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Problems and Solutions

Problem 1. Let ABC be an acute-angled triangle. Let D and E be the midpoints of sides AB and AC
respectively. Let F be the point such that D is the midpoint of EF . Let Γ be the circumcircle of triangle FDB.
Let G be a point on the segment CD such that the midpoint of BG lies on Γ. Let H be the second intersection
of Γ and FC. Show that the quadrilateral BHGC is cyclic.

(Art Waeterschoot, Belgium)

Sketch for the First Solution.
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First Solution. Since D and E are midpoints, the diagonals AB and EF of the quadrilateral AFBE bisect each other,
so AFBE is a parallelogram. Hence BF ‖ AE.

2 points.

Lemma. If I is the second intersection of Γ and BG, then FI ‖ CD. (We will present two different proofs.)
First proof. Let J be the point such that BCAJ is a
parallelogram. Since BF ‖ AE, we have that B, F , J are
colinear.

2 points.

Since D is the midpoint of AB, C, D, J are collinear.

1 point.

As F and I are midpoints of BJ and BG, then FI ‖ CD.

2 points.
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Second proof. Let M be the midpoint of BC. As

|MC| = |BC|
2

= |DE| = |DF |

and FD ‖MC, then MCDF is a parallelog., so MF ‖ CD.

2 points.

As M and I are midpoints of BC and BG, then MI ‖ CD.

2 points.

Hence M , I and F are collinear and FI ‖ CD.

1 point.
Now as we know that FI ‖ CD, we have ∠BIF = ∠BGD.

1 point.

As BIHF is a cyclic quadrilateral, we have ∠BIF = ∠BHF .

1 point.

Hence
∠CHB = 180◦ − ∠BHF = 180◦ − ∠BGD = ∠CGB,

so BHGC is cyclic as desired.
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1 point.

Sketch for the Second Solution.
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Second Solution. Since D and E are midpoints, the diagonals AB and EF of the quadrilateral AFBE bisect each
other, so AFBE is a parallelogram. Hence BF ‖ AE.

2 points.

Let J be the point such that BCAJ is a parallelogram. Since BF ‖ AE, we have that B, F , J are collinear.

2 points.

Since D is the midpoint of AB, C, D, J are collinear.

1 point.

Now let Γ1 be the circumcircle of triangle JAB. As F and D are midpoints of BJ and BA, and the midpoint of BG
lies on Γ, we can redefine G as the second intersection of Γ1 and CJ .

2 points.

As AJBG is a cyclic quadrilateral, we have ∠BGJ = ∠BAJ .

1 point.

As FD is parallel to JA, we have ∠BAJ = ∠BDF .

0 points.

As BHDF is a cyclic quadrilateral, we have ∠BDF = ∠BHF .

1 point.

Hence
∠CHB = 180◦ − ∠BHF = 180◦ − ∠BGD = ∠CGB,

so BHGC is cyclic as desired.

1 point.

Notes on marking:

• If a student has a partial solution with analytic methods, only points for proving facts that can be expressed in
geometric ways and lead to a complete solution can be awarded.
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Problem 2. A positive integer k > 3 is called fibby if there exists a positive integer n and positive integers
d1 < d2 < . . . < dk with the following properties:

• dj+2 = dj+1 + dj for every j satisfying 1 6 j 6 k − 2,

• d1, d2, . . . , dk are divisors of n,

• any other divisor of n is either less than d1 or greater than dk.

Find all fibby numbers.

(Ivan Novak)

Solution. Note that (1, 2, 3, 5) is a sequence of length 4 such that all its elements are divisors of 30 and every other
divisor of 30 is either less than 1 or greater than 5. Also 3 = 1 + 2 and 5 = 2 + 3, which means 4 is fibby. Consequently,
3 is also fibby.

1 point.

Suppose there exist positive integers n, d1 < d2 < . . . < dk satisfying the problem’s conditions, with k > 5.
Suppose for the sake of contradiction that dj is even for some j > 3. Then dj

2
is also a divisor of n.

1 point.

However,

d1 6 dj−2 <
dj−1 + dj−2

2
=

dj
2

< dj−1 < dk.

This implies dj
2

is a divisor of n which is neither less than d1 nor greater than dk and is distinct from the numbers
d1, d2, . . . , dk, which is a contradiction.

6 points.

This implies that d3 and d4 are odd. However, this means that d5 = d3 + d4 is even, which is a contradiction. Therefore,
any number greater than 4 is not fibby.

2 points.

Notes on marking:

• The part of the proof where we prove all k ≥ 5 are not fibby is worth 9 points. It may happen that a contestant
proves a weaker statement in that direction.

– If a contestant proves that there exists C such that no k ≥ C is fibby, they should get 1 point.
– If the C above is explicit, they should get an additional 1 point.
– If in addition C = 6, they should get 1 point more.

