEIIbHOI IPSIMOIt JiuIst APy Toii BeTBr runiepbosibl. [losromy BerBu runep6os
9KBUBAJICHTHBI.

A6. (a) Orser: IIpu h < 0 — oxnun osau, npu h € (0,1/27) — nBa oama, upu h > 1/27 — oxun osas. Ilpn
h=0wu h =1/27 anrebpanveckasi Kpupasi BbIpoxk/ieHa. [Ipusejiem perrenue.

O6osnaunm f(z,y) := xy(x + y — 1) + h. Beeném obosnauenus jyist Touek nepecedenust npsiMmbix Oz, Oy n
x 4+ 1y — 1 =0 u obiacreii, Ha KOTOPbIE STH NPsIMble PA3OUBAIOT IIJIOCKOCTb:

A:=(1,0), B:=(0,1),

C := (0,0, X = {(z,y) |z >0,y > 0,x+y < 1}, Xqg = y<0,z+y>1, Xp = <0,x+y>1,
Xo=zx<0,y<0,Yg=2<0,y>0,z+y<1,Ygi=2>0,y<0,z+y< 1, Yo =2>0,y >0,z +y > 1.

fcuo, uro f(x,y) = h B Toukax npsimbix Oz, Oy u x +y — 1 =0, f(z,y) < h B Toukax obuacreii X4, Xp,
Xco u X, a rakxke f(x,y) > h B roukax obmacreit Y4, Yp u Y. [losromy npu h > 0 myau muorowtena f(z,y)
MOTYT JiezKaThb ToJbKO B X4, Xp, Xo u X, npu h < 0 oHE MOTYT JIeX)KaTh TOJLKO B Y4, Yp u Y(.

[ycrb h < 0. O603nauum y4 := Y4 N f~1(0). Anagornano onpenesmm yg u yc.

JlokazkeM, 4To y4 ABIAETCH CBA3HOIN KoMmonenToi Muoxkectsa f~1(0) mymeit f. Koopamnars! & Todek mepe-
cedenns mpsMbIX y = ¢ ¢ f~1(0) yaosaersopsoT ypasrenuto 2 + (¢ — 1)z + % = 0. duckpumunanr D = D(c)
9TOr0 ypaBHeHust paseH (¢ — 1)? — %. [Mockosbky h < 0, T0 myist siro6oro ¢ € Ry, D(c) > 0. Buauur, Kax/jasa u3

+vD —(c—1)
IpAMBIX § = ¢, Ie ¢ € R, nepecekaer F' poBHO B AByX TO4Kax (Z12(c), ¢), TAKUX, 9TO 1 2(C) = 5 .

Ormpeneum
v: Ry — R?  dopmymoit {(:cz(t),t) te R, .

Tak kak byHKIWs To(c) riagkasi, To orobpazkenue y(t) rnagkoe. [Hockombky Y(R4) = ya, TO Y4 sBIsAETCS
CBA3HOM KOMTIOHEeHTO# MHOKecTBa f~1(0) Hyseit f. AHAOTMYHO Yp W Yo ABJIAIOTCS CBAZHBIMI KOMIIOHEHTAMH
muozkectsa f1(0) mymeit f.

Herpynno nposeputsb, 9To HanpasjieHue npaMoit O SBISETCA NPeJeIbHBIM I BeTBU Y.

Anajiornaso, 9T0 HAlIpaBJIEHUE SIBJISETCS MPEJIETbLHBIM JIJIsi BETBU Y 4. [109TOMY BETBU YA U Yc dJIEMEHTAPHO
SKBHUBAJICHTHBLI. AHAJIOTMYHO, BETBH Y4 U YpB SJIEMEHTAPHO SKBUBAJEHTHDI, MOCKOJILKY HAIPABJICHHUE MPAMO
x+y—1 =0 saBusiercst Jiyisi 3TUX BeTBel peJIeIbHbIM. SHAYNUT, BETBU YA, YB U Y¢ IKBUBAJIEHTHBI U [IOITOMY
00pa3yioT ofuH OBaJI.

IIpu h = 0 anrebpanmveckasi Kpubasi f BBIPOXKJIEHA.

[Iycts h > 0. Breném obozuadenust

r:=XNf0), za:=Xanf0), 2p:=Xpnft0) u zc:=XcnfH0).

CBSI3HOCTH W 3KBUBAJIEHTHOCTH & 4, £p U T YCTAHABJIMUBAETCS aHajorudHo ciaydaro h < 0. [Tosromy onm obpa-
3yIOT OJIUH OBaJI 1pu Jo6oM h > 0. Eciim MHOXKECTBO X He IyCTO U He IpeJCTaBisieT co0Oi OJHY TOUYKY, TO OHO
SIBJISIETCsT OBAJIOM (JI0KA3aTEeJILCTBO AHAJIONMYHO PelleHnio 3aadu Ada).
ITokazkeM, UTO MHOXKECTBO TOUeK T He Iycto Toibko mpu h € (0, 5=]. $IcHO, 4TO @ ImycTO TOLJA U TOJIBLKO
torja, koria D(c) < 0 upu mobom ¢ € (0, 1). Ipoussoanas D'(¢) > 0 upu ¢ € (0,1/3), D'(¢) =0 upu ¢ = 1/3,
D'(¢) < 0 upu ¢ € (1/3,1). Ilosromy B Touke ¢ = 1/3 mocruraercst MmakcumyM dbyuknuun D(c) Ha uHTEpBaJIE
(0,1). Bmaunt, D(c) < 0 npu mobom ¢ € (0,1) Torma u Tonsko Torma, kKora D(1/3) = 4/9 — 4 < 0, Te.
h > 1/27. Tlpu h = 1/27 muOX)ecTBO T cocrouT u3 oHoi Toukn. Takum obpasom, npu h € (0,1/27) mHOXKECTBO
myneit f~1(0) cocromT w3 ABYX oBasos, mpu h = 1/27 anrebpanmteckast KpuBas BBIDOeHa, mpu h > 1/27
muozkecTBo f1(0) cocTomT M3 OHOTO OBAIA.
(b) Orser: Onun oBast npu h € (—%, 3—\2/5

ckagl KpuBag > — x + h — y? BRIpOXKICHA IpH h = :I:%. Ykazanue. AHAJIOTUYHO (a).

, IBa oBaJia ipu h € (—o0, —=2=) u h € (2=, 00), anrebpamde-
3v/3 3v/3
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AT. Vxazanue. Pacemorpure muorowten z((z — 1)% 4 y? — 2)((z + 1)* + y* — 2) + 155

B1. (a’) Vrasanue. Cum. pucynok 3.a’. OGocHyeM pUCyHOK. SIcHO, 9TO MHOMkKecTBO myJIeil maorodnena 22001 —

y?001 — 1 jexkur "HipKe” MPAMOIT Y = T M CHMMETPHYHO OTHOCHTEILHO mpamMoii - + y = 0. TIo9ToMy MbI MOXKeM
paccMaTpuBaTh TOJILKO caydail y > —x. Touku (0, —1) u (1,0) sBiIsIOTCSI TOUKAME [IepecedeHus HAaIlero MHOYKe-
cTBa ¢ ocamu koopamHat. Ecim x = 1+ €, roe € > 0, To 7719 Yy BBIIOJHEHO HEPABEHCTBO (10016)ﬁ <y<l+e
[TosroMmy, IpH JIOCTATOUHO MAJbIX 3HAYEHUSIX €, 3HAYEHUsl Yy MOryT u3MeHsThest or 0 go 1. Ilpu e > 1/1001
3HaYeHUs * W Yy npubsmusuTeabHo paBHbl. Eem 1 — e < x < 1, 1lie € J0CTaTOYHO MAaJio, 3HAYUEHUsI Y MOTYT
u3MeHsIThest oT -1 10 0. AHasorngno pasbupaercs caydait y < —x.

(b’) VYkazauue. Cm. pucynok 3.b’. Anasorudno (a’).

(¢”) Vkazamme. Cm. pucynok 3.c’. Slcmo, uro MuOMKecTBO Hyseii muorowrena x1001y1000 — 51001 1001 cpyy
METPUYHO OTHOCHTEJIBHO NpsaMoil y = x. IlosToMy MOXKHO paccMmarpuBaTh TOJIBKO ciaydait x 2> y. llpu ¢ < 0
Bomoseno y > x. Ipn z € [0,1000/1001] 3navenne y npubimsnresnsro pasuo x. Ilpu x € [1000/1001, 1] 3na-
JyeHne y uaMeHsiercs or -1 g0 —oo. Ilpu x € (1,1002/1001) Beimosnzeno y > x. Ipu x > 1002/1001 3nauenue y
HpUOJIM3UTEIHHO PABHO 1.

(d’) Vkazanme. Cm. pucynok 3.d’. fcno, uTo MHOMKecTBO Hysmeit MHorowsena 2002 4 2002 _ 410011001
41001,1001 _ 91001 cppyivrerpuano OTHOCHTEIBHO IPsIMOiL 3 = 2. I109TOMY MOYKHO PACCMATPUBATEL TOJIBKO CIIydail
x > y. Touek ¢ koopiuHaTOll * > 4 cpexu MHOXKeCTBa HyJieil Hamiero mMuHorodiena Her. ITpu x € (—1/2,1/2]
3HaveHue y npudimsuTesbHo pasHo -1/2. Ilpu xz € (1/2,4003/1001] 3HaveHue y npubIM3UTEIBHO PABHO —X.
IIpn z € (4003/1001,4) 3nadenue y uaMmensiercst ot -4 o0 4.

