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Problems and Solutions

Problem 1. Every positive integer is marked with a number from the set {0, 1, 2}, according to the following
rule:

if a positive integer k is marked with j, then the integer k + j is marked with 0.

Let S denote the sum of marks of the first 2019 positive integers. Determine the maximum possible value of S.

(Ivan Novak)

First Solution. Consider an arbitrary marking scheme which follows the given rule.

Let a denote the number of positive integers from the set {1, . . . , 2019} which are marked with a 2, b the number
of those marked with a 1, and c the number of those marked with a 0.

1 point.

We have S = 2a+ b.

1 point.

For every positive integer j ∈ {1, . . . , 2017} which is marked with a 2, the number j+2 is marked with a 0. This implies
that the number of positive integers less than 2017 marked with 2 is less than or equal to c.

1 point.

Hence, this implies a 6 c+ 2. We then have

S = 2a+ b 6 a+ b+ c+ 2 = 2019 + 2 = 2021.

3 points.

Consider the following marking scheme:

210|210|210| 2200|2200|2200 . . . 2200︸ ︷︷ ︸
502 blocks of 2200

|22|0000 . . . .

Here the i-th digit in the sequence denotes the mark of positive integer i. For this marking, S = 2021, and therefore
2021 is the maximum possible value of S.

4 points.
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Second Solution. The marking scheme for which S = 2021 is the same as in the first solution.

4 points.

Let Sn denote the sum of marks of first n positive integers, and let ak denote the mark of k. Without loss of generality
we may assume aj = 0 for all integers j 6 0. We’ll prove the following claim by strong mathematical induction:

for every positive integer n, Sn 6 n+ 2 and if equality holds, then an = 2.

1 point.

The base cases for n ∈ {1, 2} trivially hold. Suppose the claim is true for all k 6 n for some n > 2.
Suppose there exists a marking scheme for which Sn+1 > n + 4. Then if an+1 < 2, we have Sn > n + 3, which is a
contradiction. Hence, an+1 = 2.

1 point.

This implies that an ∈ {0, 2}. If an = 0, then Sn−1 > n+ 2, which is a contradiction. So, an = 2.

1 point.

Now an−1 = 0 because both an and an+1 are nonzero. We now have Sn−2 > n, and by the induction hypothesis, it must
hold that Sn−2 = n and an−2 = 2. However, this is in contradiction with an being nonzero. Hence, Sn+1 6 n+ 3.

1 point.

Suppose Sn+1 = n+ 3 and an+1 6= 2. If an+1 = 0, then Sn > n+ 3, which is a contradiction. Thus, an+1 = 1.

1 point.

Then Sn = n + 2, which implies an = 2. Then we must have an−1 = 0, and then Sn−2 = n, which implies an−2 = 2,
but an is nonzero, which is a contradiction. Therefore, the claim is true for n+1, which implies it is true for all positive
integers. In particular, S2019 6 2021, which combined with the construction implies that the maximum value of S is
2021.

1 point.

Notes on marking:

• If a student forgets to write additional zeros beyond the first 2019 digits in his construction, but the construction
is otherwise valid, he should be awarded all 4 points for this part.

• There are many different optimal marking schemes. For example, 2200|210|210| . . . |210|22|000 . . ., where the block
|210| repeats 671 times.

• In the Second Solution, if the student writes only the first part of the induction hypothesis without the assumption
that an = 2 in the case of equality: he should be awarded 0 points, unless he reaches additional conclusions which
lead to the solution.

• In the Second Solution, if the student doesn’t comment on the base case/cases at all, he should be deducted 1
point.

• If the student proves any nontrivial lemma useful for any of the solutions, but the lemma itself isn’t worth any
points and the student wouldn’t otherwise get any of the 6 points given for proving the bound, he should get 1
point for this part.
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Problem 2. Let (xn)n∈N be a sequence defined recursively such that x1 =
√
2 and

xn+1 = xn +
1

xn
for n ∈ N.

Prove that the following inequality holds:

x2
1

2x1x2 − 1
+

x2
2

2x2x3 − 1
+ . . .+

x2
2018

2x2018x2019 − 1
+

x2
2019

2x2019x2020 − 1
>

20192

x2
2019 +

1
x2
2019

.

(Ivan Novak)

First Solution. Notice that by squaring the assertion xn+1 = xn + 1
xn

we obtain the equality x2n+1 = x2n + 1
x2
n
+2 =⇒

x2n + 1
x2
n
= x2n+1 − 2, which implies that the right hand side equals

20192

x22020 − 2
.

1 point.

On the other hand, we have

2xnxn+1 − 1 = 2xn(xn +
1

xn
)− 1 = 2x2n + 1.

1 point.

This implies that the sum on the left hand side can be written as

1

2 + 1
x2
1

+
1

2 + 1
x2
2

+ . . .+
1

2 + 1
x2
2019

1 point.

By squaring the given assertion, we get the equality 2 + 1
x2
n
= x2n+1 − x2n. This implies that the left hand side equals

1

x22 − x21
+

1

x23 − x22
+ . . .+

1

x22019 − x22018
+

1

x22020 − x22019
.

1 point.

Using the inequality between arithmetic and harmonic mean, we find that the left hand side is greater than or equal to

20192

(x22 − x21) + (x23 − x22) + . . .+ (x22020 − x22019)
.

4 points.

We now notice that the denominator is a telescoping sum and it equals x22020 − x21, which implies the right hand side
equals

20192

x22020 − x21
=

20192

x22020 − 2
,

which is exactly equal to the right hand side.

1 point.

The equality cannot hold because x22 − x21 6= x23 − x22.

