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Problem 1. A grasshopper is jumping along the number line. Initially it is situated at zero. In k-th step, the
length of his jump is k.

a) If the jump length is even, then it jumps to the left. otherwise it jumps to the right (for example, firstly
it jumps one step to the right. then two steps to the left. then three steps to the right, then four steps to
the left...). Will it visit on every integer at least once?

b) If the jump length is divisible by three, then it jumps to the left, otherwise it jumps to the right (for
example, firstly it jumps one step to the right, then two steps to the right, then three steps to the left,
then four steps to the right...). Will it visit every integer at least once?

{Matko Ljulj)

Problem 2. Two circles 'y and % intersect at points A and B. Let P, €) be points on circles €', (' respectively,
such that |AP| = |AQ|. The segment P intersects circles € and €' in points M, N respectively. Let €' be
the center of the arc BFP of € which does not contain point A and let 12 be the center of arc BQ of 's which
does not contain point A, Let £ be the intersection of CM and DN. Prove that AE is perpendicular to C'D.

(Steve Dinh)

Problem 3. Prove that for all positive integers n there exist n distinct, positive rational numbers with sum of
their squares equal to n,

(Daniyar Aubekeron)
Problem 4. We will call a pair of positive integers (n, k) with & > 1 a lovely couple if there exists a table nxn
consisting of ones and zeros with following properties:

e In every row there are exactly & ones.

e lor each two rows there is exactly one column such that on both intersections of that column with the
mentioned rows, number one is written,

Solve the following subproblems:

a) Let d £ 1 be a divisor of n. Determine all remainders that d can give when divided by 6.
b) Prove that there exist infinitely many lovely couples,

(Miroslay Marinov, Daniel Atanasov)
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Problems and Solutions

Problem 1. A grasshopper is jumping along the nmmber line. Initially it is situated at zero. In k-th step, the
length of his jump is k.

a) If the jump length is even, then it jumps to the left, otherwise it jumps to the right (for example, firstly
it jumps one step to the right, then two steps to the left, then three steps to the right, then four steps to
the left...). Will it visit on every integer at least once?

b) If the jump length is divisible by three, then it jumps to the left, otherwise it jumps to the right (for
example, firstly it jumps one step to the right, then two steps to the right, then three steps to the left,
then four steps to the right...). Will it visit every integer at least once?

{(Matko Ljuly)

Solution. Let us denote with 2y position in the &th step

n) For &ven n = 28 we have
ek =1 =243+ ...+ (2k=1) =2k
(L2434 00 2h)=2(2 44464 ... 2k)

3&(3k + 1) lkt_l.' +1)

) 7Y

For odd n = 2k 4 1 we have
Ui+ 1 car + {2k 1) =k L.
Hence we see that all integers oceur exactly once in sequence (73 )y positive integer 0 oceur in (2n — 1)-th place,

negative integer —n (for some » > 0) occurs i {2n)-th place.

—
=

) For n = 3k we have
ra) 14 2=3 4. 4 (3k=2) +(3k=1)=3k =
(14+24+3+...4+3k)=2(3+6+9+...4 3K
2k{2k+-1) 4 Kik+1) Ik —1)
- 0 .

9 > a

For k = 0,1 we have that xy 0, For all other & we have rg > 0 sinee it is a product of positive numbers. For

=3k 4+ Lot = 3k -+ 2 we have
3kl rae + (3 + 1) > 0 rapiz =am + (3 +1)+ 3k +2) >0

Thus, all 3 are non-negative, and grasshopper will not reach any negative integer,



Problem 2. Two circles €y and €' intersect at points Aand B, Let P, ¢} be points on circles €'y, (' respectively,
such that |[AP| = |AQ|. The segment P¢) intersects circles €'} and €' in points M, N respectively. Let €' be
the center of the arc BP of C) which does not contain point A and let ) be the center of arc BQ of 'y which
does not contain point A. Let £ be the intersection of CM and DN. Prove that AE is perpendicular to C1D.

(Steve Dink)

First Solution, We present the following sketch:

P

As AP = AQ the triangle APQ is isasceles, which implies - APQ = .~ AQ/P.

Angles over the same chord AM of €y mply —ACM = _APM.

