
European Girls’ Mathematical Olympiad 2012—Day 1 Solutions

Problem 1. Let ABC be a triangle with circumcentre O. The points D, E and F lie in the interiors of the
sides BC, CA and AB respectively, such that DE is perpendicular to CO and DF is perpendicular to BO.
(By interior we mean, for example, that the point D lies on the line BC and D is between B and C on that
line.)

Let K be the circumcentre of triangle AFE. Prove that the lines DK and BC are perpendicular.

Origin. Netherlands (Merlijn Staps).
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Solution 1 (submitter). Let `C be the tangent at C to the circumcircle of 4ABC. As CO ⊥ `C , the lines
DE and `C are parallel. Now we find that

∠CDE = ∠(BC, `C) = ∠BAC,

hence the quadrilateral BDEA is cyclic. Analogously, we find that the quadrilateral CDFA is cyclic. As we
now have ∠CDE = ∠A = ∠FDB, we conclude that the line BC is the external angle bisector of ∠EDF .
Furthermore, ∠EDF = 180◦ − 2∠A. Since K is the circumcentre of 4AEF , ∠FKE = 2∠FAE = 2∠A. So
∠FKE +∠EDF = 180◦, hence K lies on the circumcircle of 4DEF . As |KE| = |KF |, we have that K is the
midpoint of the arc EF of this circumcircle. It is well known that this point lies on the internal angle bisector
of ∠EDF . We conclude that DK is the internal angle bisector of ∠EDF . Together with the fact that BC is
the external angle bisector of ∠EDF , this yields that DK ⊥ BC, as desired.

Solution 2 (submitter). As in the previous solution, we show that the quadrilaterals BDEA and CDFA
are both cyclic. Denote by M and L respectively the circumcentres of these quadrilaterals. We will show that
the quadrilateral KLOM is a parallelogram. The lines KL and MO are the perpendicular bisectors of the line
segments AF and AB, respectively. Hence both KL and MO are perpendicular to AB, which yields KL ‖MO.
In the same way we can show that the lines KM and LO are both perpendicular to AC and hence parallel
as well. We conclude that KLOM is indeed a parallelogram. Now, let K ′, L′, O′ and M ′ be the respective
projections of K, L, O and M to BC. We have to show that K ′ = D. As L lies on the perpendicular bisector
of CD, we have that L′ is the midpoint of CD. Similarly, M ′ is the midpoint of BD and O′ is the midpoint
of BC. Now we are going to use directed lengths. Since KLOM is a parallelogram, M ′K ′ = O′L′. As

O′L′ = O′C − L′C = 1
2 · (BC −DC) = 1

2 ·BD = M ′D,

we find that M ′K ′ = M ′D, hence K ′ = D, as desired.
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Solution 3 (submitter). Denote by `A, `B and `C the tangents at A, B and C to the circumcircle of 4ABC.
Let A′ be the point of intersection of `B and `C and define B′ and C ′ analogously. As in the first solution,
we find that DE ‖ `C and DF ‖ `B . Now, let Q be the point of intersection of DE and `A and let R be
the point of intersection of DF and `A. We easily find 4AQE ∼ 4AB′C. As |B′A| = |B′C|, we must have
|QA| = |QE|, hence4AQE is isosceles. Therefore the perpendicular bisector of AE is the internal angle bisector
of ∠EQA = ∠DQR. Analogously, the perpendicular bisector of AF is the internal angle bisector of ∠DRQ.
We conclude that K is the incentre of 4DQR, thus DK is the angle bisector of ∠QDR. Because the sides of
the triangles 4QDR and 4B′A′C ′ are pairwise parallel, the angle bisector DK of ∠QDR is parallel to the
angle bisector of ∠B′A′C ′. Finally, as the angle bisector of ∠B′A′C ′ is easily seen to be perpendicular to BC
(as it is the perpendicular bisector of this segment), we find that DK ⊥ BC, as desired.

Remark (submitter). The fact that the quadrilateral BDEA is cyclic (which is an essential part of the first
two solutions) can be proven in various ways. Another possibility is as follows. Let P be the midpoint of BC.
Then, as ∠CPO = 90◦, we have ∠POC = 90◦−∠OCP . Let X be the point of intersection of DE and CO, then
we have that ∠CDE = ∠CDX = 90◦−∠XCD = 90◦−∠OCP . Hence ∠CDE = ∠POC = 1

2∠BOC = ∠BAC.
From this we can conclude that BDEA is cyclic.

