
SOLUTIONS FOR 2010 APMO PROBLEMS

Problem 1. Let ABC be a triangle with ∠BAC 6= 90◦. Let O be the circumcenter of the
triangle ABC and let Γ be the circumcircle of the triangle BOC. Suppose that Γ intersects
the line segment AB at P different from B, and the line segment AC at Q different from C.
Let ON be a diameter of the circle Γ. Prove that the quadrilateral APNQ is a parallelogram.

Solution: From the assumption that the circle Γ intersects both of the line segments AB
and AC, it follows that the 4 points N,C,Q,O are located on Γ in the order of N,C,Q,O
or in the order of N,C,O,Q. The following argument for the proof of the assertion of the
problem is valid in either case. Since ∠NQC and ∠NOC are subtended by the same arc
_
NC of Γ at the points Q and O, respectively, on Γ, we have ∠NQC = ∠NOC. We also

have ∠BOC = 2∠BAC, since ∠BOC and ∠BAC are subtended by the same arc
_
BC of the

circum-circle of the triangle ABC at the center O of the circle and at the point A on the
circle, respectively. From OB = OC and the fact that ON is a diameter of Γ, it follows that
the triangles OBN and OCN are congruent, and therefore we obtain 2∠NOC = ∠BOC.
Consequently, we have ∠NQC = 1

2∠BOC = ∠BAC, which shows that the 2 lines AP,QN
are parallel.

In the same manner, we can show that the 2 lines AQ,PN are also parallel. Thus, the
quadrilateral APNQ is a parallelogram.

Problem 2. For a positive integer k, call an integer a pure k-th power if it can be represented
as mk for some integer m. Show that for every positive integer n there exist n distinct positive
integers such that their sum is a pure 2009-th power, and their product is a pure 2010-th power.

Solution: For the sake of simplicity, let us set k = 2009.
First of all, choose n distinct positive integers b1, · · · , bn suitably so that their product is a

pure k+1-th power (for example, let bi = ik+1 for i = 1, · · · , n). Then we have b1 · · · bn = tk+1

for some positive integer t. Set b1 + · · ·+ bn = s.

Now we set ai = bis
k2−1 for i = 1, · · · , n, and show that a1, · · · , an satisfy the required

conditions. Since b1, · · · , bn are distinct positive integers, it is clear that so are a1, · · · , an.
From

a1 + · · ·+ an = sk2−1(b1 + · · ·+ bn) = sk2
= (sk)2009,

a1 · · · an = (sk2−1)nb1 · · · bn = (sk2−1)ntk+1 = (s(k−1)nt)2010

we can see that a1, · · · , an satisfy the conditions on the sum and the product as well. This
ends the proof of the assertion.
Remark: We can find the appropriate exponent k2 − 1 needed for the construction of the
ai’s by solving the simultaneous congruence relations: x ≡ 0 (mod k + 1), x ≡ −1 (mod k).

Problem 3. Let n be a positive integer. n people take part in a certain party. For any
pair of the participants, either the two are acquainted with each other or they are not. What
is the maximum possible number of the pairs for which the two are not acquainted but have
a common acquaintance among the participants?
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Solution: When 1 participant, say the person A, is mutually acquainted with each of the
remaining n − 1 participants, and if there are no other acquaintance relationships among
the participants, then for any pair of participants not involving A, the two are not mutual
acquaintances, but they have a common acquaintance, namely A, so any such pair satisfies
the requirement. Thus, the number desired in this case is (n−1)(n−2)

2 = n2−3n+2
2 .

Let us show that n2−3n+2
2 is the maximum possible number of the pairs satisfying the

requirement of the problem. First, let us observe that in the process of trying to find the
maximum possible number of such pairs, if we split the participants into two non-empty
subsets T and S which are disjoint, we may assume that there is a pair consisting of one
person chosen from T and the other chosen from S who are mutual acquaintances. This is
so, since if there are no such pair for some splitting T and S, then among the pairs consisting
of one person chosen from T and the other chosen from S, there is no pair for which the two
have a common acquaintance among participants, and therefore, if we arbitrarily choose a
person A ∈ T and B ∈ S and declare that A and B are mutual acquaintances, the number of
the pairs satisfying the requirement of the problem does not decrease.

Let us now call a set of participants a group if it satisfies the following 2 conditions:
• One can connect any person in the set with any other person in the set by tracing a

chain of mutually acquainted pairs. More precisely, for any pair of people A,B in the set
there exists a sequence of people A0, A1, · · · , An for which A0 = A, An = B and, for each
i : 0 ≤ i ≤ n− 1, Ai and Ai+1 are mutual acquaintances.
• No person in this set can be connected with a person not belonging to this set by tracing

a chain of mutually acquainted pairs.
In view of the discussions made above, we may assume that the set of all the participants

to the party forms a group of n people. Let us next consider the following lemma.