As (7 Is the midpoint of the chord BP, wee have - PAC = C'AR, analogously — DAQ = _BAD.

This implies that 2. C A = . PAQ.

Combming the results nbove we got as sum of the angles in iriangle APQ thay 20 CAL 2. APQ = 1807 which in turn
mplies ~ACN + - DAC = 907 and in particular AD L M. Analogously we conclude DN L AC

We now conclude that this implies # is the orthocenter of the wiangle ACD implying AE L 0 completing the proof

Second Solution. As AF — AQ the triangle APQ is isosceles, which implies - APQ = _AQP,

Angles over the same chord AM of 'y imply - MBA = ~APM, analogousiythisitmplies . ABM = _APQ
Combining the above we conclude - M BA = - NBA so in particular AB is angle bisector of . MBN.

As (" i the midpoint of the are BP we have - PMO = _BMC.

We note this implies [ lies on 2 angle hisectors of the trinngle BN M, so Is its incenter,

This implies that A, E, B are collinear.

We are now able to remove M, N, E from the picture and it is enough to show @D L AB. Let @ = _CAB and
A= BAD. Then this is equivalent to AC -ecos o — A - cos 3.

Ptolomey s theorem for eyelic quadrilateral APCEH implies that

BC.- AP+ ARB-CP BC(AP + ARB)

AC = =
’ BPr 2eosec BC

After simplifying and taking an analogous equality for € and cyelic quadrilateral AR DC gives

~w



AC coso =

AP+ AR B AQ ;l- AR — ADcosfi

2 2
completing the proof.
Remark: Note that we are using only the very basie trigonametry, namely for a right angled wiangle (BFP = 2cos 0« BC
follows by taking the midpomt of BF and considering 2 right-angled triangles this creates.) This can be alltogether
avoided using similar triangles.



Problem 3. Prove that for all positive integers » there exist n distinet, positive rational numbers with sum of
their squares equal to n.

(Daniyar Aubekerov)

First Solution. We will prove this claim by induction. For basis, we find solutions for = 1,2, 3:

o (B @) e (@ ('

Now, let us assume that for all integers less than o the claim is triae, Let us prove the claim for . [0 0 = 4k for some
integer &, then, by induction hypothesis, there exist rationals ry,. .., such that

b T =k

—= (201) 4. 4 (200) = 4K
Let a be the smallese rational number from the left hand side of the above equation. We will replace this munber with
numbers ;
%ﬂ. gﬂ.
By this, we get one more summand on the left hand side, but the equality still holds. Since @ was the smallest and
Fa < ta < a, all rationals are still distinet. We will continue this procedure until we get n = 1k rationals,
Before we continne, notice the following: let those n = 4k rationals denote with

PP

q1 (In

where CCD(pygi) = 1, for all 1 3 < g0 Then, all py..o,py, are even numbers. That is becanse of multiplying first
k rationals with 4, and because of the fact that multiplying rationals with £ and ? cannot turn even namerator to the
odd numerator,

Now. we observe the case n # 4k, We will use a combination of solution for n = 45 and for n = 1.2.3:

n=d4kf1: (&)-}...4(!,—"-)-&]"':11.
m U
m 2 p 4 1 9 7 <
n :‘lk 4 2: ('l;;') o us l (;‘-“-) l (E) | (g) =n,
3 2 2 o\ 2
n=4k +3: (&) t’([—)'z) i'l"(-) '(é) =
Uh Ia 5 5

All nunbers are s6ll distinet because first Ak numbers have even numerators, while the others do not have, This concludes
the induction and the proof of the problem.

Second Solution. Firstly, let us prove that there are infinitely many pairs of rationals such that
IS y =2

Let us take any Pythagorean triple (a,b,¢), with b > a. Then we can take r = 22 5 = bis

Now, we tuke any muouber 2, I it s oven, theu we will take n/2 pairs of rationals with sum of squares equal 2, If it is
odd. we will take (n = 1}/2 of such pairs, and one number 1.

To be sure that all numbers are distinet, we can take primitive Pythagorean triples such that all of them have anigue
third member ¢ of the triple.

L= that implies

It is clear that they are nonzero. Let us now prove that all rationals are distinet. Firstly, if 9’7“- =
a = 0, which is impassible for a member of Pythagorean triple.

