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 Foreword 
 
 This year in the Macedonia competitions of all levels in primary/secondary and high-school 
were held: school, regional, state and Olympiads.  
 After rigorous selection processes the BMO and JBMO teams were formed. The latter 
Olympiads took place in a pleasant atmosphere in the Republic of Bulgaria and the Republic of 
Macedonia, respectively. 
 After the IMO team selection test, the team to the IMO 2014 was formed. This year the IMO 
is taking place in Cape Town, the SAU.  
 The content of this book consists of the mathematical competitions that already took place 
in Macedonia and the Balkan region, as well as the solutions. 
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XVIII Macedonian Junior Mathematical Olympiad 2014 
Faculty of Electrical Engineering and Information Technologies-

Skopje, 31.05.2014 
 
 
 

1. Prove that  1 1 1 1 1... 1
1 2013 2 2012 3 2011 2012 2 2013 1

     
    

.  

Solution 1. For arbitrary natural numbers 1n m   the inequality nm n m   holds, since 
( 1)( 1) 1 1 1 0n m nm n m nm n m nm n m               , with equality only when 2n m  . 

Then for 2n  , we have 1 1 1
(2014 ) 2014 2014n n n n

 
  

and hence: 

2011 3 20111 1 1 1 1 2... 1
1 2013 2 2012 3 2011 2012 2 2013 1 2013 2014 2014 2014

         
    

. 

 
Solution 2. 

 
       
 

1 1 1 1 1...
1 2013 2 2012 3 2011 2012 2 2013 1

1 2013 2 2012 3 2011 2012 2 2013 11 ...
2014 1 2013 2 2012 3 2011 2012 2 2013 1

1 1 1 1 1 1 1 1 1...
2014 1 2013 2 2012 2012 2 2013 1

1 1 1 1 12 ...
2014 1 2 2012 2013

     
    

          
    

           
 

       

2011

1 2 2 2 23 ...
2014 3 4 2012 2013

1 3 1 1... 1 1 1
2014

     

 
      
 
 



 

 
2. Two tangents are drawn from a point M to 

circle k  ,that touch it at points G  and H . If O  is 
the center of k  and K  is the orthocenter of the 
triangle MGH  prove that GMH OGK   . 
 

Solution. Let us notice that K  must lie on OM . From 
HK GM and OG GM , it follows that ||HK OG . Analogously 

||OH GK .(1p) FromOG OH , it follows thatOHKG  is a 
rhombus. (1p) Let us notice that O , H , M  and G  lie on the 
circle with diameter OM . Hence OGH OMH  . Now the 
statement of the exercise follows from 2OGK OGH    and 

2GMH OMH   . 
 

 3.Find all n divisible by 11, such that all numbers that can be obtained from n  by 
an arbitrary rearrangement of its digits are again divisible by 11.  

Solution.From the condition11 n , the number nmust have at least two digits. Let 1 0...k kn a a a where

,0ia i k  are digits and 0ka  . From the former discussion we have 1k  . 

O
H

G

K

M
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We will show that all digits in the number n  are equal. Namely, from the condition of the exercise, the 

number 1 1 1 2 0' ... ...k k i i i in a a a a a a a    ( 'n  is obtained from n  by exchanging the positions of the digits 1ia   

and ia ) is also divisible by 11. Therefore 11 'n n , i.e.  1
1 11110i i i i ia a a a
   or  1

111 10 9i
i ia a

  , and 

hence 1i ia a  . 

It follows that 
1

11...11
k

n a


  . We easily check that11 n if and only if k  is an odd number. 

