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COMMON FIXED POINTS FOR TWO T s KANNAN TYPE

CONTRACTIONS IN A COMPLETE METRIC SPACE

UDC: 515.122.2:515.126.4
Samoil Malcheski', Risto Malcheskiz, Katerina Anevska’

Abstract. The focus in this paper are statements about common fixed points
for two T s Kannan type contractions in a complete metric space (X,d). In

doing so we defined 7 as continuous, injection and subsequentially convergent
mapping, and f as a function of the class @ continuous monotony non-
decreasing functions f :[0,490) —[0,+o0) such that f _1(0) = {0}, and further-
more [ issub-additive i.e. f(x+y)< f(x)+ f(»), forall x,y e[0,+x).

1. INTRODUCTION

The Banach fixed-point theorem, as well as its generalizations presented by
R. Kannan ([4]), S. K. Chatterjea ([7]) and P. V. Koparde, B. B. Waghmode
([3]), are well known. S. Moradi and D. Alimohammadi [9] generalized R.
Kannan results using the sequentially convergent mappings. Using the
sequentially convergent mappings, some generalizations of R. Kannan, S. K.
Chatterjea and P. V. Koparde, B. B. Waghmode are proved [1], and also proved
results about sharing fixed point for two R. Kannan, S. K. Chatterjea u P. V.
Koparde, B. B. Waghmode types of mapping [5], 2006.

S. Moradi and A. Beiranvand introduced the concept of 7 contractive

mapping, [8], 2010, applying the @class of continuous monotony non-
decreasing functions f :[0,+00) —[0,4+0) such that f_l(O) ={0}. For feO,
f _1(0) ={0} implies that f(t)>0, for all #>0. S. Moradi and A.Beiranvand
proved that if S is Ty contractive mapping, then S has a unique fixed point.

M. Kir and H. Kiziltunc, 2014 generalized the S. Moradi and A. Beiranvand
result about R. Kannan and S. K. Chatterjea types of mapping.

In our further observations we will present several results about sharing fixed
points of two 7 Kannan type contractions in a complete metric space, such

that the function f, f is a function of @ class, and additionally we will
suppose that it is subadditive, i.e. f(a+b)< f(a)+ f(b), for all a,b [0,+x0).

2010 Mathematics Subject Classification. Primary: 47H10 Secondary: 54H25.
Key words and phrases. subsequentially convergent mapping, fixed point

51



52 S. Malceski, R. MalcCeski, K. Anevska

2. MAIN RESULTS

Definition 1 ([8]). Let (X,d) be a metric space. A mapping 7: X — X 1is
said sequentially convergent if we have, for every sequence {y,}, if {Ty,} is
convergence then {y,} also is convergence. A mapping 7 is said sub-
sequentially convergent if we have, for every sequence {y,}, if {Ty,} is
convergence then {y,} has a convergent subsequence.

Definition 2 ([8]). Let (X,d) be a metric space, S,7: X > X and fe®.
A mapping S is said Ty — contraction if there exist o €(0,1) such that
Sd(TSx,TSy) < of (d(Tx,Ty)),
forall x,ye X.

Theorem 1. Let(X,d) be a complete metric space S;,S,: X >X, fe€@
is such that f(a+b)< f(a)+ f(b), for all a,be[0,+0) and the mapping

T:X — X be continuous, injection and subsequentially convergent. If there
exist o> 0,>0 such that 2o+ €(0,1) and

SATSx, TS ) < ol f(d(Tx,TS1x)) + f(d(Ty, TSrp))) +Bf (d(Tx,Ty)) (1)
forallx,y e X, then S and S, have a unique sharing fixed point.
Proof. Let x; be any point of X and let the sequence {x,} be defined as
X241 = S1%00 > X2p42 =S2X0p41> #=0,1,2,3,....
If there exists n >0, such that x, =x,,; =x,,,, then it is easy to be proven that
u = x,, is a sharing fixed point for §; and S, . Therefore, let us assume that there
no exist three consecutive equal terms of the sequence {x,,} . Then by applying
the inequality (1), it is easy to prove the following inequalities:
S d(Txzp41,Tx2,)) S o f(d(Tx41,Tx2,)) + [ (d(Txgp g, X)) +
B/ (d (T3, Tz 1)

and
J(d(Txgy-1,Tx3,,)) < (S (d (T2, Txp1)) + S (d (DX, T2 ) +
+Bf(d (T2, Tx2p-1)) '
The above stated implies that for each n=0,1,2,... and A = ?_—Jf €(0,1) holds:
F (B0, T5,)) S A (A (T3, T 1) )
Moreover, the inequality (2) implies
F(d(Tx41,Tx,)) <A f(d(Txy, Txp)) 3

for each n=0,1,2,....So, the properties of metrics, the properties of the function
f and the inequality (3) imply
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S(d(Tx, T ) < %f (d(Tx,Txp))
for all mneN, n>m. According to this, the sequence {Tx,}is Caushy
sequence, and since (X,d) is a complete metric space, it is convergent
sequence. The mapping 7: X — X is subsequentially convergent, therefore the

sequence {x,} consists a convergent sub-sequence {Xn(ky) > 1€ it exists ue X

such that lim x,y=u. The continuity of 7 implies that lim Tx,;) =Tu.
k—o0 k—m

But, {Tx, )} is a subsequence of the convergent sequence {Tx, } . So,

lim Txn = lim Txn(k) =Tu.
n—0 k—0

Next, we will prove that u € X is a fixed point for the mapping S; .
S(d(Tu, TSu)) < f(d(Tu, Txpp42)) + f(d(Tx42, TS 114))
= f(d(Tu,Txpp42)) + f(d(TSy %241, TS 1))
< S d(Tu,Txpp42)) + 0 f (T, TSyu) + f (d (Txp041, TS2%241)) +
+ B/ (d(Tu,Txpp41))
= f(d(Tu,Tx»,.2)) + o(f (Tu,TSju) + f(d(Tx2541,TX042))) +
+PBf (d(Tu,Txz,41))
The mappings f and T are continuous, and applying the properties of metric
for n — oo in the last inequality, we get that
Fd@u,TSiw)) < of (Tu, TSju) +(1+ o+ B) £ (0)
But, 1-a>0 and [ -1 (0)={0}, therefo.re the last inequality implies
d(Tu,TSju)=0, that is TSu =Tu. Finally, since T is injection it holds that
Su=u, that u is a fixed point for the mapping S;. Analogously, u is fixed
point for S5, i.e. uis a sharing fixed point for the both S} and S, mapping.
Further, we will prove thatS; and S,have the unique sharing fixed point.
Let ve X be fixed point for S,,i.e. S,y=v.Then
Jd(Tu,Tv)) = f(d(TSu,TS,v)|)
<ol f(d(Tu,TSu)) + f(d(Tv,TS,v))) + Bf (d(Tu,Tv)
=a(f(d(Tu,Tu))+ f(d(Iv,Tv)))+ Bf (d(Tu,Tv)
=20/(0)+Bf (d(Tu,Tv).
And since 1-B>0 and f_l(O) = {0}, applying the last inequality we get that
d(Tu,Tv) =0, i.e. it holds that Tu=T7v.
But since T is injection, we get that u =v, that is S; and S, have a unique
sharing fixed point. m
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Corollary 1. Let (.X,d) be a complete metric space S|,S,: X > X, f€®
is such that f(a+b)< f(a)+ f(b), for all a,be[0,+0) and the mapping
T:X — X be continuous, injection and subsequentially convergent. If it exists
A €(0,1) such that

SdTSx,TS20) SAY (A Tx. TS %) [ d (T, TS,»)) -/ ([d(Tx. T
for all x,y € X, then S| and S, have an unique sharing fixed point.

Proof. The arithmetic-geometric mean inequality implies that

F@(TSx,TS,0)) < 2 (F(d(Tx,TSp0) + £ (d(Ty,TSo0) + f(@d(Tx. 1))

for all x,ye X. Applying the Theorem 1 for OL:BZ% we get the above

corollary. m

Corollary 2. Let (X,d)be a complete metric space S1,5, : X > X, €@
be such that f(a+b)< f(a)+ f(b).for all a,be[0,+0) and the mapping
T:X — X be continuous, injection and subsequentially convergent. If there
exist o> 0, =0 such that 2o+ 3 €(0,1) and

SAT TS (AT TS) | ap
T a5y Fd Ty 15,y Y (@T519),

for all x,y € X, then §; and S, have a unique sharing fixed point.

Fd(TSx,TS>y) <o

Proof. The inequality (1) is a direct implication of the given inequality. m

Corollary 3. Let (X,d)be a complete metric space 51,5, : X > X, €@
be such that f(a+b)< f(a)+ f(b).for all a,be[0,+00) and the mapping
T:X — X be continuous, injection and subsequentially convergent. If it exists
a €(0,1) such that

S@(TSx,TSy)) < ol f(d(Tx, TS1x) + f(d(Ty, TS))) ,
forallx,y € X, then S; and S, have a unique sharing fixed point.
Proof. The proof is directly implied by Theorem 1, for f=0. m

Corollary 4. Let (X,d)be a complete metric space S,5, : X > X, €@
be such that f(a+b)< f(a)+ f(b),for all a,be[0,+0). If there exist
a>0,>0 sothat 2a+p < (0,1) and

Sd(S1x,5,9) <o(f(d(x,51X) + f(d(y,520)) +Bf (d (x, 1))
for all x,y € X, then S| and S, have a unique sharing fixed point.