Let us now assume that two different primitive Pythagorean triples (a,b,¢) and (o', ¢) (with ¢ # ¢) generate at least
two same rational munbers. Since sum of squares of those rationals 5 the same, another pair of rationals must be equal
as well. Thus we have to have either

b—a W —-d m‘db«}a_b' ba b b—a bita e xE Q; o
e ¢ ¢ V—a V+a & '
b—a b 4d bt+a H-d b—a bia ¢

e and e ¢ =’H+a’4h'—a'4:"-&'\eq'

In both cases we have a® + b° = ¢ = N () = A({a")? + )*) and b* — o7 = A ((#)? = (0')*). Hemece ¢ = N{¢)7,
o = Aa')? 0" = A*(V)%, But then, if A = p/g. then either p | a,b,cor g | @', b, ¢ or A = 1, which contradicts the fact
that our triples are primitive or that ¢ £ . All in all, we get contradiction, thus all rationals are distinet,



Problem 4. We will call a pair of positive integers (n, k) with k& > 1 a lovely couple if there exists a table n x n
consisting of ones and zeros with following properties:

o In every row there are exactly & ones.

e For each two rows there is exactly one column such that on both intersections of that column with the
mentioned rows, number one is written.

Solve the following subproblems:

a) Let d # | be a divisor of n. Determine all remainders that d can give when divided by 6.
b) Prove that there exist infinitely many lovely couples.

(Miroslav Marinov, Daniel Alanasov)

Solution. Let us firstly prove seversl lemmas, Before that, notice that changing two columns or two rows of the table
will not change the properties of our table,

Lemma 1: In every column there are exactly &k ones.

Proof 1t s impossible that one column contans n ones.  If we suppose the contrary, then on the rest of the table,
comsisting of 7 — | columns, we would have to have n(k — 1) » n ones such that no two ones are in the same colimn,
which is impossible.

Thus, every column contains at least one zero. Lot us now suppose that there exists o column with move than & ones.
Without loss of generality, let this column be the fivst columm, where ones are written in the first &4 1 rows, and at least
one digit zero, which this columm must contain, is written in last row. Again, without loss of generality, let the last row
contain ones in the second, thind, ..., (k + 1)-th colummn,

On the intersection of 2nd columm and first & + 1 rows there can be at most one digit one, because, in the contrary, some
two of the first & 4 | rows would have first and second coliimn in commmon, Same argument holds for intersection of the
Ard colummn and first k1 rows, .. (84 1)=th eolumn and first &+ 1 rows. Henee, on the intersection of first & 1 rows,
and 2nd, 3vd, ..., (k4 1 th row there are ot most & ones,

However, for the last row and for every row among the first &+ 1 rows, there must exist exactly one coluamn sach that
both rows cantain digit one in that column, This is only possible if those ones are on the intersection of first k + 1
rows, and 2nd, Srd, oo (A4 Dt row, Thus, in the mentioned z2one there must be exsetly & 4 1 ones, which leads to
contradietion

Thusg we conclude that every column contains at most & digits one. Since the whole table consists of nk digits one, we
have that every column contains exactly k digits one

Lemma 2: We have nn = k% = k4 1,
Proof: Let us count the pairs of ones in the same column, On the one hand, since there are 2 columns, every colummn

contains k& ones, there are
k.
n{.,
-~

pairs of ones in the same colmn. On the other hand, every pair of ones from the saime column determine exactly one
pair of rows, smee cach pair of rows has exactly one column in common. Thus, the mumber of pairs of ones from the
same column is also equal to

n

()

Identifying mentioned two expressions we get n = &% — k| 1.

Now, we will prove the problem.

Solution of a) part: When varying k, we see that n = 1 (moed 6) or n = 4 (mod 6). Both options are pessible, see
examples for k= 2,k = 34 helow,

1110000
1001100
1000011
@l1el1010
110 9leelel
101 0011001
911 0010110



Let ¢ be a prime divisor of the number n = A% — k- L. Since n is odd, ¢ is odd as well, thus possible remainders
modulo 6 oare 1,35, We will prove that remainder 5 is not possible. Let us suppose that ¢ = 60 + 5. Then, since
q |k 4 1= (k4 1)(A7 =k + 1) we bave k* = <1 (mod q). On the other hand, we have &9 = k" = 1 (mod ¢). From
those last two identities we get k= —1 (mod q) —= n = 3(maod q), ie. q | 3, contradiction.