The points above (at most 3 points) are not additive with the points for proving C = 5 in the official solution.
Thus, without using ideas that can solve the C = 5 case, the contestant should not get more than 1 point for the
construction, plus the points above if applicable.

• Many solutions proceed by cases on the parity of d1 and d2. However, in all solutions that the Problem Selection
Committee were aware of, the only parity that matters is the parity of some dj , j ≥ 3.
Thus, stating and proving that some of d3, d4 and d5 is even is worth 2 points, as in the official solution, and no
other points are awarded for parity concerns.
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Problem 3. Two types of tiles, depicted on the figure below, are given.

Tile F: Tile Z:

Find all positive integers n such that an n× n board consisting of n2 unit squares can be covered without gaps
with these two types of tiles (rotations and reflections are allowed) so that no two tiles overlap and no part of
any tile covers an area outside the n× n board.

(Art Waeterschoot)

Solution. We claim such a tiling exists whenever n is divisible by 4 and greater than 4.

0 points.

We now prove the existence of a tiling in the case where n is divisible by 4 and greater than 4. The figure below shows
that if k ≥ 1, we can tile a (2k + 1)× 4-rectangle.

. . .

. . .

1 point.

By gluing a 3× 4 rectangle to the above tiling, we get a tiling of any (4k + 4)× 4 rectangle, where k > 1. We can now
stack k + 1 such rectangles next to each other to obtain a (4k + 4)× (4k + 4) square, which proves the claim.

1 point.

Suppose we can tile a n × n square with the given tiles. Let a and b be the number of F -tiles and Z-tiles used in the
tiling, respectively. Then 6a + 4b = n2, which implies n is even. This implies that a is also even. Let n = 2k, where k is
a positive integer.

0 points.

Consider the following colouring of the square: divide up the square into k2 smaller squares of size 2×2 and colour these
squares with a chessboard colouring (see the figure below). Every F -tile covers exactly 3 black unit squares and every
Z-tile covers an odd number of black unit squares.

1 point.

Because there are an even number of black squares, we obtain that a and b have equal parity. Since a is even, this implies
that b is even.

3 points.
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Now colour all unit squares in an even row and odd column black (see the figure below). Now every F -tile covers an
even number of black unit squares and every Z-tile covers exactly one black unit square.

1 point.

Since the number of black squares is k2, we obtain that b and k2 have equal parity. Since b is even, this implies k is even.

3 points.

Therefore, n is a multiple of 4.

0 points.

Furthermore, it is easily seen a 4 × 4-square cannot be tiled, as there are no positive integers (a, b) such that b is even
and 6a + 4b = 16.

0 points.

Notes on marking:

• Colouring a square in a certain way without drawing any relevant conclusions from the colouring is worth 0 points.

• Another possible solution is to consider a colouring with 4 colours by dividing up into small 2× 2-squares. In fact
this is equivalent to our solution, because is the same as considering both colourings above at once. Considering
such a colouring and drawing the same conclusions is worth the same amount of points as considering the colourings
one by one.

• If a student doesn’t check the case when n = 4, they can score at most 9 points on the problem.

• The standard chessboard colouring gives only that a is even, which is considered trivial by the Jury, thus it is worth
0 points.

• If a student has another colouring which proves that 2|b, this is worth 4 points, as in the official solution.

• If a student has another colouring which proves that 4|a, this is worth 4 points, as in the official solution.
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Problem 4. Let a, b, c be positive real numbers such that ab+bc+ac = a+b+c. Prove the following inequality:√
a +

b

c
+

√
b +

c

a
+

√
c +

a

b
6
√

2 ·min

{
a

b
+

b

c
+

c

a
,
b

a
+

c

b
+

a

c

}
.

(Dorlir Ahmeti)

First Solution. We can rewrite the inequality as

∑
cyc

2

√
2

(
a +

b

c

)
6 4 ·min

{
a

b
+

b

c
+

c

a
,
b

a
+

c

b
+

a

c

}
and distinguish two cases based on what the right hand side is.

Case 1. min

{
a

b
+

b

c
+

c

a
,
b

a
+

c

b
+

a

c

}
=

a

b
+

b

c
+

c

a
.

Using AM-GM inequality, we have

∑
cyc

2

√
2

(
a +

b

c

)
6
∑
cyc

(
2 + a +

b

c

)
= 6 + a + b + c +

a

b
+

b

c
+

c

a
.

2 points.

