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Problem 1. Let f0 : [0, 1] → R be a continuous function. Define the sequence of functions
fn : [0, 1]→ R by

fn(x) =
∫ x

0
fn−1(t) dt

for all integers n ≥ 1.

a) Prove that the series
∑∞

n=1 fn(x) is convergent for every x ∈ [0, 1].

b) Find an explicit formula for the sum of the series
∑∞

n=1 fn(x), x ∈ [0, 1].

Solution 1. a) Clearly f
′
n = fn−1 for all n ∈ N. The function f0 is bounded, so there exists a

real positive number M such that |f0(x)| ≤M for every x ∈ [0, 1]. Then

|f1(x)| ≤
∫ x

0
|f0(t)| dt ≤Mx, ∀x ∈ [0, 1],

|f2(x)| ≤
∫ x

0
|f1(t)| dt ≤Mx2

2
, ∀x ∈ [0, 1].

By induction, it is easy to see that

|fn(x)| ≤Mxn

n!
, ∀x ∈ [0, 1], ∀n ∈ N.

Therefore

max
x∈[0,1]

|fn(x)| ≤ M

n!
, ∀n ∈ N.

The series
∑∞

n=1
1
n! is convergent, so the series

∑∞
n=1 fn is uniformly convergent on [0, 1].

b) Denote by F : [0, 1] → R the sum of the series
∑∞

n=1 fn. The series of the derivatives∑∞
n=1 f

′
n is uniformly convergent on [0, 1], since

∞∑
n=1

f
′
n =

∞∑
n=0

fn

and the last series is uniformly convergent. Then the series
∑∞

n=1 fn can be differentiated term
by term and F ′ = F +f0. By solving this equation, we find F (x) = ex

(∫ x
0 f0(t)e−t dt

)
, x ∈ [0, 1].
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Solution 2. We write

fn(x) =
∫ x

0
dt

∫ t

0
dt1

∫ t1

0
dt2 . . .

∫ tn−2

0
f0(tn−1) dtn−1

=
∫
. . .

∫
0≤tn−1≤...≤t1≤t≤x

f0(tn−1) dt dt1 . . . dtn−1

=
∫
. . .

∫
0≤t≤t1≤...≤tn−1≤x

f0(t) dt dt1 . . . dtn−1

=
∫ x

0
f0(t) dt

∫ x

t
dt1

∫ x

t1

dt2 . . .

∫ x

tn−3

dtn−2

∫ x

tn−2

dtn−1

=
∫ x

0
f0(t)

(x− t)n−1

(n− 1)!
dt.

Thus
N∑
n=1

fn(x) =
∫ x

0
f0(t)

(
N∑
n=1

(x− t)n−1

(n− 1)!

)
dt.

We have

ex−t =
N−1∑
n=0

(x− t)n

n!
+ eθ

(x− t)N

N !
, θ ∈ (0, x− t) ,

N−1∑
n=0

(x− t)n

n!
→ ex−t, N →∞.

Hence∣∣∣∣∣
∫ x

0
f0(t)

(
N−1∑
n=0

(x− t)n

n!

)
dt−

∫ x

0
f0(t)ex−tdt

∣∣∣∣∣ ≤
∫ x

0
|f0(t)|ex−t (x− t)

N

N !
dt

≤ 1
N !

∫ x

0
|f0(t)|ex−t dt→ 0, N →∞.

Problem 2. Inside a square consider circles such that the sum of their circumferences is twice
the perimeter of the square.

a) Find the minimum number of circles having this property.

b) Prove that there exist infinitely many lines which intersect at least 3 of these circles.

Solution. a) Consider the circles C1, C2, . . . , Ck with diameters d1, d2, ..., dk, respectively. De-
note by s the length of the square side. By using the hypothesis, we get

π(d1 + d2 + · · ·+ dk) = 8s.

Since di ≤ s for i = 1, . . . , k, we have

8s = π(d1 + d2 + · · ·+ dk) ≤ πks,

which implies k ≥ 8
π
∼= 2.54. Hence, there are at least 3 circles inside the square.

b) Project the circles onto one side of the square so that their images are their diameters.
Since the sum of the diameters is approximately 2.54s and there are at least three circles in the
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square, there exists an interval where at least three diameters are overlapping. The lines, passing
through this interval and perpendicular to the side on which the diameters are projected, are
the required lines.

Problem 3. Denote by M2 (R) the set of all 2× 2 matrices with real entries. Prove that:

a) for every A ∈M2 (R) there exist B, C ∈M2 (R) such that A = B2 + C2 ;

b) there do not exist B, C ∈M2 (R) such that
(

0 1
1 0

)
= B2 + C2 and BC = CB.