Let d be any divisor of the munber n. From above, it is ¢ither | or o product of prime numbers of the form 6 1 and
3. Anvhow, we have that remainder of d when divided by six s either 1 or 3,

Solution of b) part: We will prove that for any prime p, the pair of numbers (p* 4 p+ 1L,p 4 1) isa lovely couple. Let
us denote with A4, 7) the number in the table on the intersaction of the i~th rew and j-th colmmn, with the convention
that we count rows and colummns from the zero in this part of the solution.

We define our table in the following way {example for p = 5 is at the end)
Rule a For o, 5,7 1{0,....p— 1} we have
Alop + Biqp 148) =1 = s=av | 8 (mod p),

Rule b A(p* + ovap+ 8) =1, forall a € {0..... phBeE{0...,p—1},
Rule ¢ Alop+ 8.8 + &)= L. foralla & {0....,p}. BE (0.....p=1}.
Rule d A(p® +p.p" +p) = 1.

Rulo ¢ On all other immentioned figlds are zero,

Lot us prove that this table hos all properties. Firstly, let us prove that in every row there is exactly p | 1 ones.

Case 1: Ini-throw, 1 < p’: t = ap+ A4, for some 0 < o, 8 < p—1. Then for every ¥ € (0,...,p— 1] there exists exactly
one § € {0,...,p— 1} such that 6 = an | A (mod p) == there are exactly p digits one in first p° columns. Last
digit & is in the colamn p* 4 o, secording 1o the Rule ¢,

Case 2: Ini-th row, 1 > p*: 1 = p* + a, for some 0 < o < p. Those ones are written in the colurmms (according to the Rule

b)op+0,...,ap+ p—1 and (aecording to the Rule ¢ or d) in the last column,
In the same monner it can be proved that every column contains exactly p-+ 1 ones. Thus, it is sufficient to prove that
every two rows have at Jeast one column in comimon.
Case 1= i) > pz i = p° 4 ou) = 4 oy for some 0 < a,0; < po According to the Rule ¢ or d: Afe,p” + p) =
AP +p) =1,
Case & 1 < p* ) =p  4+p i = oup+ i for some 0 < o < p, 0 < a; < p— 1. According to the Rule ¢ we have
Al 9" + o) = 1, and according to the Rule b A p" 4 a¢) = 1.

From now on. ull mentioned variables a0, 3. 3,7, 4 are from the set (0. .. p— 1}

Case : 1 < pp* < j<p’ v p i =opd B, § =p +ay According to Rule u, there ig exactly one § such that
Alz.0yp +46). According to the Rule b A(y ap -+ 4).

Case fa: 1,) < p*1 v = aup+ B ) = a5+ A with oy = a; == o. According to the Rule c: A{e,p? + o) = A{.p" +a) = 1.
Case 4b: 4,1 < p* ¢ = oup + Bi, f = 0, + 8; with a, £ o) == . Let us define

¥ = (o —a;) (B = &)
It = clear that then we have oy + 8 = opy + 4 = 4, According to the Rule w; Al yp+ 6) = Alpoyp +4) = 1.
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Problem 1. Is there a sequence ay, ..., azme Of positive integers, such that every sum
Gr Qe+ ..ol ag_y + ay
(with 1 € r € 5 € 2016) is a compaosite number, but

a) GCD(aj,a:q) =1 forall i = 1.2, ...,2015;
b) GCD(a;.a;y) =1 forall 1 =1,2,,..,2015 and GOD(a;,a;-5) = 1 for all 1 = 1,2,...,20147

GCD(x,y) denales the greatest common divisor of i, y.
(Matija Bucié)

Problem 2. For two positive integers a and b, lvica and Marica play the following game: Given two piles of o
and b cookies, on each turn a player takes 2n cookies from one of the piles, of which he eats » and puts » of
them on the other pile. Number n is arbitrary in every move. Players take turns alternatively, with Ivica going
first. The player who cannot make a move. loses. Assuming both players play perfectly, determine all pairs of
numbers (a,b) for which Marica has a winning strategy.