Hence, it is enough to prove

6 + a + b + c +
a

b
+

b

c
+

c

a
6 4

(
a

b
+

b

c
+

c

a

)
⇐⇒ 6 + a + b + c 6 3

(
a

b
+

b

c
+

c

a

)
. (1)

Applying AM-GM inequality we obtain

2

(
a

b
+

b

c
+

c

a

)
> 2 · 3 3

√
a

b
· b
c
· c
a

= 6 (2)

and using Cauchy-Schwarz inequality together with the condition allows us to conclude:

(ab + bc + ac)

(
a

b
+

b

c
+

c

a

)
> (a + b + c)2 = (a + b + c)(ab + bc + ac)

=⇒ a

b
+

b

c
+

c

a
> a + b + c. (3)

2 points.

Combining results (2) and (3) yields (1).

Case 2. min

{
a

b
+

b

c
+

c

a
,
b

a
+

c

b
+

a

c

}
=

b

a
+

c

b
+

a

c
.

Using AM-GM inequality, we have

∑
cyc

2

√
2

(
a +

b

c

)
=
∑
cyc

2

√
2a

c

(
c +

b

a

)
6
∑
cyc

(
2a

c
+ c +

b

a

)
= a + b + c + 3

(
b

a
+

c

b
+

a

c

)
.

4 points.

Hence, it is enough to prove

a + b + c + 3

(
b

a
+

c

b
+

a

c

)
6 4

(
b

a
+

c

b
+

a

c

)
⇐⇒ a + b + c 6

b

a
+

c

b
+

a

c
.

Using Cauchy-Schwarz inequality together with the condition allows us to conclude

(ab + bc + ac)

(
b

a
+

c

b
+

a

c

)
> (a + b + c)2 = (a + b + c)(ab + bc + ac)

=⇒ b

a
+

c

b
+

a

c
> a + b + c

2 points.

which is exactly what we wanted to prove.
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Second Solution. Using the substitution m = min

{
a

b
+

b

c
+

c

a
,
b

a
+

c

b
+

a

c

}
, we can rewrite the inequality as

1

3

(√
a +

b

c
+

√
b +

c

a
+

√
c +

a

b

)
6

m
√

2

3
.

Recognizing the left hand side as an arithmetic mean, we may apply the QM-AM inequality to obtain

1

3

(√
a +

b

c
+

√
b +

c

a
+

√
c +

a

b

)
6

√
a + b

c
+ b + c

a
+ c + a

b

3
.

We’re now left with proving
a + b

c
+ b + c

a
+ c + a

b

3
6

(
m
√

2

3

)2

which can be written as:
3

2

(
a + b + c

)
+

3

2

(
a

b
+

b

c
+

c

a

)
6 m2. (1)

1 point.

We distinguish two cases based on the value of m:

Case 1. m =
b

a
+

c

b
+

a

c
.

Expanding the right hand side of (1) and cancelling out
3

2

(
a

b
+

b

c
+

c

a

)
turns the inequality into

3

2

(
a + b + c

)
6

b2

a2
+

c2

b2
+

a2

c2
+

1

2

(
a

b
+

b

c
+

c

a

)
.

Multiplying both sides by 2(ab + bc + ac) and making use of the given condition on the left hand side gives us:

3(a + b + c)2 6 2

(
b2

a2
+

c2

b2
+

a2

c2

)
(ab + bc + ac) +

(
a

b
+

b

c
+

c

a

)
(ab + bc + ac).

We may now apply Cauchy-Schwarz inequality to obtain
(
a

b
+

b

c
+

c

a

)
(ab + bc + ac) > (a + b + c)2

2 points.

and this leaves us with proving the following:

(a + b + c)2 6

(
b2

a2
+

c2

b2
+

a2

c2

)
(ab + bc + ac). (2)

We now make use of a well known lemma:

Lemma 1. For positive real numbers x, y, z one has
x

y
+

y

z
+

z

x
>

x + y + z
3
√
xyz

.

Proof. Applying AM-GM inequality we obtain:

x

y
+

x

y
+

y

z
> 3 3

√
x2y

y2z
=

3x
3
√
xyz

,

y

z
+

y

z
+

z

x
> 3

3

√
y2z

z2x
=

3y
3
√
xyz

,

z

x
+

z

x
+

x

y
> 3 3

√
z2x

x2y
=

3z
3
√
xyz

.

Summing up the above three inequalities finishes the proof of the lemma.

3 points.

Applying the lemma we obtain
b2

a2
+
c2

b2
+
a2

c2
>

a2 + b2 + c2

3
√
a2b2c2

and applying AM-GM we obtain ab+bc+ac > 3
3
√
a2b2c2,

which together used in (2) mean that we only need to prove

(a + b + c)2 6 3(a2 + b2 + c2)

and this is equivalent to (a− b)2 + (b− c)2 + (a− c)2 > 0.

1 point.

7



Case 2. m =
a

b
+

b

c
+

c

a
.