4. A convex quadrilateral ABCD is given. Let E  be the intersection of AB  and CD , F  
be the intersection of AD  and BC  , and  G  be 
the intersection of AC  and EF . Prove that the 
following two statements are equivalent: 
( )i BD  and EF  are parallel 

( )ii G  is the midpoint of the segment EF  
Solution. We draw a line l  through E  which is parallel 

to BC . Let H  be the intersection of l and AG . Now we 
have that G  is the intersection of the diagonals in the 
trapezoid EHFC . 
( ) ( ) :i ii  Let the lines BD  and EF  be parallel. Then, 
from Thales’ theorem for parallel segments we have the 
equalities: 

AC AB
AH AE

 and AB AD
AE AF

  . 

It follows that AC AD
AH AF

 , and therefore from the same Thales’ theorem we conclude that the lines HF  and 

ED  are parallel. Therefore EHFC  is a parallelogram and its diagonals bisect each other in the intersecting 
pointG . 

( ) ( ) :ii i   Let G  be the midpoint of the segment EF . Then EGH FGC   , so that EHFC  is a 
parallelogram and we conclude that HF  and ED  are parallel. Therefore the equalities 

AC AB
AH AE

 and AC AD
AH AF

   

hold. 

It follows that AB AD
AE AF

 , and therefore from the same Thales’ theorem we conclude that BD  and EF  are 

parallel. 
 

5. Prove that there exist pairwise disjoint sets 1A , 2A ,..., 2014A  whose union is the set of 
natural numbers and for which the following condition holds: 

For arbitrary natural numbers a  and b , at least two of the numbers 𝑎, 𝑏, gcd (𝑎, 𝑏)  belong 
to one of the sets 1A , 2A ,..., 2014A . 

Solution.Let  2 n  greatest integer for which  22 n  is a divisor of n . Then 𝑣ଶ(gcd(𝑎, 𝑏)) =

min {𝑣ଶ(𝑎), 𝑣ଶ(𝑏)}. Therefore at least two of the numbers  2 a ,  2 b and 𝑣ଶ(gcd(𝑎, 𝑏)) are equal. 

We define sets     1 2| mod 2014iA n n i   for 0 2013i  . 

Obviously, the sets 1A , 2A ,..., 2014A  are pairwise disjoint, their union is N and two of the numbers 

𝑎, 𝑏, gcd (𝑎, 𝑏) belong to the set 1iA  , where i  is the residue produced by division of   2 gcd ,a b  by 2014. 

A B E

H

I
F

D C
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Macedonian Mathematical Olympiad 2014 
Faculty of Natural Sciences and Mathematics-Skopje 

12.04.2014 
 
 1. 2014 lines are given in a plane, arranged in three groups of pairwise parallel lines. 
What is the greatest possible number of triangles formed by the lines (each side from such 
a triangle lies on one of the lines)?. 
 Solution. Let a b c   be the numbers of the lines in the three groups for which the greatest possible 
number of triangles is attained. Then 2014a b c   , and the greatest possible number of triangles is abc  
(when no three lines have a common point). We will show that 1a c  . Let us suppose the opposite, i.e. 

1a c  . Then     1 1 1abc b ac a c b a c       , which is contradictory to the choice of a , b  and c . 

It cannot be that a c , because in that case 2014
3

a b c    is not an integer. In order for a , b  and c  to be 

integers, it must be that 672a  and 671 cb  and so the number of triangles is 
2671672  . 

 2. Give all integer solutions of the equation:   

                                                          ca b 213 212  . 
 Solution.  
 Case 1. 0a  .  

 Clearly 0c   where 0c   implies 0b  . We get that  ,0,0a  is a solution for an arbitrary non-negative 

integer a . From the equality 2 1 23 1 2a cb    it follows that b  is an odd integer. We can write the left-hand 
side in the following form 

                                              2 1 2 2 1 23 1 (3 1) ( 1)( 1)a ab b b b       . 