{'...

|

|

I

|

I

|

I

¥ !
©

/1 \ ? i1 P
-1 |
|

a b c d
N A N
4
A
// N
., A 1 i
41 N 1 Tz
SN L t t > } t
1.1 [ 8 > -1 1 4 an 112 4
1y T 72
Y 1 -1 -1
Y N
Y N
y N\
T-4
a’ b’ c’ d’
Puc. 3:

B2. Ilycrs F(z,y) = 2° — pr + ¢ — y?, rae p,q > 0. Torma MuoxkecTBO Hyseit Muorouiena F cocTout us
JIBYX OBaJIOB, eciii MHOro4neH f(x) = x3 — pr + ¢ UMeeT Tpu JEHCTBHTENTLHBIX KODHS, W U3 OJHOTO OBAJA,
ecan f(x) umeer oJuH JeficTBUTENIbHBIN KOpeHb. [IpupaBHsIB IIPOM3BOIHYIO MHOrOUYIeHA [ K HyJIO, yOexK1aeMcsl,
9TO OH WMMeeT JIOKAJbHBI MAKCUMyM B TOYKE Z1 = —+/p/3 U JOKAJILHBI MHHUMYM B TOYKEe Tg = +/p/3.
CootsercTBenno, f(r) WMeer TpH KOPHs TOTJIa W TOJMBKO Torja, korma f(za) < ¢ < f(x1), Te. 4p® > 27¢°.

AHAJIOrIYHO MOJTyYaeM, 9TO MHOKECTBO HyJeil Muorounena Fiy(x,y) cocrout n3 asyx osasos npu 4p3Y > 27¢%V

3
1 U3 OJIHOI'O OBaJia B IPOTHUBHOM CJIyYdae. O‘IeBI/I,H,HO, qTO IIpn 1< Z—Q < QI? IIEPBOE HEPABEHCTBO HE BBITIOJIHAECTCI,

a BTOPOE BBIMTOJIHAETCS TIPU JOCTATOIHO OOBINX V.

B3. (a) Ilyukr (a) siBisiercst yacTHbIM cotydaeM myHKTa (b).

(b) Vkasarue. IIpesmonokum, 410 B HEKOTOPOIi TOUKe (x,y) 3HAYEHNST BCEX OJHOUIEHOB 'y’ Pa3IMIHbI
o abcomoTHol Bemanue, mpudeM |agz*yl| > |ajaty?| nna seex map (i,5) # (k,1). Torna mpu N — oo
az'y’ | N ko [N
| ij | Y |

i — 0. CiiejroBaTesIbHO, P BCEX JOCTATOYHO OOJIbIX N |aklac
aplT™Y

IIPEBOCXOIUT CyMMY abCOMIOTHBIX




BEJINYMH OCTAJBHBIX OJHOUIEHOB U paBeHCcTBO Fy(x,y) = 0 HeBo3dmoxkHO. [losromy MHOXKeCTBO F&l(o) mpu
6oJibiuX [N CTPEMHUTCS K HEKOTOPOMY IOJIMHOYKECTBY OObEINHEHN MHOYXKECTB, 33]aBAEMbIX PABEHCTBAMU BHJIA
|az'jl“i?/j| = lama™y|.

Pewenue. Ilycts nano €, R > 0. O6o3naunm 1uepes [ oObenaeHne BceX KPUBBIX, 33/1aBaeMbIX yYPABHEHUSIMI
aijxiyj + apz¥y! = 0. PaccyoTpun mpousBobHyIo ToUKy (2, Yo) € Br Ha paccrosiauu 6oubine € ot I'. Byzem
CUYNTATDH, YTO 9Ta TOUKA JICKHUT B Toil yacT R? — I, B KOTOPOIH MaKCHMAJIBHOE 110 MOJLY/IIO 3HAUCHUE TIPUHIMACT
ommousen apxtyl. Mycrs (z1,y0) € I’ — 6mmxaiimas k (g, yo) TouKa Ha npamoii y = yo. Torma |y1 — yo| > € m

; ] _ ko1 ..
|al-jxllyé| = |agx]yq| 115 HEKOTOPBIX 4, j.
O1eHnM OTHOIIIECHUE
GijToYo _ Qij xifkyjfl _ (@)i—k
— byl =
aklxlgyé agl xTq

Tak xax |agzkyl| > |aij:c6y6|, To |xo/x1| < 1. Ilockombky |zol,|z1| < R, TO |20/21| < 1 — €/R. 3HaunT, j11a
JIIOOBIX 1, J HaIlle OTHOIICHUE ‘
|@ijZoYo|

<1-¢/R.
|anxiys|

N
Cite/toBaTesIbHO, IpH BeeX N, YI0BJIETBOPSIONINX HEPABEHCTBY d2 (1 — %) < 1 omHOYNIEH \aklxlgy(l)\N IIPEBOC-
XOJUT CyMMYy abCOIIOTHBIX BEJIMYIMH OCTAJBHBIX OJHOUIEHOB U paBeHCTBO Fiv(xg,yo) = 0 HeBo3MoxkHO. 3ajiaua

pelreHa.
(¢) HemocpecTBeHHO ctefyer u3 yTBEPKJICHUST MPEJIBIIYINEH 3a/1a4i, TPUMEHEHHOIo K MHOrouwieHy Fy =
22N N N

(d) Muosxkecrso nysreit muorounena z2¥ — 2V — yN | nexkamux Bo BTOpOIl WeTBEPTH, CHMMETPHYHO OTHOCH-

TEJILHO OCH OPJMHAT MHOKECTBY Hyseit muorowrena x> + oV — yV
TpebyeMoe yTBepXK/IeHIe HEIOCPEICTBEHHO CJIe/IyeT U3 yTBEP:KIeHHs! MyHKTa b)

, JIeykarmux B nepBoit verseptu. [lostomy

B4. (a) Vkasanue. Cm. puc. 4.a. ObocHyeMm pucyHOK. ZlcHO, uTo MHOXKecTBO HyJeill dyukimu f(x,y) =
21001z _ 91001y _ 1 jeyxur "npasee” ocu Oy. Ilpu y < 0 3mavenue x npubiusuTensno pasuo 0, a mpu y > 0
3HAYEHUE T NPUOJIU3UTEILHO PABHO Y.

(b) Ykazanme. Cum. puc. 4.b. ObocHoBanne aHAIOrNIHO (a).

(c) IIpu = € (0,1/1001) 3navenust y usmensitorcst or 0 j10 +00, npu = > 1/1001 3HaueHne y npubIU3UTEIHHO
pasmuo 0.

(d) fcno, uro mHO)ecTBO Hyselt dyukmu f(z,y)
CUMMETPUYHO OTHOCUTEIHHO MpsiMOi y = x. I109TOMy MOMXKHO pacCMaTpUBaTh TOJLKO ciydail x > y. Ipu
x > 2003/1001 3nadenue y npubnusuressbHo pasuo x/2 + 1, npu x € (2,2003/1001) 3nadenue y U3MEHSETCA OT
—00 J10 2.

= 22002:)3 + 22002y _ 41001210011 _ 4100121001y _ 21001

Puc. 4:

B6. (a) Paccyxnasi, kak B 3aja4de B3b, mosydaem, 4ro nepecedeHre MHOXKECTBa HyJIell ¢ [IEPBOil KOOD/H-
2=z >y, =y > 2% Ounako,
n yN Y JaHHOI'O MHOI'OYJIeHa MMEIOT O/[MHAaKOBbIE 3HAKU, TaK 9YTO B OKPECT-

HATHO YeTBEpPTBIO JIEXKUT BOIM3M OObEJMHEHHs] MHOYKECTB 2 = y > x, T
K09 DUIIEHTHI TPH O[HOUIeHAX 2
HOCTH IIOCJIeJTHEr0 MHOXKecTBa Fy He MoxkeT obpamarses B Hy/Ib. [Ipu orapudmMudeckoM 0ToOpaKeHIN IIEpBOe
13 YKa3aHHBIX MHOYKECTB IIePeXO/uT B iy y = 2z, * > 0, a Bropoe — B ayd « = 0, y < 0.

(b) AHaJIOrMYHO TpeAbULYIEMy IYHKTY II0JyYaeM, YTO MHOXKECTBO HyJiell MHorowieHa Fy mpu Gosbrimx

N jexur B OKPECTHOCTHU O6’be,IH/IHeHI/IH MHOZKECTB, 3aJaBacMbIX COOTHOIICHHUAMN CLZ‘J'SCZ'yJ = aklxkyl Z Cqupryq.
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[Ipu smorapudMudeckoM OTOOPAYKEHUN STH MHOMKECTBa MEPEXOJAT B MHOXKeCTBa Buja ix + jy = kx + ly >
PT+qYy, Kark0€e U3 KOTOPBIX SIBJISIETCsT OTPe3KOoM mith JiyaoM. OO beTmHeHre STUX MHOYKECTB 3a/1aeT TPOIIMIECKY 0
KPUBYIO.

B7. Paccyxnasa anasornyno 3agade B3d, mosyaaem, 910 MHOXKECTBA, COJEPKAIINE [IEPECeIeHIT MHOXKECTBA
HyJIeli ¢ TIepBO#l M YeTBEPTON YETBEPTHIO, CUMMETPHYHBI OTHOCUTEIHLHO OCH abCIUCe, a ¢ TMepBOil M TpeTbeit —
OTHOCUTEJIbHO HAYAJa KOOPIUHAT.

B8. Tak kak B Tperbeit yerBept & < 0, y < 0, TO BCe OIHOUJIEHBI, BXOAAIINE B MHOTOUYIeH FN IOI0XKU-
TeJIbHBIL, T.e. paBeHCTBO Fy(z,y) = 0 HEBO3ZMOXKHO.

B9. (a) Pemenne ananoruano pemennio 3a1a1u Bba.
(b) Uz zazaun B3d ciejyer, 4To nepecevdeHne MHOXKeCTBA HyJIell ¢ BTOPOIl Y€TBEPTHIO JIEXKUT B OKPECTHOCTH
2= —x >y, —x =y > 2° IockonbKy 3uakn oxuounenos —x¥ un 22V Bo Bropoii

4eTBEPTH COBIAJAIOT, TO II€pecedeHne MHOYKECTBa HyJIell CO BTOPOH YETBEPTHIO COJIEPXKUTCS B OKPECTHOCTHU

MHOMKECTB Z2 = Yy > -, T

TOJIBKO IIEPBOTO U TPETHETO U3 YKa3aHHbIX MHOZKECTB.

