

JUNIOR BALKAN MATHEMATICAL

OLYMPIAD

i) 1010250

20-та Македонска математичка олимпијада

JUNIOR BALKAN MATHEMATICAL

OLYMPIAD

i) 1010250

20-та Македонска математичка олимпијада

Library Olympiads-Armaganka

Mathematical Olympiads

Macedonian Mathematical Olympiads
Balkan Mathematical Olympiads

Aleksa Malcheski, Ph.D.
Velinov Daniel, Ph.D.
Sanja Atanasova, Ph.D.
Risto Malcheski, Ph.D.
Slagjana Brsakoska, Ph.D.
Samoil Malcheski, Ph.D.
Bojan Prangoski, Ph.D.
p Pavel Dimovski, M.Sc.
Tomi Dimovski, M.Sc.
Vesna Andova, Ph.D.
Methodi Glavche, Ph.D.
Jasmina Angeleska

President: Aleksa Malcheski
Publisher: Macedonian Mathematical Society-Armaganka
Street:. Ul.2.br.107A
Nas. Vizbegovo, Butel, 1000, Skopje, Macedonia

Foreword

This year in the Macedonia competitions of all levels in primary/secondary and high-school were held: school, regional, state and Olympiads.

After rigorous selection processes the BMO and JBMO teams were formed. The latter Olympiads took place in a pleasant atmosphere in the Republic of Bulgaria and the Republic of Macedonia, respectively.

After the IMO team selection test, the team to the IMO 2014 was formed. This year the IMO is taking place in Cape Town, the SAU.

The content of this book consists of the mathematical competitions that already took place in Macedonia and the Balkan region, as well as the solutions.

XVIII Macedonian Junior Mathematical Olympiad 2014 Faculty of Electrical Engineering and Information TechnologiesSkopje, 31.05.2014

18-t a JMMO

1. Prove that $\frac{1}{1 \cdot 2013}+\frac{1}{2 \cdot 2012}+\frac{1}{3 \cdot 2011}+\ldots+\frac{1}{2012 \cdot 2}+\frac{1}{2013 \cdot 1}<1$.

Solution 1. For arbitrary natural numbers $n \neq 1 \neq m$ the inequality $n m \geq n+m$ holds, since $(n-1)(m-1) \geq 1 \Rightarrow n m-n-m+1 \geq 1 \Rightarrow n m-n-m \geq 0 \Rightarrow n m \geq n+m$, with equality only when $n=m=2$. Then for $n \geq 2$, we have $\frac{1}{n(2014-n)}<\frac{1}{n+2014-n}=\frac{1}{2014}$ and hence:

$$
\frac{1}{1 \cdot 2013}+\frac{1}{2 \cdot 2012}+\frac{1}{3 \cdot 2011}+\ldots+\frac{1}{2012 \cdot 2}+\frac{1}{2013 \cdot 1}<\frac{2}{2013}+\frac{2011}{2014}<\frac{3}{2014}+\frac{2011}{2014}=1 .
$$

Solution 2.

$$
\begin{aligned}
& \frac{1}{1 \cdot 2013}+\frac{1}{2 \cdot 2012}+\frac{1}{3 \cdot 2011}+\ldots+\frac{1}{2012 \cdot 2}+\frac{1}{2013 \cdot 1}= \\
& =\frac{1}{2014}\left(\frac{1+2013}{1 \cdot 2013}+\frac{2+2012}{2 \cdot 2012}+\frac{3+2011}{3 \cdot 2011}+\ldots+\frac{2012+2}{2012 \cdot 2}+\frac{2013+1}{2013 \cdot 1}\right)= \\
& =\frac{1}{2014}\left(\left(\frac{1}{1}+\frac{1}{2013}\right)+\left(\frac{1}{2}+\frac{1}{2012}\right)+\ldots+\left(\frac{1}{2012}+\frac{1}{2}\right)+\left(\frac{1}{2013}+\frac{1}{1}\right)\right)= \\
& =\frac{1}{2014} 2\left(\frac{1}{1}+\frac{1}{2}+\ldots+\frac{1}{2012}+\frac{1}{2013}\right)=\frac{1}{2014}\left(3+\frac{2}{3}+\frac{2}{4}+\ldots+\frac{2}{2012}+\frac{2}{2013}\right)< \\
& <\frac{1}{2014}(3+\underbrace{1+1 \ldots+1+1}_{2011})=1
\end{aligned}
$$

2. Two tangents are drawn from a point M to circle k, that touch it at points G and H. If O is the center of k and K is the orthocenter of the triangle $M G H$ prove that $\angle G M H=\angle O G K$.

Solution. Let us notice that K must lie on $O M$. From $H K \perp G M$ and $O G \perp G M$, it follows that $H K \| O G$. Analogously $O H \| G K$.(1p) From $\overline{O G}=\overline{O H}$, it follows that $O H K G$ is a rhombus. (1p) Let us notice that O, H, M and G lie on the circle with diameter $O M$. Hence $\angle O G H=\angle O M H$. Now the statement of the exercise follows from $\angle O G K=2 \angle O G H$ and $\angle G M H=2 \angle O M H$.
3.Find all $n \in \mathbb{N}$ divisible by 11 , such that all numbers that can be obtained from n by an arbitrary rearrangement of its digits are again divisible by 11 .

Solution.From the condition $11 \mid n$, the number n must have at least two digits. Let $n=\overline{a_{k} a_{k-1} \ldots a_{0}}$ where $a_{i}, 0 \leq i \leq k$ are digits and $a_{k} \neq 0$. From the former discussion we have $k \geq 1$.