Expanding the right hand side of (1) turns the inequality into

3

2

(
a + b + c

)
+

3

2

(
a

b
+

b

c
+

c

a

)
6

a2

b2
+

b2

c2
+

c2

a2
+ 2

(
b

a
+

c

b
+

a

c

)
. (3)

Since m =
a

b
+

b

c
+

c

a
, we have that

3

2

(
a

b
+

b

c
+

c

a

)
6

3

2

(
b

a
+

c

b
+

a

c

)
and using this in (3), we’re left with

proving:
3

2

(
a + b + c

)
6

a2

b2
+

b2

c2
+

c2

a2
+

1

2

(
b

a
+

c

b
+

a

c

)
.

1 point.

The rest of the proof is now analogous to the steps we used to solve the first case, namely multiplying both
sides by 2(ab + bc + ac) and making use of the given condition, applying Cauchy-Schwarz inequality to prove(
b

a
+

c

b
+

a

c

)
(ab+ bc+ac) > (a+ b+ c)2, making use of the lemma to prove

a2

b2
+

b2

c2
+

c2

a2
>

a2 + b2 + c2

3
√
a2b2c2

, making

use of AM-GM inequality to obtain ab + bc + ac > 3
3
√
a2b2c2 and finally proving (a + b + c)2 6 3(a2 + b2 + c2).

2 points.
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Third Solution. Let m = min

{
a

b
+

b

c
+

c

a
,
b

a
+

c

b
+

a

c

}
and n = max

{
a

b
+

b

c
+

c

a
,
b

a
+

c

b
+

a

c

}
.

0 points.

Using Cauchy-Schwarz inequality, we obtain the following:

√
a +

b

c
+

√
b +

c

a
+

√
c +

a

b
=

√√√√(√ac + b

c
+

√
ab + c

a
+

√
bc + a

b

)2

6

√
(ac + b + ab + c + bc + a)

(
1

c
+

1

a
+

1

b

)
2 points.

Now by using ab + bc + ac = a + b + c, we get:√
(ac + b + ab + c + bc + a)

(
1

c
+

1

a
+

1

b

)
=

√
2 (a + b + c)

(
1

a
+

1

b
+

1

c

)
.

Therefore, we want to show √
(a + b + c)

(
1

a
+

1

b
+

1

c

)
6 m. (1)

0 points.

We proceed by proving
m2 > 3 + 2n. (2)

Proof. Using AM-GM inequality, we get the following:

b2

a2
+

c2

b2
+

a2

c2
> 3.

Applying this result, we see that(
b

a
+

c

b
+

a

c

)2

=
b2

a2
+

c2

b2
+

a2

c2
+ 2

(
a

b
+

b

c
+

c

a

)
> 3 + 2

(
a

b
+

b

c
+

c

a

)
.

Analogously, we also get that
(
a

b
+

b

c
+

c

a

)2

> 3 + 2

(
b

a
+

c

b
+

a

c

)
, which proves (2).

2 points.

Now m 6 n along with (2) yields√
(a + b + c)

(
1

a
+

1

b
+

1

c

)
=

√
3 +

(
a

b
+

b

c
+

c

a

)
+

(
b

a
+

c

b
+

a

c

)
=
√

3 + m + n

6
√

3 + 2n

6
√
m2 = m

which is exactly (1).

6 points.

Notes on marking:

• In the third solution, considering only one case for m 6= n and completing the proof is worth 8 points. Full points
are awarded if the analogy to the other case is mentioned.

• Proving
a

b
+

b

c
+

c

a
> 3 should not be awarded any points as this claim is considered trivial.

• In the first solution, proving
a

b
+

b

c
+

c

a
> a + b + c (or the analogous version) and not applying this inequality in

both cases such that the application leads to the solution should only be awarded 2 points.
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12th December 2020 - 20th December 2020

Senior Category

MLADI NADARENI MATEMATIČARI

Marin Getaldic

Problems and Solutions

Problem 1. Let ABCD be a parallelogram in which |AB| > |BC|. Let O be a point on the line CD such that
|OB| = |OD|. Let ω be a circle with center O and radius |OC|. If T is the second intersection of ω and CD,
prove that AT,BO and ω are concurrent.

First Solution. Let R denote the intersection od ω and line BO such that O is located between B and R. We will
prove that A, T and R are collinear.

0 points.

Let X be the intersection of the diagonals of ABCD.

ω

A B

C

D

X

OT

R

We know that X is the midpoint of AC and O is the midpoint of TC so we conclude that XO||AT .

2 points.

X is also the midpoint of BD so, since triangle OBD is isosceles, OX ⊥ BD.

2 points.

This means that AT ⊥ BD.

1 point.

Now because of |DO| = |BO| we have
∠DOR = 2∠ODB

and because |OT | = |OR| we have
∠OTR = 90o − ∠ODB

1



2 points.