Proof. The mapping 7:X — X determined as 7x=x e HeNpeKUHATO,
nHjeknmja u subsequentially convergent.
Therefore, the proof is directly implied by Theorem 1, for 7x=x . m
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Corollary 5. Let (X,d)be a complete metric space S},5, : X > X, f€@
be such that f(a+b)< f(a)+ f(b).for all a,be[0,+0). If it exists o € (0,%)
so that

Fd(S1x,8,p) <a(f(d(x,S1x) + f(d(y,S,))), forall x,ye X itholds,
then S; and S, have a unique sharing fixed point.

Proof. Direct implication from the Corollary 3 for 7x = x or the Corollary 4
for f=0.m

Corollary 6. Let (X,d)be a complete metric space 51,5, : X > X, €O
be such that f(a+b)< f(a)+ f(b),for all a,be[0,+0) and the mapping
T:X — X be continuous, injection and subsequentially convergent. If there
exist p,geN anda >0,8>0 such that 2o+ €(0,1) and

S@A(TSEx,TSTy) <ol f(d(Tx, TS x)) + f(d(Ty,TS3 ) +Bf (d (Tx, Ty)
for all x,y e X, then §; and S, have a unique sharing fixed point.
Proof. The Theorem! implies that the mappings Slp and Sg have a unique
common fixed point # € X . So, Slp u =u and therefore
Sju=8(Sfu)=SP (S),
that is Syu is a fixed point for S . Analogously, SJu=u implies that
Sou =S85 (S5u) =89 (Syu),
that is S,u a fixed point for qu . But, the proof of the Theorem1 implies that
S{ and S has unique fixed points. Therefore Sju=u and S,u =u . According

to this, # € X is a common fixed point for S} and S,.
For ve X is an arbitrary fixed point for S} and S, , we get that it is also a

common fixed point for S/ and S§. But the mappings S/ and S§ have a

unique common fixed point, and therefore v=u.m

Remark. The function f:[0,400)—[0,+o0) defined as f(#)=¢, for each
t€[0,1), it is a function of @ class and it is a subadditive. Morcover, cach
sequentially convergent mapping 7:X — X is sub-sequentially convergent
mapping. Therefore the Theoreml and the Corollaries 1-6 [5], are directly
implied by the above proved the Theorem | and the Corollaries 1-6,
respectively.
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Some fixed point theorems in S-complete spaces

Tomi Dimovski!, Pavel Dimovski?

Abstract

In this article we prove the existence and the uniqueness of a fixed point
for a self-map f on a S-complete space (X, 5) such that for all z,y,z € X,
S(fx, fy, f2) < CF,(S(x, u,9)+S(w, 2,9)+S(z, 2,2) for 0 < C < 1/6,
or S(fz, fy, fz) < Cmax{S(a,b,c)|la,b,c € {zr,y,z}} for 0 < C < 1.

Mathematics Subject Classification. 45H10, 54H25
Keywords. S-metric space, S-complete spaces, Fixed point

1 Introduction

The Banach fixed point theorem [1] is a very simple and powerful theorem with
a wide range of applications. It has been used by many authors for solving
linear, nonlinear differential and integral equations and more recent in partial
equations, fractional equations, dynamic systems, Cauchy boundary problems.
Through the years this theorem has been generalized and extended by many
authors in various ways and directions,

Tn 1963 Gahler [2] gave the concept of 2-metric space. We refer to [4] for fixed
points in 2-metric space. Further, in 1992 Dhage [3] introduced the concept of
D-metric spaces, as a modification of the concept of 2-metric space. In 2003
Mustafa and Sims in their paper [5] demonstrated that most of the claims con-
cerning the fundamental topological properties of D-metric spaces are incorrect.
They made an attempt to fix these problems in 2005 in [6] and these attempts re-
sulted with the introduction of the concept of G-metric space. They proved the
existence of fixed points of various contraction type mappings. Other authors
also did some research in the area of fixed point concerning G-metric spaces,
c.f. [7]. In 2007 Sedghi in [8] modified the concept of D-metric space and in-
troduced the concept of D*-metric space. He also proved a fixed point theorem
in D*-metric space. Later in 2012 Sedghi, Shobe and Aliouche [9] introduced
the concept of S-metric space which differs from the previous type spaces and
proved some fixed point theorems in S-metric spaces.

As a motivation for this research we present a simple example of the use of
fixed point technique in solving Cauchy initial value problem. We start with
countinious real valued function on [a,b] x [¢, d]. The Cauchy initial value prob-
lem consists of finding a continuously differentiable function y on |a, b] satisfying

57
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the equations
dy

o Jz,y), yl@o) = wo. (1)

We consider the Banach space Cla,b] of countinuous real valued functions
equiped with the norm ||y|| = sup{y(x)|z € [a,b]}. Integrating the equation
(1) one obtais the following

Mﬂ:m+[f&mmﬁ 2)

The problem (2) is equivalent with the problem (1). We define the operator
T : Cla,b] — Cle, d] with

iw:w+f3mmmﬁ. (3)

Hence solving (3) reduces to finding fixed point of the operator T'.

The main problem of finding the fixed points of similarly defined operators
is to find conditions concerning the operator 7" such that it becomes some kind
of contraction.

2 Preliminaries

The notation, definitions and elementary results given in this section are from
[9]. We give the basic definitions concerning S-metric space, i.e. S-convergent
sequence, S-Cauchy sequence and S-complete space, then some known examples
and basic properties of S-metric spaces.

Definition 2.1. Let X be a nonempty set. A function S : X? — R s ealled
an S-metric on X, if for each x,y, z, a € X the following conditions are satisfied

(S1) S(x,y,2) =0 if and only if v =y = z; and
(82) S’(Iv Y, Z) S ‘S’(I:I‘, a’) aa ’Sl(y7 Y, (l’) + b’(Z’ 25 a’)'
The pair (X, S) is called an S-metric space.

Lemma 2.2. (/9]) Let (X, S) be an S-metric space. Then S(x,x,y) = S(y,y, x),
for all z,y € X.

Definition 2.3. A sequence (), in a S-metric space (X, S) is called S-
convergent, if there is x € X such that S(xy, x,,2) — 0, as n — 0.

Definition 2.4. A sequence (@, );2 in a S-metric space (X,S) is called S-
Cauchy, #f S(xy, Tp, Tm) — 0, as n,m — 0.

Definition 2.5. An S-metric space (X,S) s called S-complete, if every S-
Cauchy sequence in X converges in X.
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Concerning the topology one has the following.

Definition 2.6. ([9/) Let (X,5) be an S-metric space. For x € X and r > 0,
the open ball Bg(x,r) is the set

Bg(a,r) ={y € X : Sly,y,2) <r}.

Let 7 be the set of all A € X such that for all z € A there exist » > 0 and
Bgs(z,r) C A. Then 7 is a topology on X induced by the S-metric 5.

Lemma 2.7. ([9]) Let (X,S) be an S-metric space. For x € X,r > 0 the ball
Bg(xz,r) is an open subset of X.

Trivially but worth mentioning is the fact that the sequence convergence in
(X, 8) is equivalent with 7 convergence, where 7 is induced by the S-metric S.

Example 2.8. Let X = R" and || - || be a norm on X. Then S(z,y,z) =
|l + 2z = 2x|| + ||y — || is an S-metric on X.

Example 2.9. Let X be a nonemply set and d be an ordinary metric on X.
Then S(z,y,2) = d(z, z) + d(y, z) s an S-metric on X.

Example 2.10. Let X = [0,1]. We define S : X® = R} by:

0 L=y =2
Slz,v,2) = 2
(, 3, 2) { max{x,y,z} ,otherwise

Then S is an S-metric on X.

Example 2.11. Let X be a nonempty sel and di,dy are two metrics on X.
Then S(z,y,z) = di(z,2) + da(y, ) 18 an S-metric on X.

Example 2.12. If X is a vector space over R and || -|| is a norm on X, then
S(z,y,z) = |lay + Bz —vz| + ||y — z||, where o+ 8 = v for every o, 3 > 1, is
an S-metric on X.

3 Main results

The main idea of this article is to define certain self-mapings on (X, S) and to
prove the existence and the uniqueness of their fixed points.

Theorem 3.1. Let f be a self-map on an S-complete space (X,S) such that

S(fz, fy, f2) £ O3, (S(@,9,9) + Sy, 2,9) + S(z,2,2)) for all z,y,2 € X,
where 0 < C < 1/6. Then f has a unique fived point. The sum s over all eyclic
permultations of the triple (z,y,z).