Solution 4 (PSC). This is a simplified variant of Solution 1. ∠COB = 2∠A (angle at centre of circle ABC)
and OB = OC so ∠OBC = ∠BCO = 90◦ − ∠A. Likewise ∠EKF = 2∠A and ∠KFE = ∠FEK = 90◦ − ∠A.
Now because DE ⊥ CO, ∠EDC = 90◦ − ∠DCO = 90◦ − ∠BCO = ∠A and similarly ∠BDF = ∠A, so
∠FDE = 180◦ − 2∠A. So quadrilateral KFDE is cyclic (opposite angles), so (same segment) ∠KDE =
∠KFE = 90◦ − ∠A, so ∠KDC = 90◦ and DK is perpendicular to BC.

Problem 2. Let n be a positive integer. Find the greatest possible integer m, in terms of n, with the following
property: a table with m rows and n columns can be filled with real numbers in such a manner that for any
two different rows [a1, a2, . . . , an] and [b1, b2, . . . , bn] the following holds:

max(|a1 − b1|, |a2 − b2|, . . . , |an − bn|) = 1.

Origin. Poland (Tomasz Kobos).

Solution 1 (submitter). The largest possible m is equal to 2n.
In order to see that the value 2n can be indeed achieved, consider all binary vectors of length n as rows of

the table. We now proceed with proving that this is the maximum value.
Let [aik] be a feasible table, where i = 1, . . . , m and k = 1, . . . , n. Let us define undirected graphs G1, G2,

. . . , Gn, each with vertex set {1, 2, . . . ,m}, where ij ∈ E(Gk) if and only if |aik − a
j
k| = 1 (by E(Gk) we denote

the edge set of the graph Gk). Observe the following two properties.

(1) Each graph Gk is bipartite. Indeed, if it contained a cycle of odd length, then the sum of ±1 along this
cycle would need to be equal to 0, which contradicts the length of the cycle being odd.

(2) For every i 6= j, ij ∈ E(Gk) for some k. This follows directly from the problem statement.

For every graph Gk fix some bipartition (Ak, Bk) of {1, 2, . . . ,m}, i.e., a partition of {1, 2, . . . ,m} into two
disjoint sets Ak, Bk such that the edges of Gk traverse only between Ak and Bk. If m > 2n, then there are two
distinct indices i, j such that they belong to exactly the same parts Ak, Bk, that is, i ∈ Ak if and only if j ∈ Ak

for all k = 1, 2, . . . , n. However, this means that the edge ij cannot be present in any of the graphs G1, G2,
. . . , Gn, which contradicts (2). Therefore, m ≤ 2n.

Solution 2 (PSC). In any table with the given property, the least and greatest values in a column cannot
differ by more than 1. Thus, if each value that is neither least nor greatest in its column is changed to be equal
to either the least or the greatest value in its column (arbitrarily), this does not affect any |ai − bi| = 1, nor
does it increase any difference above 1, so the table still has that given property. But after such a change, for
any choice of what the least and greatest values in each column are, there are only two possible choices for each
entry in the table (either the least or the greatest value in its column); that is, only 2n possible distinct rows,
and the given property implies that all rows must be distinct. As in the previous solution, we see that this
number can be achieved.
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Solution 3 (Coordinators). We prove by induction on n that m ≤ 2n.
First suppose n = 1. If real numbers x and y have |x− y| = 1 then bxc and byc have opposite parities and

hence it is impossible to find three real numbers with all differences 1. Thus m ≤ 2.
Suppose instead n > 1. Let a be the smallest number appearing in the first column of the table; then every

entry in the first column of the table lies in the interval [a, a + 1]. Let A be the collection of rows with first
entry a and B be the collection of rows with first entry in (a, a+ 1]. No two rows in A differ by 1 in their first
entries, so if we list the rows in A and delete their first entries we obtain a table satisfying the conditions of
the problem with n replaced by n − 1; thus, by the induction hypothesis, there are at most 2n−1 rows in A.
Similarly, there are at most 2n−1 rows in B. Hence m ≤ 2n−1 + 2n−1 = 2n. As before, this number can be
achieved.

Solution 4 (Coordinators). Consider the rows of the table as points of Rn. As the values in each column
differ by at most 1, these points must lie in some n-dimensional unit cube C. Consider the unit cubes centred
on each of the m points. The conditions of the problem imply that the interiors of these unit cubes are pairwise
disjoint. But now C has volume 1, and each of these cubes intersects C in volume at least 2−n: indeed, if the
unit cube centred on a point of C is divided into 2n cubes of equal size then one of these cubes must lie entirely
within C. Hence m ≤ 2n. As before, this number can be achieved.

