

XX Mediterranean mathematical olympiad,

23 april 2017

Problem 1

Determine the smallest integer n, for which there exist integers $x_1,...,x_n$ and positive integers $a_1,...,a_n$, so that

$$x_1 + ... + x_n = 0$$
.

$$a_1x_1 + \dots + a_nx_n > 0$$

$$x_1 + \dots + x_n = 0$$
, $a_1 x_1 + \dots + a_n x_n > 0$, $a_1^2 x_1 + \dots + a_n^2 x_n < 0$.

Problem 2

Let a,b,c be positive real numbers such that a+b+c=1. Prove that

$$\left(x^2 + y^2 + z^2\right) \left(\frac{a^3}{x^2 + 2y^2} + \frac{b^3}{y^2 + 2z^2} + \frac{c^3}{z^2 + 2x^2}\right) \ge \frac{1}{9},$$

holds for all positive real numbers x, y, z.

Problem 3

Let ABC be an equilateral triangle, and let P be some point in its circumcircle. Determine, with reasons, all the numbers $n \in \mathbb{N}^*$ such that the sum

$$S_n(P) = |PA|^n + |PB|^n + |PC|^n$$

is independent of the choice of the point P.

Problem 4

A set S of integers is Balearic, if there are two (not necessarily distinct) elements $s, s' \in S$ whose sum s + s' is a power of two; otherwise it is called a non-Balearic set.

Find an integer n such that $\{1,2,...,n\}$ contains a 99-element non-Balearic set, whereas all the 100element subsets are Balearic.

Each problem is worth 7 points **times:** 04:30 hours

Union of mathematicians of MACEDONIA-ARMAGANKA