We will show that all digits in the number n are equal. Namely, from the condition of the exercise, the number $n^{\prime}=\overline{a_{k} a_{k-1} \ldots a_{i+1} a_{i-1} a_{i} a_{i-2} \ldots a_{0}}$ (n^{\prime} is obtained from n by exchanging the positions of the digits a_{i-1} and a_{i}) is also divisible by 11 . Therefore $11 \mid n-n^{\prime}$, i.e. $11 \mid 10^{i-1}\left(\overline{a_{i} a_{i-1}}-\overline{a_{i-1} a_{i}}\right)$ or $11 \mid 10^{i-1} \cdot 9\left(a_{i}-a_{i-1}\right)$, and hence $a_{i}=a_{i-1}$.

It follows that $n=a \cdot \underbrace{11 \ldots 11}_{k+1}$. We easily check that $11 \mid n$ if and only if k is an odd number.
4. A convex quadrilateral $A B C D$ is given. Let E be the intersection of $A B$ and $C D, F$
 be the intersection of $A D$ and $B C$, and G be the intersection of $A C$ and $E F$. Prove that the following two statements are equivalent:
(i) $B D$ and $E F$ are parallel
(ii) G is the midpoint of the segment $\overline{E F}$

Solution. We draw a line l through E which is parallel to $B C$. Let H be the intersection of l and $A G$. Now we have that G is the intersection of the diagonals in the trapezoid EHFC.
$(i) \Rightarrow(i i)$: Let the lines $B D$ and $E F$ be parallel. Then, from Thales' theorem for parallel segments we have the equalities:

$$
\frac{\overline{A C}}{\overline{A H}}=\frac{\overline{A B}}{\overline{A E}} \text { and } \frac{\overline{A B}}{\overline{A E}}=\frac{\overline{A D}}{\overline{A F}} .
$$

It follows that $\frac{\overline{A C}}{\overline{A H}}=\frac{\overline{A D}}{A F}$, and therefore from the same Thales' theorem we conclude that the lines $H F$ and $E D$ are parallel. Therefore $E H F C$ is a parallelogram and its diagonals bisect each other in the intersecting point G.
$($ ii $) \Rightarrow(i)$: Let G be the midpoint of the segment $\overline{E F}$. Then $\triangle E G H \cong \triangle F G C$, so that $E H F C$ is a parallelogram and we conclude that $H F$ and $E D$ are parallel. Therefore the equalities

$$
\frac{\overline{A C}}{\overline{A H}}=\frac{\overline{A B}}{\overline{A E}} \text { and } \frac{\overline{A C}}{\overline{A H}}=\frac{\overline{A D}}{\overline{A F}}
$$

hold.
It follows that $\frac{\overline{A B}}{A E}=\frac{\overline{A D}}{\overline{A F}}$, and therefore from the same Thales' theorem we conclude that $B D$ and $E F$ are parallel.
5. Prove that there exist pairwise disjoint sets $A_{1}, A_{2}, \ldots, A_{2014}$ whose union is the set of natural numbers and for which the following condition holds:

For arbitrary natural numbers a and b, at least two of the numbers $a, b, \operatorname{gcd}(a, b)$ belong to one of the sets $A_{1}, A_{2}, \ldots, A_{2014}$.

Solution.Let $v_{2}(n)$ greatest integer for which $2^{v_{2}(n)}$ is a divisor of n. Then $v_{2}(\operatorname{gcd}(a, b))=$ $\min \left\{v_{2}(a), v_{2}(b)\right\}$. Therefore at least two of the numbers $v_{2}(a), v_{2}(b)$ and $v_{2}(\operatorname{gcd}(a, b))$ are equal.

We define sets $A_{i+1}=\left\{n \mid v_{2}(n) \equiv i(\bmod 2014)\right\}$ for $0 \leq i \leq 2013$.
Obviously, the sets $A_{1}, A_{2}, \ldots, A_{2014}$ are pairwise disjoint, their union is N and two of the numbers $a, b, \operatorname{gcd}(a, b)$ belong to the set A_{i+1}, where i is the residue produced by division of $v_{2}(\operatorname{gcd}(a, b))$ by 2014.

Macedonian Mathematical Olympiad 2014 Faculty of Natural Sciences and Mathematics-Skopje 12.04.2014

1. 2014 lines are given in a plane, arranged in three groups of pairwise parallel lines. What is the greatest possible number of triangles formed by the lines (each side from such a triangle lies on one of the lines)?.

Solution. Let $a \geq b \geq c$ be the numbers of the lines in the three groups for which the greatest possible number of triangles is attained. Then $a+b+c=2014$, and the greatest possible number of triangles is $a b c$ (when no three lines have a common point). We will show that $a \leq c+1$. Let us suppose the opposite, i.e. $a>c+1$. Then $a b c<b(a c+a-c-1)=b(a-1)(c+1)$, which is contradictory to the choice of a, b and c. It cannot be that $a=c$, because in that case $a=b=c=\frac{2014}{3}$ is not an integer. In order for a, b and c to be integers, it must be that $a=672$ and $b=c=671$ and so the number of triangles is $672 \cdot 671^{2}$.
2. Give all integer solutions of the equation:

$$
3^{2 a+1} b^{2}+1=2^{c}
$$

Solution.

Case 1. $a \geq 0$.
Clearly $c \geq 0$ where $c=0$ implies $b=0$. We get that $(a, 0,0)$ is a solution for an arbitrary non-negative integer a. From the equality $3^{2 a+1} b^{2}+1=2^{c}$ it follows that b is an odd integer. We can write the left-hand side in the following form

$$
3^{2 a+1} b^{2}+1=\left(3^{2 a+1}+1\right) b^{2}-(b-1)(b+1) .
$$

For the right-hand side of the last equality we notice that $(b-1)(b+1)$ is divisible by 8 , while $\left(3^{2 a+1}+1\right) b^{2}$ is divisible by 4 but not by 8 . Therefore $2^{c}=4$ i.e. $c=2$. But then $3^{2 a+1} b^{2}=3$, so that $a=0$ and $b= \pm 1$.