 For the right-hand side of the last equality we notice that ( 1)( 1)b b   is divisible by 8, while 
2 1 2(3 1)a b   is divisible by 4 but not by 8. Therefore 2 4c   i.e. 2c  . But then 2 1 23 3a b  , so that 0a   

and 1b   . 
 Case 2. 0a  .  
 Again 0c   where 0c   implies 0b   and then a  can be an arbitrary negative integer. Therefore we 
restrict ourselves to the case 0c  . It is enough to consider the case 0b  . Putting d a  , the Diophantine 
equation from the statement of the exercise gets the form 

                                                       2 1 2(2 1)3c d b  , 

where b , c  and d  are natural numbers. Therefore b  is divisible by 3, and hence c  is an even number. Hence 

we have 3db x , 2c y  for some natural numbers x  and y . The Diophantine equation gets the form 

                                                    1 2 24 4 1y y x     . 

 This implies 1x y  . Namely, for 2y   we would get that 2 5(mod8)x  , which is impossible. 

Therefore in this case the only solutions are ( ,3 ,2)aa  , where a  is an arbitrary negative integer. 

 The set M of all solutions to the Diophantine equation from the statement of the exercise is: 

                                           ( ,0,0) ( , 3 ,2) 0aM a a a a       . 

 

 3. Let 1k , 2k  and 3k  be three circles with centers 1O , 2O  and 3O  respectively, such 

that none of the centers lies inside any of the two other circles. The circles 1k  and 2k  

intersect in A  and P , 1k  and 3k  intersect in C  and P  and 2k  and 3k  intersect in B  and 

P . Let X  be a point on 1k  such that the intersection of the line XA  with the circle 2k  is 
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Y  and the intersection of the line XC  with 3k  is Z  and so that Y  belongs neither inside 

1k  nor inside 3k  and Z  belongs neither inside 1k  nor inside 2k . 

а) Prove that the triangles XYZ  and 321 OOO  are similar. 

б) Prove that the area of the triangle XYZ  is not greater than four times the area 
of the triangle 321 OOO . Is the maximum attainable? 
 Solution. We will first show that the points Y , B  and Z  are collinear. Since the quadrilateral BYAP  is 
inscribed we have PBY PAX   . Since the quadrilateral AXCP  is inscribed we have PAX PCZ   . 

Since the quadrilateral CPBZ  is inscribed we obtain 180PBZ PCZ    . Therefore 

180YBZ YBP PBZ      . 
Let us notice that 1 3 1 3CO O POO    and 1 2 1 2AO O POO   , from where it follows that 

2 1 3 1
1
2

O OO AOC AXC     . Similarly 1 2 3OO O AYB    and 1 3 2OO O CZB   . It follows that 

1 2 3~XYZ O O O  , with which we’ve proven the statement under а). 

Let the line 1 1X Y  be parallel to 1 2O O  and pass through A , where 1X  lies on 1k  and 1Y  lies on 2k . 

Let 1Z  be the intersection of the line 1X C  with the circle 3k . From the afore-proven, the points 1Y , B  and 

1Z  are collinear and 1 1 1 1 2 3~X Y Z O O O  . Furthermore, 1PXA PX A    and 1PYA PY A   . Therefore 

1 1~PXY PX Y  . Let PT  be the altitude dropped from the vertex P  to the side XY . PA  is the altitude of the 

triangle 1 1PX Y . Since PA  is a hypotenuse in the right-angled triangle PAT  we get PT PA . Therefore 

1 1PXY PX YP P  and analogously 
1 1PYZ PY ZP P  and 

1 1PXZ PX ZP P . From this we get 
1 1 1XYZ X Y ZP P . The 

points P , 1O  and 1X  are collinear since 1 90PAX   . Similarly P , 2O  and 1Y  are collinear and P , 3O  

and 1Z  are collinear. We get that 1 2O O , 1 3O O  and 2 3O O  are midsegments in the triangles 1 1X Y P , 1 1X Z P  

and 1 1Y Z P  respectively, and so 
1 1 1 1 2 3

4X Y Z O O OP P . This gives us the required inequality. Equality is attained 

when the points X  and 1X  coincide, and with that the points Y  and 1Y  as well as the points Z  и 1Z  

coincide. 
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 4. Let  , ,a b c  be real numbers for which 4a b c    and , , 1.a b c   Prove that  

