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Problem 1. Determine all the sets of six consecutive positive integers such that the product of some
two of them, added to the product of some other two of them is equal to the product of the remaining
two numbers.

Solution. Exactly two of the six numbers are multiples of 3 and these two need to be multiplied
together, otherwise two of the three terms of the equality are multiples of 3 but the third one is not.

Let n and n + 3 denote these multiples of 3. Two of the four remaining numbers give remainder 1
when divided by 3, while the other two give remainder 2, so the two other products are either=1-1 =1
(mod 3) and =2-2 =1 (mod 3), or they are both = 1-2 =2 (mod 3). In conclusion, the term n(n+3)
needs to be on the right hand side of the equality.

Looking at parity, three of the numbers are odd, and three are even. One of n and n + 3 is odd,
the other even, so exactly two of the other numbers are odd. As n(n + 3) is even, the two remaining
odd numbers need to appear in different terms.

We distinguish the following cases:
I. The numbers aren—2, n—1,n,n+1,n+2, n+ 3.
The product of the two numbers on the RHS needs to be larger than n(n + 3). The only possibility is
n—=2)(n—1)+nn+3)=(n+1)(n+2) which leads to n = 3. Indeed, 1-2+3-6 =4-5.
II. The numbersaren—1,n,n+1,n+2, n+ 3, n+4.
As (n+4)(n—1)+n(n+3) = (n+1)(n+2) has no solutions, n+ 4 needs to be on the RHS, multiplied
with a number having a different parity, so n — 1 or n + 1.
m+2)n—1)+nn+3)=(Mm+1)(n+4) leads ton =3. Indeed, 2-5+3-6=4-T.
n+2)(n+1)+nn+3)=(n—1)(n+4) has no solution.
III. The numbers are n, n+ 1, n+2, n+3, n+4, n+ 5.
We need to consider the following situations:
m+1)(n+2)+nn+3)=(n+4)(n+5) which leads to n = 6; indeed 7-8+6-9=10- 11,
(n+2)(n+5) +n(n+3) = (n+1)(n+4) obviously without solutions, and
(n+1)(n+4) +nn+3)=(n+2)(n+5) which leads to n = 2 (not a multiple of 3).

In conclusion, the problem has three solutions:

1-243-6=4-5, 2:-543-6=4-7, and 7-84+6-9=10-11.
Problem 2. Let x,y, 2z be positive integers such that x # y # z # x. Prove that

(x+y+2)(ey +yz+ 22 —2) > 9zyz.
When does the equality hold?
Solution. Since x,y,z are distinct positive integers, the required inequality is symmetric and

WLOG we can suppose that © >y + 1 > z + 2. We consider 2 possible cases:

Casel. y>z+2. Sincex >y +1 > 2+ 3 it follows that

(@-9?21 @F-2%24 (@-2°29
which are equivalent to
24y >2y+1, yY2+22>224+4, 224+22>22249
or otherwise
202+ 2% > 2xyz + 2z, TY?+222 > 22yz+4%, yr?+y2? > 2xy2+WN.
Adding up the last three inequalities we have
zylx+y)+yziy+2) +22(2+x) > 6zyz+4c+ 9y + 2

which implies that (z + y + 2)(xy + y2 + 22 — 2) > Yzxyz + 22 + Ty — 2.

Since x > z + 3 it follows that 22 + 7y — 2 > 0 and our inequality follows.

Case 2. y =2z+ 1. Since x > y+ 1 = z + 2 it follows that x > z + 2, and replacing y = z + 1 in
the required inequality we have to prove



(z+z4+14+2)(x(z+1)+(z+Dz+22—2) >92(z+ 1)z
which is equivalent to
(x+2:+1)(2+222+2+2—-2)—92(z+1)2>0
Doing easy algebraic manipulations, this is equivalent to prove
(x—2-2)(zx—2+1)(2z+1)>0
which is satisfied since x > z + 2.

The equality is achieved only in the Case 2 for = z + 2, so we have equality when (z,y,z2) =
(k+2,k+1,k) and all the permutations for any positive integer k.

Problem 3. Let ABC be an acute triangle such that AB # AC', with circumcircle I and circumcenter
O. Let M be the midpoint of BC' and D be a point on I" such that AD | BC'. Let T be a point such
that BDCT is a parallelogram and @ a point on the same side of BC' as A such that

/BQM = /BCA and ZCQM = /CBA.

Let the line AO intersect I' at F, (E # A) and let the circumcircle of AETQ intersect I at point
X # E. Prove that the points A, M, and X are collinear.

Solution. Let X’ be symmetric point to Q in line BC. Now since ZCBA = ZCQM = ZCX'M,
/BCA=/BQM = £ZBX'M, we have

/BX'C =/BX'M + /CX'M = /CBA+ /BCA = 180° — ZBAC

we have that X’ € I'. Now since ZAX'B = ZACB = ZMX'B we have that A, M, X’ are collinear.
Note that since
LDOB =/ DAB =90° — ZABCQ = /0AC0 = LEAC

we get that DBCFE is an isosceles trapezoid.

A

Since BDCT is a parallelogram we have MT = M D, with M, D, T being collinear, BD = CT,
and since BDFEC' is an isosceles trapezoid we have BD = CE and M E = M D. Since

£BTC =4BDC =4BED, (CE=BD=CT and ME=MT

we have that E and T are symmetric with respect to the line BC'. Now since Q and X' are symmetric
with respect to the line BC' as well, this means that QX' ET is an isosceles trapezoid which means that
Q, X', E, T are concyclic. Since X’ € I" this means that X = X’ and therefore A, M, X are collinear.

