| 1 | Determine all integers $n \geq 1$ for which there exists n real numbers x_1, \ldots, x_n in the closed interval $[-4,2]$ such that the following three conditions are fulfilled: - the sum of these real numbers is at least n . - the sum of their squares is at most $4n$. - the sum of their fourth powers is at least $34n$. (Proposed by Gerhard Woeginger, Austria) | |---|---| | 2 | Let ABC be a triangle with $90^{\circ} \neq \angle A \neq 135^{\circ}$. Let D and E be external points to the triangle ABC such that DAB and EAC are isoscele triangles with right angles at D and E . Let $F = BE \cap CD$, and let M and N be the midpoints of BC and DE , respectively. Prove that, if three of the points A , F , M , N are collinear, then all four are collinear. | | 3 | Decide whether the integers $1, 2, \ldots, 100$ can be arranged in the cells $C(i, j)$ of a 10×10 matrix (where $1 \leq i, j \leq 10$), such that the following conditions are fullfiled: i) In every row, the entries add up to the same sum S . ii) In every column, the entries also add up to this sum S . iii) For every $k = 1, 2, \ldots, 10$ the ten entries $C(i, j)$ with $i - j \equiv k \mod 10$ add up to S . (Proposed by Gerhard Woeginger, Austria) | | 4 | Let x,y,z be positive real numbers. Prove that $\sum_{cyclic}\frac{xy}{xy+x^2+y^2}\leq\sum_{cyclic}\frac{x}{2x+z}$ (Proposed by efket Arslanagi, Bosnia and Herzegovina) |