(Petar Onlié)

Problem 3. Determine all functions f: E — R such that equality

fla+y+uf(x)) = flx)+ fly) + = f(y)

holds for all real numbers z, y.

(Athanasios Kontogeorgis)

Problem 4. Let "y, (': be circles intersecting in X, Y. Let A, D be points on €'y and B, C' on (2 such that
A, X, C are collinear and D, X, B are collinear. The tangent, to circle C'y at D) intersects BC and the tangent to
Cy at Bin P, R respectively, The tangent 1o Cy at € intersects AD and tangent to €' at A, in ¢, S respectively.
Let W be the intersection of AD with the tangent to (2 at B and Z the intersection of BC with the tangent
to €7y at A. Prove that the circumeircles of triangles YW Z, RSY and PQY have two points in common, or are
tangent in the same point.

(Misiakos Panagiolis)
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Problems and Solutions

Problem 1. Is there a sequence ay, ..., as0; of positive integers, such that every sumn

Ay + Qi1+ oot G+ ay

(with 1 < r < & < 2016) is a composite number, but

a) GCDla;,a;41) = 1 for all
b) GCD(a;,a;1) = 1 for all i

1,2,...,2015;
1,2,...,2015 and GCD(a;. a442) = 1 for all i = 1,2,...,20147

Il

GCD(x,y) denotes the greatest common divisor of z. y.

{Maltija Bucié)

First Solution, We will solve this problem for any length v of the sequence,

a) Yes, there is such sequenee,

b)

For this part, we will construct solution by taking n consecutive positive integers a; = nr + 1, for some positive
integer m. We will determine number o at the end of the prool.
Firstly, notice that two consecutive elements of the sequence are coprime. sinee they are consecutive numbers,

Every sum of consecutive members of sequence 8 of the form

bbbt 1} alat 1) (h—a)b+a+t1)
) <3 5 4

- - -

(a+t)+(a+2)+...+(b—1)+b=

For b = a + 3, nmunerator of the expression above consists of two factors, each greater or equal to 3, and at Teast
one of thetn is even, thus number s composite.

Thus, we have to choose m such that all sins of one and all sums of two consecutive members of sequence are
composite. That is, following munbers need to be composite:

-

mAgLmi2,..., moFn,2m A 3.2m 4 5,...2m 4 (20 = 1).

This is achieved for g = (2n 4 1) 1. Namely, numbers (20 4 1)1 4 b and 2020 4+ 1)! 4 & are compasite for all
2< k< 2n + | since they are divisible by &, and greater than k.

Again, the answer 18 yes.

Similarly like in first part, we will take some n consecutive odd mumbers: a; = 2m + (21 — 1), for some positive
mteger .

It is elear that they are integers, and they are positive,

We will have GCD{aai-1) = GCD{ag,a442) = 1| because differences of mentioned numbers are always 2 or 4
Since numbers are odid, they have to be coprime.

Every smm of consecutive members of sequence is of the form

(2a 4+ )+ (20 43) 4. 4 (2=3) 4 (2=1) =b" =0’ = (b-a)(b+a).

For b = a ¢ 2 number from above is composite because both factors are greater or equal to 2
Thas, we have to choose me sueh that all numbers

24 1,2m 48, ... 2m+(2n—1)

are composite. This is schieved by taking o: = (200! 4 1, with similar argaments like in first part,



Second Solntion. (For part b) only.)
We will show that there exists o sequence for b) part of the problem.
It is obvious that this will iuply that the snswer for the a) part of the solution is yes:
We will form the sequence by induoction. For the basis; we will take oy = 4, az = 45, Those mumbers are composite,
their sum is composite and they are coprime.
Let us assume that we have n pasitive integers with properties from the text of the problem. Let pypa. ... Po, Prsr be
some prime munbers greater than
@) 4oyt Gy,

Notice that this bnmediately means that those primes are greater than any sum of consecutive numbers, and specially,
that all those sums (including solely integers ag) are coprime with mentioned primes.
We will get a1 by solving svstem of modular equations,  Existence of such positive integer is provided by Chinese
remainder (hearem. The system is the following:

Qu-1 =1 (mod a,, 4,51 =1 (mod ay,-1).

gy =—(0n +... Fan.1) (mod pi), k=0,1,2,....n=1
ans1 =0 (mod pniy)

Tn first row we provided that GO D (aw i, a4) = GO ags.00-1) = 1.
In second two rows we provided that all sums of consecutive mmbers including a,,. are composite.