Proof. Plugging y = a in to the condition for the mapping f and one obtains

S(fx, fz, fz) <2C(8(z,z,2) + S(z,2,2)) + C(5(z, 2,2) + S(z,2,2)). (4)
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Directly from (52) in the definition (2.1) it follows that S{z, y, z) < S(y, v, x)
and S(z,y,y) < S(z,z,y) for all z,y € X. Applying these inequalities in (4)
we obtain,

S(f:ﬁ,ff[‘, f/:) E 2(?(3(27'3717) + S('T7 €, 3)) + C(b’(m,m,z) + S('Zv 371:))'
Lemma 2.2 implies
S(fz, fz, fz) < 6CS(z,2,2) = MS(z, 2, 2). (5)
where 0 < 6C = M < 1.

Let zp € X be an arbitrary point. We take the orbit of xg, i.e. the sequence
(2n)2 | defined with the conditions: @y = f(20), #2 = f(z1) = fPza)s .. a0 =
S (xo), - -+ . For simplicity, we use the notation fz, for f{z,). Then we have

S(-’Em L, xn+i) = A’IS(:L‘n—l,- Lp—1, xn) < A'fzg(xn—ﬁy Ln—2, xn—i)
< M™S(zp,xo,21).
Thus, since 0 < M < 1,

lim S(zy,, xp, Tpeq) = 0. (6)

n—oo

o]

Next, we will show that the sequence (z, )5

of (z,);2, and (S2) we obtain
S(Tny Try Tm) < S(@ny Tny fTn) + S(Tny Tny f20) + S(Zrmy Tm,y f20)
= 28(n, Tws L)+ S(@ims 2w f2a)
< 280w, @n; fon) + S(Bmi; By FBm) + S(@m, Bons fm ) + S 2n, 2, fim)
=2[S(@n, Tn, fn) + S(@m, Tm, f2m)] + S(F2n, fon, fTm).

Choosing = = z,, and z = x,, in inequality (5), one obtains S(fz,, fa,, fr,) <
MS(xy, 20, Ty ), hence

is S-Cauchy. From the definition

S(zn, Tn, 2m) < 2[5(2n, 2n, f2n) + S(@m; Tm, fom)] + MS (T, Tn, Tm).

(1 = M)S(#5;En; Ton) < 2[8(8n; 2a; FT0) + S(0m; s Fm )]s

S(In: Ty A'I—'m) < 2/(1 = M)[S(irn s Ty fli-n) + S(l'ma Loy f«Tm)]
From (6) it follows that S(z,,z,, zy) — 0, as n,m — oo, ie. the sequence

(x,, )52 is S-Cauchy. Since (X, S) is S-complete, there exists p € X such that

liri 5S{am, e, ) =0 (7)

Next we will prove that p € X is a fixed point for f. Using (52) and Lemma
2.2 we obtain
S(fp, fp,p) < S(fp, fp, fxn) + S(fp, fp. fon) + S(p,p, f2n)
— 95(fp, fp, fn) + S(p,p, fan)
= 28(fxn, fon, [p) + S(f&t'”; fan,p).
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We choose z = 2, and 2 = pin (5) and obtain S(fzy,, fo,, fp) < MS(z,, z,, p).
Hence, S(fp, fp,p) < 2MS(x,,x,,p) + S(f2n, f,,p). On the other hand,
S(f;f"m fl'mp) < 25(f$n: fl'm J:ﬂ-)+S(p»P: 'rﬂ) = LS(:IH,(L'R,f:I:ﬂ)‘FS(:L‘n,:L‘n,p),
Thus,

S(fp, fp,p) < (2M + 1)S(@n, 2n, p) + 25(n, Tn, Tnt1)- (8)

As n — oo, from (6) and (7) it follows that S(fp, fp,p) =0, i.e. fp = p. Next
we will show the uniqueness of the fixed point p. Let g € X be another fixed
point for f. Then we choose = p and z = ¢ in (5) and obtain S(p,p,q) =
S(fp, Ip, fa) € MS(p,p,q), ie. (1 —=M)S(p,p,g) <0. From0 < M < 1it
follows that S(p,p,q) = 0. Thus, p = q. O

Theorem 3.2. Let f be a self-map on an S-complete space (X,S) such that
S(fz, fy, fz) < Cmax{S(a,b,c)la,b,c € {z,y,2}} for all x,y,z € X, where
0<C < 1. Then [ has a unique fized point.

Proof. 1f we set y = z in the inequality defining f we obtain

S(fz, fz, £z) < Cmax{S(a,b,c)la, by c € {z,2}}
=0 maxlS (5,0, 8), 5, 52,5808 &,2); 8z, £,:5),
‘9(‘1:’ '1"7 2’)' ‘S'(:L‘, Z! T)’ 3(27 "r’ J:), S(Z' z! 2)}

From Lemma 2.2 and (52) we obtain S(z, z, z) < S(z, 2, 2), S(z,z, 2) < S(z, z, 2),
Sz, zz) € 8(z,2,2) = S(z,z,2) and S(z,x,2) < S(z,2,2) = S(x,z,2).
Hence, S(fz, fz, fz) < CS(z,x,z). The rest of the proof is analogous to the
previous theorem.

|
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Moore-Penrose Hermitian elements in
rings with involution

Marina Tosi¢, Natasa Kontrec, Eugen Ljajko

Abstract

A Moore-Penrose invertible element in rings with involution is
Moore-Penrose Hermitian if Moore-Penrose inverse is equal to the
element itself. In this paper, we present a number of new characteri-
zations of Moore-Penrose Hermitian elements in rings with involution
in purely algebraic terms.

2000 Mathematics Subject Classification: 16899, 16W10, 461.05
Key words: Moore-Penrose Hermitian elements, group inverse, Moore-
Penrose inverse, ring with involution

1 Introduction

Let R be an associative ring with unity 1, and let ¢ € R. Then a is group
invertible if there is @ € R such that

(1) adla=a, (2) daa® =, (3) ad® = d*a.
Recall that of is uniquely determined by previous equations. We use R? to
denote the set of all group invertible elements of R.
An involution ¢ — @* in a ring R is an anti-isomorphism of degree 2, that
is,

(1) @) =a, @) @+ =a" +b°, (3) (ab)* = b*a".

In the rest of the paper, we assume that R is a ring with involution. An
element a € R satisfying aa* = a*a is called normal.
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The Moore-Penrose inverse of a, is the unique element af satisfying the
equations

(1) aata = a, (2) dlaal = af, (3) aa’ = (ac")*, (4) a'a = (a'a)*.

The subset of R consisting of elements of R that have a Moore-Penrose
inverse will be denoted by RT.

Several characterizations of elements a € R such that aa’ = afa can
be found in the literature (see [1], [6], [7], [8] and [10]). These elements are
called EP. For a ring with involution R, we will denote RE” = {a € R :
aa’ = atal.

An element a € R satisfying a*a’ — ala* is called star-dagger.

A characterization of nonnegative matrices which are equal to their Moore-
Penrose inverse is derived by Berman in [2]. Many years ago, the concept
of Moore-Penrose Hermitian elements in C*—algebras was introduced by .
Boasso [3]: Let A be a C*-algebra. A regular element a € A is Moore-Penrose
Hermitian if at = a. The definition of Moore-Penrose Hermitian elements can
be generalized to elements in rings with involution.

Definition 1.1 If R is a ring with invelution, and o' is the Moore-Penrose

inverse of a € RY, then the element a is called Moore-Penrose Hermitian if
t

a’ = a.

The following result is well-know and frequently used in the rest of the
paper.

Theorem 1.1 /4, 9] For any a € R, the following is satisfied:
@ (ah =a,
(ii) a* = alaa* = a*aal.

In [2] and [5], authors used the representation of complex matrices to ex-
plore various property of Moore-Penrose Hermitian matrices. In this paper,
we use a different approach, exploiting the structure of rings with involution
to investigate Moore-Penrose Hermitian elements. We give several charac-
terizations, and the proofs are based on ring theory only.
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2 Results

E. Boasso proved the following result in [3].

Proposition 2.1 Consider a C*-algebra A and an element a € A. Then the
following statements hold:

(i) Necessary and sufficient for a to be a Moore-Penrose Hermitian is a

a* and (a®)* = a?,

(i) If a is a Moore-Penrose Hermitian, then a™ also is, n € N.
(iil) The element a is o Moore-Penrose Hermitian if and only if a* is.

(iv) If a is a Moore-Penrose Hermilian, then o(a) € {0,—1,1}, where o(a)
denotes the spectrum of a.

Observe that the previous proposition holds on Moore-Penrose Hermitian
elements in rings with involution. Some new characterizations of Moore-
Penrose Hermitian elements in rings with involution are given in the following
results.

Theorem 2.1 Let R be a ring with involution and a € RY. Then a is
a Moore-Penrose Hermition if and only if one of the following equivalent
conditions holds:

(i) a' is a Moore-Penrose Hermitian,
a* = (a*)? and (a®)* = a?,
a' = (a')?* and ((a')?)* = (a')?,

a=a® and a is an EP element,

)
)
)
(v) a* = (a*)® and a* is an EP element,
) at = (a)® and o' is an EP element,
) a=a® and ataaat = aatala,
) at = (a)* and ataca’ = aa'ata,
)

*

a* = aaa* (or a* = a*aa),
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(x) a = a*a*a (ora = aa*a*)

(xi) a=a* and af = aa*a* for a = a* and a' = a*a*a),

(xiii) aa' = ata" (or ala = a'al),

)
)

(xii) a'a — aa (or aa’ — aa),
)

(xiv) a' = alaa (or a' = aaa’),
)

(xv) a=aa'al (ora=adlala).