B10. Paccyxmas, kak B 3ayade B9b, mosydyaem, 9TO HMCKOMOE II€peCcevueHre COJMEPKUTCI B OKPECTHOCTH
obbeauuennst muozkects (1,y), 0>y > —-1u0<z=-y <1

B11. Kaxoe pebpo Tponudeckoii KpuBOH 3a/1aeTCsi CUCTEMON M3 OJTHOTO YPABHEHUsI W HECKOJBLKUX Hepa-
BEHCTB BUJa 1x + jy +b;j = kx+1ly+by > px+qy+ by Ecmu sTa cucrema copmecTHa, TO ypaBHEHUE OLIpe/ie/iser
MPSIMYIO, a HEPABEHCTBA BBICEKAIOT Ha ITOH MpsAMOI OTPE30K MJIH JIyd.

B12. Vkasanue. [JeificTBUTENIbHO, PACCMOTPUM OT/IEIBHO MOBEJIEHIE MHOXKECTBA HyJieil Muorouiena Fy(x,y)

B KayKJIOM 13 9eThIpéx KpajipanTos. Orobpazkenne LOG : (R — {0})2 — R2, (z,y) — (logy |z, logy |y|) mepe-

BOJIUT KasKJIblil U3 KBaJ[PAHTOB HA IIJIOCKOCTH B3aMMHO OJIHO3HAYHO. BbiGepeM OJ[MH U3 KBaJIPAHTOB (HAIIPUMED,

x,y > 0), U OTOXKJIECTBUM €ro € IJIOCKOCTHIO YKA3aHHBIM OTOOpaykeHueM. Tporudeckasi KpuBas, 3ajaBaeMast

TPOMUTECKIM MHOTOIICHOM MBX {iz + jy + bij}, bjj = log, |a;j| pasbuBaeT TPOIMUECKYIO INIOCKOCTH Ha 00JIa-
i+j<

cru. BHyTpu Kaxk/10ii obsacTu noBejieHne MuOrodaeHa Fy(x,y) onpeessiercs MOBEJEHIEM OJIHOIO U3 MOHOMOB
(aijxiyj)N , M B 3aBHCHMOCTH OT 3HaKa KoddduiuenTa a;; (a Takxe BRIOPAHHOIO KBaJ[paHTa) MHOro4IeH Fy B
JIaHHOU 0b6JtacTu JINOO IMOJIOXKUTEJIEH, JINOO OTPHUIATEe/IeH. 3aKpacuM KarkKIyi0 U3 00JacTeil JIOMOJHEHUSI K TPO-
[UYECKO! KPUBOW B OJIMH U3 JIBYX IIBETOB, B COOTBETCTBUU CO 3HAKOM MHOrowieHa Fj B sToit obnactu. Eciaun
IBe cocemHue 0OOJIACTH, TPAHUYAINNAE BJIIOJb HEKOTOPOro pebpa, OKpaIleHbl B pa3Hble I[BETa, TO II0 TepeMe O
[IPOMEKYTOYHOM 3HAYEHUU BJIOJIb TOrO pedpa MPOXOIUT BETBb MHOXKeCTBa HyJell muorowieHa Fy. Ecin ke
obe cocesiHre 0OIACTH OKPAIIIEHBI B OJIMHAKOBLIE IIBETA, TO BOJIM3HM 3TOTrO pedpa HET BEIECTBEHHBIX TOUYEK KPU-
Boit. Takum o6pa3oM, Jijist GOJIBIINX HEYETHBIX 3HAUEHUi napamerpa N MHOXKECTBO HyJell mMHOrousieHa Fy (B
BBIODAHHOM KBaJIpaHTe) MPHUOJIMKEHHO n300pazkaercsi HaBOPOM HEKOTOPOrO KOJIMYECTBA SIBHO IIEPEUHCIIAEMbBIX
péGep TpoNMIecKOil KPUBOM, a MHOXKECTBO HyJiel MHOrowIeHa Fjy BO Bceil IJIOCKOCTU HPUOIMKEHHO 3a/1aeTCs
KpuBoir Bupo.

B npumiune, MHOXKECTBO HyJsieit Muorowiena Fy moryo 66 uMeTh 00JIbIlle BeTBel, ueM y KpuBoit Bupo —
HAIIPUMED, MOIVIH Obl CyIIECTBOBATH 'MaJIeHbKHE OBAJIbI BOJIM3U BEPIIUH TPOHMUYECKON Kpupoit. OrcyrcrBue
"ymmmianx” BeTBeil (M OBAJIOB) TapaHTHPYET HAM IIPEJIIOJIOZKEHHEe, YTO YUCJI0 OBaJOB y KpuBoit Bupo pasHO
(d—1)(d—2)/2 4+ 1 u reopema XapHaxa.

Bameganue. ApropaM 3a/1a4K HEM3BECTHO, OCTACTCS JIM BEPHOI TeopeMa o ckiieiike Bupo 6e3 mpejnoioxke-
HUST, 9TO YUCJIO OBaJIOB y Kpusoii Bupo pasno (d —1)(d —2)/2 + 1.

C5. (a) Cwm. puc. 5.a
(b) Cwm. puc. 5.b.
(c) Cwm. puc. 6.

D1. (a) Vkasanue. @ynkuus max{x + a,y + b, ¢} umeer cieyomee nosejenue. [Ipu x u y orpunareabHbIX
7 O0JIBIKUX 0 abCOTIOTHON BeJIMYINHE MAKCUMAJILHBIM U3 TPEX BEJIMYUH SIBJISETCs [TOCTOsTHHOE 3HadeHue c. [Ipu
YBEJMYCHUN T 3Ha4YeHne (DYHKIMU HE MEHsIeTCsl JO TeX 0P, IOKa TOYKa (,y) He HepecedeT BePTUKATLHYTO
npstMyto x +a = c. IIpaBee 3100l npsiMOit MAKCUMAJIBHON SIBJISIETCS BEJIMIUHA T + . AHAJIOTMYHO, IPU JIBUXKEHUN
TOUKM (Z,y) BBEPX IEPEXOJ] K BeJMYUHE Y + b OCYIIeCTBIsSIeTCs Ha TOPU3OHTAJIBHON MpsiMoii y + b = ¢, B1oJb
KOTOPOIl MAKCUMYM JIOCTUTACTCA Ha JIBYX KOHKYPUPYIOIINX BbipakeHusx y—+q u c. Hakonerr, obyractur, B KOTOPBIX
snavenne dbyHkuu f(,y) COBIAIAET C BLIPAXKEHUSAME T+ a U Y + b, pa3/eJIsioTCst JIydoM IpsiMoii & +a = y + b,
umerornei HakaoH 1. Bee Tpu nmosydeHHbIX JIyda cxoJaTcs B Touke (¢ — a;c — b).

D2. (a) OueBummo.
(b) Vkasanue. PaccMoTpum BepIIvMHY KPUBOI M HPEJIIOIOKUM, YTO K 9TON BEPIIMHE HOIXOAUT I obJacreii
(7TomoJIHEHHST K TPOIHYIECKOiT KPUBOIi), B KOTOPBIX MAKCUMYM JIOCTHTaeTCs Ha DYHKIMAX 11X+ 71Y+b;, j,, - . -, ipT+
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Puc. 5:

A A c"
R ¢
=\ V4

C A"

i I
Puc. 6:

Jry + bi,j., COOTBETCTBEHHO (MBI cuuTaeM OOJIACTU 3aHYMEPOBAHHBIME IIPOTHB YacoBoil crpesku). Torma, oue-
BUJIHO, BBITIOJTHSAETCS BEKTOPHOE PaBEHCTBO

29 — 1 Ty — Ty 21— 1
(2?>+m+<f Tﬁ+(? ﬁzo

J2— Jr — Jr—1 J1—Jr
ls+1—ls

Js+1—Js
CHPOBAHHOCTH, TOJIHKO JIMIIb TOBOpoTOM Ha 90°.

Ocrajioch 3aMETUTH TOJIBKO, ITO BEKTOD ( ) OTJIMIAETCS OT BEKTOPA Vg, YIACTBYIOIIETO B YCJIOBUU COAJIAH-

(¢) Vrkasanue. Jlokaxkem, Hampumep, 9TO TpONHMYECKas KpuBas crerneHn d umeer (€ yIeToM KpaTHOCTH)
POBHO d TOPU30HTAJIBHBIX JIy4eil, HAlIpaBJIEHHBIX BJIEBO. [leiicTBUTE/IbHO, Oy/IeM PACCMATPUBATH TOJBKO TY YaCTh
IJIOCKOCTH, B KOTOPOil KOOpJMHATA T OTPUIIATEbHA U OYEHb BeJIMKA 110 abCOJIIOTHOU BesndnHe. YlCHO, 4TO B
9TOH YaCTH MaKCUMAJIbHOM MOXKeT ObITh TOJILKO OJIHAa U3 BeJU4YuH jy + agj, 7 = 0,1,...,d. flcno Takxke, uro
B 9TO# 4YacTu IpH OOJIBHINX 110 abCOJIFOTHON BEJIMYMHE OTPHUIATE/bHBIX Y MaKCHUMaJbHA BEJUYUHA Ggg, & 1IpU
BOJIBIINX TI0 ADCOJIOTHON BEJIMYINHE TOJIOKUTEJBHBIX § MAKCUMaJIbHA BeJuduHa dy+ agq. 1lycTb npu yBesmaenun
Y MaKCUMAJIbHBIMU II0C/IEI0BATEIbHO CTAHOBATCS BEJIMYUHDBL Aoo, J1Y + Q0jy, JoU + Gojs, - - - JkY + Qojy., dY + aoq-
Jlerko BuieTh, uro 0 < j1 < jo < -+ < ji < d. Torma KpaTHOCTH MOPU3OHTAJIBHBIX pebep PABHBI j1, jo — J1, - - -,
d—ji. TloaTOMY KOJIMYECTBO TOPU3OHTAJIBHBIX Pebep ¢ y4eToM KpaTHOCTH PaBHO (J1)+ (jo—j1)+: - -+ (d—ji) = d.
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D3. (ab) Vkasanue. [eiicTBUTENBHO, IPEIIONIOAKIM, YTO B HEKOTOPOH OGJIACTH TPOINMYECKHUIl MHOIOWIEH
COBIIQJIAET C JIMHelHo# dyHkimei ix + jy + b;;. IlycTs npsmast, copeprkaias OTPe30K I'PaHHILI 3TOil 00/1acTH,
uMeet ypasrenue pr+qy+r = 0. Torga B coceueit obstacTu, rpanuyanieil ¢ HCXOAHOI BIOIb OTPE3Ka, MHOIOUJIEH
coBIaJaeT ¢ yuHeiiHol dbynkimeit (i+p)x + (j +q)y+ (bij +r). NabIMHI coBaMu, Mbl yCTaHABINBAEM DABEHCTBO
bitp,j+q = bij+ 7. IIpomomkas TakuM ke 06Pa30M, MbI BOCCTAHABINBAEM BECh MHOIOWIEH 0O/IACTD 3a 0OIACTHIO
0 MHJIYKINH. YCIoBUe COATAHCHPOBAHHOCTH TapaHTHPYeT HAM, YTO B IPOIECCE MOCTPOEHUs] MBI HUKOI/a He
HPUJIEM K IPOTHBOPEYUIO. YCJIOBHE IIOBEJICHHsI TPOIMYECKOl KPUBOHl Ha OGECKOHEYHOCTH OOECIEUNT HAUTIUC
TOJILKO TeX "TPONMYECKUX MOHOMOB”, IOJIyYeHHBIX B IIPOIECCE MOCTPOEHNUsI, KOTOPbIE TOILKO M BO3MOXKHBI JIJIsI
TPOLMYECKUX MHOIOYWICHOB JIAHHON CTEICHN.