Lemma. In a group of n people, there are at least n− 1 pairs of mutual acquaintances.

Proof: If you choose a mutually acquainted pair in a group and declare the two in the pair
are not mutually acquainted, then either the group stays the same or splits into 2 groups.
This means that by changing the status of a mutually acquainted pair in a group to that
of a non-acquainted pair, one can increase the number of groups at most by 1. Now if in a
group of n people you change the status of all of the mutually acquainted pairs to that of
non-acquainted pairs, then obviously, the number of groups increases from 1 to n. Therefore,
there must be at least n − 1 pairs of mutually acquainted pairs in a group consisting of n
people. �

The lemma implies that there are at most n(n−1)
2 − (n − 1) = n2−3n+2

2 pairs satisfying
the condition of the problem. Thus the desired maximum number of pairs satisfying the
requirement of the problem is n2−3n+2

2 .

Remark: One can give a somewhat different proof by separating into 2 cases depending on
whether there are at least n−1 mutually acquainted pairs, or at most n−2 such pairs. In the
former case, one can argue in the same way as the proof above, while in the latter case, the
Lemma above implies that there would be 2 or more groups to start with, but then, in view
of the comment made before the definition of a group above, these groups can be combined
to form one group, thereby one can reduce the argument to the former case.



Alternate Solution 1: The construction of an example for the case for which the number
n2−3n+2

2 appears, and the argument for the case where there is only 1 group would be the
same as in the preceding proof.

Suppose, then, n participants are separated into k(k ≥ 2) groups, and the number of people
in each group is given by ai, i = 1, · · · , k. In such a case, the number of pairs for which paired
people are not mutually acquainted but have a common acquaintance is at most

∑k
i=1 aiC2,

where we set 1C2 = 0 for convenience. Since aC2 + bC2 ≤ a+bC2 holds for any pair of
positive integers a, b, we have

∑k
i=1 aiC2 ≤ a1C2 + n−a1C2. From

a1C2 + n−a1C2 = a2
1 − na1 +

n2 − n
2

=
(
a1 −

n

2
)2 +

n2 − 2n
4

it follows that a1C2 + n−a1C2 takes its maximum value when a1 = 1, n − 1. Therefore, we
have

∑k
i=1 aiC2 ≤ n−1C2, which shows that in the case where the number of groups are 2

or more, the number of the pairs for which paired people are not mutually acquainted but
have a common acquaintance is at most n−1C2 = n2−3n+2

2 , and hence the desired maximum
number of the pairs satisfying the requirement is n2−3n+2

2 .

Alternate Solution 2: Construction of an example would be the same as the preceding
proof.

For a participant, say A, call another participant, say B, a familiar face if A and B are
not mutually acquainted but they have a common acquaintance among the participants, and
in this case call the pair A,B a familiar pair.

Suppose there is a participant P who is mutually acquainted with d participants. Denote
by S the set of these d participants, and by T the set of participants different from P and
not belonging to the set S. Suppose there are e pairs formed by a person in S and a person
in T who are mutually acquainted.

Then the number of participants who are familiar faces to P is at most e. The number of
pairs formed by two people belonging to the set S and are mutually acquainted is at most
dC2. The number of familiar pairs formed by two people belonging to the set T is at most
n−d−1C2. Since there are e pairs formed by a person in the set S and a person in the set
T who are mutually acquainted (and so the pairs are not familiar pairs), we have at most
d(n− 1−d)− e familiar pairs formed by a person chosen from S and a person chosen from T.
Putting these together we conclude that there are at most e+ dC2+ n−1−dC2+d(n−1−d)−e
familiar pairs. Since

e+ dC2 + n−1−dC2 + d(n− 1− d)− e =
n2 − 3n+ 2

2
,

the number we seek is at most n2−3n+2
2 , and hence this is the desired solution to the problem.

Problem 4. Let ABC be an acute triangle satisfying the condition AB > BC and
AC > BC. Denote by O and H the circumcenter and the orthocenter, respectively, of the
triangle ABC. Suppose that the circumcircle of the triangle AHC intersects the line AB at
M different from A, and that the circumcircle of the triangle AHB intersects the line AC at
N different from A. Prove that the circumcenter of the triangle MNH lies on the line OH.

Solution: In the sequel, we denote ∠BAC = α,∠CBA = β,∠ACB = γ. Let O′ be the
circumcenter of the triangle MNH. The lengths of line segments starting from the point H
will be treated as signed quantities.