Proof, If a is is a Moore-Penrose Hermitian, then it commutes with its
Moore-Penrose inverse and af = a. Tt is not difficult to verify that conditions
(iif)-(xiii) hold.

Conversely, to conclude that a is is a Moore-Penrose Hermitian, we show
that the condition af = a is satisfied, or that the element is subject to one
of the preceding already established conditions of this theorem.

(i) From (a")! = a' and (af)! = a follows a = a. Hence, the element a is
a Moore-Penrose Hermitian.

(ii) The conclusion follows by (i) of Proposition 2.1 and (iii) of Proposition
2.1,

(iii) The conclusion follows by (i) of Proposition 2.1 and (i).

(iv) Suppose that a = a® and aa' = a'a. Then

al = (a"2a = (a")?d® = (" ?a)a® = d'a® = a.

(v) The conclusion follows by (iii} of Proposition 2.1 and (iv).
(vi) The conclusion follows by (i) and (iv).
(vii) From a = a* and alaaa’ = aa’a’a, we get

3.1

CLCLJr —aa — (JE(J,CI.T(ICI(J‘.Jr

T Tl

= d*alala = aatata

and, similar,

afa=d'a® = afaaataa = aa'ala® = aatala.

Thus, aal = afa and the condition (iv) is satisfied.
(viii) The conclusion follows by (i) and (vii).
(ix) If a* = aaa*, then
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{I‘Z - a(ax)* - O.(LZQ(I,*)* - (12((52)* - (G2CL*)(L* — ata* = (a2)*.

Multiplying a? = (a?)* by a, we obtain a® = a(a*)?. Now,

a = (a»)* = (a2a$)* — a(a*)Q = CES.
Hence, the condition (i} of Proposition 2.1 holds.
If the equality ¢* = a*aa applies, then the proofl is analogous.
(x) The conclusion follows by (iii) of Proposition 2.1 and (ix).
(xi) Applying a' = aa*a* and @ = a®, we have
a* = alaa* = a(a*)’aa’ = a*(a*)?aa’ = a*(a(a’)?)aa* = a*a’aa’ = a’a’.
Therefore, the condition (ix) is satisfied.
If the equalities @ = a® and a = a*a*a hold, then the proof is analogous.
(xii) The equality a'a = aa gives

a* = a*aa’ = a*a’
Hence, the condition (ix) holds.
If the equality aal — aa applies, then the proof is analogous.
(xiii) The conclusion follows by (i) and (xii).
(xiv) Suppose that a' = a'aa. Then

f

aa' = aa'aa = aa.

Thus, the condition (xii) is satisfied.
If the equality a' = aaa’ holds, then the proof is analogous.
(xv) The conclusion follows by (i) and (xiv). O

In the following theorem, we assume that the element @ is both Moore-
Penrose invertible and group invetible. Then, we study the conditions in-
volving a', a* and a to ensure that a is a Moore-Penrose Hermitian element.

Theorem 2.2 Let R be a ring with involution and a € RY. Then a is a
Moore-Penrose Hermitian if and only if a € A and one of the following
equivalent conditions holds:

(i) a'a = dtal.

(i) a= ataal.
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(iii) afa* = dfa.
(iv) @ = afafal.

Proof. (i) Multiplying a'a = afa’ by a? from the left side, we get aa = aal.
Hence, the condition (xii) of Theorem 2.1 is satisfied.

(i) Using a = ataa®, we obtain aa — a'(aafa) = a'a. Thus, the condition
(xii) of Theorem 2.1 holds.

(iii) When we multiplying afa* = a*a by a? from the right side, we have
a'a = aa. Hence, a satisfies the condition (xii) of Theorem 2.1.

(iv) Multiplying the equality a* = afafa® by a from the right side, we
obtain the condition (iii):

a'd’ = ofa.0

Finally, we prove the result involving Moore-Penrose Hermitian elements
in a ring with involution.

Theorem 2.3 Let R be a ring with involution and let a € R. If a is Moore-
Penrose Hermitian and star-dagger, then a is normal.

Proof. Using af = @ and a*al = afaf, we get

a*a = a*a® = a*(a")® = (a")%a* = aa* = aa”.

Thus, a is normal. [J

3 Conclusions

In this paper, we consider Moore-Penrose invertible or both Moore-Penrose
invertible and group invertible elements in rings with involution to charac-
terize Moore-Penrose Hermitian elements. In the theory of complex matrices
various authors used an elegant respresentation of complex matrices to inves-
tigate Moore-Penrose Hermitian matrices. In this paper, we applied a purely
algebraic technique, involving some characterizations of the Moore-Penrose
inverse.
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KNOT BENDING
UDC: 514.752.4:515.127.2
Marija S. Najdanovi¢, Ljubica S. Velimirovi¢, Svetozar R. Rancié

Abstract. In this paper we point out the geometric aspect of knots. By the term
knot we mean a closed sclf-avoiding curve in a 3-dimensional Euclidean space.
We consider infinitesimal bending of knots and examine the behavior of torus
knots under this type of deformation.

1. INTRODUCTION

A knot is a closed, self-avoiding curve. From the topological point of view,
we have more general definition. In order to give a topological definition, some
basic terms will be introduced.

A homeomorphism between two topological spaces is continuous bijection
h: X — Y whose inverse is also continuous. If such a map exists, then X and Y
are homeomorphic or topology equivalent.

Let be given a smooth closed curve € in R3. The homeomorphic curves C,
C' are called isotopic if there exists a continuous family of curves C; depending
ont, (0 <t < 1), such that C; is homeomorphic to C, C, = € and C; = C'. We
say that C is a knet if it is homeomorphic to a circle but is not isotopic to a
circle.

According to this definition, another knot C’ is equivalent to C if it can be
continuously deformed into C without crossing itself during the process.
Equivalent knots are considered the same in the topological sense and determine
an equivalence class of knots named knot type. It is therefore possible to think
of a knot as a curve with small but positive thickness which allows us to present
it as a tube. But in geometrical sense we can observe a particular representative
of a knot type as a closed self-avoiding curve in 3-dimensional space.

The simplest knot is the unknot also known as the trivial knot which can be
deformed to a geometric circle in R3. Two other rather easy knots are the
trefoil and the figure-eight knots.

In classical knot theory, mathematicians are often interested in knot classes
and how to distinguish between them. Contrary to this approach, geometric knot
theory deals with the specific shape of knots and how to find or compute
particularly nice representatives of a given knot class. In this sense knot theory

2010 Mathematics Subject Classification. Primary: 53A04, 53C45, 57M25
Secondary:

Key words and phrases. Knot, infinitesimal bending, variation, Frenet-Serret
frame, torus knot
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studies relations between the geometry of space curves and the knot types they
represent. Therefore, in geometric sense we could observe small deformations
of knots as the family of different curves.

Knots are interesting not only from a mathematical point of view, but also
from the aspect of other sciences such as physics, chemistry, biology, computer
graphics, etc. (see [2], [3], [5], [10]).

The study of deformations dates from the ancient times and stems from
purely practical problems. In physics, a deformation means a change of a shape
of body under the influence of the external or internal forces. In the case when
the body returns to its original shape after the termination of the effect of forces,
it is said to be elastic, otherwise, if it is deformed permanently, we say it is
plastic. Testing of deformations of different materials is of great importance in
civil enginecring. Mcasurement of deformations of high buildings allows us to
provide an adequate level of safety and security from potential damage and
disaster. Deformations are in close connection with thin elastic shell and have a
huge application from the mechanical point of view. In biology, the notion of
deformation has also found his place. We are talking about the elasticity of the
cell membrane in connection with the fluidity that allows the proteins to move
along the membrane.

In geometry, the problem of deformations is covered by so-called the surface
bending theory. The surface bending theory considers the bending of surfaces,
ie. the isometric deformations, as well as the infinitesimal bending of surfaces.
Under bending, surface is included in continuous family of isometric surfaces,
so that any curve on the surface preserves its arc length. The angles are also
preserved. On the other hand, infinitesimal bending of surfaces is not an
isometric deformation, or roughly speaking it is an isometric deformation with
appropriate precision. Arc length is stationary under infinitesimal bending with
a given precision. In the case of infinitesimal bending the surface is deformed so
that in the initial moment of a deformation, the arc length on the surface is
stationary, i. e. initial velocity of its change is zero.

In addition to infinitesimal bending of surfaces, infinitesimal bending of
curves and manifolds is also considered in bending theory.

In the present article we consider infinitesimal bending of a knot as a closed
simple curve. Some papers related to this topic are [4], [6], [8], [9].