  
1 1 1 1 1 1

8 .
1 1 1a b c a b b c c a

            
 

 Solution. Since it holds that   
 

  
3 4 38 8 12 91 1

1 1 4 1 4 1 4

aa
a b c a a a a a a

    
       

  the given 

inequality is equivalent to   

        
4 3 4 3 4 33 0.
1 4 1 4 1 4

a b c
a a b b c c

             
 

Without loss of generality we can assume that .a b c   Then clearly it holds 4 3 4 3 4 3 .a b c      From 

1 , , 4a b c   it follows that         
1 1 1, ,

1 4 1 4 1 4a a b b c c     
 are positive real numbers. We will 

prove that      1 4 1 4 .a a b b      

We have         2 21 4 1 4 5 5 5 0a a b b a a b b a b a b              . Analogously 

     1 4 1 4b b c c     . Hence         
1 1 1 .

1 4 1 4 1 4a a b b c c
 

     
 Since 

4 3 4 3 4 3a b c      we can use Chebyshev’s inequality to obtain: 

 
        

        

4 3 4 3 4 3 4 3 4 3 4 3
31 4 1 4 1 4

1 1 1 0.
1 4 1 4 1 4

a b c a b c
a a b b c c

a a b b c c

          
     

 
           

 

Equality holds for 4 3 4 3 4 3a b c      i.e. 4
3

a b c   . 

 5. Out of an equilateral triangle with side 2014 an equilateral triangle with side 214 is 
cut out, such that the two triangles have one vertex in common and two of the sides of the 
cut-out triangle lie on two of the sides of the initial one. Can this figure be covered by the 
figures shown below without overlap (rotation is allowed), if the triangles in the figures are 
equilateral with side 1? Justify your answer! 

 
 Solution. First we cut the given figure into equilateral triangles with side 1. We label the triangles in 
the given figure by numbers from 1 to 6, as on the picture to the right. (in 
the first row successively from 1 to 6, then the numbers repeat, in the 
second we start from 5, in the third from 3, then from 1 and the procedure 
repeats). It can easily be noticed that each of the given figures covers 
exactly one of the numbers 1 to 6. Therefore, in order for the figure to be 
coverable by the given figures, each of the numbers has to appear an equal 
number of times. If we compare how often the number 1 and the number 2 
appear we will notice that in the first, fourth and each row of the form 
3 1k   there is one more 1 than 2’s, and in the remaining rows the number of 1’s and 2’s is equal, 
therefore, it follows that the number of 1’s and 2’s is unequal, and therefore not every number can appear 
an equal number of times. It follows that the figure cannot be covered in the required way.  
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Balkan Mathematical Olympiads 2014 

02.05-07.05.2014, Pleven, Bulgaria 
 

 Problem 1. Let ,x y  and z   be positive real numbers such that 3xy yz zx xyz   . 
Prove that  
  2 2 2 2( ) 3x y y z z x x y z       

 Solution. The given condition can be rearranged to 1 1 1 3
x y z
    . Using this, we obtain:  

  
   

2 2 2 2 2 2

2 22

1 1 12( ) 3 2 2 2

1 1 1 0

x y y z z x x y z x y x y z y z x x
y z y

y x z y x z
y z x

               

        
 

  

Equality holds if and only if we have 1xy yz zx   , or, in other words, 1x y z   .  

 Alternative solution. It follows from 1 1 1 3
x y z
    and Cauchy-Schwarz inequality that  

  

2 2 2 2 2 2

2 2 2
2 2 2

2

1 1 13( ) ( )

1 1 1 (( ) ( ) ( ) )
2 2 2

( )

x y y z z x x y y z z x
x y z

x y y z z x

x y z

         
 
                        

  

 

Therefore, 
2

2 2 2 ( )
)

3
x y z

x y y z z x
     and if x y z t     it suffices to show that 

2
2 3

3
t t   . The 

latter is equaivalent to 2( 3) 0t   . Equality holds when  

  x y y y z z z x x   ,  

i.e. xy yz zx   , and 3t x y z     . Hence, 1x y z    .  
 Comment. The inequality is true with the condition 3xy yz zx xyz   .  
 