Let us denote by M ′, N ′ the point of intersection of CH,BH, respectively, with the cir-
cumcircle of the triangle ABC (distinct from C, B, respectively.) From the fact that 4
points A,M,H,C lie on the same circle, we see that ∠MHM ′ = α holds. Furthermore,

∠BM ′C,∠BN ′C and α are all subtended by the same arc
_
BC of the circumcircle of the

triangle ABC at points on the circle, and therefore, we have ∠BM ′C = α, and ∠BN ′C = α

as well. We also have ∠ABH = ∠ACN ′ as they are subtended by the same arc
_

AN ′ of the
circumcircle of the triangle ABC at points on the circle. Since HM ′ ⊥ BM,HN ′ ⊥ AC, we
conclude that

∠M ′HB = 90◦ − ∠ABH = 90◦ − ∠ACN ′ = α

is valid as well. Putting these facts together, we obtain the fact that the quadrilateral
HBM ′M is a rhombus. In a similar manner, we can conclude that the quadrilateral HCN ′N
is also a rhombus. Since both of these rhombuses are made up of 4 right triangles with an
angle of magnitude α, we also see that these rhombuses are similar.

Let us denote by P,Q the feet of the perpendicular lines on HM and HN , respectively,
drawn from the point O′. Since O′ is the circumcenter of the triangle MNH, P,Q are re-
spectively, the midpoints of the line segments HM,HN. Furthermore, if we denote by R,S
the feet of the perpendicular lines on HM and HN , respectively, drawn from the point O,
then since O is the circumcenter of both the triangle M ′BC and the triangle N ′BC, we see
that R is the intersection point of HM and the perpendicular bisector of BM ′, and S is the
intersection point of HN and the perpendicular bisector of CN ′.

We note that the similarity map φ between the rhombuses HBM ′M and HCN ′N carries
the perpendicular bisector of BM ′ onto the perpendicular bisector of CN ′, and straight line
HM onto the straight line HN, and hence φ maps R onto S, and P onto Q. Therefore, we get
HP : HR = HQ : HS. If we now denote by X,Y the intersection points of the line HO′ with
the line through R and perpendicular to HP , and with the line through S and perpendicular
to HQ, respectively, then we get

HO′ : HX = HP : HR = HQ : HS = HO′ : HY

so that we must have HX = HY , and therefore, X = Y. But it is obvious that the point
of intersection of the line through R and perpendicular to HP with the line through S and
perpendicular to HQ must be O, and therefore, we conclude that X = Y = O and that the
points H,O′, O are collinear.

Alternate Solution: Deduction of the fact that both of the quadrilaterals HBM ′M and
HCN ′N are rhombuses is carried out in the same way as in the preceding proof.

We then see that the point M is located in a symmetric position with the point B with
respect to the line CH, we conclude that we have ∠CMB = β. Similarly, we have ∠CNB = γ.
If we now put x = ∠AHO′, then we get

∠O′ = β − α− x, ∠MNH = 90◦ − β − α+ x,

from which it follows that

∠ANM = 180◦ − ∠MNH − (90◦ − α) = β − x.

Similarly, we get

∠NMA = γ + x.



Using the laws of sines, we then get
sin(γ + x)
sin(β − x)

=
AN

AM
=

AC

AM
· AB
AC
· AN
AB

=
sinβ

sin(β − α)
· sin γ

sinβ
· sin(γ − α)

sin γ
=

sin(γ − α)
sin(β − α)

.

On the other hand, if we let y = ∠AHO, we then get

∠OHB = 180◦ − γ − y, ∠CHO = 180◦ − β + y,

and since
∠HBO = γ − α, ∠OCH = β − α,

using the laws of sines and observing that OB = OC, we get

sin(γ − α)
sin(β − α)

=
sin∠HBO
sin∠OCH

=
sin(180◦ − γ − y) · OH

OB

sin(180◦ − β + y) · OH
OC

=
sin(180◦ − γ − y)
sin(180◦ − β + y)

=
sin(γ + y)
sin(β − y)

.

We then get sin(γ + x) sin(β − y) = sin(β − x) sin(γ + y). Expanding both sides of the last
identity by using the addition formula for the sine function and after factoring and using
again the addition formula we obtain that sin(x− y) sin(β + γ) = 0. This implies that x− y
must be an integral multiple of 180◦, and hence we conclude that H,O,O′ are collinear.

Problem 5. Find all functions f from the set R of real numbers into R which satisfy for
all x, y, z ∈ R the identity

f(f(x) + f(y) + f(z)) = f(f(x)− f(y)) + f(2xy + f(z)) + 2f(xz − yz).
Solution: It is clear that if f is a constant function which satisfies the given equation,

then the constant must be 0. Conversely, f(x) = 0 clearly satisfies the given equation, so,
the identically 0 function is a solution. In the sequel, we consider the case where f is not a
constant function.