2. INFINITESIMAL BENDING

Let us consider a regular curve
C:r=r(u), uejcR? (1)
of a class C*, k > 3, included in a family of the curves
Cor.(w) =r@) + ezP@W) + e2z@ W) + -+ emz™M @), m=>1, (2)
where € = 0, € — 0, and we get C for € = 0 (C = C,). The fields z0)(u) €
Ck k=3, j =1, ...,m, are vector functions defined in the points of C.
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Definition 1. [1] A family of curves C, (2) is an infinitesimal bending
of the order m of the curve C (1) if

ds? — ds? = o(e™). 3)
The field z9) = zU) (u) is the infinitesimal bending field of the order j,
j=1,..,m, of the curve C.

Based on the definition of the infinitesimal bending of the order m and Eq.
(3), the next relation is valid
dr? — dr? = (dr, — dr) - (dr. + dr) = o(e™).
From here we have

m m
d Zejz(j) -d 2r+2€jz(j) =o(e™),
j=1 j=1

or more precise
(edz® + €2dz@ + - + e™dz(™)
- (2dr + edz® + €2dz® + - 4+ €™dz™) = 0(e™).
The necessary and sufficient condition for the left side to be infinitesimal value
with respect to €™ is to be

dr-dz® =0, 2dr-dz® + Y1 dz® -dzUD =0, j=2,..,m. (4
According to that, the next theorem states.

Theorem 1. [1] Necessary and sufficient condition for the curves C, (2), to be
infinitesimal bending of the m —th order of the curve C, (1), is to be valid (4).

If infinitesimal bending is reduced to rigid motion of the curve, without
internal deformations, we say it is trivial infinitesimal bending. The
corresponding bending field is also called trivial.

Specially, infinitesimal bending of the first order, or shorter, infinitesimal
bending, is a family of curves

Ceire(u) =r(0) + ez(w),
where z(u) is an infinitesimal bending field (of the first order).

The following theorem is related to determination of the infinitesimal bending

field of a curve C.

Theorem 2. [12] The infinitesimal bending field for the curve Cis

z(w) = [ [pn; (W) + q(Wn, (W] du, (5)
where p(u) and q(u) are arbitrary integrable functions, and vectors ny (u) and
n, (u) are respectively unit principal normal and binormal vector fields of a
curve C.

Similarly, for the infinitesimal bending of the second order we have the
following theorem.
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Theorem 3. [7] The infinitesimal bending fields of the first and the second
order of the curve C are respectively
z) =2f [P(u)rél(u) +qwn; (W] du,
Lo [Lrwrew
2|1#|

where p(u),q(u),r(u), g(u) are arbitrary integrable functions and vectors
t(u), ni(u), ny(u) are unit tangent, principal normal and binormal vector
fields, respectively, of the curve C.

t+r(wn; + g(u)nz] du,

Under infinitesimal bending, geometric magnitudes of the curve are changed
which is described with variations of these geometric magnitudes.

Definition 2. [11] Let A = A(u) be a magnitude which characterizes a

geometric property on the curve € and A (u) the corresponding magnitude

on the curve C, being infinitesimal bending of the curve C, and set
AM=A,—A=€eSA+€?5%A+ -+ €"S"A + -

The coefficients 84, 624, ...,6™A are the first, the second, ..., the n-th

variation of the geometric magnitude A, respectively, under the infinitesimal

bending C, of the curve C.

3. INFINITESIMAL BENDING OF KNOTS

In geometric sense, small deformations of a knot (a particular curve from the
corresponding knot type) can be considered as the family of different curves. We
are going to demonstrate this fact through examples.

Let us consider the trefoil knot
r(u) = (4cos2u+2cosu,4sin2u — 2sinu,sin3u).
The field
dr d’r

= —_— X —
z du  du?

3 12
du = (60cosu — 6 cos2u —Ecos4u +?cos 5u,

3 12 16
—60sinu — 6sin2u + Esin 4u + ?sin S5u,124u — ?sin 3u),

u € [0,2r], is corresponding infinitesimal bending field. This field is obtained,

2
% . Obviously, z(0) #
z(2m), and the knot "is torn" under this infinitesimal bending, see Figs. 1.

If we want to get a family of closed curves under infinitesimal bending of a
knot, we must specify the condition z(0) = z(2m) for the infinitesimal bending
field.

dr
— X
du

according to (5), for p(u) =0 and q(u) = |
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Figure 1: The trefoil knot and its infinitesimal bending for
€ = 0.0005,0.001,0.0015,0.002.

dr _ d?r dr
For p(u) = || (G x 42) X &

J‘ dr d?r xdrd
= —_— X — B —
z du  du? au
. . . 46 9 .
= (303 sinu — 540sin 2u ——sin 4u + ?sm Su+ = sin 7u
9 . 53 46
+ Zsm 8u,303 cosu + 540 cos 2u — 7005 4qu — ?cos 5u

9 9
+ 7 cos 7u — 708 8u,—12(—17 cos 3u + cos 6u)).

, g(w) = 0, we obtain

All bent curves are also closed, see Figs. 2.
4. FRENET-SERRET FRAME UNDER INFINITESIMAL BENDING

Let us consider an infinitesimal bending of the second order of the knot
C:r=r(s) = r(u(s)), s € I € R, parameterized by arc length s:
Ce:re(s) = r(s) + ezV(s) + €223 (s).
Since the vector fields z(" and z® are defined in the points of C, they can be
presented in the form
7z = 72D + zl(])n1 + zgj)nz, i=12,

6] )]

where zU)t is tangential and zy'ng + z; Y ),

n, is normal component, z(), zy
zéj) are the functions of s; t,n;,n, are unit vectors of Frenet-Serret frame

which form an orthonormal basis spanning R3.
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Figure 1: The trefoil knot and its infinitesimal bending for
€ = 0.00025,0.0005,0.00075,0.001.

Under infinitesimal bending of the second order of knots, unit vectors of
Frenet-Serret frame make changes which is described by their variations of the
first and the second order. Most of them have already been determined. Thus,
8t,6n,,6n,, 6%t are obtained in [7], and §%n, in [8]. It remains to examine
5%n,, which we will do below.

Theorem 4. Under second order infinitesimal bending of the knot C, the second
variation of the binormal vector is

8%n, = fit+ fu g + fomy,
where

fi=— (zéz)’ + Tzl(z)) + % (kz(l) + Z§1)I - TZél)) (kTZ(l) + Z‘L'zl(l), +
T’Zl(l) + Zél)” - rzzgl)),

fo, = %{kgt + 9n, — TGn, + k (kz(z) + z}z)’ - TZéz)) + (k’z(l) + 21(1)” +
(k? — ‘L'Z)Zl(l) - 212&1), - T’Zgl)) (kz(l) + 21(1)’ - ‘rzz(l)) +
%[T’Z(l) + Zszfl) + kzél)’ + G (ZTZP)’ + T'Zil) + 251)” -
Tzzgl))) ’] (k'cz(l) + 2'[21(1)’ + T’Zfl) + Zél)” - Tzzél))},

’ 2 ’ "
= Lz +z2D) + 2 (krz® 4 2020 4 072D 4 D7
2 2 2 1 k2 1 1 2

rzzél))z],
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k is the curvature, 7 is the torsion, g¢, g,,, gn, are the tangent, the normal and
the binormal component of §2n;, respectively.
Proof. Applying the second variation of the equation n, - t = 0 , we obtain
t-6%n, = —n, - 6%t —4n, - 6t.
We used here the following property of the second variation:
8%AB = A6*B + B6%A + 5ASB,
whereby A and B are some magnitudes which characterize some geometric
properties of the knot. If we use the expressions for t, §tand dn, from [7],
we obtain f; = t- §%n,.
Further, if we take the second variation of the well-known second Frenet-

Serret cquation n; = —kt + tn, and dot with n;, we obtain
n,-6%n, = %(n1 -62n," + kn, - 5t + 8k n, - 6t — 5tn, - Sny).
Since mny -6%n} =n, - (6%n,)’, after using the Frenet-Serret equations we
obtain
n, - 8% = kg + gn, — Tn,

where g¢, gn,, gn, are the tangent, the normal and the binormal component of
82ny, respectively. Also, using the expressions for 8k and &t [7], we obtain
n, - §%n, = oy

Finally, we will determine the binormal component of §2n,. Using the second
variation of the equation n, - n, = 1, we obtain

1
nz . 62112 = —55112 " 6“2.
Applying &n, from [7] we obtain f,,, = n, - §%n,. a)

5. TORUS KNOT BENDING

A torus knot is a special kind of knots that lies on the surface of a torus.
The parametric equations of (p, g)-torus knot are:

x(t) = (c + acospt) cosqt,

y(t) = (c + acospt)singt, (6)

z(t) = asinpt,
t € [0,2m), a, c € R. The parametric equations of a torus are:

x(u,v) = (c + acosv)cosu,

y(u,v) = (c + acosv)sinu, 7

z(u,v) = asinv,
whereby the c is the distance from the center of the tube to the center of the
torus (major radius), and the a is the radius of the tube (minor radius).

Let us determine an infinitesimal bending field so that all bent torus knots
are on the same surface of the torus with a given precision, i.e.