D4. Vkasanue. Kak u jiyisi 0ObI9HON THIIEpOOJIBI, TPOIMYECKYIO KPUBYIO BTOPOi CTEIEHU MOXKHO ITOJTYyIUTh,
[IOIIIEBEJINE CJIeTKa OObeuHEeHNe IBYX TPONUIecKuX HpsiMbix. OObeMHEeHne JIBYX TPOIMUIECKUX MPSIMBIX 3218~
€TCs CYMMOH JIByX TPOIMYECKUX MHOTOWIEHOB MEPBOil crerieHu. Y rpada, siBJIAIONIErocs MHOXKECTBOM TOYEK
M3JI0Ma TaKOU CYMMBI, UMEETCS BEPINHA BaJEHTHOCTH 4, B KOTOPOM MaKCUMyM JIOCTHTAETCS OJHOBPEMEHHO
Ha, YETHIPEX KOHKYPHUPYIOMUX JIMHEHHBIX pyHKIusIX. [locae HeboIbIIOro mepeieHnst OMHON U3 ITUX JTUHEHHBIX
GbyHKIINN TOYKA BaJEHTHOCTH Y€THIPE PACIAIAeTCs Ha JIBE TOYKHU BAJEHTHOCTU TPHU. HEeKOTOpbIEe M3 BO3MOXKHBIX
TPONUYECKUX KPUBBIX BTOPOII CTEleHN IIPUBEJEHBI Ha PUC. .

Puc. 7: BprO}K,ZLeHHaH TpoIIn4deCKasd KpuBad BTOpOfI CTEIICH 1 /IBa €€ IIeBeJIeHUs

D5. Omeem. (a) 1; (b) 2; (c) 4; (d) 7.

D7. (b) Pazouenuns auarpammbl Hetorona. IIpu pemennn 3agaun gacru D7 MoxkeT oKa3aThCs 110JI1€3-
HBIM CJIEJIyIoITee ~JBOWCTBEHHOE  ONMUCcaHue KOH(MUTYPAIUi TPOIMUYECKUX KPHUBBIX. PaccMOTpUM Ha IJIOCKOCTH
tpeyrosibuuk ¢ BepmuHamu (0;0), (0,d) u (d,0). DToT TpeyrosbHUK HasbiBaeTcst mpeyoavrurom Horomona
Tpormyeckoro MHorowiena. Co BCSIKON TPOIUYECKONW KPUBOH CBA3BIBAETCS HEKOTOpOe pa30ueHue TPeyrobHUKA
HproToHa Ha BBITYKJ/IbIe MHOIOYTOJBHUKHY C IEJIOUNCTIEHHBIMY BEPIIMHAMA. A IMEHHO, PACCMOTPHUM 00JIACTD B JI0-
IIOJTHEHUU K TPOIMYIECKON KPUBOI, B KOTOPOIl MAaKCUMAaJIbHOMN SIBJISIETCS] BEJIMINHA, 1T + jy—l—bij. Droit 0b1acT MBI
COTIOCTABHMM BEpINUHY ¢ KoopjauHaTamu (i, j) Ha Tpeyrosbauke Heiorona. Pebpy Tponmdeckoit KpuBoii, pasesisi-
IoIeMy JiBe 00JIaCTH, COIMOCTAB/ISIETCsT OTPE30K Ha nuarpammve HbioToHa, coeuHSAONINi BEPITUHDBI, OTBEYAIONINE
STuM JIByM obstactsaM. HakoHerr, BCSKO# BepIinHe TPOIMYIECKON KPUBOIi, K KOTOPOil MojxouT 1 obyacreil eé jio-
[TOJTHEHUsI, COOTBETCTBYET T-yTrOJIbHUK Ha auarpamme HbioToHA, BEPITUHBI KOTOPOT'O OTBEYAIOT STUM I ODJIACTSIM.
B wacTHOCTH, GECKOHEUHBIM 00JIACTSIM COOTBETCTBYIOT BEPIIMHBI pa3dueHusi, BXOIANINE B TPAHUILY JIMATPAMMBI,
a 6eCKOHEYHBIM pedpaM —— OTPE3KH I'PAHUIIEI JuarpaMmbl. [lo/ie3H0 oTMEeTHTh, YTO HAIIpAB/ICHHE BCSIKOTO pedpa
TPOIUYECKON KPUBOW OPTOTNOHAJBHO HAIIPABJICHUIO JIBOWCTBEHHOIO pebpa pa3bueHus JuarpaMMbl.

AnropurMm nocrpoenusi KpuBbix Bupo. [Iporenypy mocrpoenusi Kpubbix Bupo yno6HO mepedopMyimpo-
BaTh Ha JBONCTBEHHOM si3bIKe jinarpaMM Hbrorona. Dra nporeypa, Hocsiinast HasBanue "patchworking” (ckieiika
Bupo), cocrouT B 110CJI€10BATEILHOM BBINIOJIHEHUH CJIEJIYIONUX MAroB (CM. pe3ysibTarT Ha pHuc. ).

1. BeibupaeM Ipou3BOJIbHYO TPUAHTYJISIINIO guarpaMMbl HbloToHa A ¢ BepIInHAME B IIEJIBIX TOYKAX;
2. PaccraBjisieM B BepHIMHAX TPUAHTYJIANNE 3HAKU, + WU -, IPOU3BOJILHBIM 00pa30M.

3. Orpasup muarpammy HbloTona BMecTe ¢ e€ TpUAHTYJISIME OCIEI0BATEIBHO OTHOCUTEILHO KOOPIMHAT-
HBIX OcCeii, mosydaeM TpHaHTy/IAnuo Keaapara |i| + |j| < d, HaseiBaemoro pacwupennol duazpammos
Hviomona.

4. TTpojo/zKUM paccTaHOBKY 3HAKOB Ha BEPIIMHBLI PACITUPEHHON auarpaMMbl HbIOTOHA, MCHOIL3YST CIIeLy-
follee NPaBMIIO: 3HAK BepIIMHBI (€1, e2j) OT/IMYAETCS OT 3HAKA BepIIMHBI (i,j) MHOXKHUTETeM €)e), rie
€1,y = +1.
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5. B KaXX70M U3 TpeyroJbHIKOB IOCTPOEHHON TPUAHTYIISIINN PACIIUpeHHoN nuarpaMMbl HbioToHa coemanm
OTPE3KOM CEpEJINHBI TeX CTOPOH, HA KOHIAX KOTOPBIX CTOAT PA3HbIE 3HAKH (€C/I TaKOBbIe NMEIOTCs ). O6b-
eJINHeHNe BCeX ITOCTPOEHHBIX OTPE3KOB 3aJaeT JIOMAHYIO JINHUIO Ha pPacIupeHHoi nuarpamme HuioTona.
OTa JIMHUS ¥ sIBJITETCS] KOMOMHATOPHON MOJ1e/Ibi0 KpruBoil Bupo.

6. OToXIeCcTBUM MEXK/y COOOIl IMPOTHBOIOJIOXKHBIE TOYKH I'PAHHUIILI PACIIMPEHHON auarpamMmbl HboTOHA.
Torma HEeKOTOphIe BETBU KOMOWMHATOPHON Mojesn KpuBoit Bupo ckiesiTcst B 06a.40L.

JIureparypa.

[1] M.9. Kazapsin, Tponnueckasi reomerpusi, Marepuas Kypca JerHeil mkosbl "CoBpeMeHHast MaTeMaTHKa .
http://www.mccme.ru/dubna/2006 /notes/Kazaryan.pdf

[2] O. Ya. Viro, Introduction into Topology of Real Algebraic Varieties.
http://www.math.uu.se/ oleg/es/index.html.
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TROPICAL GEOMETRY
F. Nilov, A. Skopenkov, M. Skopenkov and A. Zaslavsky

A brief overview. ¢

Hilbert’s 16th problem asks what could be the number and mutual arrangement of curves which form

the subset of the plane given by an equation Y. a;;z'y’ = 0. A more accurate statement and examples
i+j<d

are given in part A. 7 The aim of this series of problems is to outline an approach to the “existence” part

of Hilbert’s 16th problem for d = 6 (see Main Theorem below).

It is not easy to determine the number and mutual arrangement of curves for the subset of the plane
given by a polynomial in two variables with certain concrete coefficients (even using a modern computer).
While solving the problems of part B you will find the statement of main lemma which allows to do
it for polynomials of certain specific type. You will see how tropical geometry appears naturally while

drawing of subsets given by the equations of type Y. (a;;z'y?)Y = 0, where N is a large odd number.
i+j<d

Using tropical geometry you will be able to construct such subsets with distinct mutual arrangement of

ovals.