Case 2. $a<0$.
Again $c \geq 0$ where $c=0$ implies $b=0$ and then a can be an arbitrary negative integer. Therefore we restrict ourselves to the case $c>0$. It is enough to consider the case $b>0$. Putting $d=-a$, the Diophantine equation from the statement of the exercise gets the form

$$
\left(2^{c}-1\right) 3^{2 d-1}=b^{2},
$$

where b, c and d are natural numbers. Therefore b is divisible by 3 , and hence c is an even number. Hence we have $b=3^{d} x, c=2 y$ for some natural numbers x and y. The Diophantine equation gets the form

$$
4^{y-1}+4^{y-2}+\cdots+1=x^{2} .
$$

This implies $x=y=1$. Namely, for $y \geq 2$ we would get that $x^{2} \equiv 5(\bmod 8)$, which is impossible. Therefore in this case the only solutions are $\left(a, 3^{-a}, 2\right)$, where a is an arbitrary negative integer.

The set M of all solutions to the Diophantine equation from the statement of the exercise is:

$$
M=\{(a, 0,0) \mid \quad a \in \mathrm{Z}\} \cup\left\{\left(a, \pm 3^{-a}, 2\right) \mid a \in \mathrm{Z}^{-} \cup\{0\}\right\} .
$$

3. Let k_{1}, k_{2} and k_{3} be three circles with centers O_{1}, O_{2} and O_{3} respectively, such that none of the centers lies inside any of the two other circles. The circles k_{1} and k_{2} intersect in A and P, k_{1} and k_{3} intersect in C and P and k_{2} and k_{3} intersect in B and P. Let X be a point on k_{1} such that the intersection of the line $X A$ with the circle k_{2} is
Y and the intersection of the line $X C$ with k_{3} is Z and so that Y belongs neither inside k_{1} nor inside k_{3} and Z belongs neither inside k_{1} nor inside k_{2}.
a) Prove that the triangles $X Y Z$ and $O_{1} O_{2} O_{3}$ are similar.
б) Prove that the area of the triangle $X Y Z$ is not greater than four times the area of the triangle $O_{1} O_{2} O_{3}$. Is the maximum attainable?

Solution. We will first show that the points Y, B and Z are collinear. Since the quadrilateral BYAP is inscribed we have $\angle P B Y=\angle P A X$. Since the quadrilateral $A X C P$ is inscribed we have $\angle P A X=\angle P C Z$. Since the quadrilateral $C P B Z$ is inscribed we obtain $\angle P B Z+\angle P C Z=180^{\circ}$. Therefore $\angle Y B Z=\angle Y B P+\angle P B Z=180^{\circ}$.

Let us notice that $\angle C O_{1} O_{3}=\angle P O_{1} O_{3}$ and $\angle A O_{1} O_{2}=\angle P O_{1} O_{2}$, from where it follows that $\angle O_{2} O_{1} O_{3}=\frac{1}{2} \angle A O_{1} C=\angle A X C$. Similarly $\angle O_{1} O_{2} O_{3}=\angle A Y B$ and $\angle O_{1} O_{3} O_{2}=\angle C Z B$. It follows that $\triangle X Y Z \sim \Delta O_{1} O_{2} O_{3}$, with which we've proven the statement under a).

Let the line $X_{1} Y_{1}$ be parallel to $O_{1} O_{2}$ and pass through A, where X_{1} lies on k_{1} and Y_{1} lies on k_{2}. Let Z_{1} be the intersection of the line $X_{1} C$ with the circle k_{3}. From the afore-proven, the points Y_{1}, B and Z_{1} are collinear and $\triangle X_{1} Y_{1} Z_{1} \sim \triangle O_{1} O_{2} O_{3}$. Furthermore, $\angle P X A=\angle P X_{1} A$ and $\angle P Y A=\angle P Y_{1} A$. Therefore $\triangle P X Y \sim \Delta P X_{1} Y_{1}$. Let $P T$ be the altitude dropped from the vertex P to the side $X Y . P A$ is the altitude of the triangle $P X_{1} Y_{1}$. Since $P A$ is a hypotenuse in the right-angled triangle $P A T$ we get $\overline{P T} \leq \overline{P A}$. Therefore $P_{P X Y} \leq P_{P X_{1} Y_{1}}$ and analogously $P_{P Y Z} \leq P_{P Y_{1} Z_{1}}$ and $P_{P X Z} \leq P_{P X_{1} Z_{1}}$. From this we get $P_{X Y Z} \leq P_{X_{1} Y_{1} Z_{1}}$. The points P, O_{1} and X_{1} are collinear since $\angle P A X_{1}=90^{\circ}$. Similarly P, O_{2} and Y_{1} are collinear and P, O_{3} and Z_{1} are collinear. We get that $O_{1} O_{2}, O_{1} O_{3}$ and $O_{2} O_{3}$ are midsegments in the triangles $X_{1} Y_{1} P, X_{1} Z_{1} P$ and $Y_{1} Z_{1} P$ respectively, and so $P_{X_{1} Y_{1} Z_{1}}=4 P_{O_{1} O_{2} O_{3}}$. This gives us the required inequality. Equality is attained when the points X and X_{1} coincide, and with that the points Y and Y_{1} as well as the points Z и Z_{1} coincide.
4. Let a, b, c be real numbers for which $a+b+c=4$ and $a, b, c>1$. Prove that

$$
\frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1} \geq 8\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)
$$