F(x(t),y(t),z(t)) =0,
F(xe(t), Ye(£), 26 (1)) = o(e),

where F(x,y,z) = 0 is the implicit torus cquation.
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Theorem 5. Infinitesimal bending field z(t) = (z1(t), z,(t), z3(t))
satisfying the condition

z3(t) = —(z4(t) cos qt + z,(t) sinqt) cotpt (8)
includes the torus knot (6) under infinitesimal bending of the first order
into the family of deformed curves on the torus (7).
Proof. An implicit equation in Cartesian coordinates for a torus radially
symmetric about the z-axis is

(c~VEZ+72) +22=a? ©)

or the solution of F(x,y, z) = 0, where

F(x,y,z) = (c —Jx2+ yz)z + 2% — a®.
Let C be a torus knot that bends infinitesimally so that all deformed curves
are on the same torus with a given precision and let (6) be its parametric
equation. The family of deformed knots C, under infinitesimal bending is
(c + acospt) cosqt + €z, (t)
C.:{ (c+acospt)singt + €z,(t)
asinpt + €z;5(t).

Since the curves C, should be on the torus (7) ie. (9), it must be valid

2

(c —/((c + acospt) cosqt + €z, (t))2 + ((c + acospt) sinqgt + €z, (t))z)
+ (asinpt + €z3(t))? = a?,

after neglecting the terms of order higher than 1with respect to €. From the

last equation, after a little calculation, we obtain the condition (8) for the

infinitesimal bending field. o

By examining the condition (8) we check whether the deformed knot
remains on the torus. Also, using this condition we can determine the
infinitesimal bending field z taking into account the condition dr-dz =
0 & 1(t) - z(t) = 0. Thus, we obtain the infinitesimal bending field under
which all deformed curves are on the torus with a given precision.

6. CONCLUSIONS

The geometric knot theory includes the consideration of knots as space
curves which allows us to consider them from the point of view of
geometry. In this regard it is possible to distinguish different
representatives from the same knot type as an equivalence class. In this
paper we pointed out to this fact considering the infinitesimal bending of
particular representatives of knots. We examined the change of the unit
vectors of Frenet-Serret frame under this type of deformation. Finally, we
investigated the special kind of knots, so called torus knot, and its
infinitesimal bending on the torus.
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MAXIMUM RELIABILITY K-CENTER LOCATION PROBLEM

UDC: 519.872/.874:519.178
Natasa Kontrec, Biljana Pani¢, Marina Tosi¢, Mirko Vujosevié

Abstract. This paper presents an approach for solving the maximum reliability
k-center location problem. We are modifying the well-known p-center problem
in order to determine the location of the observed objects and maximize the
reliability of supply system coverage. The problem is defined as a stochastic
problem of multi-center location on a graph. As a solution, two new algorithms
have been proposed. The first is modified Dijkstra’s algorithm for determi-
nation of the most reliable paths between nodes in the graph. The output of this
algorithm is used as an input for the second algorithm designed to find the
reliability of node coverage from a predetermined number of nodes.

1. INTRODUCTION

There are numerous mathematical models formulated in order to solve
complex location problems. Some of these models are described in [1]-[3]. In
this paper, we are observing the location model with stochastic input data. We
present an algorithm for calculating the performances of a system as a basis for
finding the optimal location. Most of the models described in the existing
literature are deterministic but the practice showed that it is necessary to include
stochasticity in the facility’s location planning. Therefore, in this paper, a
stochastic model of k-centre location on the graph has been formulated to
determine the location of a given number of facilities to maximize the reliability
of the system. The problem refers to a network structure that is determined by a
graph whose nodes contain the locations of demand and potential facilities,
while the weight of the branches represents reliability, i.e. the probability that an
appropriate branch is available (operational). In the end, a new algorithm has
been formulated to determine the reliability of covering a node from & nodes (k -
covering reliability).

The location model with stochastic inputs has been studied in various
situations. A special case of a stochastic set-covering location problem was
studied in [4], while Alegre et al. [5] solved a stochastic facility location
problem for determining the best locations of health resources for patients who
have suffered a diabetic coma. The location problem with stochastic demand
was considered in [6]-[7]. Some of the researchers used the scenario planning in
order to include stochasticity in location planning [8]-[9]. Classical facility
location models assume that once constructed, the chosen facilities will always
operate as planned. In reality, facilities fail from time to time.

2010 Mathematics Subject Classification. 90B15; 90B25
Key words and phrases. location, graph, reliability, supply chain

81



82 N. Kontrec, B. Pani¢, M. Tosié¢, M. Vujosevic

2. PROBLEM DESCRIPTION

In this paper we are discussing the location problems on networks. Actually,
we are observing the weighted graph in which each branch is joined with the
number from the interval (0, 1). That number presents the reliability of the
branch i.e. the probability that the information will be transmitted or the flow of
the vehicle through a traffic line will be achieved during a certain period
without failure. So, we assume that the failure of the branches are jointly
statistically independent events and based on that, the reliability of the path
between two nodes can be defined as the product of reliability of branches of
which this path consists. Considering that there can be several paths between
two nodes in a graph, the probability of jointly reaching a pair of nodes is
defined as the probability of the most reliable path between the observed nodes.
This probability can alternatively be called the reliability of covering the
terminal node from the given initial node. The probability of mutual reaching
defined in such a manner differs from the commonly adopted definition of
reliability between two nodes of a network structure, which takes into account
all of the possible paths between them.

In order to select the optimal location for the facility, we set up the classic
problem of the maximum coverage of the remaining nodes from the selected
one. Furthermore, the nodes which location needs to be determined, we will
denote as warehouses, while for the nodes that need to be reached form the
warehouses, we will use the term - consumers. So, a max-min optimization task
is formulated and the lowest value of calculated probabilities is used as a
criterion.

In order to solve the problem of the facilities (warehouse) location, we
assumed that the consumer is covered from at least one facility and coverage
(reaching) of the consumer from a specific warehouse is achieved along the path
of maximum reliability from that particular warehouse to the consumer.

Based on the given assumptions, it follows that the probability of covering a
consumer should be calculated as the probability of a union of events that the
consumer will be covered from the observed warehouses. Starting from this
definition, analogous to the location problem of a single warehouse, it is again
possible to calculate the probability of covering every consumer and to adopt
the maximal as the criterion of optimization.

Mathematically, this problem can be described as:

(max) > 7

(i.))eE
s.t.
2 Xy =l 2 xp =1
jel(c) jer™ @

z .le': Z Xiis l.EV\{C,[},Xi]' E{O,l}, (l,j)EE
jer='\() jel (i)
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rii» (i, j) €V are reliabilities assigned to each branch of the observed weighted

graph and xe{O,l}E. Constraints should ensure that the obtained solution is

indeed the elementary path of maximum reliability between start node
(consumer) ¢ and end node ¢.

3. PROBLEM SOLVING

In order to determine the reliability of covering a node from & location nodes
R; an algorithm given below is defined. The paths of maximum reliability R;,,

between consumer and each of the & warehouses need to be found. All those
most reliable paths make a set 7}, and form a subgraph (oriented graph with a

direction from its root towards its leaves). The locations of the warehouses are
randomly determined and for each consumer, the path of maximal reliability
between it and each of the & warehouses has been found.

First, we randomly determine the & location (of nodes) in which the facilities
(warehouses) will be located. For every consumer, it is necessary to find the
elementary path of maximal reliability between it and each of the £ warehouses.
To achieve that we are using the modified Dijkstra’s algorithm as follows:

ALGORITHM 1 - ALGORITHM FOR DETERMINING THE PATH
OF MAXIMUM RELIABILITY

1. Initial labels are joined to nodes as follows:

—  The first node c is denoted p* () =1(it gets a permanent label);

— Remaining nodes get temporary labels: p~ (]) =0, Vjel\ {c} ;

— igetsavalue: i=c

2. We determine a set 4; of the nodes following node i, which do not have a
permanent label:

4={i|ier@rp()=r ().
3. Foreach je 4;, new temporary labels are determined as:
P () =max{p (). (1) 1y
4. Only one node j* receives a permanent label (out of all temporarily
labelled), and it is the one for which:

R

PG p* (7)o () =max (™ ()

JjeN
-* - .*
o ()= )
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5. If j* =1, i.e. the ending node is marked with a permanent label. If not, then

i = j and return to step 2. If it is, the reliability of the path p" (¢) has been

determined.
6. Moving backwards for node ¢ towards node c: t — j;, — ji_y —...—>c¢ the

path of maximal reliability pyax =(¢, /1> /250 t) is determined:
Jeip () Pt (k) =7

Jee1:p” (jk ) /p* (jk+l ) =Tk

c:p*'(j])/p+(c):rq-1
7. ltis evident that:
pr@ =74y *rjljz *'"*rjk—ljk *rjkf'

By using this algorithm, all the paths P, weW, il are determined, we
should determine reliability R; of covering consumer 7 from all k£ warehouses.
To solve this task for particular consumer i, we firstly form a tree structure
graph of all of the paths P,, weW , where root is a consumer i and the leaves
are warehouse nodes.

It can be noticed that one maximum reliability path from a warehouse w; to a
particular customer i can include a node that represents a different warehouse
wy.In this case, it is reasonable to exclude from consideration the sub-path
between warehouses.