The basic ideas of tropical geometry are elementary. Replace multiplication by
addition, and addition by an operation related to addition via the same distributive
law, like multiplication is related to addition. As such an operation one can take
mazximum max{a, b} of the pair of numbers a and b. Under this transformation

the function Y b2’y = 0 transforms to the function (check it!): f(z,y) =
i+j<d

max (ix + jy + bi;). The set of "break points” of the function is called the tropical

1+

cirve.

. o L . Figure 1.

For instance, a line in the plane is given by the equation Az + By + C = 0. Left

part of this equation turns to the function f(z,y) = max{z +a,y+b,c} under our

transformation. the set of "break” points of the function f(z,y) looks like shown in

figure 1 (check it!). This way the tropical line is defined. Tropical lines have many properties of Euclidean
lines. Part C of the project deals with "experimental” investigation of these properties.

A. Examples of algebraic curves.

A polynomial (in two variables) is a function F' : R? — R for which there exist

numbers d and a;;, 0 < i,j < d, such that F(z,y) = > a;;z'y’. You can use
i+j<d

without proof the following non-trivial fact: for given function F' such numbers are

unique up to increasing d and taking all the new a;; to be zeroes.

The zero set of the polynomial F is F~1(0) := {(x,y) € R* | F(x,y) = 0}.

A1. Is F uniquely determined by F~1(0)?

A2. Which of the following sets are zero sets of polynomials?

(a) a line; (b) a circle; (c¢) a point; (d) a segment; (e) the union of 2 Figure 2.
lines;

(f) the "pig” (union of 6 circles) in figure 2.
The degree of a polynomial is the least possible d for which there exist the required a;;. (The degree
is the maximal d such that a; 4; # 0 for some representation of the polynomial and for some number i.)

A3. (a) How many points there could be in the intersection of the zero set of a polynomial of degree
d and a line?
(b) The zero set of a polynomial of odd degree is unbounded (i.e. is not contained in a disk).

5Do not worry if you do not understand something in this brief overview. You can omit it and start solving problems
from either part A or part C.

"For d < 5 the answer was known as early as in 19th century. Hilbert stated his problem for d = 6. The solution for
this case was obtained by Gudkov. For d = 7 the problem was solved by Viro using methods of tropical geometry. For
d > 8 the problem is open.
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A polynomial F'is reducible, if F' = G - H for some polynomials G and H.

Curves®. A function v : [a,b] — R is differentiable at the point tg, if for some number A and any ¢ > 0
there exist § such that for any

t € (tg—0,t0+96) we have |y(t) — v(to) — A(t — to)| < g|t — tol-

A map 7 : [a,b] — R? can be considered as an ordered pair of functions 71,72 : [a,b] — R. A map ~ : [a,b] — R?
is differentiable if both functions 71, e are differentiable.

A (smooth) curve in the plane is a differentiable map v : R — R? (or 7 : [a,b] — R?).

In problems A4.cfg and A7 you only need to give an example of a polynomial; proving its properties
is not required.

A4. (a) There is an irreducible polynomial of degree 3 whose zero set contains a closed curve.

(b) The same for degree 4.

(c) There is an irreducible polynomial of degree 4 whose zero set consists of two closed curves one
inside the other.

(d) If the zero set of a polynomial of degree 4 contains two closed curves one inside the other, then
the zero set contains no other points.

(e) Is the analogue of (d) correct for an irreducible polynomial of degree 57

(f) There is a polynomial of degree 4 whose zero set contains 4 closed curves.

(g) There is a polynomial of degree 4 whose zero set contains 3 closed curves.

Ovals . Connected components of the zero set of a polynomial are called branches. (Existence of unbounded
branches makes the investigation of zero sets harder.) For an unbounded branch B the lines joining the origin
O with the points of B have a "limit” line. Two unbounded branches are elementary equivalent if their "limit”
lines coincide.

AS5. The infinite branches of hyperbola xy = 1 are elementary equivalent.

Two infinite branches are equivalent if there is a sequence of branches joining them, in which sequence each
two consecutive branches are elementary equivalent. A zero set is nondegenerate if it is a disjoint union of smooth
curves. An oval of a non-degenerate zero set of a polynomial is either a closed curve (contained in the zero set)
or an equivalence class of unbounded branches. (Note that this definition is different from the "correct” one given
in textbooks.)

AG6. Find all A such that the zero set is non-degenerate and find the number of ovals for the polynomial

(a) zy(x +y—1)—h. (b) 2> —2+h —y>  (the answer could depend on h).

AT. There is a polynomial of degree 5 whose zero set is non-degenerate and consists of 7 ovals.

Hilbert’s 16th problem. What could be the number and mutual arrangement of ovals of a non-degenerate
zero set of a polynomial of degree d?

We do not assign any formal meaning to the words 'mutual arrangement’. Such a meaning can be assigned,
but requires projectivization of a polynomial.

Main Theorem. (a) There is a polynomial of degree 6 whose zero set is non-degenerate and consists of 11
ovals.

(b) There are three polynomials of degree 6 each whose zero sets are non-degenerate and consist of 11 ovals
each, with different mutual arrangement of ovals.

B. Tropical curve as a limit of algebraic curves.

1. Draw the zero sets of

(a) T—1y— 1; (a>) 21001 _ y1001 o 1;

(b) T4y — ]_7 (b’) 1001 + y1001 _ 17

() my=a+y; (c) x'001yl001 = ;1001 4 1001,

() 2?4y —dr—dy—2=0; (d) 2002 4 /2002 41001,1001 _ 41001,,1001 _ 91001,
( 2002 _ 31001 ,,,1001 21001 _ 91001

e?) .1'3003 + 210011.1001 1001 + y2002 _

Y Y

Denote by

Fy(z,y) = Z (aa'y’ )Y

i+j<d

8These definitions are required only for the accurate proofs of problem A4.
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a family of polynomials depending on an odd number N > 1. Under the transformation of variables
N

u = 2V v = yV each polynomial Fy goes to the polynomial > aﬁ}fuivj of degree d. So for solution
i+j<d
of the Hilbert 16th problem it is worth to determine the number and mutual arrangement of ovals of
Fy'(0).
B2. The number of ovals of Fiy*(0) can be different from that of F; *(0).

Denote by Bpg the ball of radius R centered at 0.

B3. (a) For each €, R > 0 there is Ny > 0 such that for each odd N > Nj the intersection of the zero
set of 22V — 2N — ¢V with By is contained in e-neighborhood of the union of the lines x = 0, z = 1,
r =y and the parabola y = 22

(b) For each €, R > 0 there is Ny > 0 such that for each odd N > N, the set Fy'(0) N By is
contained in e-neighborhood of the union of the zero sets of all the polynomials a;;x'y’ — apz*y', in
which (i,7) # (k,01),i+75 <d, k+1<d.

Denote by Ry := [0, 4+00) the set of positive numbers and by R? := [0, +00)? the angle defined by
the inequalities > 0, y > 0. Define a map LOG : R2 — R* by LOG(z,y) = (log, z,log, y).

B4. (abcde) Draw the LOG-image of the intersection with R3 of the zero sets of polynomials
(a’b’c’d’e’) of BI.

A tropical polynomial is a function

f(z,y) = max(iz +jy + by).

Let f* = {(z,y) € R? | f(z,y) = pz + qy + bpq}.

The union of intersections of different P4 is a tropical curve. (This is the set of "break points” of f.)
Assume further that all a;; # 0 for i + j < d. The tropical curve corresponds to the family of
polynomials Fly, if b;; = log, |a;;|. This definition is motivated by important problem B6b below.

B5. Draw the tropical curve corresponding to the family of polynomials

(a) (ax)™ + (by)Y + N7 (D) (az®)N + (2bzy)Y + (cy?*)N?  (the answer could depend on a, b, c.)

Denote by Ag the triangle given by the inequalities * > —R,y > —R,z +y < R.

B6. (a) For each £, R > 0 there is Ny such that for N > Ny the intersection of the LOG-image of
the zero set of the polynomial 22" — 2V — ¢y with the triangle Ap is contained in e-neighborhood of
the union of the ray y = 22,2 > 0 and the ray x =0,y > 0.

(b) For each numbers {a;;}i+j<q and €, R > 0 there is Ny > 0 such that for N > Nj the set
LOG(Fy'(0) N R%) N Ag is contained in e-neighborhood of the intersection of the tropical curve
corresponding to Fly.

C. Tropical lines and circles.

This part of the project is an contest in art: it is suggested to check the theorems of tropical geometry
experimentally by drawing accurate figures. Selected figures will be exposed for public viewing. "Problems” C1-
C10 are not graded (although for accurate statement and proving some of these assertions additional points would
be awarded). Ignore part of a “problem” if you do not know the corresponding theorem of Euclidean geometry.
The whole part C of the project is not required for the solution of the Hilbert 16th problem and can be skipped.

Consider the plane with fixed Cartesian coordinate system. A tropical line ("leg”) is a union of three rays
with common origin (called the vertez), one of them going "west”, the other going "south” and the third going
"north-east”.

C1. There are different tropical lines intersecting at two different points.

Two points are in general position if the Euclidean line passing through these points is not parallel either to
coordinate axes or to the line x = y.

C2. (a) For each two points in general position there is a unique tropical line passing through these points.
(b) If the vertices of two tropical lines are in general position, then the lines have the only common point.
Two tropical lines are parallel if the vertex of one lies on the "north-eastern” ray of the other.

C3. If a point A is in general position with the vertex of a tropical line b, then there is a unique tropical line
passing through A and parallel to b.
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Two tropical lines are perpendicular if the Euclidean lines containing their "north-eastern” rays are symmetric
with respect to the line z = y.

C4. If a point A is in general position with the vertex of a tropical line b, then there is a unique tropical line
passing through A and perpendicular to b.

A tropical triangle (“spider”) is the union of three tropical lines whose vertices are (pairwise) in general
position.

C5. Draw figures to tropical analogues of the following theorems.

(a) The heights of a triangle intersect at a common point.

(b) the Pappus theorem.

(c¢) The Desargue theorem.

(d) The Sondat theorem.