Solution 5 (Coordinators). Again consider the rows of the table as points of Rn. The conditions of the
problem imply that these points must all lie in some n-dimensional unit cube C, but no two of the points lie in
any smaller cube. Thus if C is divided into 2n equally-sized subcubes, each of these subcubes contains at most
one row of the table, giving m ≤ 2n. As before, this number can be achieved.

Problem 3. Find all functions f : R→ R such that

f
(
yf(x+ y) + f(x)

)
= 4x+ 2yf(x+ y)

for all x, y ∈ R.

Origin. Netherlands (Birgit van Dalen).

Solution 1 (submitter). Setting y = 0 yields

f(f(x)) = 4x, (1)

from which we derive that f is a bijective function. Also, we find that

f(0) = f(4 · 0) = f(f(f(0))) = 4f(0),

hence f(0) = 0. Now set x = 0 and y = 1 in the given equation and use (1) again:

4 = f(f(1)) = 2f(1),

so f(1) = 2 and therefore also f(2) = f(f(1)) = 4. Finally substitute y = 1− x in the equation:

f(2(1− x) + f(x)) = 4x+ 4(1− x) = 4 = f(2) for all x ∈ R.

As f is injective, from this it follows that f(x) = 2− 2(1− x) = 2x. It is easy to see that this function satisfies
the original equation. Hence the only solution is the function defined by f(x) = 2x for all x ∈ R.

Solution 2 (Coordinators). Setting y = 0 in the equation we see

f(f(x)) = 4x

so f is a bijection. Let κ = f−1(2) and set x+ y = κ in the original equation to see

f(2κ− 2x+ f(x)) = 4κ.

As the right hand side is independent of x and f is injective, 2κ− 2x+ f(x) is constant, i.e. f(x) = 2x+ α.
Substituting this into the original equation, we see that 2x+ α is a solution to the original equation if and

only if 4(y2 + xy+ x) + (3 + 2y)α = 4(y2 + xy+ x) + 2yα for all x, y, i.e. if and only if α = 0. Thus the unique
solution to the equation is f(x) = 2x.
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Problem 4. A set A of integers is called sum-full if A ⊆ A + A, i.e. each element a ∈ A is the sum of some
pair of (not necessarily different) elements b, c ∈ A. A set A of integers is said to be zero-sum-free if 0 is the
only integer that cannot be expressed as the sum of the elements of a finite nonempty subset of A.

Does there exist a sum-full zero-sum-free set of integers?

Origin. Romania (Dan Schwarz).

Remark. The original formulation of this problem had a weaker definition of zero-sum-free that did not
require all nonzero integers to be sums of finite nonempty subsets of A.

Solution (submitter, adapted). The set A = {F2n : n = 1, 2, . . .} ∪ {−F2n+1 : n = 1, 2, . . .}, where Fk is
the kth Fibonacci number (F1 = 1, F2 = 1, Fk+2 = Fk+1 + Fk for k ≥ 1) qualifies for an example. We then
have F2n = F2n+2 + (−F2n+1) and −F2n+1 = (−F2n+3) + F2n+2 for all n ≥ 1, so A is sum-full (and even with
unique representations). On the other hand, we can never have

0 =

s∑
i=1

F2ni
−

t∑
j=1

F2nj+1,

owing to the fact that Zeckendorf representations are known to be unique.
It remains to be shown that all nonzero values can be represented as sums of distinct numbers 1, −2, 3,

−5, 8, −13, 21, . . . . This may be done using a greedy algorithm: when representing n, the number largest
in magnitude that is used is the element m = ±Fk of A that is closest to 0 subject to having the same sign
as n and |m| ≥ |n|. That this algorithm terminates without using any member of A twice is a straightforward
induction on k; the base case is k = 2 (m = 1) and the induction hypothesis is that for all n for which the above
algorithm starts with ±F` with ` ≤ k, it terminates without having used any member of A twice and without
having used any ±Fj with j > `.

Remark (James Aaronson and Adam P Goucher). Let n be a positive integer, and write u = 2n; we
claim that the set

{1, 2, 4, . . . , 2n−1,−u, u+ 1,−(2u+ 1), 3u+ 2,−(5u+ 3), 8u+ 5, . . .}

is a sum-full zero-sum-free set. The proof is similar to that used for the standard examples.
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European Girls’ Mathematical Olympiad 2012—Day 2 Solutions

Problem 5. The numbers p and q are prime and satisfy

p

p + 1
+

q + 1

q
=

2n

n + 2

for some positive integer n. Find all possible values of q − p.