Solution. a) Recall that every 2 × 2 matrix A satisfies A2 − (trA) A + (detA) E = 0 . It is
clear that

lim
t→+∞

tr (A+ tE) = +∞ and lim
t→+∞

det(A+ tE)
tr(A+ tE)

− t = lim
t→+∞

detA− t2

tr (A+ tE)
= −∞ .

Thus, for t large enough one has

A = (A+ tE)− tE =
1

tr(A+ tE)
(A+ tE)2 +

(
det (A+ tE)
tr (A+ tE)

− t
)
E

=

(
1√

tr(A+ tE)
(A+ tE)

)2

+

(√
t− det (A+ tE)

tr (A+ tE)

)2

(−E)

=

(
1√

tr(A+ tE)
(A+ tE)

)2

+

(√
t− det (A+ tE)

tr (A+ tE)

(
0 1
−1 0

))2

.

b) No. For B, C ∈ M2 (R), consider B + iC, B − iC ∈ M2 (C) . If BC = CB then
(B + iC) (B − iC) = B2 + C2 . Thus

det
(
B2 + C2

)
= det (B + iC) det (B − iC) = |B + iC | 2 ≥ 0,

which contradicts the fact that det
(

0 1
1 0

)
= −1 .

Problem 4. Suppose that A and B are n × n matrices with integer entries, and detB 6= 0.
Prove that there exists m ∈ N such that the product AB−1 can be represented as

AB−1 =
m∑
k=1

N−1
k ,

where Nk are n× n matrices with integer entries for all k = 1, . . . ,m, and Ni 6= Nj for i 6= j.

Solution. Suppose first that n = 1. Then we may consider the integer 1× 1 matrices as integer
numbers. We shall prove that for given integers p and q we can find integers n1, . . . , nm such
that p

q = 1
n1

+ 1
n2

+ · · ·+ 1
nm

and ni 6= nj for i 6= j.
In fact this is well known as the “Egyptian problem”. We write p

q = 1
q + 1

q + · · · + 1
q (p

times) and ensure different denominators in the last sum by using several times the equality
1
x = 1

x+1 + 1
x(x+1) . For example, 3

5 = 1
5 + 1

5 + 1
5 , where we keep the first fraction, we write

1
5 = 1

6 + 1
30 for the second fraction, and 1

5 = 1
7 + 1

42 + 1
31 + 1

930 for the third fraction. Finally,

3
5

=
1
5

+
1
6

+
1
7

+
1
30

+
1
31

+
1
42

+
1

930
.
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Now consider n > 1.
Case 1. Suppose that A is a nonsingular matrix. Denote by λ the least common multiple of

the denominators of the elements of the matrix A−1. Hence the matrix C = λBA−1 is integer
and nonsingular, and one has

AB−1 = λC−1.

According to the case n = 1, we can write

λ =
1
n1

+
1
n2

+ · · ·+ 1
nm

,

where ni 6= nj for i 6= j. Then

AB−1 = (n1C)−1 + (n2C)−1 + · · ·+ (nmC)−1.

It is easy to see that niC 6= njC for i 6= j.
Case 2. Now suppose that A is singular. First we will show that

A = Y + Z,

where Y and Z are nonsingular. If A = (aij), for every i = 1, 2, . . . , n we choose an integer xi
such that xi 6= 0 and xi 6= aii. Define

yij =


aij , if i < j
xi, if i = j
0, if i > j

and zij =


0, if i < j
aii − xi, if i = j
aij , if i > j.

Clearly, the matrices Y = (yij) and Z = (zij) are nonsingular. Moreover, A = Y + Z.
From Case 1 we have

Y B−1 =
k∑
r=1

(nrC)−1, ZB−1 =
l∑

q=1

(mqD)−1,

where

Y B−1 = λC−1, λ =
k∑
r=1

1
nr

and ZB−1 = µD−1, µ =
l∑

q=1

1
mq

,

C and D are integer and nonsingular. Hence,

AB−1 =
k∑
r=1

(nrC)−1 +
l∑

q=1

(mqD)−1.

It remains to show that nrC 6= mqD for r = 1, 2, . . . , k and q = 1, 2, . . . , l. Indeed, assuming that
nrC = mqD and recalling that mq > 0 we find D = nr

mq
C. Hence ZB−1 = µD−1 = µmq

nr
C−1,

and then AB−1 = Y B−1 + ZB−1 = λC−1 + µmq

nr
C−1 =

(
λ+ µmq

nr

)
C−1. We have λ+ µmq

nr
> 0,

and C−1 is nonsingular. Then AB−1 is nonsingular, and therefore A is nonsingular. This is a
contradiction.
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