Let t ∈ R and substitute (x, y, z) = (t, 0, 0) and (x, y, z) = (0, t, 0) into the given functional
equation. Then, we obtain, respectively,

f(f(t) + 2f(0)) = f(f(t)− f(0)) + f(f(0)) + 2f(0),

f(f(t) + 2f(0)) = f(f(0)− f(t)) + f(f(0)) + 2f(0),

from which we conclude that f(f(t)−f(0)) = f(f(0)−f(t)) holds for all t ∈ R. Now, suppose
for some pair u1, u2, f(u1) = f(u2) is satisfied. Then by substituting (x, y, z) = (s, 0, u1) and
(x, y, z) = (s, 0, u2) into the functional equation and comparing the resulting identities, we
can easily conclude that

f(su1) = f(su2) (∗)
holds for all s ∈ R. Since f is not a constant function there exists an s0 such that f(s0)−f(0) 6=
0. If we put u1 = f(s0)− f(0), u2 = −u1, then f(u1) = f(u2), so we have by (∗)

f(su1) = f(su2) = f(−su1)

for all s ∈ R. Since u1 6= 0, we conclude that

f(x) = f(−x)



holds for all x ∈ R.
Next, if f(u) = f(0) for some u 6= 0, then by (∗), we have f(su) = f(s0) = f(0) for all

s, which implies that f is a constant function, contradicting our assumption. Therefore, we
must have f(s) 6= f(0) whenever s 6= 0.

We will now show that if f(x) = f(y) holds, then either x = y or x = −y must hold.
Suppose on the contrary that f(x0) = f(y0) holds for some pair of non-zero numbers x0, y0

for which x0 6= y0, x0 6= −y0. Since f(−y0) = f(y0), we may assume, by replacing y0 by −y0

if necessary, that x0 and y0 have the same sign. In view of (∗), we see that f(sx0) = f(sy0)
holds for all s, and therefore, there exists some r > 0, r 6= 1 such that

f(x) = f(rx)

holds for all x. Replacing x by rx and y by ry in the given functional equation, we obtain

f(f(rx) + f(ry) + f(z)) = f(f(rx)− f(ry)) + f(2r2xy + f(z)) + 2f(r(x− y)z) (i),

and replacing x by r2x in the functional equation, we get

f(f(r2x) + f(y) + f(z)) = f(f(r2x)− f(y)) + f(2r2xy + f(z)) + 2f((r2x− y)z) (ii).

Since f(rx) = f(x) holds for all x ∈ R, we see that except for the last term on the right-hand
side, all the corresponding terms appearing in the identities (i) and (ii) above are equal, and
hence we conclude that

f(r(x− y)z) = f((r2x− y)z)) (iii)

must hold for arbitrary choice of x, y, z ∈ R. For arbitrarily fixed pair u, v ∈ R, substitute
(x, y, z) = ( v−u

r2−1
, v−r2u

r2−1
, 1) into the identity (iii). Then we obtain f(v) = f(ru) = f(u), since

x− y = u, r2x− y = v, z = 1. But this implies that the function f is a constant, contradicting
our assumption. Thus we conclude that if f(x) = f(y) then either x = y or x = −y must
hold.

By substituting z = 0 in the functional equation, we get

f(f(x) + f(y) + f(0)) = f(f(x)− f(y) + f(0)) = f((f(x)− f(y)) + f(2xy + f(0)) + 2f(0).

Changing y to −y in the identity above and using the fact that f(y) = f(−y), we see that
all the terms except the second term on the right-hand side in the identity above remain the
same. Thus we conclude that f(2xy + f(0)) = f(−2xy + f(0)), from which we get either
2xy + f(0) = −2xy + f(0) or 2xy + f(0) = 2xy − f(0) for all x, y ∈ R. The first of these
alternatives says that 4xy = 0, which is impossible if xy 6= 0. Therefore the second alternative
must be valid and we get that f(0) = 0.

Finally, let us show that if f satisfies the given functional equation and is not a constant
function, then f(x) = x2. Let x = y in the functional equation, then since f(0) = 0, we get

f(2f(x) + f(z)) = f(2x2 + f(z)),

from which we conclude that either 2f(x) + f(z) = 2x2 + f(z) or 2f(x) + f(z) = −2x2− f(z)
must hold. Suppose there exists x0 for which f(x0) 6= x2

0, then from the second alternative,
we see that f(z) = −f(x0)− x2

0 must hold for all z, which means that f must be a constant
function, contrary to our assumption. Therefore, the first alternative above must hold, and
we have f(x) = x2 for all x, establishing our claim.

It is easy to check that f(x) = x2 does satisfy the given functional equation, so we conclude
that f(x) = 0 and f(x) = x2 are the only functions that satisfy the requirement.