Chinese remainder theorem can be applied here since all privies are greater than e, and a,, ¢, and thus they are coprime.

Third Solution, (For part b) only.) As before, it s sufficient to prove the existence of the sequence for b) part only.
We will form recursion: a_ = l.ag = 3,04 = @j_; —6f_5, for k> 1. (Here values @y and ao are just auxiliary terms).
All mambers are positive integers, moreover we will prove that ey~ ae—y + 2, which we get from induction:

¢ 2 J q P
Ay = A}y = Bj—2 = Mj—1 = (@1 = 2)° =dap.3 =4 > ar-1 + 2,

since ag_y > ang =3,

If there is some index & and some prime p such that p divides ay and oy -y or divides ap and a2, then from equation
ai = ai_ —ai_ o we get that p divides ae—y and ap—2. In the same manner, p then divides a2 and ap s, it divides
ap_y and ag_y, and so on, thus it divides a_y ond a, which is impossible.

Let us now prove that all sums of consecutive elements are composite:
g 2 2 2
Qe+ oot ae =100 =02 ) ¥... 4+ {05-1 — 022 =aF 1 — a2 = (041 — ar-2)(00—1 + 0r—3).

First factor is greater than | since a,—y = @, = ap-2 + 2. Second [actor is clearly greater than 1, hence the product is
CoOmpsite,

Fourth Solution, (For part a) only.)

The answer is yes,

Shnilarly like in the first solution, we will take sequence of consecntive third powers of positive integers: a; = (14 1)%
Like in first solution, consecutive elements are coprime. It is clear that all niunbers are positive integers.

All possible sums of consecutive elements are of the form

(@4 1)* (@ +2)" ...+ (b=1)" 40" = (”“’: '))"_("(a: l))’z (b(b; 1) a(a; 1)) (b(z,; Y, n(a;l)) -

2 2

Second factor is greater or equal than first one. Second is greater than 1 if all elements of sequence are greater than 1.
Sinee we chose munbers in that way, the number is composite,

(@) +@FD 4.+ (b 1)+b)("“" 1):y oo ”).



Problem 2. For two positive integers @ and b, lvica and Marica play the following game: Given two piles of a
and b cookies, on each turn a player takes 2n cookies from one of the piles, of which he eats n and puts n of
them on the other pile. Number n is arbitrary in every move. Players take turns alternatively, with Ivica going
first. The player who cannot make a move, loses. Assuming both players play perfectly, determine all pairs of
numbers (a,b) for which Marica has a winning strategy.

(Petar Orlic)

Solution. Marica wins the game if |a — b] < 1, otherwise lvica wins.

We will say that a player is in o losing position if it is his turn and |¢ — 8] 1, while ealling all other positions winning
positions. [t is easy to see that the only positions in which one canmot make a move are (0, 00,00, 15.01,0),(1,1) and that
they are all losing positions.

Claim 1. If a player ts in a losing position, then reqardless of his move he must leave a winning position for the other
player,

Proaf. 1f the piles are of sizes o+ and r + 1, then after & move they will have sizes ¢ — 2k § ¢ k + 1 (their difference s
A Vor e kixe—251 (their difference is 36 = 1), In both cases, the difference is ot least 2. 1f the piles have ¢ and
r cookies each, then after 0 move they will have » — 2k and » + &k cookies (there difference is 3k, which is at least 3).
Smee the difference of the number of cookies is always bigger than 1, we have proven that this is o winning position. [

Clalm 2. A player who 13 1n a winning posstion can always leave a losing position after fas turn,

Proof. 11 the piles are of sizes x and 2 + 3o (where 2 = 0), one can take 2a cookies from the second pile and and leave
two piles contmming ¢ o and 0 | a cookies. If the piles are of sizes © and & | 3a | 1 (where a + ), one can take 2a
cookies from the second pile and leave two piles contaiming = + o and « | a + | cooldes,

If the piles are of sizes @ and x4 3a — 1 (where o = 1), one can take 2a cookies from the second pile and and leave two
piles contaimng @ + @ and » { a — | cookies. Since the difference in cach case & less than 2, thus a player can always
leave a loosing position if he is in a winning position. (|