Finally we have
∠ATD = 90o − ∠BDC = ∠OTR

and so A, T and R are collinear as desired.

3 points.

Second Solution. Define R as the intersection of the ray BO with ω such that O is between B and R. We will prove
that A, T and R are collinear.

0 points.

Since |BO| = |DO| and |OR| = |OC|, we have:

|BR| = |BO|+ |OR| = |DO|+ |OC| = |CD| = |BA|.
Therefore, triangle BRA is isosceles.

5 points.

Now, due to the triangles TOR and BRA being isosceles, we have:

|∠BRA| = 180◦ − |∠RBA|
2

and
180◦ − |∠ROT |

2
= |∠ORT | = |∠BRT |

.

2 points.

Finally, since |∠RBA| = |∠TOR|, we have
|∠BRA| = |∠BRT |

, so R, T and A are collinear, which proves the claim.

3 points.

Third Solution. Let R′ be the intersection of line AT and ω different from T . We will prove that points B,O and R′

are collinear.

0 points.

Let X be the intersection of the diagonals of the parallelogram ABCD.

ω

A B

C

D

X

OT

R′

S

Now as in the first solution we conclude that XO||AT and OX ⊥ BD, which leads to AT being perpendicular to BD.

2



5 points.

Let S be the intersection of ω and ray OB. Since triangles ODB and OTS are isosceles with ∠DOB = ∠TOS, these
triangles are similar, which means that TS||BD.

2 points.

From this it follows that ST ⊥ AT , i.e. ∠STR′ = 90◦. This means that SR′ is the diameter of ω, and as we know that
B,S and O are collinear, we conclude that B,O and R′ are collinear.

3 points.

Fourth Solution. Let R′′ be the intersection of lines AT and BO. We will show that R′′ lies on the circle ω.

0 points.

Let X be the intersection of the diagonals of the parallelogram ABCD.

ω

A B

C

D

X

OT

R′′

As in the first solution we conclude that XO||AT , OX ⊥ BD and AT ⊥ BD.

5 points.

Denote ∠TR′′O = α. Since AT ⊥ BD, we have

∠OBD = 90◦ − α.

Now, due to the triangle ODB being isosceles, we have

∠ODB = 90◦ − α.

2 points.

Using again the fact that AT ⊥ BD, it follows that

∠R′′TO = ∠ATD = α.

We can now conclude that |OT | = |OR′′|, which proves the claim.

3 points.

Notes on marking:

• Points from different solutions are not additive. Student’s score should be the maximum of points scored over all
solutions.

• If a student has a partial solution with analytic methods, only points for proving facts that can be expressed in
geometric ways and lead to a complete solution can be awarded.
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Problem 2. Let n and k be positive integers. An n-tuple (a1, a2, . . . , an) is called a permutation if every
number from the set {1, 2, . . . , n} occurs in it exactly once. For a permutation (p1, p2, . . . , pn), we define its
k-mutation to be the n-tuple

(p1 + p1+k, p2 + p2+k, . . . , pn + pn+k),

where indices are taken modulo n. Find all pairs (n, k) such that every two distinct permutations have distinct
k-mutations.

Remark: For example, when (n, k) = (4, 2), the 2-mutation of (1, 2, 4, 3) is (1+4, 2+3, 4+1, 3+2) = (5, 5, 5, 5).
(Borna Šimić)

First Solution. Let f denote the function that, when given a permutation, returns its k-mutation.
Let M(a, b) denote the greatest common divisor of a and b.
The answer is all (n, k) such that n/M(n, k) is odd.

Suppose that n/M(n, k) is odd.
Consider permutations p, q such that f(p) = f(q). Suppose for the sake of contradiction that there exists some t 6 n
such that pt > qt. We have:

pt + pt+k = qt + qt+k

so we must have pt+k < qt+k, and pt+2k > qt+2k. Inductively, we obtain pt+dk < qt+dk for all odd d (where the indices
are taken modulo n).

2 points.

However, n/M(n, k) is odd and we have pt+nk/M(n,k) = pt and qt+nk/M(n,k) = qt. However, then pt < qt, which is a
contradiction. Therefore, p = q, which proves that all (n, k) for which n/M(n, k) is odd are solutions.

3 points.

We will now show that when n/M(n, k) is even, there exist distinct permutations p, q such that f(p) = f(q).
Firstly, fix n, and for (n, k) = (2m, 1) for some m ∈ N take:

p1 = (1, 2, 3, . . . 2m− 1, 2m)

q1 = (2, 1, 4, . . . 2m, 2m− 1)

It’s easy to see that f(p1) = f(q1).

1 point.