For the disjoint paths P,, the k-covering reliability is calculated based on a
well-known formula:

k k=1 k k=2 k=1 Kk 1 K
R=2Ry—2 2 RyRj+2 X X RyRyR; =t (1) TT Ry
w=1 w=l j=w+l w=l j=w+l z=j+1 w=1

Furthermore, the novel algorithm has been developed for calculating reliability
R;, which is based on Bellman’s principle of optimality and concept of
notation.

Let V; represent the set of all nodes of the tree. Each node from the set V; is

Joined with the notation r; which can be temporary r; or permanent r}“.

Permanent notation of the node j eV represents the (maximum) reliability of
covering node j from the observed warehouses, i.e. leaves of the tree. (By
definition, the reliability of covering of the leaves (warehouses) equals 1.
r,=1 VweW) The temporary notation of node j is the temporary reliability
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of covering node j. It is always less than or equal to the permanent notation. In
addition to these, the following notations shall be used:

A;— set of the successors of node j 4; = r(Jj)

B, set of the predecessors of node / By ="~ (1)

S — set of nodes with a permanent notation

O- set of nodes with a temporary notation

The sets S and Q are iteratively exchanged.

The algorithm for calculating the reliability of covering a node (k— covering
reliability) consists of the following steps:

ALGORITHM 2 - ALGORITHM FOR DETERMINATION OF RELIABILITY
OF COVERING A NODE FROM K NODE

1. Initialization

S=w

Q=V;-\S

rw=r$=1 YweW
rjzrj_:O VjieQ

A; :{l|le]ﬁ(j)/\lel/[} vjeV;
2. Out of the set of unlabelled nodes Q, determine the set of nodes whose

successors are all permanently labelled. First, determine the set of all nodes
which precede the permanently labelled nodes:

Bz{l‘lef_l(S)/\VleQ},
then out of those, take the nodes whose successors are all permanently
labelled:
A={j|jeB; Al (j)eS|
3. Calculate the reliability of node j:
rp= X = XX Tl t

(leAj) (leAj)(keAj)
Mi
> sty —et (COMTUTT ryn Ve d
J J J
(1e4;)(ked;)(z4)) (re4))

Change the notations of these nodes into permanent ones: r; = r;-r

4. Update the sct of permanently labelled nodes: S=Su 4
5. Determine the set of unlabelled nodes: Q=V;\ S

6. If Q=#O, return to step 2. If it is equal, proceed to step
The end.
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As we can see, this problem can be observed as a sub-problem of the problem
of determining the location of k warehouse in order to maximize system
reliability. The reliability of the system is equal to the minimal reliability of
covering nodes that comprise it. The procedure for calculation of system
reliability remains the same if we chose some other & location for the
warehouses. If we were to examine all possible warechouse locations, then we
would select the particular combination of k£ warehouses for which the reliability
of the system would be maximal.

5. CONCLUSION

As a result, we showed how it is possible to determine the most reliable paths
between any two nodes of a graph and determine their reliability by using the
modification of Dijkstra’s algorithm. Also, system reliability can be calculated
by determining the reliability of node coverage. Variables of this problem are
integers, so this is a combinatorial problem. The objective function is not given
analytically, so it has to be calculated numerically. Constraints arise from
topological characteristics and define locations on the graph. The only
constraint is a given number of nodes i.e. facilities. For further research, we will
consider to formulate a relaxed problem and solve it by using some of the
available software or to develop a heuristic algorithm or to apply some of the
metaheuristics.

NOTATION

G=(V,E,R)— weighted graph, where:

V=Q,..,i,...,n) —set of nodes

Ec VxV:{(i,j)|i eV,je V} - set of arcs

R - function which joins to each arc (i, /) the weight (reliability) 7; from the
interval [0,1] R:E —[0,1]

r;j - reliability of arc (i, /).

W ={J1s-ees Jyyps--en J | — set of warehouse indexes, W <V’

k — total number of warehouses to be located

CV\W ={ji11>-» Jir-rjn } — set Of consumer nodes

For the purpose of simplicity, warehouse indexes will be abbreviated as w,
we W while consumer indexes as i, i e C
P, — path of maximum reliability from warchouse w to consumer i. The path

consists of an array of arcs ((w,vj ),(vjl,vﬂ),...,(vﬂ,i)) and is alternatively

represented as an array of nodes P, = (w, yil,yiz,...,yﬂ,i) .
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R;,,— reliability of covering consumer from warehouse w (reliability of path
By) Ry = 1 i1

(] ’l)ePiw
R, — reliability of covering consumer i from all of the £ warehouses

£ (W)~ reliability of the system, the objective function is defined as the
minimum value of R;- /(W )=min {Ri |ie C}
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Vesna Andova, Sanja Atanasova, Anastasija Nikolovska

Abstract. Leukemia is a cancer that affects the white blood cells or more
specifically the lymphocytes. In this paper we give an overview of a technique
that separates leukocytes from other blood cells, and then extracts lymphocytes
from leukocytes. For these lymphocytes, fractal features, shape features, and
other texture features are considered. Any classifier that determines presence of
leukemia can use these characteristics. Then, we apply the technique of
determining the dimension of box counting to the already isolated lymphocytes
in order to determine whether the lymphocytes are normal or lymphoblast.

1. INTRODUCTION

White blood cells or leukocytes play an important role in diagnosing many
diseases. Leukemia is a cancer that affects the blood cells or more specifically
the lymphocytes as a subtype of white blood cells. There are two types of
leukemia: acute leukemia (which develops very quickly) and chronic leukemia
(which develops slowly). Lymphocytes are fundamental to the immune system
because they determine the specificity of the immune response to infectious
microorganisms and other foreign substances [2]. In humans, lymphocytes
make up about 25 to 33% of the total leukocyte count. They are concentrated in
the central lymphoid organs and tissues, such as the spleen, tonsils, and lymph
nodes, where the immune response is most common.

Leukemia occurs when the body begins to accumulate overtly abnormal
leukocytes in the blood or bone marrow. As this happens, the number and
capacity of mature blood cells decreases. In people with leukemia, immature
lymphocytes, called lymphoblastic or leukemic cells, accumulate in the body
because they cannot die and cannot be used. The accumulation of leukemic cells
occurs in the bone marrow, where all the normal white and red blood cells and
platelets are being expelled without being regenerated [3].

The symptoms of leukemia are very common and similar to those of the flu,
which makes it difficult for diagnose. Differential blood counts are not
sufficient to confirm the disease. Therefore, microscopic examination is the
most important diagnostic methodology. Several techniques are already being
used around the world to classify lymphocytes as normal or lymphoblast. Some
of them are automation segmentation classification [15], cell segmentation
using active contour models [12], and intermediate shift cell segmentation [7].

2010 Mathematics Subject Classification. Primary: 11K535.
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This paper presents a technique [1,11,14] that first separates leukocytes from
other blood cells and then extracts lymphocytes from leukocytes. For these
lymphocytes, fractal features, shape features, and other texture features are
considered. Any classifier to determine the presence of leukemia can use these
characteristics. Then, the technique of determining the Hausdorff dimension, i.e.
the dimension of box counting was applied to the already isolated lymphocytes,
in order to determine whether the lymphocytes are normal or lymphoblastic.
The paper is overview of many papers cited accordingly, and it is a nice survey
on the problematic in consideration.

2.METHODS FORLYMPHOCYT CLASSIFICATION

The procedure for classifying lymphocytes in microscopic images consists of
preprocessing, segmentation, feature extraction, and classification. The
difference of this technique from other techniques for diagnosing leukemia is in
the last two steps, i.e. in the extraction of specific features and then
classification.

The microscopic blood count consists of red blood cells, white blood cells,
and platelets. The method in this paper is based on the segmentation of the color
image and the aim is to separate the white blood cells from the background and
to obtain a separate nucleus as a region of interest [3, 11].

Pre-processing is necessary because in case of excessive staining of blood
images and due to the process of improving the quality of images, there is
always noise. Generally, the image is described using three colors. Images
generated by digital microscopes are usually in RGB colors that are difficult to
segment. Therefore, in the pre-processing step, it is necessary to convert the
color image to L*a*b color space. Color is expressed with three numerical
values, L for light where the darkest black is obtained for L=0, and the
lightest white for L =1. The constants a and b are used for color coordinates,
where the « -axis represents the green-red components, and the b —axis blue-
yellow components. In practice, various reasons such as camera settings,
different lighting, and old stain can cause the image of blood cells and the
background of the image itself to vary greatly in color and intensity.

In order to make robust cell segmentation related to these variations, it is
necessary to reduce the memory used and improve the computational time [3].
The purpose of image segmentation is to extract important information from the
input image. The efficiency of extraction and classification functions largely
depends on the accuracy of the segmentation. In the segmentation process, the
so-called K-medium clustering is applied to segment the image into four
regions. Using certain techniques, these clusters are then used to obtain sub-
images. Using image morphology [10], only those subtypes containing
lymphocytes are selected for feature extraction.

Functional feature extraction in image processing is a technique of
redefining a large number of redundant data into a set of reduced size (or
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functional vector). Three types of data are usually extracted from the
lymphocyte image, namely fractal size, color, and shape characteristics,
including contour uniqueness, shape, texture, and optical density (the number of
dark spots in a given area).