Solution. Since it holds that $\frac{1}{a-1}-\frac{8}{b+c}=\frac{1}{a-1}-\frac{8}{4-a}=\frac{12-9 a}{(a-1)(4-a)}=\frac{3(4-3 a)}{(a-1)(4-a)}$ the given inequality is equivalent to

$$
3\left(\frac{4-3 a}{(a-1)(4-a)}+\frac{4-3 b}{(b-1)(4-b)}+\frac{4-3 c}{(c-1)(4-c)}\right) \geq 0 .
$$

Without loss of generality we can assume that $a \geq b \geq c$. Then clearly it holds $4-3 a \leq 4-3 b \leq 4-3 c$. From $1<a, b, c<4$ it follows that $\frac{1}{(a-1)(4-a)}, \frac{1}{(b-1)(4-b)}, \frac{1}{(c-1)(4-c)}$ are positive real numbers. We will prove that $(a-1)(4-a) \geq(b-1)(4-b)$.
We have $(a-1)(4-a) \geq(b-1)(4-b) \Leftrightarrow 5 a-a^{2} \geq 5 b-b^{2} \Leftrightarrow(a-b)(5-a-b) \geq 0$. Analogously $(b-1)(4-b) \geq(c-1)(4-c)$. Hence $\quad \frac{1}{(a-1)(4-a)} \leq \frac{1}{(b-1)(4-b)} \leq \frac{1}{(c-1)(4-c)}$. Since $4-3 a \leq 4-3 b \leq 4-3 c$ we can use Chebyshev's inequality to obtain:

$$
\begin{aligned}
& \frac{4-3 a}{(a-1)(4-a)}+\frac{4-3 b}{(b-1)(4-b)}+\frac{4-3 c}{(c-1)(4-c)} \geq \frac{4-3 a+4-3 b+4-3 c}{3} . \\
& \left(\frac{1}{(a-1)(4-a)}+\frac{1}{(b-1)(4-b)}+\frac{1}{(c-1)(4-c)}\right)=0 .
\end{aligned}
$$

Equality holds for $4-3 a=4-3 b=4-3 c$ i.e. $a=b=c=\frac{4}{3}$.
5. Out of an equilateral triangle with side 2014 an equilateral triangle with side 214 is cut out, such that the two triangles have one vertex in common and two of the sides of the cut-out triangle lie on two of the sides of the initial one. Can this figure be covered by the figures shown below without overlap (rotation is allowed), if the triangles in the figures are equilateral with side 1 ? Justify your answer!

Solution. First we cut the given figure into equilateral triangles with side 1. We label the triangles in the given figure by numbers from 1 to 6 , as on the picture to the right. (in the first row successively from 1 to 6 , then the numbers repeat, in the second we start from 5 , in the third from 3 , then from 1 and the procedure repeats). It can easily be noticed that each of the given figures covers exactly one of the numbers 1 to 6 . Therefore, in order for the figure to be coverable by the given figures, each of the numbers has to appear an equal number of times. If we compare how often the number 1 and the number 2 appear we will notice that in the first, fourth and each row of the form
 $3 k+1$ there is one more 1 than 2 's, and in the remaining rows the number of 1 's and 2 's is equal, therefore, it follows that the number of 1 's and 2 's is unequal, and therefore not every number can appear an equal number of times. It follows that the figure cannot be covered in the required way.

Balkan Mathematical Olympiads 2014
 02.05-07.05.2014, Pleven, Bulgaria

Problem 1. Let x, y and z be positive real numbers such that $x y+y z+z x=3 x y z$. Prove that

$$
x^{2} y+y^{2} z+z^{2} x \geq 2(x+y+z)-3
$$

Solution. The given condition can be rearranged to $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3$. Using this, we obtain:

$$
\begin{aligned}
x^{2} y+y^{2} z+z^{2} x-2(x+y+z)-3 & =x^{2} y-2 x+\frac{1}{y}+y^{2} z-2 y+\frac{1}{z}+z^{2} x-2 x+\frac{1}{y}= \\
& =y\left(x-\frac{1}{y}\right)^{2}+z\left(y-\frac{1}{z}\right)^{2}+x\left(z-\frac{1}{x}\right)^{2} \geq 0
\end{aligned}
$$

Equality holds if and only if we have $x y+y z+z x=1$, or, in other words, $x=y=z=1$.
Alternative solution. It follows from $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3$ and Cauchy-Schwarz inequality that

$$
\begin{aligned}
3\left(x^{2} y+y^{2} z+z^{2} x\right) & =\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x^{2} y+y^{2} z+z^{2} x\right)= \\
& =\left(\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}\right)\left((x \sqrt{y})^{2}+(y \sqrt{z})^{2}+(z \sqrt{x})^{2}\right) \geq \\
& =(x+y+z)^{2}
\end{aligned}
$$

Therefore, $\left.x^{2} y+y^{2} z+z^{2} x\right) \geq \frac{(x+y+z)^{2}}{3}$ and if $x+y+z=t$ it suffices to show that $\frac{t^{2}}{3} \geq 2 t-3$. The latter is equaivalent to $(t-3)^{2} \geq 0$. Equality holds when

$$
x \sqrt{y} \sqrt{y}=y \sqrt{z} \sqrt{z}=z \sqrt{x} \sqrt{x},
$$

i.e. $x y=y z=z x$, and $t=x=y+z=3$. Hence, $x=y=z=1$.