Now, if k = 2u− 1 for some u > 1 such that M(n, 2u− 1) = 1, define permutations pu, qu by taking

pu(m−1)k+1 = p1m and qu(i−1)k+1 = q1i ,

where indices are taken modulo n. (For example, for p1 and pu, pu1 = p11 = 1, puk+1 = p12 = 2 and so on).
As k and n are relatively prime, pu and qu are well defined, because the map x 7→ (x− 1)k + 1 is a bijection on the set
of residues modulo n. Furthermore, it’s easy to see that f(pu) = f(qu) holds, because f(p1) = f(q1) holds.

2 points.

Finally, a construction for (n, 2u− 1) can be expanded to a construction for (ln, l(2u− 1)), by defining p(lj) = pu(j) and
q(lj) = qu(j) for every j, and setting p(x) = q(x) for x which are not divisible by l (it is not important how p and q are
defined on the set of numbers not divisible by l, it’s only important that they are equal on this set). Since f(pu) = f(qu),
we conclude that f(p) = f(q) also holds.

Since any pair of positive integers (n, k) for which n/M(n, k) is even can be written in this form, we’ve proved the
claim.

2 points.

Second Solution. Let the notation be the same as in the first solution. Let d be an odd positive integer. Consider
some permutations p, q such that f(p) = f(q). This gives us the following sequence of equations for i = 1, 2, . . . , n:

pi + pi+k = qi + qi+k (1)
pi+k + pi+2k = qi+k + qi+2k (2)

... =
...

pi+(d−2)k + pi+(d−1)k = qi+(d−2)k + qi+(d−1)k (d− 1)
pi+(d−1)k + pi+dk = qi+(d−1)k + qi+dk (d)
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We telescope the equations: (d− 1)− (d− 2) + (d− 3)− . . .+ . . .− (1). Since d is odd, we obtain:

pi+(d−1)k − pi = qi+(d−1)k − qi

We subtract that from (d) and obtain: pi+dk + pi = qi+dk + qi.

2 points.

Since this equality holds for every odd d, it also holds for n/M(n, k). Since pi+nk/M(n,k) = pi and qi+nk/M(n,k) = qi, we
conclude that 2pi = 2qi for all i. Therefore, p = q.

3 points.

The case where n/M(n, k) is even is the same as in the first solution.

5 points.

Notes on marking:

• Note that the set of solutions can also be characterized as the set of all pairs (n, k) such that ν2(n) 6 ν2(k), where
ν2(x) denotes the largest nonnegative integer y such that 2y | x. Of course, this characterization or any other
trivially equivalent characterization of the set of solutions is valid.
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Problem 3. Let p be a prime number. Troy and Abed are playing a game. Troy writes a positive integer X
on the board, and gives a sequence (an)n∈N of positive integers to Abed. Abed now makes a sequence of moves.
The n-th move is the following:

Replace Y currently written on the board with either Y + an or Y · an.

Abed wins if at some point the number on the board is a multiple of p. Determine whether Abed can win,
regardless of Troy’s choices, if

a) p = 109 + 7;
b) p = 109 + 9.

Remark: Both 109 + 7 and 109 + 9 are prime.
(Ivan Novak)

Solution. We will prove that Abed cannot win in either case.

0 points.

We now explain Troy’s strategies. Throughout the solution, we will use fractions modulo p.

a) Suppose p = 109 + 7. Note that p ≡ 2 (mod 3). Let X = 2. We will define the sequence (an)n∈N recursively. Note
that neither 2 nor 2− 1 is divisible by p.

Suppose we’ve defined a1, . . . , an−1, where n ∈ N, and suppose that whatever Abed’s first n− 1 moves are, the number
on the board after these n− 1 moves is congruent to Y modulo p, and neither Y nor Y − 1 are divisible by p.
We now prove that there exists a positive integer k such that Y + k ≡ Y k (mod p), and neither Y k nor Y k − 1 are not
divisible by p.

Indeed, let k ≡ Y
Y−1

(mod p). Note that this is well defined since Y − 1 is not divisible by p. Then Y + k ≡ Y k ≡ Y 2

Y−1

(mod p). Note that Y 2

Y−1
6≡ 0 (mod p) since Y 6≡ 0 (mod p).

1 point.

Suppose for the sake of contradiction that Y 2

Y−1
≡ 1 (mod p). This implies that p | Y 2 − Y + 1. However, this would

imply p | (−Y )3 − 1.
This means that ordp(−Y ) | 3. Since p ≡ 2 (mod 3) and ordp(−Y ) | p − 1, it follows that ordp(−Y ) 6= 3. This forces
ordp(−Y ) = 1. However, then Y ≡ −1 (mod p), which implies Y 2 − Y + 1 ≡ 3 6≡ 0 (mod p). Therefore, Y 2

Y−1
6≡ 1

(mod p).

2 points.