We have now proven that if [viea s in a loosing position in the begging, Marica can always ensure that he is i s winning
position and win. Similarly, if Iviea is in a winning position in the begging, he can always ensure that he is in o winning
position amd win. So, Marica wins only when [vica is in a losing position in his first turn. This is true only whem
fa —b] < L



Problem 3. Determiue all functions [ : E — R such that equality

flz+y+uyfle))= [f(z)+ flu) +2/(y)
holds for all real numbers x, y.
(Athanasios Kontogeorgis)

Solution. We casily see that f(x) =0,x € W and f(x) =2, r & R are solutions, Let us assume that [ satisfies the given
equation but is not a constant or identity.

Throughout the proof. we denote by (2o, yo) the initial equation with e = ro.y — y.

Then, (—1,y) tmplies f(—=14 »(1 + f(=1))) = f{=1). Let us assume that 14 f(=1) = ¢ # 0. Then, for any ey — 1
achioves all real numbers and henco f(z) = f{—1) ¥2 £ [ 20 [ 5 o constant, a contradiction, lence, f(—=1) = =1,

Let us assume that there is some o € [osach that f(a) = —1, but o # —1. Then, (o0 y) @ fla) = flo)+ fy)+afly) —=
0= fly)(1 + o). Since o # =1, we get fly) = O,y B, a contradiction. Thus, we have shown

fle)=-1 & 7=—1 (1)

(x,=1): flr=1~=f(r))= fle)=1—1u. (2)
Since we assumed that f isnot the identity, there exists a real mmmber o such that f{ro) £ xo. Weseta := f(ro)—ro £ O
Putting x = rg in the above oquation gives:
f(=1—a)=a—1 (3)
We get from (=1 = a,y) : and equation (3)
f(=1=aiya)=a—1~afly). (4)
If wee now put g = 1, we get all — f{1)) = 080 a8 a £ 0 we got f(1) =1,
Now (1,1) gives us f(3) = 3.
Putting (1.y — 1} gives s
fRy—=1)=2f(y=1)+ 1. (5)

Using f(3) =3 in (3) with y =3 we get f(20 = 1) = =26 < 1, while using y =a in (6) we get f(2a—1) =2fla—1) |1,
combining the two giviss us

fla=1)=-1-a. (8)
We get from (@ — 1,2~ y):
fl=a=14ay)=—1—ataf(2—y). (%)
Combining this with (1) we get:
alf(u) + f(2—-y) =2) =0, (8)

Soasa #0, we get fiy) + f(2—=y) =2 for all w.

Putting » = 1 4 2r here, gives f(1 4 2r) 4 f(1 — 2x) = 2, which when combined with 5 with y = = + | gives,
Sl =22) =1-2f(r),

While (5) for y = | — & gives f(1 = 2y) = |  2f(=y), which combined with the above implies (-2} = < flx) for all .
Lt s put (2, —y) in imitial equation, and then subtract the original equation (for (r, ). We ohitain:

J(e+yll+ f(x)) + f(xr—p(l+ f(x))) = 2/ (=) (9)
We substitute y with y
L+ flx)
andd get
e +u) + flo—y) = 2f(x), (10)

which is valid for all vy, with f(x) + 1 # 0 &= r# —1. But, from f being odd and (8), we see that this is valid for
r=—1, a5 well. In (10) we put x = y to obtain f(2z) = 2f(z). In the same equation we put =32, =¥ and obtain

[(x) + f(w) =[x+ y) (11}
Using this additivity, we can simplify the original equation:
f@f(w) = uflz) (12)

In the last equation we can firstly put (1,9) = f(f(y)) = » and secondly f(y) instead of 3 f{ry) = fle) f(y).

It is well known that from identities f(1} = 1, f(ry) = flz)f(y) and fle 4+ ¥) = flx) + fly) we can conclude that
J(x) = . Which is a contradiction.

For the well known claim, we notice that f(x*) = f{x)? implies f(x) = 0 for x > 0, which mmplies. combined with
fle+y) = fle)+ f(y) that [ is non-decreasing which in turm is enough to combine with the standard density of rationals
argument to solve Cauchy's equation.