Comment. The inequality is true with the condition $x y+y z+z x \leq 3 x y z$.
Problem 2. A special number is a positive integer n for which there exist positive integer a, b, c and d with

$$
n=\frac{a^{3}+2 b^{3}}{c^{3}+2 d^{3}} .
$$

Prove that
(a)There are infinitely many special numbers;
(b) 2014 is not a special number.

Solution. (a) Every perfect cube k^{3} of a positive integer is spcial because we can write

$$
k^{3}=k^{3} \frac{a^{3}+2 b^{3}}{a^{3}+2 b^{3}}=\frac{(k a)^{3}+2(k b)^{3}}{a^{3}+2 b^{3}},
$$

for some positive integers a, b.
(b) Observe that $2014=2 \cdot 19 \cdot 53$. If 2014 is special, then we have,

$$
\begin{equation*}
x^{3}+2 y^{3}=2014\left(u^{3}+2 v^{3}\right) \tag{1}
\end{equation*}
$$

for some positive integers x, y, u, v. We may assume that $x^{3}+2 y^{3}$ is minimal with this property. Now, we will use the fact that of 19 divides $x^{3}+2 y^{3}$, then it divides both x and y. Indeed, if 19 does not
divide x then it does not divide y too. The relation $x^{3} \equiv-2 y^{3}(\bmod 19) \quad$ implies $\left(x^{3}\right)^{6} \equiv\left(-2 y^{3}\right)^{6}(\bmod 19)$. The latter congruence is equivalent to $x^{18} \equiv 2^{6} y^{18}(\bmod 19)$. Now, according to the Fermat's Little Theorem, we obtain $1 \equiv 2^{6}(\bmod 19)$, that is 19 divides 63 , not possible.

It follows $x=19 x_{1}, y=19 y_{1}$, for some positive integers x_{1} and y_{1}. Replacing in (1) we get

$$
\begin{equation*}
19^{2}\left(x_{1}^{3}+2 y_{1}^{3}\right)=2 \cdot 53\left(u^{3}+2 v^{3}\right) \tag{2}
\end{equation*}
$$

i.e. $19 \mid u^{3}+2 v^{3}$. It follows $u=19 u_{1}$ and $v=19 v_{1}$, and replacing in (2) we get

$$
x_{1}^{3}+2 y_{1}^{3}=2014\left(u_{1}^{3}+2 v_{1}^{3}\right) .
$$

Clearly, $x_{1}^{3}+2 y_{1}^{3} \leq x^{3}+2 y^{3}$, contradicting the minimality of $x^{3}+2 y^{3}$.
Problem 3. Let $A B C D$ be a trapezium inscribed in a circle Γ with diameter $A B$. Let E be the intersection point of the diagonals $A C$ and $B D$. The circle with center B and radius $B E$ meets Γ at the points K and L, where K is on the same side of $A B$ as C. The line perpendicular to $B D$ at E intersects $C D$ at M.

Prove that $K M$ is perpendicular to M.

Solution. Since $A B \| C D$, we have that $A B C D$ is isosceles trapezium. Let O be the center of k and $E M$ meets $A B$ at point Q. Then, from the right angled triangle $B E Q$, we have $B E^{2}=B O \cdot B Q$. Since $B E=B K$, we get

$$
\begin{equation*}
B K^{2}=B O \cdot B Q \tag{1}
\end{equation*}
$$

Suppose that $K L$ meets $A B$ at P. Then, from the right angled triangle $B A K$, we have

$$
\begin{equation*}
B K^{2}=B P \cdot B A \tag{2}
\end{equation*}
$$

From (1) and (2) we get $\frac{B P}{B Q}=\frac{B O}{B A}=\frac{1}{2}$, and therefore
P is the midpoint of $B Q$.
However, $D M \| A D$ (both are perpendicular to $D B$). Hence, $A Q M D$ is parallelogram and thus $M Q=A D=B C$. We conclude that $Q B C M$ is isosceles trapezium. It follows from (3) that $K L$ is the perpendicular bisector of $B Q$ and $C M$, that is, M is symmetric to C with respect to $K L$. Finally, we get that M is orthocenter of thew triangle $D L K$ by using the well-known result that the reflection of the orthocenter of a triangle to every side belongs to the circumcircle of the triangle and vice versa.

Problem 4. Let n be a positive integer. A regular hexagon with side with length n is divided into equilateral triangles with side length 1 by lines parallel to its sides.

Find the number of regular hexagons all of whose vertices are aong the vertices of the equataral triangles.

Solution. By a lattice hexagon we will mean a regular hexagon whose sides run along edges of the lattice. Given any regular hexagon H, we construct a lattice hexagon whose edges pass through the vertices of H, as shown in the figure, which we will call enveloping lattice hexagon of H. Given a lattice hexagon G of side length m, the number of regular hexagons whose enveloping lattice hexagon is G is exactly m.

Yet also there are precisely $3(n-m)(n-m+1)+1$ lattice hexagons of side length m in our lattice:they are those with centers lying at most $n-m$ steps from the centre of the lattice. In particular, the total number of regular equals

$$
N=\sum_{m=1}^{n}(3(n-m)(n-m+1)+1) m=\left(3 n^{2}+3 n\right) \sum_{m=1}^{n} m-3(2 n+1) \sum_{m=1}^{n} m^{2}+3 \sum_{m=1}^{n} m^{3}
$$

Since $\sum_{m=1}^{n} m=\frac{n(n+1)}{2}, \sum_{m=1}^{n} m^{2}=\frac{n(n+1)(2 m+1)}{6}$ and $\sum_{m=1}^{n} m^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ it is easily checked that

$$
N=\left(\frac{n(n+1)}{2}\right)^{2}
$$

Junior Balkan Mathematical Olympiad 2014 21.06-26.06.2014, Ohrid, Republika Makedonija

Problem 1. Find all distinct prime numbers p, q and r such that

$$
3 p^{4}-5 q^{4}-4 r^{2}=26 .
$$

Solution. First notice that if both primes q and r differ from 3 , then $q^{2} \equiv r^{2} \equiv 1(\bmod 3)$, hence the left hand side of the given equation is congruent to zero modulo 3 , which is impossible since 26 is not divisible by 3 . Thus, $q=3$ or $r=3$. We consider two cases.