We define an := k. No matter what Abed’s first n moves are, the number on the board after n moves is congruent to
Y 2

Y−1
modulo p, which is not congruent to 0 or 1 modulo p. Therefore, Abed cannot win after n steps. Since this claim

is true for any positive integer n, we conclude that Abed cannot win.

1 point.

b) Suppose p = 109 + 9. Note that p ≡ 1 (mod 4), which means that there exists a positive integer z such that
z2 ≡ −1 (mod p). Then there also exists a positive integer t such that (2t− 1)2 ≡ −1 (mod p).
Let X = t. Note that neither X nor X − 1 are divisible by p, and note that 4X2 − 4X + 2 ≡ 0 (mod p).

1 point.

Let a1 ≡ X
X−1

(mod p). Then a1 +X ≡ a1X ≡ X2

X−1
(mod p). Therefore, whatever Abed’s first move is, the number on

the board after the first move will be congruent to X2

X−1
modulo p. Furthermore, X2

X−1
is not divisible by p since X isn’t.

Suppose for the sake of contradiction that X2

X−1
≡ 1 (mod p). Then 4X2 − 4X +4 ≡ 0 (mod p), but, by definition of X,

4X2 − 4X + 2 ≡ 0 (mod p), which implies 2 ≡ 0 (mod p), which is a contradiction. Therefore, X2

X−1
6≡ 1 (mod p).

1 point.

Let a2 ≡ X2

X2−X+1
(mod p). Note that this is well defined since X2−X+1 6≡ 0 (mod p). Whatever Abed’s second move

is, the number on the board will be congruent to X2

X−1
+ X2

X2−X+1
≡ X4

(X2−X+1)(X−1)
(mod p). Now note that

X4

(X2 −X + 1)(X − 1)
≡ X (mod p) ⇐⇒ X3 ≡ (X2 −X + 1)(X − 1) (mod p) ⇐⇒ 2X2 − 2X + 1 ≡ 0 (mod p),

which is true by definition of X. Therefore, whatever Abed’s first two moves are, the number written on the board after
the first two moves will be congruent to X modulo p.
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4 points.

Thus, if we define a2j−1 := a1 and a2j := a2 for j > 2, no matter what moves Abed makes, the number on the board
will never be divisible by p.

0 points.

Notes on marking:

• Part a) is worth 4 points, and part b) is worth 6 points.

• The idea of making it impossible for Abed to affect the numbers on the board modulo p, although used in both
parts, is worth 0 points on its own.

• In part a), if a student doesn’t prove that x2 − x + 1 doesn’t have prime divisors of the form 3k + 2, but instead
states that this fact is well known and checks that 109 + 7 is of the form 3k + 2, they should be awarded all the
points intended for this part.

• In part b), the idea of 2-periodicity of the game state is worth 0 points on its own.

• Due to overlapping arguments, if a student solves b), but does not solve a), then they get 0 points for the very
first point in part a). This point is then merged with the second block of 2 points in part a).
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Problem 4. Let R+ denote the set of all positive real numbers. Find all functions f : R+ → R+ such that

xf(x+ y) + f(xf(y) + 1) = f(xf(x))

for all x, y ∈ R+.

(Amadej Kristjan Kocbek, Jakob Jurij Snoj)

First Solution. Let f be a function satisfying the equation. We split the solution into a series of claims.
Claim 1. f(x) < f(f(1)) for all x > 1.
Proof. Substituting x = 1 gives

f(y + 1) + f(f(y) + 1) = f(f(1)). (3)

Since the function only attains positive values, we have f(y + 1) < f(f(1)) for all y, and the conclusion follows.

Claim 2. The function f is injective.
Proof. Assume the contrary and choose a < b such that f(a) = f(b). Substituting y = a and, afterwards, y = b into the
original equations and comparing the equations gives

f(x+ a) = f(x+ b) for all x ∈ R+.

Hence, f is periodic for all x > P for some constant P ∈ R+ with period p = b − a. Fix some x1, y1 ∈ R+ with
x1 > P and pick a positive integer n such that (x1 + np)f(x1 + y1) > f(f(1)) and (x1 + np)f(x1) > 1. Substituting
x = x1 + np, y = y1 gives

(x1 + np)f((x1 + np) + y1) + f((x1 + np)f(y1) + 1) = f((x1 + np)f(x1 + np))

(x1 + np)f(x1 + y1) + f((x1 + np)f(y1) + 1) = f((x1 + np)f(x1))

after using periodicity to simplify the equation. Due to our choice of n and the function only attaining positive values,
we have

f((x1 + np)f(x1)) > (x1 + np)f(x1 + y1) > f(f(1)).

However, since we have (x1 + np)f(x1) > 1, Claim 1 implies f((x1 + np)f(x1)) < f(f(1)), leading to a contradiction.
Therefore, such a and b do not exist and f is injective.