Alternative solution. Denote by H the orthocenter of AABC. We use the following well known
properties:



(i) Point D is the symmetric point of H with respect to BC'. Indeed, if H; is the symmetric point
of H with respect to BC' then ZBHC + ZBAC = 180° and therefore H; = D.

(ii) The symmetric point of H with respect to M is the point F. Indeed, if Hy is the symmetric
point of H with respect to M then BHyCH is parallelogram, ZBHyC + ZBAC = 180° and since
EB || CH we have ZEBA = 90°.

Since DETH is a parallelogram and M H = M D we have that DETH is a rectangle. Therefore
MT = ME and TE 1 BC implying that 7" and E are symmetric with respect to BC. Denote by @’
the symmetric point of Q with respect to BC. Then Q'ETQ is isosceles trapezoid, so Q' is a point
on the circumcircle of AETQ. Moreover ZBQ'C + ZBAC = 180° and we conclude that Q' € T.
Therefore Q' = X.

It remains to observe that ZCXM = ZCQM = ZCBA and ZCXA = ZCBA and we infer that
X, M and A are collinear.

Problem 4. Consider a regular 2n-gon P, AjAs... As, in the plane, where n is a positive integer.
We say that a point S on one of the sides of P can be seen from a point I that is external to P, if
the line segment SFE contains no other points that lie on the sides of P except S. We color the sides
of P in 3 different colors (ignore the vertices of P, we consider them colorless), such that every side
is colored in exactly one color, and each color is used at least once. Moreover, from every point in
the plane external to P, points of at most 2 different colors on P can be seen. Find the number of
distinct such colorings of P (two colorings are considered distinct if at least one of the sides is colored
differently).

Solution Answer: For n = 2, the answer is 36; for n = 3, the answer is 30 and for n > 4, the
answer is 6n.

Lemma 1. Given a regular 2n-gon in the plane and a sequence of n consecutive sides 1, S2,..., Sp
there is an external point @ in the plane, such that the color of each s; can be seen from @, for
1 =5 15D vy Tl

Proof. It is obvious that for a semi-circle S, there is a point R in the plane far enough on the
bisector of its diameter such that almost the entire semi-circle can be seen from R.

Now, it is clear that looking at the circumscribed circle around the 2n-gon, there is a semi-circle S
such that each s; either has both endpoints on it, or has an endpoint that’s on the semi-circle, and is
not on the semi-circle’s end. So, take ) to be a point in the plane from which almost all of S can be
seen, clearly, the color of each s; can be seen from Q.

Lemma 2. Given a regular 2n-gon in the plane, and a sequence of m + 1 consecutive sides
81,82,.-.,8n41 there is no external point @ in the plane, such that the color of each s; can be seen
from @Q, for i = 1,2,...,n+ 1.

Proof. Since s; and s, are parallel opposite sides of the 2n-gon, they cannot be seen at the
same time from an external point.

For n = 2, we have a square, so all we have to do is make sure each color is used. Two sides will
be of the same color, and we have to choose which are these 2 sides, and then assign colors according
;1) 3.2 = 36-

For n = 3, we have a hexagon. Denote the sides as ay,as,...¢qs, in that order. There must be 2
consecutive sides of different colors, say a; is red, ay is blue. We must have a green side, and only a4
and as can be green. We have 3 possibilities:

1) a4 is green, as is not. So, az must be blue and as must be blue (by elimination) and ag must be
blue, so we get a valid coloring.

2) Both a4 and as are green, thus ag must be red and as must be blue, and we get the coloring
rbbggr.

3) as is green, a4 is not. Then ag must be red. Subsequently, a4 must be red (we assume it is not
green). It remains that ag must be red, and the coloring is rbrrgr.

Thus, we have 2 kinds of configurations:

i) 2 opposite sides have 2 opposite colors and all other sides are of the third color. This can happen
in 3.(3.2.1) = 18 ways (first choosing the pair of opposite sides, then assigning colors),

ii) 3 pairs of consecutive sides, each pair in one of the 3 colors. This can happen in 2.6 = 12 ways
(2 partitioning into pairs of consecutive sides, for each partitioning, 6 ways to assign the colors).

to this choice, so the answer is (



Thus, for n = 3, the answer is 18 + 12 = 30.

Finally, let’s address the case n > 4. The important thing now is that any 4 consecutive sides can
be seen from an external point, by Lemma 1.

Denote the sides as ay,as,...,as,. Again, there must be 2 adjacent sides that are of different
colors, say a; is blue and as is red. We must have a green side, and by Lemma 1, that can only be
Gp41 OF Gpt2. SO, we have 2 cases:

Case 1: a,41 is green, so a, must be red (cannot be green due to Lemma 1 applied to a1, as, ..., an,
cannot be blue for the sake of as,...,apy1. If apyo is red, so are apys,...,a2,, and we get a valid
coloring: ay is blue, a,41 is green, and all the others are red.

If a2 is green:

a) ap43 cannot be green, because of ag, ay, agy ..., py3.

b) a,3 cannot be blue, because the 4 adjacent sides ay, ..., a,+3 can be seen (this is the case that
makes the separate treatment of n > 4 necessary)

) ants cannot be red, because of a1, azp, ..., Ani2.

So, in the case that a,2 is also green, we cannot get a valid coloring.

Case 2: a,42 is green is treated the same way as Case 1.

This means that the only valid configuration for n > 4 is having 2 opposite sides colored in 2
different colors, and all other sides colored in the third color. This can be done in 1n.3.2 = 6n ways.