Case 1. $q=3$.
The equation reduces to $3 p^{4}-4 r^{2}=431 \quad$ (1).
If $p \neq 5$, by Fermat's little theorem, $p^{4} \equiv 1(\bmod 5)$, which yields $3-4 r^{2} \equiv 1(\bmod 5)$, or equivalently, $r^{2}+2 \equiv 0(\bmod 5)$. The last congruence is impossible in view of the fact that a residue of a square of a positive integer belongs to the set $\{0,1,4\}$. Therefore $p=5$ and $r=19$.

Case 2. $r=3$.
The equation becomes $3 p^{4}-5 q^{4}=62$
Obviously $p \neq 5$. Hence, Fermat's little theorem gives $p^{4} \equiv 1(\bmod 5)$. But then $5 q^{4} \equiv 1(\bmod 5)$, which is impossible.

Hence, the only solution of the given equation is $p=5, q=3, r=19$.
Remark. Reduction of the equation to an equation with two variables brings 4 points. A further reduction to an equation in one variable brings additional 4 points. Completion brings the final 2 points.

Problem 2. Consider an acute triangle ABC with area S. Let $C D \perp A B$ $(D \in A B), \quad D M \perp A C$ $(M \in A C)$ and $D N \perp B C$ ($N \in B C$). Denote by H_{1} and H_{2} the orthocentres of the triangles MNC and MND respectively. Find the area of the quadrilateral $A H_{1} B H_{2}$ in terms of S.

Solution 1. Let O, P, K, R and T be the mid-points of the segments $C D, M N, C N, C H_{1}$ and $M H_{1}$, respectively. From $\triangle M N C$ we have that $\overline{P K}=\frac{1}{2} \overline{M C}$ and $P K \| M C$.

Analogously, from $\triangle M H_{1} C$ we have that $\overline{T R}=\frac{1}{2} \overline{M C}$ and $T R \| M C$. Consequently, $\overline{P K}=\overline{T R}$ and $P K \| T R$. Also $O K \| D N$ (from $\triangle C D N$) and since $D N \perp B C$ and $M H_{1} \perp B C$, it follows that $T H_{1} \| O K$. Since O is the circumcenter of $\triangle C M N, O P \perp M N$. Thus, $C H_{1} \perp M N$ implies $O P \| C H_{1}$. We conclude $\Delta T R H_{1} \cong \triangle K P O$ (they have parallel sides and $\overline{T R}=\overline{P K}$), hence $\overline{R H_{1}}=\overline{P O}$, i.e. $\overline{C H_{1}}=2 \overline{P O}$ and $\mathrm{CH}_{1} \| P O$.

Analogously, $\overline{D H_{2}}=2 \overline{P O}$ and $D H_{2} \| P O$. From $\overline{C H_{1}}=2 \overline{P O}=\overline{D H_{2}}$ and $\mathrm{CH}_{1}\|P O\| D H_{2}$ the quadrilateral $\mathrm{CH}_{1} \mathrm{H}_{2} \mathrm{D}$ is a parallelogram, thus $\overline{\mathrm{H}_{1} H_{2}}=\overline{C D}$ and $H_{1} H_{2} \| C D$. Therefore the area of the quadrilateral $A H_{1} B H_{2}$ is $\frac{\overline{A B} \cdot \overline{H_{1} H_{2}}}{2}=\frac{\overline{A B} \cdot \overline{C D}}{2}=S$.

Solution 2. Since $M H_{1} \| D N$ and $N H_{1} \| D M, M D N H_{1}$ is a parallelogram. Similarly, $N H_{2} \| C M$ and $M H_{2} \| C N$ imply $M C N H_{2}$ is a parallelogram. Let P be the midpoint of the segment $\overline{M N}$. Then $\sigma_{P}(D)=H_{1}$ and $\sigma_{P}(C)=H_{2}$, thus $C D \| H_{1} H_{2}$ and $\overline{C D}=\overline{H_{1} H_{2}}$ (4 points). From $C D \perp A B$ we deduce $A_{A H_{1} B H_{2}}=\frac{1}{2} \overline{A B} \cdot \overline{C D}=S$.

Remark. Just proving that $H_{1} H_{2} \perp A B$ is worth 5 points. Just proving that $\overline{H_{1} H_{2}}=\overline{C D}$ brings 5 points. Proving both $H_{1} H_{2} \perp A B$ and $\overline{H_{1} H_{2}}=\overline{C D}$ brings 9 points. The last point is obtained by deducing from this that the area of $A H_{1} B H_{2}$ is equal to S.

Problem 3. Let a, b, c be positive real numbers such that $a b c=1$. Prove that

$$
\left(a+\frac{1}{b}\right)^{2}+\left(b+\frac{1}{c}\right)^{2}+\left(c+\frac{1}{a}\right)^{2} \geq 3(a+b+c+1)
$$

When does equality hold?