 

 Problem 2. A special number is a positive integer n   for which there exist 
positive integer , ,a b c  and d  with  

  
3 3

3 3
2
2

a bn
c d




.  

Prove that  
(a) There are infinitely many special numbers;  
(b) 2014  is not a special number.  

 

Solution. (a) Every perfect cube 3k  of a positive integer is spcial because we can write  

  
3 33 33 3

3 3 3 3
( ) 2( )2

2 2

ka kba bk k
a b a b

 
 

,  

for some positive integers ,a b  .  
 (b) Observe that 2014 2 19 53   . If 2014  is special, then we have,  

  3 3 3 32 2014( 2 )x y u v                      (1) 

for some positive integers , , ,x y u v  . We may assume that 3 32x y  is minimal with this property. Now, 

we will use the fact that of 19  divides 3 32x y , then it divides both x   and y  . Indeed, if 19  does not 
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divide x  then it does not divide y   too. The relation 3 32 (mod 19)x y    implies 
3 6 3 6( ) ( 2 ) (mod 19)x y  . The latter congruence is equivalent to 18 6 182 (mod 19)x y  . Now, according to 

the Fermat’s Little Theorem, we obtain 61 2 (mod 19)  , that is 19   divides 63  , not possible.  

 It follows 1 119 , 19x x y y   , for some positive integers 1x   and 1y  . Replacing in (1) we get  

  2 3 3 3 3
1 119 ( 2 ) 2 53( 2 )x y u v                      (2) 

i.e. 3 319 | 2u v  . It follows 119u u   and 119v v  , and replacing in (2) we get  

  3 3 3 3
1 1 1 12 2014( 2 )x y u v   .  

Clearly, 3 3 3 3
1 12 2x y x y   , contradicting the minimality of 3 32x y .  

 

 Problem 3. Let ABCD   be a trapezium inscribed in a circle   with diameter 
AB  . Let E  be the intersection point of the diagonals AC  and BD . The circle with 
center B  and radius BE  meets   at the points K   and L  , where K  is on the same 
side of AB  as C  . The line perpendicular to BD  at E  intersects CD  at M .  
 Prove that KM  is perpendicular to M .  

 Solution. Since ||AB CD , we have that ABCD  is 
isosceles trapezium. Let O   be the center of k  and EM  
meets AB   at point Q  . Then, from the right angled 

triangle BEQ  , we have 2BE BO BQ  . Since BE BK , 
we get  

  2BK BO BQ  .        (1) 
 Suppose that KL   meets AB   at P . Then, from the 
right angled triangle BAK  , we have  

  2BK BP BA  .        (2) 

 From (1) and (2) we get 1
2

BOBP
BQ BA

   , and therefore 

P  is the midpoint of BQ  .   (3) 
 However, ||DM AD  (both are perpendicular to DB ). Hence, AQMD  is parallelogram and thus 
MQ AD BC   . We conclude that QBCM  is isosceles trapezium. It follows from (3) that KL   is the 
perpendicular bisector of BQ   and CM  , that is, M  is symmetric to C   with respect to KL  . Finally, we 
get that M   is orthocenter of thew triangle DLK  by using the well-known result that the reflection of the 
orthocenter of a triangle to every side belongs to the circumcircle of the triangle and vice versa.  
    