For given points A and B a tropical circle ("heron”) is the set of points X for which there are orthogonal
tropical lines, one of them passing through A and X and the other passing through B and X. (Recall that there
could be different tropical lines passing through A and X.)

C6. (a) Draw a tropical circle. How does this set depend on A, B?

(b) Is it true that each tropical triangle has a circumscribed tropical circle?

(c) The Pascal theorem.

C7.* Define the tropical middle point of a tropical segment so that the tropical medians of a tropical triangle
would intersect in a common point.
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TROPICAL GEOMETRY
F. Nilov, A. Skopenkov, M. Skopenkov, A. Zaslavsky

The main problem’s complect consists of two parts: the end of Part B and a new part D. Problems
of part D use (except some explicitly indicated cases) neither notions nor results of previous parts of
the project. So one may solve these problems without taking part in previous parts.

B. The Viro patchworking theorem.

B3. For each ¢, R > 0 there is Ny > 0 such that for each odd N > N, the intersection of the zero
set of the polynomial

(c) 2*N — 2N — yN with the disk Bx and with the first coordinate quarter (z > 0, y > 0) is contained
in the e-neighborhood of the union of the sets

{1,y)|0<y<1}, 0<z=y<1 and y=2>>1

(d) *V — 2N —y" with the disk Bg and with the second coordinate quarter (x < 0, y > 0) is contained
in the e-neighborhood of the union of the set that is symmetric to the union from (c) w.r.t. Oy.

B7. State and prove the analogues of B3d for the third and the fourth coordinate quarters.

B8. The intersection of the zero set of the polynomial 22 — 2% — ¥ with the third coordinate
quarter is empty.

B9. For each ¢, R > 0 there is Ny > 0 such that for each odd N > N, the intersection of the zero
set of the polynomial 22 — 2% — yV with the disk B and with

(a) the first coordinate quarter is contained in the e-neighborhood of the union of the sets {(1,y) | 0 <
y<l}andy=2%>1.

(b) the second coordinate quarter is contained in the e-neighborhood of the union of the sets 0 <
—r=y<landy=a?>1.

B10. State and prove the analogue of B9 for the fourth coordinate quarter.

Let us state the Viro patchworking theorem that allows to find the number and mutual arrangement
of ovals for certain special algebraic curves.

B11. Each tropical curve is a finite union of segments and rays.

Definition of the Viro curve and its ovals. Take the tropical curve corresponding to {a;;}.
The tropical curve is a finite union of edges (segments and rays) that intersect at wertices (i.e. at
common points of edges). A face of the tropical curve is a connected component if its complement
in the plane. To each face there corresponds a pair (p,q) of integers such that px + qy + log, |ay,| =

_nax ?éo(ix + jy +log, |ai;|) for points (z,y) of this face, and the sign of a,,. In this definition we use
i+j=d, a;

not {a;;} but the tropical curve whose faces are marked with pairs of integers and signs.

Make a parallel transfer so that the vertices of the tropical curve would move into the angle x >
0,y > 0. Define U, ,00 to be the image of the face of the tropical curve marked by (p,q) under this
parallel transfer. Let U, .01, Up q,10 and U, 411 be the symmetric images of U, 400 under the symmetries
with respect to the z-axis, y-axis and (0,0), respectively. Extend the given disposition of signs from
the first coordinate quarter to the whole plane as follows: under the symmetry of U,, w.r.t. the z-
axis the sign is multiplied by (—1)?, while under the symmetry of U;; w.r.t. the y-axis the sign is
multiplied by (—1)?. (Thus sgnU,ys = (—1)P*Tsgn Uy, 00.) Define the Viro curve to be the union
U{U, NU;z | sgnU, # sgnUs} of those edges of the tropical curve that split faces of different signs (see
Figure). Two unbounded connected components of the Viro curve are

e clementary equivalent if they contain rays symmetric w.r.t the origin (0, 0).

e cquivalent if there is a sequence of components joining them, in which sequence each two consecutive
components are elementary equivalent.

An oval of the Viro curve is either a closed broken line contained in the Viro curve or an equivalence
class of unbounded connected components.

You can use the following theorem without proof:
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The Harnak Theorem. A non-degenerate zero set of a polynomial of degree d cannot have more

d—1)(d—2
B12.* The Viro patchworking theorem. Let the Viro curve assigned to the family of polynomials

+ 1 owals.

o d—1)(d—2
Fy = Y (ayz'y?))M with all a;; # 0 contain ezactly % + 1 ovals. Then there exist N
i+j<d
such that the zero set of the polynomial > aﬁ}fuivj 1s non-degenerate, and the number and mutual
i+j<d

arrangement of the ovals are the same as those of the corresponding Viro curve.

D. Construction of examples in the Hilbert 16th problem.
The aim of part D is to describe tropical curves using purely combinatorial method and to obtain a
purely combinatorial construction of examples in 16th Hilbert problem.
Let us recall that tropical curve of degree d is the set of "break points” of graph of the function
irJIrl]agl{ix + jy + bij} (see the details above, after problem B4).

D1. (a) Check that a tropical curve of degree 1 looks like picture 1. (Compare with the definition
of a tropical line in part C).
(b) Each vertex of a tropical curve is contained in at least 3 edges.

To any edge of a tropical curve assign its multiplicity as follows. Suppose that value iz + jy + b;; is
maximal in one of faces bounded by this edge, and value 7'z + j'y + b;/;» is maximal in the other one. So
the line, which contains the given segment, has the equation (i — ')z + (j — j')y + (bij — birj7) = 0. We
define multiplicity of the given edge as the greatest common divisor of numbers i — i’ and 7 — j'.

In pictures we shall denote the multiplicate edges of a tropical curve with double (triple, and so on)
lines.

D2. Tropical curves of degree d have the following properties:

(a) The slope of any edge is a rational number.

(b) For any vertex the following balance condition holds. Denote by v; a vector beginning at the
given vertex parallel to i-th edge starting from the vertex, and equal to the shortest vector with integer
coordinates and given direction, multiplied by edge’s multiplicity. Then »_ v; = 0.

(c) There are 3d infinite edges (counted with multiplicity), d of them are directed (strictly) to the
"west”, d — to the "south” and d — to the "north-east” with slope angle 45°.

D3. (a) One may uniquely restorate a tropical polynomial magl{ix + jy + bi;} (up to adding a
)<
constant) by its tropical curve.

(b) If the edges of a graph in the plane are segments and rays with given multiplicities, and the
conditions (a), (b), (c) of problem D2 are satisfied, then the graph is a tropical curve of degree d.

If two tropical curves have the same combinatorial type of their graphs and the same slopes of their
edges (but not nesessary their lengths and positions), we shall say that these curves have it the same
configuration.

D4. Draw 5 different configurations of tropical curves of degree two.

All information required for solving the following problems you can find in the paragraph "Definition
of Viro curve and its ovals” contained in the previous part.

D5. What maximal number of ovals may have Viro curve if d = (a) 2; (b) 3; (¢) 4; (d) 5?7 (We
do not require the proof of maximality. Compare your answer with problems A4f and AT).

D6*. Write down a computer program which:

(a) draws all configurations of tropical curves of given degree d;

(b) given a tropical curve configuration and given the set of signs "plus, minus” assigned to all the
faces U;; of its complement — the program checks the number of Viro curve ovals.

D7*. (ab) Prove the Main Theorem (you may use Viro patchworking theorem without proof).
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SOLUTIONS

A1l. Answermo. For example, the line z = 0 is a set of zeros for different polynomials F(z,y) = = and
G(z,y) = 22

A2. Answer: a, b, ¢, e, f.

Examples. (a) Any line on the plane has an equation Az + By + C = 0 for some numbers A, B, C.

(b) Equation of a circle: (z —x0)% + (y — y0)? — R? = 0, where (29, 30) are coordinates of centre, R is radius.

(c) Equation of a point (zg,y0): (x — 20)? + (y — v0)? = 0.

(e) Equation of a unite of two lines: (Ax + By + C)(ax + by + ¢) = 0, where Az + By + C = 0 is an equation
of the first line, axz + by + ¢ = 0 — of a second one.

[§
(f) Equation of a unite of 6 circles: [] ((z — 1)+ (y — yx)? — R*) = 0, where (z—xy)?+ (y—yx)? —Ri =0

is an equation of k-th circle.

Impossibility in point (d) is consequence of Problem A3a.

A3. (a) Let us parametrize the line I: z = xg + « - t, y = yo + [ - t. Substituting these formulas in the
polynomial, we’ll get a new polynomial P(t), its degree no more than d. So polynomial P(¢) has no more than
d real roots, or equals to zero everywhere. Now let us prove that for any d’ < d, there exist a curve of degree d
and a line [ such one, that they have d’ points of intersection. Consider d lines, which are differ from [, and such
that exactly d — d’ of them are parallel to . The product of their equations is the polynomial we need.

(b) Let d be the degree of given polynomial F(z,y) = Y. a;jz'y’. We'll show that there exist some non-

it+i<d
degenerate change of coordinates * = aya’ + 51y, y = asa’ + [y’ (the word "non-degenerate"means that
a1 — azB; # 0), such that after it the monomial (2/)¢ will have non-zero coefficient.

Coefficient A(ay, o) of monomial (z')? equals > al-jo/lozg. Numbers a;; aren’t equal zero (at least, some

it+i<d
of them), so, there exist such a; and ag, that at least one of them isn’t equal 0, and A(ay,as) # 0. Now we
take coefficients 1 and (3 not proportional to o and g (i.e., a182 — ae31 # 0), and it will be the change we
seek for.

Now let us return to solving our problem. The change from the Lemma transforms bounded sets to bounded
ones, so we may suppose that monomial z¢ has non-zero coefficient. As d is odd number, so for any y the equation
F(z,y) = 0 has some solution. So F~1(0) is unlimited.

A4. (a) For instance, take the polynomial f = zy(z +y —1) + WIO'

Denote by ¢ the zero set of this polynomial. Let us prove that this polynomial is irreducible. Indeed, otherwise
there are polynomials g and h, such that f = gh. Then one of them is a polynomial of degree 1 and so ¢ contains
a line. This line must have a common point with one of the lines Ox and Oy. But it can’t be true because ¢ is
disjoint with Ox and Oy. Thus f is irreducible.