Solution1. By using AM-GM $\left(x^{2}+y^{2}+z^{2} \geq x y+y z+z x\right)$ we have

$$
\begin{aligned}
\left(a+\frac{1}{b}\right)^{2}+\left(b+\frac{1}{c}\right)^{2}+\left(c+\frac{1}{a}\right)^{2} \geq\left(a+\frac{1}{b}\right) & \left(b+\frac{1}{c}\right)+\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right)+\left(c+\frac{1}{a}\right)\left(a+\frac{1}{b}\right) \\
& =\left(a b+1+\frac{a}{c}+a\right)+\left(b c+1+\frac{b}{a}+b\right)+\left(c a+1+\frac{c}{b}+c\right) \\
& =a b+b c+c a+\frac{a}{c}+\frac{c}{b}+\frac{b}{a}+3+a+b+c
\end{aligned}
$$

Notice that by AM-GM we have $a b+\frac{b}{a} \geq 2 b, b c+\frac{c}{b} \geq 2 c$, and $c a+\frac{a}{c} \geq 2 a$
Thus,

$$
\left(a+\frac{1}{b}\right)^{2}+\left(b+\frac{1}{c}\right)^{2}+\left(c+\frac{1}{a}\right)^{2} \geq\left(a b+\frac{b}{a}\right)+\left(b c+\frac{c}{b}\right)+\left(c a+\frac{a}{c}\right)+3+a+b+c \geq 3(a+b+c+1)
$$

The equality holds if and only if $a=b=c=1$.
Solution2. From QM-AM we obtain

$$
\begin{align*}
& \sqrt{\frac{\left(a+\frac{1}{b}\right)^{2}+\left(b+\frac{1}{c}\right)^{2}+\left(c+\frac{1}{a}\right)^{2}}{3}} \geq \frac{a+\frac{1}{b}+b+\frac{1}{c}+c+\frac{1}{a}}{3} \Leftrightarrow \\
& \left(a+\frac{1}{b}\right)^{2}+\left(b+\frac{1}{c}\right)^{2}+\left(c+\frac{1}{a}\right)^{2} \geq \frac{\left(a+\frac{1}{b}+b+\frac{1}{c}+c+\frac{1}{a}\right)^{2}}{3} \tag{1}
\end{align*}
$$

From AM-GM we have $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq 3 \sqrt[3]{\frac{1}{a b c}}=3$ (1point), and substituting in (1) we get

$$
\begin{aligned}
& \left(a+\frac{1}{b}\right)^{2}+\left(b+\frac{1}{c}\right)^{2}+\left(c+\frac{1}{a}\right)^{2} \geq \frac{\left(a+\frac{1}{b}+b+\frac{1}{c}+c+\frac{1}{a}\right)^{2}}{3} \geq \frac{(a+b+c+3)^{2}}{3}= \\
& =\frac{(a+b+c)(a+b+c)+6(a+b+c)+9}{3} \geq \frac{(a+b+c) 3 \sqrt[3]{a b c}+6(a+b+c)+9}{3}= \\
& =\frac{9(a+b+c)+9}{3}=3(a+b+c+1)
\end{aligned}
$$

The equality holds if and only if $a=b=c=1$
Solution 3. By using $x^{2}+y^{2}+z^{2} \geq x y+y z+z x$

$$
\begin{gathered}
\left(a+\frac{1}{b}\right)^{2}+\left(b+\frac{1}{c}\right)^{2}+\left(c+\frac{1}{a}\right)^{2}=a^{2}+b^{2}+c^{2}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{2}}+\frac{2 a}{b}+\frac{2 b}{c}+\frac{2 c}{a} \geq \\
\geq a b+a c+b c+\frac{1}{b c}+\frac{1}{c a}+\frac{1}{a b}+\frac{2 a}{b}+\frac{2 b}{c}+\frac{2 c}{a}
\end{gathered}
$$

Clearly

$$
\begin{aligned}
& \frac{1}{b c}+\frac{1}{c a}+\frac{1}{a b}=\frac{a b c}{b c}+\frac{a b c}{c a}+\frac{a b c}{a b}=a+b+c \\
& a b+\frac{a}{b}+b c+\frac{b}{c}+c a+\frac{c}{a} \geq 2 a+2 b+2 c \\
& \frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq 3 \sqrt[3]{\frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{a}}=3
\end{aligned}
$$

Hence

$$
\begin{gathered}
\left(a+\frac{1}{b}\right)^{2}+\left(b+\frac{1}{c}\right)^{2}+\left(c+\frac{1}{a}\right)^{2} \geq\left(a b+\frac{a}{b}\right)+\left(a c+\frac{c}{a}\right)+\left(b c+\frac{b}{c}\right)+a+b+c+\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \\
\geq 2 a+2 b+2 c+a+b+c+3=3(a+b+c+1)
\end{gathered}
$$

The equality holds if and only if $a=b=c=1$
Solution4. $a=\frac{x}{y}, b=\frac{y}{z}, c=\frac{z}{x}$

$$
\left.\begin{array}{l}
\left(\frac{x}{y}+\frac{z}{y}\right)^{2}+\left(\frac{y}{z}+\frac{x}{z}\right)^{2}+\left(\frac{z}{x}+\frac{y}{x}\right)^{2} \geq 3\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+1\right) \\
(x+z)^{2} x^{2} z^{2}+(y+x)^{2} y^{2} x^{2}+(z+y)^{2} z^{2} y^{2} \geq 3 x y z\left(x^{2} z+y^{2} x+z^{2} y+x y z\right) \\
x^{4} z^{2}+2 x^{3} z^{3}+x^{2} z^{4}+x^{2} y^{4}+2 x^{3} y^{3}+x^{4} y^{2}+y^{2} z^{4}+2 y^{3} z^{3}+y^{4} z^{2} \geq \\
\geq 3 x^{3} y z^{2}+3 x^{2} y^{3} z+3 x y^{2} z^{3}+3 x^{2} y^{2} z^{2} \\
\text { 1) } x^{3} y^{3}+y^{3} z^{3}+z^{3} x^{3} \geq 3 x^{2} y^{2} z^{2} \\
\text { 2) } x^{4} z^{2}+z^{4} x^{2}+x^{3} y^{3} \geq 3 x^{3} z^{2} y \\
\text { 3) } x^{4} y^{2}+y^{4} x^{2}+y^{3} z^{3} \geq 3 y^{3} x^{2} z \\
\text { 4) } z^{4} y^{2}+y^{4} z^{2}+x^{3} z^{3} \geq 3 z^{3} y^{2} x
\end{array}\right\}
$$