 

 Problem 4. Let n  be a positive integer. A regular hexagon with side with length 
n  is divided into equilateral triangles with side length 1  by lines parallel to its 
sides.  
 Find the number of regular hexagons all of whose vertices are aong the vertices 
of the equlateral triangles.  
 Solution. By a lattice hexagon we will mean a regular hexagon whose sides run along edges of the 
lattice. Given any regular hexagon H  , we construct a lattice hexagon whose edges pass through the 
vertices of H , as shown in the figure, which we will call enveloping lattice hexagon of H . Given a 
lattice hexagon G  of side length m , the number of regular hexagons whose enveloping lattice hexagon 
is G   is exactly m .  
 Yet also there are precisely 3( )( 1) 1n m n m     lattice hexagons of side length m  in our 
lattice:they are those with centers lying at most n m  steps from the centre of the lattice. In particular, 
the total number of regular equals  



A B

CD M

E

Q O P

L

K
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 2 2 3

1 1 1 1

(3( )( 1) 1) (3 3 ) 3(2 1) 3

n n n n

m m m m

N n m n m m n n m n m m
   

             .  

Since 
1

( 1)
2

n

m

n n
m



 , 2

1

( 1)(2 1)
6

n

m

n n m
m



  and 
2

3

1

( 1)
2

n

m

n n
m



   
    it is easily checked that  

 
2

( 1)
2

n n
N

   
 

.  
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Junior Balkan Mathematical Olympiad 2014 
21.06-26.06.2014, Ohrid, Republika Makedonija 

 
 Problem 1. Find all distinct prime numbers p , q   and r  such that  

4 4 23 5 4 26p q r   . 

 Solution. First notice that if both primes q  and r  differ from 3 , then 2 2 1(mod 3)q r  , hence the 

left hand side of the given equation is congruent to zero modulo 3, which is impossible since 26  is not 
divisible by 3 . Thus, 3q   or 3r  . We consider two cases.  
 Case 1. 3q  .  

 The equation reduces to  4 23 4 431 1p r  .  

 If 5p  , by Fermat’s little theorem, 4 1 (mod 5)p  , which yields 23 4 1 (mod 5)r  , or 

equivalently, 2 2 0 (mod 5)r   . The last congruence is impossible in view of the fact that a residue of a 

square of a positive integer belongs to the set { 0, 1,4} . Therefore 5p   and 19r  .  

 Case 2. 3r  . 

 The equation becomes  4 43 5 62 2p q  . 

 Obviously 5p  . Hence, Fermat’s little theorem gives 4 1 (mod 5)p  . But then 45 1 (mod 5)q  , 

which is impossible.  
 Hence, the only solution of the given equation is 5p  , 3q  , 19r  . 
 Remark. Reduction of the equation to an equation with two variables brings 4 points. A further 
reduction to an equation in one variable brings additional 4 points. Completion brings the final 2 points. 

 
 Problem 2. Consider an acute triangle ABC with area S. Let CD AB  
( D AB ), DM AC  
( M AC ) and DN BC  
( N BC ). Denote by 1H  

and 2H   the orthocentres of 

the triangles MNC  and 
MND  respectively. Find the 
area of the quadrilateral 

1 2AH BH  in terms of S. 

 
Solution 1. Let O, P, K, R and T 

be the mid-points of the segments 
CD, MN, CN, 1CH  and 1MH , 

respectively. From MNC  we have 

that 1
2

PK MC
 
and PK MC .  

Analogously, from 1MH C  we have that 1
2

TR MC
 
and TR MC . Consequently, PK TR  and  

PK TR . Also OK DN  (from CDN ) and since DN BC  and 1MH BC , it follows that 1TH OK .  

Since O is the circumcenter of CMN , OP MN . Thus, 1CH MN
 
implies 1OP CH .  We conclude 

1TRH KPO    (they have parallel sides and TR PK ), hence 1RH PO , i.e. 1 2CH PO  and 

1CH PO .  