Henee, the functions presented ot the start give all possible solutions,



Problem 4. Let 7y, (% be circles intersecting in X, Y. Let A, D) be points on €'y and B, on "y such that
A, X, C are collinear and D, X, B are collinear. The tangent to circle €'y at I intersects BC and the tangent to
'y at B in P, R respectively. The tangent to € at €' intersects AD and tangent to ') at A, in @, S respectively.
Let Wobe the intersection of AL with the tangent to €’z at B and Z the intersection of BC with the tangent
to €'y at A. Prove that the circumecircles of triangles YW Z, RSY and PQY have two points in commion, or are
tangent in the same point.

(Misiakos Panagiotis)

Solution. We present the following sketceh:

Consider K, L the intersections of the pairs of tangents ar (A, £7) o ') and (B2.C) to Y regpectively,

o



Natice that S WAZ = AKAD = _“AXD = “BXC = _LBC = _ZBW. So WZBA is a cyclic quadrilateral. Further-
more, AZB = JAZC = 180" — JZAC — ZCA = 180" — JAY X — BY X = 180" — _AY B. Thus the circle from
ALY, B passes from Z, and since W.Z, B, A are coneyclic W, Z, 2.Y, A belong to the same circle.

Annlogous angle chise gives Q. C. Y, D coneyelic.

K.Y, L. S, i are also concyclie, this follows from S ASC = 180 — _SAC — _SCA = 180 — _AYC.

We have, _XDY = _XAY and _YBX = “YOX which implies ADY B ~ AY AC. This miplies DY B = _AY'C.
We have - DRB = 180" = . RDB — " DBR = 180" — _DYX = A XYB = 180" = DY B = 180" — _AY(C = 180" -
SAY X - SXYCO = 1807 = S XOS - _XAS = _ASC. This implies K RSL is cyclic.

ADY B ~ AYAC also implies - DY A = - BYC, as well as 35 = EE which implies ADY A ~ ABYC. This further
implies the iscsceles triangles AR D and LBC have same angles so quadrilaterals DY AR snd BY' C'L are also similar,
i particular implying “KY D — _ LY B. This in turn implies 1807 = SORL = “DY B = ~KY L which in turn implies
Y i& on the same circle as KRS L.

We now proceed (o show circumeireles of YKL, Y DO Y AB have two common points.



Let F0 be the points of intersections of AC, BD with cirele Y respectively and G F be the points of intersection of
BDAC with circle ABY



Now let M be the intersection of lines £, J1. We will eventuslly prove that this will be a second common point for the

three circles.

First we show that the FDY, BJY are similar. For this note that _FXJ = _XJC | _XCJ = _FYJ | _pJC
FYJ 1800 — DY — Y. FXJ— 180" + DY = _DYC — _AXD AYC = DY B, Thus
FYJ=_DYB adso “FYD~ _JY B While DJY = _DFY showing AFDY ~ JBY as claimed.

Alsa ADGY ~ ABLY are similar |, since AXB = _XBl + . BIX = XBl 4+ _AYB = 180" -« _GY[I | AY B

180" = ZAYG = BY [ —= _AXD=_AYG+AYB —= JAYG+:CYD = JAYG+ YR —= GYD = _IYB,

Also, “BIY = DAY, YBI = YAl = YAX = _YDX = Y DG and we get onr result.

Now we get that the spiral similarity that sendse D — B and F' — J also sends ¢ = [, x0 AFGQY ~ AJIY, =0

YOM = YIM d Y FM = Y JM, so M belongs to both of the cireumeireles of F'YJ and GIY, hence M is the

(other than YY) common point of circumcircles of ABY and DY,

Since A FMJ = JFYJ = DY B = _KY L it remains to show that K, L belong on the Lines FG. J1 respectively {then

circle K'Y L would pass through M)



Let H denote the point of intersection of lines AC. FD. Then “HDX = 180" — “FDX = 180" - _FMJ = _GAl =

CGAX, =0 H belongs 1o the eircumeirele of triangle ADX
Similarly denote N (the intersection of lines B, JC') and it will for analogous reasons belong to the circumcirele of
ABXC
Now from Pascal's theorem for the hexagons AAN DD and BBXCON we derive that F, K. G as well as J, L, [ are

collinear. The conclusion follows.