In this paper, special attention will be paid to the last step of the overall
procedure, which will consider the use of the Hausdorff dimension for the
classification of lymphocytes.

3. HOUSDORFF DIMENSION

Mandelbrot first defined fractal as a term in 1983 as a way of classifying
“irregular” objects whose dimensions are not integers. Most fractal objects are
similar to themselves, although there are fractal objects that are not self-similar
and also have infinite complexity. We will deal with fractal object that are
similar to itself or self-similar and are composed of a finite number of reduced
copies of itself. A more detailed definition of self-similar fractals can be found
in [4, 20].

There are different dimensions useful for characterizing “irregular” objects:
cube counting dimension (Minkowski dimension), fractal, Hausdorff (or
Hausdorff-Besikovic) dimension, capacity dimension, information dimension,
and others [16]. The fractal dimension is a statistical quantity that shows how
completely the fractal fills the space. The Hausdorff dimension (HD) and the
cube counting dimension are the most important theoretical fractal dimensions.
The packing dimension is similar to the Hausdorff dimension, as “packing”
small open balls into a given subset construct the packing dimension, while the
Hausdorff dimension is constructed by covering a given subset with such small
balls.

The HD is determined by the optimal coverage of the original object by a set
of smaller objects. The Hausdorff dimension is most commonly used in
theoretical mathematics, and its practical application is minimized. The reason
for this lies in the complexity of the calculations. That is why boxes are most
often used to determine the dimension, i.e. the dimension of counting boxes is
used.

If boxes or squares were used as a model, it would mean that the minimum

number of boxes with side 0 (small enough) covering length could be used for

Ny = Lenght
the dimension, i.e. 3 , or the minimum number of boxes covering
Ny = Arzea
area, 3 , or the minimum number of boxes covering the body,
_ Volume

Ng =
63
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If X is an object and N5(X) i the minimum number of boxes with side &

covering X | then the box -counting dimension is given by:
d = 1im PNV (X))
550 —Ind

In general, HD=¢ . The HD and the box-counting dimension have similar
definitions, with the Hausdorff dimension minimizing the number of boxes by
allowing different box sizes, [18]. This minimization gives the Hausdorff
dimension its theoretical advantage because it excludes pathologies that may
occur when using smaller boxes and covering isolated spots. The Hausdorff
dimension and the box count dimension match for self-similar and compact
fractals [8, 20], for fractals described by rapidly convergent scaling functions
[18], and for Julia scts [19].

3.1. BOX COUNTING METHOD

In practical application, the box-counting dimension is widely used, due to
the fact that it is easy to implement. This method does not change the size of the
measured object, but the size of the element used for measuring (square, cube).
The technique is usually implemented in software used to separate schemes
from digital media, although the basic method can also be used to physically
examine some models.

Theoretically, box counting aims to measure fractal scaling. This would
mean that the length (size) of the side of the boxes or the scaling factor is known
in advance. But in fractal analysis, the scaling factor is not always known, so
box counting algorithms try to find an optimized way to divide the object under
consideration to detect the scaling factor. The basic method for this starts with a
set that contains a number of measuring elements-boxes. Each of these boxes
has a side of length ¢ . The algorithm must determine how to increase or
decrease the side length of boxes (for example, linearly or exponentially), which
can have a profound effect on overall results. These boxes are applied on the
considered object and then counted.

In box counting algorithms, the number of boxes is a power function of the
box. We estimate all fractal dimensions as a power indicator of such power
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function, and they are real numbers that characterize the fractality (texture or
roughness) of the objects. The perimeter roughness of the core can be used for
differentiation (separation due to differences).

oo Te e e

Count =4 ) Count=9 Mesia] Coum =26 Count = B0
Figure 2. Box counting method [9]. In each subsequent step, the length of the sides of
the boxes decreases. Only those boxes that contain part of the object under consideration
are counted.

3.2. PROCEDURE FOR DETERMINING THE HAUSDORFF
DIMENSION USING THE BOX COUNTING METHOD

The Hausdorff dimension is an essential feature of fractal geometry and will
be used as a measure of the roughness of cell boundaries, allowing it to be
classified as normal or lymphoblast. The procedure for determining the
Hausdorff dimension using the box counting method [13] is presented below as
an algorithm. In this procedure, the Hausdorff dimension and the box counting
dimension do not match.

i

:ﬂi’ ,O\H
[
Ol(
Nucleus

Cancemus Extraction
Blood Smear

Figure 3. Covering the core with a grid of squares using the box cbuntiﬁg method [2]

Step I- Each color image of the nucleus (red blood cells) is converted to a
binary image, i.e. two-color image as shown in Figure 4.

s o
”e;:?'?

Figure 4. Converting a blood count into a binary image [10].
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Step 2- Detect the core boundaries using an edge detection technique (Figure 5).

Figure 5. Core edge detection [11].

Step 3- The edges are covered with a grid of squares using the box counting
method. Thereby, we especially pay attention on how the number of boxes
changes, while we strive to make the finest network of boxes, i.e. a network of
boxes with a smaller side. For each subject, the applied SCC software [5],
counts the number of pixels occupied inside the blue line, including the pixels
on the border (Figure 6 right). In the case of the cytoplasm (Figure 6 left), the
software counts the number of pixels trapped between the two blue lines. The
larger blue line corresponds to the cytoplasmic boundary and the smaller blue
line to the nucleus boundary.

7

AT

Figure 6. Counting the saﬁgres of the éytoplasm (feﬁ) and nucleus (right) [5].

Step 4- Then we calculate the Hausdorff dimension of the core using the
following equation

In(N
- ()
In(N(S))
where V' is the total number of squares that cover the core network, and N(S)

is the number of squares occupied inside the blue line, including the border
pixels. For illustrating the procedure, we use the results obtained in [17]. There,
images of 40 healthy and 40 diseased (cancerous) lymphocytes are considered
and analyzed. First, the images are processed, namely each image is converted
to a black and white image. Then, by setting the appropriate threshold function,
the image is converted to binary [1]. The edge of the lymphocyte nucleus is
determined using a border detection technique proposed by Canny [6]. The
Hausdorff dimension of the lymphocyte nucleus is determined from the
resulting binary image. The HD result of normal cells and cancer cells is given
in Figure 7 and Figure 8, respectively [2, 14]. By applying equation (1) one gets
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that the Hausdorff dimension of a healthy nucleus is approximately 1.5501, and
of a diseased one (carcinogenic) is approximately 1.7828. The Hausdorff
dimension is approximately determined by the box counting method. The
number of occupied boxes in the images of cancer cells (i.e. nuclei) is higher
than that of healthy cells (nuclei). This will result in a comparable HD aspect
ratio. The nucleus of a healthy cell has a lower HD value than that of a
carcinogen. If it is an earlier stage of the disease HD on carcinogens (nuclei) it
will be smaller, i.e. closer to HD on healthy nuclei. Therefore, HD is an
important feature in the proposed system. -

| Il Figu - o x

i?nk Edil. View lniert  Toohi  Daskben  Windom . Halp 'I.

Dads @ AR L- 308 a1

B

Box Count, log Mish
r w i

hi ] 05 1 15 z a5 3 is
Mamiber af blocks, log H

Figure 7. Healthy core - HD = 1.5501 [14]. From (1), the Hausdorff dimension is the
) coefficient of direction of the displayed line.
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Figure 8. Cancer nucleus- HD = 1.7828 [14]. From (1), the Hausdorff dimension is the
coefficient of direction of the displayed line.
4. CONCLUSIONS

Medical image processing is one of the fastest growing fields in medicine
and clinical research. Image analysis helps in gathering information, detecting
diseases, diagnosing diseases, controlling and treating, monitoring and
evaluating. Blood disorders can be identified by visual inspection of
microscopic blood cell images. This identification helps to classify certain
blood-related diseases, including leukemia.

This paper is an overview of the work done in this area. The main topic is
segmentation of white blood cells from colored blood images, followed by
appropriate extraction to detect leukemia. Special attention is paid to measuring
core irregularities using the Hausdorff dimension. The edge of the lymphocyte
nucleus is determined using a border detection technique proposed by Canny
[6], where edge detection and localization is done by numerical optimization.
This technique is suitable for images in shades of gray. Note that other edge
detectors can be applied depending on the used fractal dimension. For example,
in the paper [21], the edge detection technique is suitable for binary images,
using the operators Sobel, Roberts and Laplace.

This way of diagnosing leukemia is accurate enough and a good start for
further research into other diseases. Compared to manual counting, the
advantage is that images with many lymphocytes in the visual field can be
viewed (shortens the analysis time), but the automated process does not require
human intervention (minor error).

Also the simplicity of the Hausdorff dimension is in favor of experts from
other fields outside mathematics, so in this way we have nice application of
mathematics in other sciences including medicine. However, in addition to the
Hausdorff dimension, there are other ways to detect leukemia and other
discases. More recently, imaging techniques, various statistical methods, and
machine learning have been used, making them accurate in diagnosing the
disease.
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