2 points.

Claim 3. f(f(x)) = x for all x ∈ R+.
Proof. We substitute y = f(y) into (1). Comparing the resulting equation with (1) gives:

f(f(y) + 1) + f(f(f(y)) + 1) = f(y + 1) + f(f(y) + 1)

f(f(f(y)) + 1) = f(y + 1)

Using injectivity, we get f(f(y)) = y for all y ∈ R+.

1 point.

Claim 4. For all x ∈ R+, xf(x) 6 1. In particular, f(a) 6 1
x
for all a > x.

Proof. Assume the contrary - there exists some c ∈ R+ such that cf(c) > 1. Substituting y = f(y) and using Claim 3,
we transform the original equation:

xf(x+ f(y)) + f(xy + 1) = f(xf(x)).

Substituting x = c, y = cf(c)−1
c

into the above equation gives cf(c+ f((cf(c)−1)/c)) = 0 after cancellation of the terms,
a clear contradiction. The second part of the claim follows immediately.

1 point.

Claim 5. For all x ∈ R+, we have f(xf(x)) 6 1.
Proof. We notice

f(xf(x)) = xf(x+ y) + f(xf(y) + 1) < xf(x+ y) + 1 6
x

x+ y
+ 1,

where the inequalities hold due to Claim 1 and Claim 4, respectively, as well as the identity f(f(1)) = 1. Assume there
exists a c such that f(cf(c)) > 1: therefore, it should hold that

f(cf(c)) <
c

c+ y
+ 1.

However, the left hand side of the above inequality is independent of y. Thus, for y sufficiently large, the opposite
direction of the inequality will hold since c/(c+ y) can get arbitrarily small, which leads to a contradiction.

1 point.
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Claim 6. For all x ∈ R+, f(xf(x)) > 1.
Proof. Assume the contrary. Therefore, there exists some a such that f(af(a)) < 1, let f(af(a)) = 1 − e. By Claim 4,
there exists a Y ∈ R+ such that f(y+1) < e for all y > Y . Let d > Y . Observing (1) after substituting y = d, we notice

f(f(d) + 1) = 1− f(d+ 1) > 1− e.

Substituting x = a, y = f
(

f(d)
a

)
into the original equation gives

1− e = f(af(a)) = af

(
a+ f

(
f(d)

a

))
+ f(f(d) + 1) > 1− e,

a contradiction.

4 points.

Finally, observe Claims 5 and 6 together yield f(xf(x)) = 1 for all x ∈ R+. By injectivity, xf(x) is constant, hence
f(x) = c

x
for some constant c ∈ R+. By checking, we see c = 1 yields the only valid solution, f(x) = 1

x
.

1 point.

Second Solution. We present an alternative way of proving f(xf(x)) is constant after obtaining the first four claims
of the first solution.
Assume there exist a and b such that f(af(a)) − f(bf(b)) 6= 0. Without loss of generality, we can assume f(af(a)) −
f(bf(b)) > 0. We now substitute (x, y) with

(
a, f

(
x
a

))
and

(
b, f

(
x
b

))
and subtract the resulting equations to obtain

f(af(a))− f(bf(b)) = af
(
a+ f

(x
a

))
− bf

(
b+ f

(x
b

))
+ f

(
af

(
f
(x
a

))
+ 1

)
− f

(
bf

(
f
(x
b

))
+ 1

)
= af

(
a+ f

(x
a

))
− bf

(
b+ f

(x
b

))
+ f

(
a · x

a
+ 1

)
− f

(
b · x

b
+ 1

)
= af

(
a+ f

(x
a

))
− bf

(
b+ f

(x
b

))
.

1 point.

This shows that, as x varies, the expression af
(
a+ f

(
x
a

))
− bf

(
b+ f

(
x
b

))
is constant. As f is an involution and thus

surjective, we can choose a number x1 ∈ R+ such that a+ f
(
x1
a

)
> a

f(af(a))−f(bf(b))
. Substituting x with x1 in the above

equation and using Claim 4, we obtain

f(af(a))− f(bf(b)) = af
(
a+ f

(x1
a

))
− bf

(
b+ f

(x1
b

))
< af

(
a+ f

(x1
a

))
6

a

a+ f
(x1
a

)
< f(af(a))− f(bf(b)),

which leads to a contradiction. Therefore, f(xf(x)) is constant.

4 points.

As in the first solution, this now implies xf(x) is constant, therefore, f is of the form f(x) = c
x
for some constant c. We

can easily check f(x) = 1
x
is the only valid solution.

1 point.

Notes on marking:

• If a student doesn’t check that f(x) = 1
x
is indeed a solution or at least mention that it can be easily checked, they

should lose 1 point.

• Points from two marking schemes are not additive.
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