Coordinates z of the intersection of line y = ¢ with ¢ satisfy the equation 22 + (¢ — 1)z + 10100 = 0. The
discriminant D = D(c) of this equation is equal to (c — 1)? — 2%5(: The equation D(c) = 0 is equivalent to the
equation f(c) := 25¢(c — 1) — 1 = 0. This equation has degree 3 and thus has no more than 3 roots. Since
f(355) <0, f(3) >0, f(1) <0, f(2) >0, it follows that two roots ¢ and c; of the equation f(c) = 0 belong to
the interval (0, 1), and the third root belongs to the interval (1,2). Therefore D(c) = 0 precisely in two points
c1 and ¢ of the interval (0,1), and D(c) > 0 for any ¢ € (c1,¢2) and D(c) < 0 for remaining points of the
interval (0,1). (We assume w. 1. g. that ¢; < ¢2.) Thus for ¢ equal either ¢; or co the straight line y = ¢ intersects
¢ exactly at one point. Therefore for ¢ € (¢1,c2) the straight line y = ¢ intersects ¢ at two points (x1(c), c)
+vD — (c—1)

2

and (x2(c), ¢), where z12(c) = . For remaining values ¢ € (0,1) the straight line y = ¢ does not
intersect ¢.

Define the curve

v :le1,2¢0 — 1] — R? by the formula {(xl(t)’t) t€ler, e
(.’EQ(QCQ — t), 2c9 — t) te [62, 2co — Cl]
Since the functions x;(c) and za(c) are differentiable, it follows that the map ~y(¢) is differentiable at all points
except ca. Since 2co —t =t for t = co and (21)'(c2) = (22)'(c2), the map () is smooth at all points. Now it is
clear that y([I) is a closed curve contained in ¢.
(b) Hint. Consider the polynomial (z +1)(z —1)(y + 1)(y — 1) + Wlo'
(c) Hint. Consider the polynomial (2% + y? — 1)(2? + y* — 9) + 1i5-
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(d) Suppose the contrary: there exist at least one other point X. Consider some point Y inside the inner
closed curve. Then the line XY intersects the set of zeros of the given polynomial in 5 or more points. It
contradicts the statement of Problem A3(a).

(e) Answer: no. Hint. Consider the polynomial z(z? + y* — 1)(2? + y*> — 9) + 155.

(f) Hint. Consider the polynomial (22 + 2y — 3)(22% + y* — 3) + 155.

(g) Hint. Consider the polynomial (22 +3y? —1)(z —y — 1)(x +y — 1) + WIO'

A5. Direction of a line OM, on which lie points 0 (beginning of coordinates) and M (z,y) on hyperbola
branch in the first quadrante, tends to direction of the line Ox (axis) when z — +o00. So Oz is "limit line"for
hyperbola zy = 1 branch in the 1st quadrante. Similarly, this line is a "limit line"for the other branch of
hyperbola. So hyperbola’s branches are equivalent.

Definition. Two unbounded branches are elementary equivalent, if they have a common "limit line".

A6. (a) Answer: one oval, if h < 0; two ovals, if h € (0,1/27), one oval, if h > 1/27. If h =0 or h = 1/27,
the algebraic curve is degenerate. Here is the proof.

Denote f(z,y) := zy(x+y—1)+h. Further, denote the points of intersection of lines Oz, Oy and x+y—1 =10
and regions, into which the plane is divided by the lines as follows:

A:=(1,0), B:=(0,1),

C = (0,0, X ={(zy,y) | 2 >0,y >0x+y < 1}, X4 = y<0,x4+y>1, Xp = <0,z+y>1,
Xo=2<0,y<0, Yy =2<0,y>0,z+y<1,Yg=2>0,y<0,z+y<1,Yo:=2>0,y>0,x+y>1.

Obviously f(z,y) = h if (x,y) belongs to one of lines Oz, Oy or z +y — 1 =0, and f(z,y) < h when (x,y)
belongs to one of regions X4, Xp, X¢ or X, and f(x,y) > h when (x,y) belongs to one of regions Y4, Y5 u Ye.
So if h > 0 then zeros of polynomial f(x,y) may lie only in X4, Xp, X and X, and if h < 0 they may lie only
in Y4, Yp and Y.

Suppose h < 0. Denote y4 := Y4 N f~1(0). Definitions of yp and of yc are similar.

Let’s prove that y4 is a connected componenta of the set f~!(0) of zeros of f. Coordinates x of points of
intersection lines y = ¢ and f~1(0) are roots of the equation 22+ (c— 1)z —i—% = 0. The discriminant D = D(c) of
this equation equals to (¢ —1)% — %. As h < 0so for any ¢ € Ry, D(c) > 0. It follows, that any line y = ¢, where

+vD —(c—1
¢ € Ry, intersects F' in two points (no more no less) namely (z12(c),c) such that x;2(c) = vD 2(C )

Denote
v : Ry — R? by formula {(:cz(t),t) te Ry .

The function xa(c) is smooth, so the curve y(¢) is smooth also. y(R4) = y4 implies that y4 is a connected
componenta of the set f~1(0) of zeros of f. Similarly yp u yc are connected componentas of the same set. It is
easy to prove that the direction of line Ox is a "limit direction” for the branch yc. Similarly, this direction is a
"limit direction” for branch y4. So branches y4 and yc are elementary equivalent. Similarly, branches y4 and yp
are elementary equivalent, as for these branches the direction of line x +y — 1 = 0 is a "limit one”. So, branches
Y4, yp and yo are equivalent and form one oval.

If h = 0, then an algebraic curve f is a degenerate one. Suppose h > 0. Denote

r:=XNf0), za:=XaAnfY0), zp:=Xpnf10) and zc:=XcnfH0).

One proves that x4, xp and x¢ are connected and equivalent in the same way as in the case h < 0. So they
form one oval for any h > 0. If the set x is non-empty and has more than one point, it is an oval (the proof is
similar to solution of Problem A4(a)).

Let us prove that the set of points x isn’t empty only if h € (0, 2%] It is clear that x is empty if and only if
D(c) < 0 for any ¢ € (0,1). Derivative D'(c¢) > 0 if ¢ € (0,1/3), D'(¢c) =0if ¢ =1/3, D'(¢) < 0 if c € (1/3,1).
So the function D(c) has its maximum on intervale (0,1) in the point ¢ = 1/3. So D(c¢) < 0 for any ¢ € (0,1) if
and only if D(1/3) =4/9 — 22 < 0, i.e. h > 1/27. If h = 1/27, then the set z consists from only one point. So,
if h € (0,1/27), then the set of zeros f~1(0) consists from two ovals, if h = 1/27 , then the algebraic curve is
degenerate, if h > 1/27 then the set f~1(0) has only one oval.

(b) Answer: one oval if h € (—3%, %), two ovals if h € (—o0, —%) and h € (#, 00), an algebraic curve
23 — x4+ h — y? is degenerate if h = :I:%. Hint. The situation is similar to (a).
AT. Hint. Consider the polynomial z((z —1)? + y*> — 2)((z + 1)® + y* — 2) + 5.

B1. (a’) Hint. See figure 3.a’.Why the picture is right one? It is clear that the line x +y = 0 is an axis of
symmetry for the set of zeros of our polynomial. So we may study only the case y > —x. Moreover. it lies under
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the line y = x. The set of zeros intersects with coordinate axes in points (0, —1) and (1,0). If x =1+ € (¢ > 0)
holds (IOOle)ﬁ <y < 1+e. So, if € is sufficiently small, y may take values from 0 to 1. If ¢ > 1/1001, then x
is approximately equal to y. If 1 — e < x < 1 (e is sufficiently small) y may take values from -1 to 0. The case
y < x is analogous.

(b’) Hint. See figure 3.b’.Everything is analogous to (a’).

(¢’) Hint. See figure 3.c’.

(d’) Hint. See figure 3.d’.
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Figure 3.

B2. Let F(z,y) = 23 — px + ¢ —y?, where p,q > 0. Then the set of zeros of the polynomial F' consists of two
ovals, if a polynomial f(z) = 2® — px + ¢ has three real roots, and it consists of one oval, if f(z) has one real
root. After solving the equation f’(z) = 0, we’ll see, that f(x) has a local maximum in the point 1 = —/p/3
and a local minimum in point zo = 1/p/3. It follows, that f(z) has three roots if and only if f(z2) < ¢ < f(z1),
i.e., 4p3 > 27¢%. Analogously, we can prove that a set of zeros of a polynomial Fy(z,y) consists of two ovals if
4p3N > 27¢?N and of one oval otherwise. It is obvious that if 1 < Z_;’ < 2747 the first inequality doesn’t hold, and
the second holds for sufficiently big N.

B3. (a) Point (a) is a specific case of (b).

(b) Hint. Suppose that there is a point (x,y) such that in it values of all monomials aijxiyj differ by their

— 0. So

for any sufficiently big N |a;;z'y’|™ is more than the sum of modules of all the rest monomials, so the equality
Fn(z,y) = 0 is impossible. So, for sufficiently big N the set Fj'(0) tends to some subset of the union of sets,
which are defined by equalities of the type |a;;jz'y’/| = |agpa*y!|.

2N

(c) It follows from the statement of previous problem. One must consider it for a polynomial Fy = z*" —
N N
=y,

a;;jx'y’
apzhy!

modules, and |agz*y!| > |a;;ay?| for all pairs (i,7) # (k,1). Then, when N — oo, we have
‘N

(d) A set of zeros of a polynomial 22V — 2V — ¢ which lie in a second quadrant, is symmetric with respect

to ordinate axis to the set of zeros of a polynomial 22V + 2 — ¢V, which lie in a first quadrant. So our statement
is a consequence of the statement of point (b).

B4. (a) Hint. See figure 4.a. Let us explain why the picture is correct. It is clear that the set of zeros of the
function f(z,y) := 21001z — 21001y _ 1 Jies on the right of the axis Oy. If y < 0, then z is approximately equals
to zero, and If y > 0, then z is approximately equals to y.

(b) Hint. See figure 4.b. Everything is analogous to (a).