Origin. Luxembourg (Pierre Haas).

Solution 1 (submitter). Rearranging the equation, 2qn(p + 1) = (n + 2)(2pq + p + q + 1). The left hand
side is even, so either n + 2 or p + q + 1 is even, so either p = 2 or q = 2 since p and q are prime, or n is even.

If p = 2, 6qn = (n + 2)(5q + 3), so (q − 3)(n − 10) = 36. Considering the divisors of 36 for which q is
prime, we find the possible solutions (p, q, n) in this case are (2, 5, 28) and (2, 7, 19) (both of which satisfy the
equation).

If q = 2, 4n(p + 1) = (n + 2)(5p + 3), so n = pn + 10p + 6, a contradiction since n < pn, so there is no
solution with q = 2.

Finally, suppose that n = 2k is even. We may suppose also that p and q are odd primes. The equation
becomes 2kq(p + 1) = (k + 1)(2pq + p + q + 1). The left hand side is even and 2pq + p + q + 1 is odd, so k + 1
is even, so k = 2` + 1 is odd. We now have

q(p + 1)(2` + 1) = (` + 1)(2pq + p + q + 1)

or equivalently
`q(p + 1) = (` + 1)(pq + p + 1).

Note that q | pq + p + 1 if and only if q | p + 1. Furthermore, because (p, p + 1) = 1 and q is prime,
(p + 1, pq + p + 1) = (p + 1, pq) = (p + 1, q) > 1 if and only if q | p + 1.

Since (`, ` + 1), we see that, if q - p + 1, then ` = pq + p + 1 and ` + 1 = q(p + 1), so q = p + 2
(and (p, p + 2, 2(2p2 + 6p + 3)) satisfies the original equation). In the contrary case, suppose p + 1 = rq, so
`(p + 1) = (` + 1)(p + r), a contradiction since ` < ` + 1 and p + 1 ≤ p + r.

Thus the possible values of q − p are 2, 3 and 5.

Solution 2 (PSC). Subtracting 2 and multiplying by −1, the condition is equivalent to

1

p + 1
− 1

q
=

4

n + 2
.

Thus q > p + 1. Rearranging,

q − p− 1 =
4(p + 1)q

n + 2
.

The expression on the right is a positive integer, and q must cancel into n + 2 else q would divide p + 1 < q.
Let (n + 2)/q = u a positive integer.

Now

q − p− 1 =
4(p + 1)

u
so

uq − u(p + 1) = 4(p + 1)

so p+ 1 divides uq. However, q is prime and p+ 1 < q, therefore p+ 1 divides u. Let v be the integer u/(p+ 1).
Now

q − p = 1 +
4

v
∈ {2, 3, 5}.

All three cases can occur, where (p, q, n) is (3, 5, 78), (2, 5, 28) or (2, 7, 19). Note that all pairs of twin primes
q = p + 2 yield solutions (p, p + 2, 2(2p2 + 6p + 3)).
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Solution 3 (Coordinators). Subtract 2 from both sides to get

1

p + 1
− 1

q
=

4

n + 2
.

From this, since n is positive, we have that q > p + 1. Therefore q and p + 1 are coprime, since q is prime.
Group the terms on the LHS to get

q − p− 1

q(p + 1)
=

4

n + 2
.

Now (q, q − p− 1) = (q, p + 1) = 1 and (p + 1, q − p− 1) = (p + 1, q) = 1 so the fraction on the left is in lowest
terms. Therefore the numerator must divide the numerator on the right, which is 4. Since q− p− 1 is positive,
it must be 1, 2 or 4, so that q − p must be 2, 3 or 5. All of these can be attained, by (p, q, n) = (3, 5, 78),
(2, 5, 28) and (2, 7, 19) respectively.

Problem 6. There are infinitely many people registered on the social network Mugbook. Some pairs of
(different) users are registered as friends, but each person has only finitely many friends. Every user has at
least one friend. (Friendship is symmetric; that is, if A is a friend of B, then B is a friend of A.)

Each person is required to designate one of their friends as their best friend. If A designates B as her best
friend, then (unfortunately) it does not follow that B necessarily designates A as her best friend. Someone
designated as a best friend is called a 1-best friend. More generally, if n > 1 is a positive integer, then a user
is an n-best friend provided that they have been designated the best friend of someone who is an (n − 1)-best
friend. Someone who is a k-best friend for every positive integer k is called popular.