Equality holds when $x=y=z$, i.e., $a=b=c=1$.
Solution 5. $\sum_{c y c}\left(a+\frac{1}{b}\right)^{2} \geq 3 \sum_{c y c} a+3$

$$
\begin{align*}
& \Leftrightarrow 2 \sum_{c y c} \frac{a}{b}+\sum_{c y c}\left(a^{2}+\frac{1}{a^{2}}-3 a-1\right) \geq 0 \\
& 2 \sum_{c y c} \frac{a}{b} \geq 63 \sqrt[3]{\frac{a}{b}} \frac{b}{c} \frac{c}{a}=6 \\
& \forall a>0, a^{2}+\frac{1}{a^{2}}-3 a \geq \frac{3}{a}-4 \\
& \Leftrightarrow a^{4}-3 a^{3}+4 a^{2}-3 a+1 \geq 0 \\
& \Leftrightarrow(a-1)^{2}\left(a^{2}-a+1\right) \geq 0(4 \text { points }) \\
& \sum_{c y c}\left(a^{2}+\frac{1}{a^{2}}-3 a-1\right) \geq 3 \sum_{c y c} \frac{1}{a}-15 \geq 9 \sqrt[3]{\frac{1}{a b c}}-15=-6 \tag{2}
\end{align*}
$$

Using (1) and (2) we obtain

$$
2 \sum_{c y c} \frac{a}{b}+\sum\left(a^{2}+\frac{1}{a^{2}}-3 a-1\right) \geq 6-6=0
$$

Equality holds when $a=b=c=1$.
Remark. Just stating a known inequality does not worth any points.
Problem 4. For a positive integer n, two players A and B play the following game: Given a pile of s stones, the players take turn alternatively with A going first. On each turn the player is allowed to take either one stone, or a prime number of stones, or a multiple of n stones. The winner is the one who takes the last stone. Assuming both A and B play perfectly, for how many values of s the player A cannot win?

Solution. Denote by k the sought number and let $\left\{s_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{k}\right\}$ be the corresponding values for s. We call each s_{i} a losing number and every other nonnegative integer a winning numbers.
(I) Clearly every multiple of n is a winning number.
Suppose there are two different losing numbers $s_{i}>s_{j}$, which are congruent modulo n. Then, on his first turn of play, player A may remove $s_{i}-s_{j}$ stones (since $n \mid s_{i}-s_{j}$), leaving a pile with s_{j} stones for B. This is in contradiction with both s_{i} and s_{j} being losing numbers.
(II) Hence, there are at most $n-1$ losing numbers, i.e. $k \leq n-1$.
Suppose there exists an integer $r \in\{1,2, \ldots, n-1\}$, such that $m n+r$ is a winning number for every $m \in \mathbb{N}_{0}$. Let us denote by u the greatest losing number (if $k>0$) or 0 (if $k=0$), and let $s=\operatorname{LCM}(2,3, \ldots, u+n+1)$. Note that all the numbers $s+2, s+3, \ldots, s+u+n+1$ are composite. Let $m^{\prime} \in \mathbb{N}_{0}$, be such that $s+u+2 \leq m^{\prime} n+r \leq s+u+n+1$. In order for $m^{\prime} n+r$ to be a winning number, there must exist an integer p, which is either one, or prime, or a positive multiple of n, such that $m^{\prime} n+r-p$ is a losing number or 0 , and hence lesser than or equal to u. Since $s+2 \leq m^{\prime} n+r-u \leq p \leq m^{\prime} n+r \leq s+u+n+1, p$ must be a composite, hence p is a multiple of n (say $p=q n$). But then $m^{\prime} n+r-p=\left(m^{\prime}-q\right) n+r$ must be a winning number, according to our assumption. This contradicts our assumption that all numbers $m n+r, m \in \mathbb{N}_{0}$ are winning.
(III) Hence, each nonzero residue class modulo n contains a loosing number.
(IV) There are exactly $n-1$ losing numbers (one for each residue $r \in\{1,2, \ldots, n-1\}$).
Similar proof of (III) :
Lemma: No pair (u, n) of positive integers satisfies the following property:
${ }^{(*)}$ In \mathbb{N} exists an arithmetic progression $\left(\mathrm{a}_{t}\right)_{t=1}^{\infty}$ with difference n such that each segment $\left[a_{i}-u, \mathrm{a}_{i}+u\right]$ contains a prime.
Proof of the lemma: Suppose such a pair (u, n) and a corresponding arithmetic progression $\left(\mathrm{a}_{t}\right)_{t=1}^{\infty}$ exist. In \mathbb{N} exist arbitrarily long patches of consecutive composites. Take such a patch P of length $3 u n$. Then, at least one segment $\left[a_{i}-u, \mathrm{a}_{i}+u\right]$ is fully contained in P, a contradiction.

Suppose such a nonzero residue class modulo n exists (hence $n>1$). Let $u \in \mathbb{N}$ be greater than every loosing number. Consider the members of the supposed residue class which are greater than u. They form an arithmetic progression with the property $\left(^{*}\right.$) , a contradiction (by the lemma).