(c) Hint. See figure 4.c.

24



i

Figure 4.

B6. (a) We may follow the method used in problem B3b, and we’ll see that the intersection of zero set
with the 1st coordinate quadrant lies near the union of sets 22 =y > z,2%2 =z > y, x = y > 2. But given
polynomial has the same signs of coefficients of monomials "V and y”, so Fiy cannot equal zero near the last
set. Logarithmical map brings the first named set to the ray y = 2z, x > 0, and the second one — to the ray
=0,y <0.

B7. Arguing, as in Problem B3d, we see that the intersection of zero set with the first quadrant, is symmetric
with respect to abscissa axis to the intersection of zero set with the fourth quadrant, and is symmetric with
respect to coordinate beginning to the intersection with third quadrant.

B8. In the third quadrant z < 0, y < 0. It means that all monomials in Fj are positive, so the equality
Fy(z,y) = 0 is impossible.

B9. (a) The solution is analogous to the solution of Problem B6a.

(b) It follows from the problem B3d, that the intersection of a set of zeros with the second quadrante lies
near sets 22 =y > —x, v = —x >y, —x = y > z2. Signs of monomials —zV and 22" coincide in the second
quadrant. So the intersection of a set of zeros with the second quadrant lie only near the first and the third of
the named sets.

B10. Arguing, as in Problem B9b, we see that the intersection we study lies near the unite of sets (1,y), 0 >
y>—land 0 <z =—y <1.

B11. Any edge of a tropical curve may be defined by the system which consists of one equation and some
inequalities of typeix + jy + b;; = kx + ly + by > px + qy + bpy. If this system is compatible, then the equation
defines some line, and inequalities show that one must take a ray or segment instead of all line.

B12. Hint. Really, let us study zeros of a polynomial Fy(x,y) in each quadrant separately. The map LOG :
(R—{0})? — R2, (x,y) — (logy |7|,1ogs |y|) is a bijection of each quadrant to the plane. Let us take any quadrant
(for example z,y > 0), and let us identify it with the plane with this map. A tropical curve, corresponding to
a tropical polynomial irfjaél {iz + jy + bi;}, bij = logy |a;j|, divides a tropical plane to some areas. In each of

this areas one of the monomials (aijxiyj)N defines the behavior of the polynomial Fy(x,y), and it is positive or
negative, correspondingly to the sign of a coefficients a;; (of course, it depends also from the quadrant). Let us
paint each area of the complement to tropical curve in one color, if Fy is positive in this area, and in other color,
if F is negative in it. If two areas i-th common edge are painted in different colors, then, by the Theorem on
intermediate value near this edge lies some branch of the set of zeros of Fiy. Now, if such two areas are painted
in the same color, then no real point of the curve lies near this edge. So, for big odd values of N the set of zeros
of Fy (in chosen quadrant) may be approximately shown as a set of some edges of a tropical curve (which may
be implicitly named), and the set of zeros of Fiy in all the plane is, approximately, a Viro curve.

Principally, the set of zeros of Fy could have more branches, than Viro curve — for example, there could
be some “small” ovals near vertices of tropical curve. But the supposition about the number of Viro curve ovals
(we suppose it has (d — 1)(d — 2)/2 + 1 ovals), combined with Harnak theorem guarantees us from superfluous
branches and ovals.

Remark. Authors of the problem don’t know, is Viro patchworking theorem is true without the supposition
that Viro curve has (d — 1)(d — 2)/2 + 1 ovals.

C5. (a) See figure 5.a.
(b) See figure 5.b.
(c) See figure 6.
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D1. (a) Hint. The behavior of a function max{x + a,y + b, c} is such one. If x and y are negative and big
(by module) then the constanta c is the biggest of our three values. When z increases, nothing changes till the
point (x,y) will intersect the vertical line = +a = ¢. After such intersection the value z + a is maximal. Similarly,
when the point (z,y) moves up, maximal value is still ¢ till it would reach the horizontal line y + b = ¢. On it
both values y 4+ b and ¢ are maximal, later - only y + b. At last, the areas, in which maximal value is 4+ a or
y + b, are divided by the ray of the line  + a = y + b. All three rays have the common point (¢ — a,c — b)

D2. (a) It is obvious.

(b) Hint. Let us take any vertice of the curve. Suppose that there are r areas (supplements to tropical curve)
which are near this vertice, and that in these areas maximal are functions i1z + j1y + bj,jy, - . -, 4@ + Gy + b, 4,
respectively (we suppose that the areas are numerated in positive direction, against the clock needle). Then the

(?_@>+~-+<%_%1>+(@_%>=0
J2—nNn Jr — Jr—1 J1—Jr

Now one has to notice only, that the vector (;:iizz ) differs from the vector v in the “balance condition” only

equality is obvious:

by turn on 90°.

(c) Hint. Let us prove, for example, that the tropical curve of degree d has exactly d horizontal rays (counting
with multiplicity, of course). Let us study only the part of the plane, where coordinate z is negative and very big
by module. Obviously in this part only one of the values jy + ag;, j = 0,1,...,d may be the maximal one. It is
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obvious also, that in this part, when y is negative and big by module, then a0 is maximal, and when y is positive
and big by module, then dy + agg is maximal. Let y grow, and suppose, that maximal value will be (successively)
apo, J1y + Qojy, J2Y + Qojys - -+, JrY + oy, dy + agq. One easily sees, that 0 < j; < jo < -+ < ji < d. Then
multiplicities of horizontal edges are equal to ji, j2 —ji, ..., d— jk. So their number (counting with multiplicity)
equals (j1) + (j2 — j1) + -+ + (d — jx) = d.

D3. (ab) Hint. Really, suppose, that in some area a tropical polynomial coincides with a linear function
iz + jy + b;j. Consider the line, which contains a segment of boundary of this area; let px 4+ qy 4+ r = 0 be its
equation. Then in the neighbor area (which borders with the first one by the segment) our polynomial coincides
with linear function (i + p)x + (j + ¢)y + (b;j + r). In other words, we set the equality biypj1q = bij + 7.
Proceeding in the same way, we’ll restore all the polynomial, area by area, by induction. The "balance condition”
guarantees, that we’ll never come to contradiction. The condition on behavior of tropical curve on infinity
guarantees existence only such “tropical monoms”, which we have got in the process, which are only possible for
tropical polynomials of given degree.

D4. Hint. A tropical curve of degree two one may get, as usual hyperbola, by little stirring of unite of two
tropical lines. Unite of two tropical lines may be defined by the sum of two tropical polynomials of degree one.
A graph — set of break points of such sum — has a vertice of 4 valency, in it maximal are four functions at once.
When we'll stir one of these function (small stirring), a point of 4 valency will break on two points of 3 valency.
Some of such possible tropical curves of degree two are given on Figure 7.

Figure 7.

D5. Answer. (a) 1; (b) 2; (c) 4; (d) 7.

D7. (b) Dividing of Newton diagram. When solving problems of part D7 it may be useful to remember
such a “dual” description of tropical curves configurations. Consider a triangle on the plane whose vertices are
(0;0), (0,d) and (d,0). This triangle is called it a Newton triangle of a tropical polynomial. If you have any
tropical curve, you have also the corresponding division of Newton triangle to a number of convex polygons with
integer vertices. Namely, consider an area in complement of a tropical curve, in which the value iz + jy + b;;
is maximal. We’ll juxtapose to it a vertex with coordinates (7,j) on Newton triangle. If some edge divides two
areas, we’ll juxtapose to it the segment in Newton diagram from one vertex to other. At last, any vertex of
tropical curve, in which r areas meet, corresponds the polygon with r corresponding vertices. In particular, if
some area is infinite, the corresponding point will lie on the border of diagram, and if the edge is infinite — the
corresponding segment lies on the border. It is useful to remember, that the direction of any edge of tropical
curve is orthogonal to the direction of "dual” edge on diagram.

An algorithm of drawing of Viro curves. It is convenient to reformulate the procedure of drawing of
Viro curves on the “dual” language of Newton diagrams. This procedure, named "Viro patchworking”, consists
in such successive steps (look the result in figure 8).

1. Take any triangulation of Newton diagram A with integer vertices;
2. In vertices of this triangulation we pose signs -+ or -, in arbitrary way.

3. Reflecting the Newton diagram with its triangulation respectively from coordinate axes, we get the
triangulation of a square |i| + |j| < d, (this square has the name of it expanded Newton diagram).

4. Now we continue posing signs on vertices of the expanded Newton diagram, as follows: sign of vertice
(e1i, ea7) differs from the sign of vertice (i, ;) by the factor e} e}, where eq, e = +1.

5. In every triangle of our triangulation of expanded Newton diagram we’ll join by a segment midpoints of
edges, on whose ends signs are different (if one has such edges). Unite of all this segments is a broken line
on expanded Newton diagram. This line is a combinatorial model of Viro curve.
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6. Let us identify the opposite points of the border of expanded Newton diagram. Then some branches of
combinatorial model of Viro curve will patch in it ovals.

References.

[1] M. Kazaryan, Tropical geometry, Lecture notes of a course in school "Contemporary mathematics”.
http://www.mccme.ru/dubna/2006 /notes/Kazaryan.pdf

[2] O. Ya. Viro, Introduction into Topology of Real Algebraic Varieties.
http://www.math.uu.se/ oleg/es/index.html.

28



Vy /
&
-

; "“u

S

E

| \J 1

Figure 8.

29



	Walking in one dimension
	Walking in two dimensions
	Conductances of symmetric graphs
	Walking in three dimensions
	Conductance of a ring*
	Challenge*
	Hints to the solutions
	Acknowledgements
	Introduction
	Main ideas
	Electrical circuits
	Tilings and networks
	Formulas for conductance
	Alternating-current circuits
	Positive real functions

	Proof of main results
	Proof of Theorem 1.3
	Proof of Theorem 1.5
	Proof of Theorem 1.6
	Remarks to main results

	Variations
	Tilings of polygons by rectangles
	Electrical impedance tomography
	Random walks

	Generalization of main ideas
	Electrical circuits
	Tilings and networks
	Positive real functions

	Proof of variations
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Theorem 4.6