(a) Prove that every popular person is the best friend of a popular person.

(b) Show that if people can have infinitely many friends, then it is possible that a popular person is not the
best friend of a popular person.

Origin. Romania (Dan Schwarz) (rephrasing by Geoff Smith).

Remark. The original formulation of this problem was:
Given a function f : X → X, let us use the notations f0(X) := X, fn+1(X) := f (fn(X)) for n ≥ 0, and also

fω(X) :=
⋂
n≥0

fn(X). Let us now impose on f that all its fibres f−1(y) := {x ∈ X | f(x) = y}, for y ∈ f(X),

are finite. Prove that f (fω(X)) = fω(X).

Solution 1 (submitter, adapted). For any person A, let f0(x) = x, let f(A) be A’s best friend, and define
fk+1(A) = f(fk(A)), so any person who is a k-best friend is fk(A) for some person A; clearly a k-best friend
is also an `-best friend for all ` < k. Let X be a popular person. For each positive integer k, let xk be a person
with fk(xk) = X. Because X only has finitely many friends, infinitely many of the fk−1(xk) (all of whom
designated X as best friend) must be the same person, who must be popular.

If people can have infinitely many friends, consider people Xi for positive integers i and Pi,j for i < j positive
integers. Xi designates Xi+1 as her best friend; Pi,i designates X1 as her best friend; Pi,j designates Pi+1,j as
her best friend if i < j. Then all Xi are popular, but X1 is not the best friend of a popular person.

Solution 2 (submitter, adapted). For any set S of people, let f−1(S) be the set of people who designated
someone in S as their best friend. Since each person has only finitely many friends, if S is finite then f−1(S) is
finite.

Let X be a popular person and put V0 = {X} and Vk = f−1(Vk−1). All Vi are finite and (since X is popular)
nonempty.

If any two sets Vi, Vj , with 0 ≤ i < j are not disjoint, define f i(x) for positive integers i as in Solution 1.
It follows ∅ 6= f i(Vi ∩ Vj) ⊆ f i(Vi) ∩ f i(Vj) ⊆ V0 ∩ Vj−i, thus X ∈ Vj−i. But this means that f j−i(X) = X,
therefore fn(j−i)(X) = X. Furthermore, if Y = f j−i−1(X), then f(Y ) = X and fn(j−i)(Y ) = Y , so X is the
best friend of Y , who is popular.

If all sets Vn are disjoint, by König’s infinity lemma there exists an infinite sequence of (distinct) xi, i ≥ 0,
with xi ∈ Vi and xi = f(xi+1) for all i. Now x1 is popular and her best friend is x0 = X.

If people can have infinitely many friends, proceed as in Solution 1.
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Problem 7. Let ABC be an acute-angled triangle with circumcircle Γ and orthocentre H. Let K be a point
of Γ on the other side of BC from A. Let L be the reflection of K in the line AB, and let M be the reflection
of K in the line BC. Let E be the second point of intersection of Γ with the circumcircle of triangle BLM .
Show that the lines KH, EM and BC are concurrent. (The orthocentre of a triangle is the point on all three
of its altitudes.)

Origin. Luxembourg (Pierre Haas).

Solution 1 (submitter). Since the quadrilateral BMEL is cyclic, we have ∠BEM = ∠BLM . By construc-
tion, |BK| = |BL| = |BM |, and so (using directed angles)

∠BLM = 90◦ − 1
2∠MBL = 90◦ −

(
180◦ − 1

2∠LBK − 1
2∠KBM

)
=
(
1
2∠LBK + 1

2∠KBM
)
− 90◦ = (180◦ − ∠B)− 90◦ = 90◦ −B.

We see also that ∠BEM = ∠BAH, and so the point N of intersection of EM and AH lies on Γ.
Let X be the point of intersection of KH and BC, and let N ′ be the point of intersection of MX and AH.

Since BC bisects the segment KM by construction, the triangle KXM is isosceles; as AH‖MK, HXN ′ is
isosceles. Since AH ⊥ BC, N ′ is the reflection of H in the line BC. It is well known that this reflection
lies on Γ, and so N ′ = N . Thus E, M , N and M , X, N ′ all lie on the same line MN ; that is, EM passes
through X.