C 

A B D 

M 

N 

P 

O 

1H

2H  

K R 

T 
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 Analogously, 2 2DH PO
 

and 2DH PO . From 1 22CH PO DH   and 1 2CH PO DH   the 

quadrilateral 1 2CH H D  is a parallelogram, thus 1 2H H CD  and  1 2H H CD . Therefore the area of the 

quadrilateral 1 2AH BH
 
is 1 2

2 2
AB H H AB CD S

   . 

 Solution 2. Since 1MH DN  and 1NH DM , 1MDNH  is a parallelogram. Similarly, 2NH CM  and 

2MH CN   imply 2MCNH  is a parallelogram. Let P  be the midpoint of the segment MN . Then 

  1P D H   and   2P C H  , thus 1 2CD H H  and 1 2 (4points)CD H H . From CD AB  we deduce 

1 2

1 .
2AH BHA AB CD S  

 
 Remark. Just proving that 1 2H H AB  is worth 5 points. Just proving that 1 2H H CD  brings 5 

points. Proving both 1 2H H AB  and 1 2H H CD  brings 9 points. The last point is obtained by deducing 

from this that the area of 1 2AH BH
 
is equal to S . 

 

 Problem 3. Let , ,a b c be positive real numbers such that 1abc  . Prove that 

  
 

2 2 2
1 1 1

3 1a b c a b c
b c a

                  
     

. 

When does equality hold? 
 Solution1. By using AM-GM ( 2 2 2x y z xy yz zx     ) we have 

              
     

2 2 2
1 1 1 1 1 1 1 1 1

1 1 1

3

a b c a b b c c a
b c a b c c a a b

a b cab a bc b ca c
c a b

a c bab bc ca a b c
c b a

             

           

         

 

 Notice that by AM-GM we have 2 , 2 , and 2b c aab b bc c ca a
a b c

       

Thus , 

           2 2 2
1 1 1 3 3( 1)b c aa b c ab bc ca a b c a b c
b c a a b c

                    

The equality holds if and only if 1a b c   . 
  Solution2. From QM-AM we obtain 

     

       
 

2 2 21 1 1 1 1 1

21 1 12 2 2

3 3

1 1 1 1
3

b c a b c a

b c a

a b c a b c

a b c
a b c

b c a

         
 

    
     

 

From AM-GM we have 31 1 1 13 3(1point)
a b c abc
    , and substituting in  1  we get 

         

        

   

2 21 1 12 2 2

3

31 1 1
3 3

6 9 3 6 9
3 3

9 9
3 1

3

b c a
a b c a b c

a b c
b c a

a b c a b c a b c a b c abc a b c

a b c
a b c

       
       

             
  

  
    

 

The equality holds if and only if 1a b c    

 Solution 3. By using 2 2 2x y z xy yz zx      
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     2 2 2
2 2 2

2 2 2
2 2 21 1 1 1 1 1

2 2 21 1 1 .

a b ca b c a b c
b c a b c ab c a

a b cab ac bc
bc ca ab b c a

              

        

 

Clearly  

  

1 1 1 abc abc abc a b c
bc ca ab bc ca ab

         

  
2 2 2a b cab bc ca a b c

b c a
         

  

33 3a b c a b c
b c a b c a
       

Hence  

           
 

2 2 2
1 1 1

2 2 2 3 3 1

a c b a b ca b c ab ac bc a b c
b c a b a c b c a

a b c a b c a b c

                 

          
 The equality holds if and only if 1a b c    

Solution4. xa
y

 , 
y

b
z

 , zc
x

  

 
2 2 2

3 1
y y yx x xz z z

y y z z x x y z x
                      
       

 

 2 2 2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) 3 ( )x z x z y x y x z y z y xyz x z y x z y xyz          

 
4 2 3 3 2 4 2 4 3 3 4 2 2 4 3 3 4 2

3 2 2 3 2 3 2 2 2
2 2 2

3 3 3 3
x z x z x z x y x y x y y z y z y z

x yz x y z xy z x y z
        

   
    

  3 3 3 3 3 3 2 2 21) 3x y y z z x x y z   . 

  

4 2 4 2 3 3 3 2

4 2 4 2 3 3 3 2

4 2 4 2 3 3 3 2

2) 3
3) 3
4) 3

x z z x x y x z y
x y y x y z y x z
z y y z x z z y x

  
   
   

 

Equality holds when x y z  , i.e., 1a b c   . 

Solution 5.  21( ) 3 3
cyc cyc

a a
b

     

   2
2

12 3 1 0
cyc cyc

a a a
b a

 
      

 
    

   32 6 6
cyc

a a b c
b b c a
     (1) 

   

   

2
2

4 3 2

2 2

310, 3 4

3 4 3 1 0

1 1 0(4points)

a a a
aa

a a a a

a a a

     

     
    

   

    2 3
2

1 1 13 1 3 15 9 15 6
cyc cyc

a a
a abca

 
         

 
           (2) 

 Using (1) and (2) we obtain 
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   2
2

12 3 1 6 6 0
cyc

a a a
b a

 
       

 
   

 Equality holds when 1a b c   .  

 Remark. Just stating a known inequality does not worth any points. 
 

 Problem 4. For a positive integer n , two players A and B play the following 
game: Given a pile of s stones, the players take turn alternatively with A going 
first. On each turn the player is allowed to take either one stone, or a prime number 
of stones, or a multiple of n  stones. The winner is the one who takes the last stone. 
Assuming both A and B play perfectly, for how many values of s the player A 
cannot win? 
 Solution. Denote by k  the sought number and let  1 2,s ,...,sks  be the corresponding values for s . 

We call each is  a losing number and every other nonnegative integer a winning numbers.  

  ( I )   Clearly every multiple of n  is a winning number.                                         
 Suppose there are two different losing numbers i js s , which are congruent modulo n . Then, on his 

first turn of play, player A  may remove i js s  stones (since i jn s s ), leaving a pile with js  stones for 

B. This is in contradiction with both is  and js  being losing numbers. 

 ( II )   Hence, there are at most 1n   losing numbers, i.e. 1k n  .                        
 Suppose there exists an integer  1,2,..., 1r n  , such that mn r  is a winning number for every 

0m . Let us denote by u  the greatest losing number (if 0k  ) or 0  (if 0k  ), and let 

 2,3,..., 1s LCM u n   . Note that all the numbers 2s  , 3s  , …, 1s u n    are composite. Let 

0'm  , be such that 2 ' 1s u m n r s u n        . In order for 'm n r  to be a winning number, 

there must exist an integer p , which is either one, or prime, or a positive multiple of n , such that 
'm n r p   is a losing number or 0, and hence lesser than or equal to u . Since 

2 ' ' 1s m n r u p m n r s u n           , p  must be a composite, hence p  is a multiple of n  (say 

p qn ). But then  ' 'm n r p m q n r      must be a winning number, according to our assumption. 

This contradicts our assumption that all numbers mn r , 0m  are winning. 

 ( III )    Hence, each nonzero residue class modulo n  contains a loosing number.     
 ( IV )    There are exactly 1n   losing numbers (one for each residue  1,2,..., 1r n  ).  

 Similar proof of ( III ) :   
 Lemma:  No pair (u,n)  of positive integers satisfies the following property:  

(*)   In  exists an arithmetic progression 1(a )t t

  with difference  n  such that each segment   

       ,ai ia u u     contains a prime. 

  Proof of the lemma:  Suppose such a pair (u,n)  and a corresponding arithmetic progression 1(a )t t

  

exist. In   exist arbitrarily long patches of consecutive composites. Take such a patch P  of length 3un . 
Then, at least one segment ,ai ia u u     is fully contained in P , a contradiction. 

 Suppose such a nonzero residue class modulo n  exists (hence 1n  ). Let u  be greater than 
every loosing number. Consider the members of the supposed residue class which are greater than u . 
They form an arithmetic progression with the property (*) , a contradiction (by the lemma).  
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