A

B
C

H

Γ

K

L

M

E

N = N ′

X

Remark (submitter). The condition that K lies on the circumcircle of ABC is not necessary; indeed, the
solution above does not use it. However, together with the fact that the triangle ABC is acute-angled, this
condition implies that M is in the interior of Γ, which is necessary to avoid dealing with different configurations
including coincident points or the point of concurrence being at infinity.

Solution 2 (PSC). We work with directed angles. Let HK meet BC at X. Let MX meet AH at HA on Γ
(where HA is the reflection of H in BC). Define E′ to be where HAM meets Γ (again). Our task is to show
that ∠ME′B = ∠MLB.

Observe that

∠ME′B = ∠HAAB (angles in same segment)

= Bc

Now

∠MLB = ∠HLB (Simson line, doubled)

= ∠BKHC (reflecting in the line AB)

= ∠BCHC (angles in the same segment)

= Bc.
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Problem 8. A word is a finite sequence of letters from some alphabet. A word is repetitive if it is a con-
catenation of at least two identical subwords (for example, ababab and abcabc are repetitive, but ababa and
aabb are not). Prove that if a word has the property that swapping any two adjacent letters makes the word
repetitive, then all its letters are identical. (Note that one may swap two adjacent identical letters, leaving a
word unchanged.)

Origin. Romania (Dan Schwarz).

Solution 1 (submitter). In this and the subsequent solutions we refer to a word with all letters identical as
constant.

Let us consider a nonconstant word W , of length |W | = w, and reach a contradiction. Since the word
W must contain two distinct adjacent letters, be it W = AabB with a 6= b, we may assume B = cC to be
non-empty, and so W = AabcC. By the proper transpositions we get the repetitive words W ′ = AbacC = Pw/p,
of a period P of length p | w, 1 < p < w, and W ′′ = AacbC = Qw/q, of a period Q of length q | w, 1 < q < w.
However, if a word UV is repetitive, then the word V U is also repetitive, of a same period length; therefore we
can work in the sequel with the repetitive words W ′0 = CAbac, of a period P ′ of length p, and W ′′0 = CAacb,
of a period Q′ of length q. The main idea now is that the common prefix of two repetitive words
cannot be too long.

Now, if a word a1a2 . . . aw = Tw/t is repetitive, of a period T of length t | w, 1 ≤ t < w, then the word (and
any subword of it) is t-periodic, i.e. ak = ak+t, for all 1 ≤ k ≤ w− t. Therefore the word CA is both p-periodic
and q-periodic.

We now use the following classical result:

Wilf-Fine Theorem. Let p, q be positive integers, and let N be a word of length n, which is both p-periodic
and q-periodic. If n ≥ p + q − gcd(p, q) then the word N is gcd(p, q)-periodic (but this need not be the case if
instead n ≤ p + q − gcd(p, q)− 1).

By this we need |CA| ≤ p+ q− gcd(p, q)− 1 ≤ p+ q− 2, hence w ≤ p+ q + 1, otherwise W ′0 and W ′′0 would
be identical, absurd. Since p | w and 1 < p < w, we have 2p ≤ w ≤ p + q + 1, and so p ≤ q + 1; similarly we
have q ≤ p + 1.

If p = q, then |CA| ≤ p + p− gcd(p, p)− 1 = p− 1, so 2p ≤ w ≤ p + 2, implying p ≤ 2. But the three-letter
suffix acb is not periodic (not even for c = a or c = b), thus must be contained in Q′, forcing q ≥ 3, contradiction.

If p 6= q, then max(p, q) = min(p, q) + 1, so 3 min(p, q) ≤ w ≤ 2 min(p, q) + 2, hence min(p, q) ≤ 2, forcing
min(p, q) = 2 and max(p, q) = 3; by an above observation, we may even say q = 3 and p = 2, leading to c = b. It
follows 6 = 3 min(p, q) ≤ w ≤ 2 min(p, q) + 2 = 6, forcing w = 6. This leads to CA = aba = abb, contradiction.

Solution 2 (submitter). We will take over from the solution above, just before invoking the Wilf-Fine
Theorem, by replacing it with a weaker lemma, also built upon a seminal result of combinatorics on words.

Lemma. Let p, q be positive integers, and let N be a word of length n, which is both p-periodic and q-
periodic. If n ≥ p + q then the word N is gcd(p, q)-periodic.

Proof. Let us first prove that two not-null words U , V commute, i.e. UV = V U , if and only if there exists
a word W with |W | = gcd(|U |, |V |), such that U = W |U |/|W |, V = W |V |/|W |. The “if” part being trivial, we
will prove the “only if” part, by strong induction on |U | + |V |. Indeed, for the base step |U | + |V | = 2 we
have |U | = |V | = 1, and so clearly we can take W = U = V . Now, for |U | + |V | > 2, if |U | = |V | it follows
U = V , and so we can again take W = U = V . If not, assume without loss of generality |U | < |V |; then
V = UV ′, so UUV ′ = UV ′U , whence UV ′ = V ′U . Since |V ′| < |V |, it follows 2 ≤ |U | + |V ′| < |U | + |V |,
so by the induction hypothesis there exists a suitable word W such that U = W |U |/|W |, V ′ = W |V

′|/|W |, so
V = UV ′ = W |U |/|W |W |V

′|/|W | = W (|U |+|V ′|)/|W | = W |V |/|W |.
Now, assuming without loss of generality p ≤ q, q = kp+r, we have N = QPS, with |Q| = q, |P | = p. If r = 0

all is clear; otherwise it follows we can write P = UV , Q = V (UV )k, with |V | = r, whence UV = V U , implying
PQ = QP , and so by the above result there will exist a word W of length gcd(p, q) such that P = W p/ gcd(p,q),
Q = W q/ gcd(p,q), therefore N is gcd(p, q)-periodic. �

By this we need |CA| ≤ p+ q− 1, hence w ≤ p+ q + 2, otherwise by the previous lemma W ′0 and W ′′0 would
be identical, absurd. Since p | w and 1 < p < w, we have 2p ≤ w ≤ p+ q+ 2, and so p ≤ q+ 2; similarly we have
q ≤ p + 2. That implies max(p, q) ≤ min(p, q) + 2. Now, from k max(p, q) = w ≤ p + q + 2 ≤ 2 max(p, q) + 2
we will have (k − 2) max(p, q) ≤ 2; but max(p, q) ≤ 2 is impossible, since the three-letter suffix acb is not
periodic (not even for c = a or c = b), thus must be contained in Q′, forcing q ≥ 3. Therefore k = 2, and so
w = 2 max(p, q).
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If max(p, q) = min(p, q), then w = 2p = 2q, for a quick contradiction.
If max(p, q) = min(p, q) + 1, it follows 3 min(p, q) ≤ w = 2 max(p, q) = 2 min(p, q) + 2, hence min(p, q) ≤ 2,

forcing min(p, q) = 2 and max(p, q) = 3; by an above observation, we may even say q = 3 and p = 2, leading to
c = b. It follows w = 2 max(p, q) = 6, leading to CA = aba = abb, contradiction.

If max(p, q) = min(p, q) + 2, it follows 3 min(p, q) ≤ w = 2 max(p, q) = 2 min(p, q) + 4, hence min(p, q) ≤ 4.
From min(p, q) | w = 2 max(p, q) then follows either min(p, q) = 2 and max(p, q) = 4, thus w = 8, clearly
contradictory, or else min(p, q) = 4 and max(p, q) = 6, thus w = 12, which also leads to contradiction, by just
a little deeper analysis.

Solution 3 (PSC). We define the distance between two words of the same length to be the number of positions
in which those two words have different letters. Any two words related by a transposition have distance 0 or 2;
any two words related by a sequence of two transpositions have distance 0, 2, 3 or 4.

Say the period of a repetitive word is the least k such that the word is the concatenation of two or more
identical subwords of length k. We use the following lemma on distances between repetitive words.

Lemma. Consider a pair of distinct, nonconstant repetitive words with periods ga and gb, where (a, b) = 1
and a, b > 1, the first word is made up of kb repetitions of the subword of length ga and the second word is
made up of ka repetitions of the subword of length gb. These two words have distance at least max(ka, kb).

Proof. We may assume k = 1, since the distance between the words is k times the distance between their
initial subwords of length gab. Without loss of generality suppose b > a.

For each positive integer m, look at the subsequence in each word of letters in positions congruent to m
(mod g). Those subsequences (of length ab) have periods dividing a and b respectively. If they are equal, then
they are constant (since each letter is equal to those a and b before and after it, mod ab, and (a, b) = 1).
Because a > 1, there is some m for which the first subsequence is not constant, and so is unequal to the second
subsequence. Restrict attention to those subsequences.

We now have two distinct repetitive words, one (nonconstant) made up of b repetitions of a subword of
length a and one made up of a repetitions of a subword of length b. Looking at the first of those words, for any
1 ≤ t ≤ b consider the letters in positions t, t + b, . . . , t + (a− 1)b. These letters cover every position (mod a);
since the first word is not constant, the letters are not all equal, but the letters in the corresponding positions
in the second word are all equal. At least one of these letters in the first word must change to make them all
equal to those in the corresponding positions in the second word; repeating for each t, at least b letters must
change, so the words have distance at least b. �

In the original problem, consider all the words (which we suppose to be repetitive) obtained by a transposition
of two adjacent letters from the original nonconstant word; say that word has length n. Suppose those words
include two distinct words with periods n/a and n/b; those words have distance at most 4. If a > 4 or b > 4,
we have a contradiction unless a | b or b | a. If a > 4 is the greatest number of repetitions in any of the words
(n/a is the smallest period), then unless all the numbers of repetitions divide each other there must be words
with 2 or 4 repetitions, words with 3 repetitions and all larger numbers of repetitions must divide each other
and be divisible by 6.

We now divide into three cases: all the numbers of repetitions may divide either other; or there may be
words with (multiples of) 2, 3 and 6 repetitions; or all words may have at most 4 repetitions, with at least one
word having 3 repetitions and at least one having 2 or 4 repetitions.

Case 1. Suppose all the numbers of repetitions divide each other. Let k be the least number of repetitions.
Consider the word as being divided into k blocks, each of ` letters; any transposition of two adjacent letters
leaves those blocks identical. If any two adjacent letters within a block are the same, then this means all the
blocks are already identical; since the word is not constant, the letters in the first block are not all identical,
so there are two distinct adjacent letters in the first block, and transposing them leaves it distinct from the
other blocks, a contradiction. Otherwise, all pairs of adjacent letters within each block are distinct; transposing
any adjacent pair within the first block leaves it identical to the second block. If the first block has more than
two letters, this is impossible since transposing the first two letters has a different result from transposing the
second two. So the blocks all have length 2; similarly, there are just two blocks, the arrangement is abba but
transposing the adjacent letters bb does not leave the word repetitive.

Case 2. Suppose some word resulting from a transposition is made of (a multiple of) 6 repetitions, some
of 3 repetitions and some of 2 repetitions (or 4 repetitions, counted as 2). Consider it as a sequence of 6 blocks,
each of length `. If the six blocks are already identical, then as the word is not constant, there are some
two distinct adjacent letters within the first block; transposing them leaves a result where the blocks form a
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pattern BAAAAA, which cannot have two, three or six repetitions. So the six blocks are not already identical.
If a transposition within a block results in them being identical, the blocks form a pattern (without loss of
generality) BAAAAA, ABAAAA or AABAAA. In any of these cases, apply the same transposition (that
converts between A and B) to an A block adjacent to the B block, and the result cannot have two, three or six
repetitions. Finally, consider the case where some transposition between two adjacent blocks results in all six
blocks being identical. The patterns are BCAAAA, ABCAAA and AABCAA (and considering the letters at
the start and end of each block shows B 6= C). In all cases, transposing two adjacent distinct letters within an
A block produces a result that cannot have two, three or six repetitions.

Case 3. In the remaining case, all words have at most 4 repetitions, at least one has 3 repetitions and
at least one has 2 or 4 repetitions. For the purposes of this case we will think of 4-repetition words as being
2-repetition words. The number of each letter is a multiple of 6, so n ≥ 12; consider the word as made of six
blocks of length `.

If the word is already repetitive with 2 repetitions, pattern ABCABC, any transposition between two
distinct letters leaves it no longer repetitive with two repetitions, so it must instead have three repetitions
after the transposition. If AB is not all one letter, transposing two adjacent letters within AB implies that
CA = BC, so A = B = C, the word has pattern AAAAAA but transposing within the initial AA means it no
longer has 3 repetitions. This implies that AB is all one letter, but similarly BC must also be all one letter and
so the word is constant, a contradiction.

If the word is already repetitive with 3 repetitions, it has pattern ABABAB and any transposition leaves it
no longer having 3 repetitions, so having 2 repetitions instead. ABA is not made all of one letter (since the word
is not constant) and any transposition between two adjacent distinct letters therein turns it into BAB; such a
transposition affects at most two of the blocks, so A = B, the word has pattern AAAAAA and transposing two
adjacent distinct letters within the first half cannot leave it with two repetitions.

So the word is not already repetitive, and so no two adjacent letters are the same; all transpositions give
distinct strings. Consider transpositions of adjacent letters within the first four letters; three different words
result, of which at most one is periodic with two repetitions (it must be made of two copies of the second half
of the word) and at most one is periodic with three repetitions, a contradiction.
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