1 point.
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Second Solution. As in the first solution, we obtain that the left hand side equals

1

2 + 1
x2
1

+
1

2 + 1
x2
2

+ . . .+
1

2 + 1
x2
2018

+
1

2 + 1
x2
2019

.

2 points.

Using the inequality between arithmetic and harmonic mean, we get that the left hand side is greater than or equal to

20192

2 · 2019 + 1
x2
1
+ 1

x2
2
+ . . .+ 1

x2
2019

.

4 points.

We now prove by mathematical induction that

2 · n+
1

x21
+

1

x22
+ . . .+

1

x2n−1

= x2n

holds for every n ∈ N.

1 point.

For n = 1, we have 2 · 1 =
√
2
2
. Suppose the claim is true for some n ∈ N. Then

x2n+1 = 2 + x2n +
1

x2n
= 2 + 2n+

1

x21
+

1

x22
+ . . .+

1

x2n−1

+
1

x2n
,

where we used the induction hypothesis for the last equality. This proves the claim.

2 points.

In particular, for n = 2019, we have that

20192

2 · 2019 + 1
x2
1
+ 1

x2
2
+ . . .+ 1

x2
2019

=
20192

x22019 +
1

x2
2019

,

which proves the inequality.

The equality cannot hold because 1
x2
1
+ 2 6= 1

x2
2
+ 2.

1 point.
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Third Solution. We prove by mathematical induction that for every n > 2 the following inequality holds:

x21
2x1x2 − 1

+
x22

2x2x3 − 1
+ . . .+

x2n
2xnxn+1 − 1

>
n2

x2n + 1
x2
n

.

For n = 2, the left hand side equals 2
5
+ 4.5

10
= 17

20
, and the right hand side equals 4

9
2
+ 2

9

= 72
85
< 17

20
, which proves the base

case.

Suppose the claim was true for some n ∈ N. Then by the induction hypothesis, we know that

x21
2x1x2 − 1

+
x22

2x2x3 − 1
+ . . .+

x2n
2xnxn+1 − 1

+
x2n+1

2xn+1xn+2 − 1
>

n2

x2n + 1
x2
n

+
x2n+1

2xn+1xn+2 − 1
.

It suffices to prove that
n2

x2n + 1
x2
n

+
x2n+1

2xn+1xn+2 − 1
>

(n+ 1)2

x2n+1 +
1

x2
n+1

.

1 point.

We now prove that 2xn+1xn+2 − 1 = 2x2n+1 + 1 as in the first solution.

1 point.

We then have
n2

x2n + 1
x2
n

+
x2n+1

2xn+1xn+2 − 1
=

n2

x2n + 1
x2
n

+
x2n+1

2x2n+1 + 1
=

n2

x2n + 1
x2
n

+
1

2 +
1

x2n+1

.

1 point.

By the inequality of arithmetic and harmonic mean, this is greater than or equal to

(n+ 1)2

x2n + 1
x2
n
+ 2 + 1

x2
n+1

.

5 points.

Notice that squaring the assertion xn+1 = xn + 1
xn

, we obtain

x2n +
1

x2n
+ 2 = x2n+1.

1 point.

This implies that
(n+ 1)2

x2n + 1
x2
n
+ 2 + 1

x2
n+1

=
(n+ 1)2

x2n+1 +
1

x2
n+1

,

which is exactly equal to the right hand side. Therefore, the claim is proven by the principle of mathematical induction.
In particular, the claim is true for n = 2019, which proves the inequality.

1 point.

Notes on marking:

• Points from separate solutions can not be added. The student should be awarded the maximum of the points scored
in the 3 presented solutions, or an appropriate number of points on an alternative solution.

• The third solution gives 5 points for the use of AM-HM inequality as opposed to 4 points in the first solution
because in the third solution it is not necessary to comment the equality case. However, if a student has n = 1 as
a basis of induction and doesn’t comment the equality case, he should be deducted 1 point out of possible 5.

• The point for proving that the equality cannot be achieved is only awarded if the student has proved the non-strict
version of inequality.
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Problem 3. Let ABC be a triangle with circumcircle ω. Let lB and lC be two lines through the points B and
C, respectively, such that lB ‖ lC . The second intersections of lB and lC with ω are D and E, respectively.
Assume that D and E are on the same side of BC as A. Let DA intersect lC at F and let EA intersect lB
at G. If O, O1 and O2 are circumcenters of the triangles ABC, ADG and AEF , respectively, and P is the
circumcenter of the triangle OO1O2, prove that lB ‖ OP ‖ lC .

(Stefan Lozanovski)

Sketch.

lB lC

A

B C

D

E

F

G

O

O1

O2

P

S

Solution. Let us write ∠BAC = α,∠ABC = β,∠ACB = γ.

Lemma. Triangles AGD and AEF are similar to the triangle ABC.
Proof. As DBCAE is a cylic pentagon we have

∠GDA = ∠BCA = γ.

1 point.

Now from lB ‖ lC we get that

∠DBA = ∠DBC − β = 180◦ − ∠BCE − β = α+ γ − ∠BCE = α− ∠ACE

1 point.

so from the cyclicity

∠BCD = ∠BAD = 180◦ − ∠DBA− ∠ADB = 180◦ − (α− ∠ACE)− (180◦ − γ) = γ − α+ ∠ACE

1 point.

Hence
∠DAG = ∠DCE = ∠BCA− ∠BCD + ∠ACE = α

1 point.

Therefore AGD is similar to the triangle ABC, and similarly for AEF .
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Now as G, A and E are collinear and F , A and D are collinear, using Lemma we get that O, O1 and O2 are collinear.

1 point.

As O1 is the circumcenter of the triangle ADG and O1D is the bisector of the chord AD we get that

∠AO1O =
1

2
∠AO1D = ∠AGD = β

and similarly ∠AO1O = γ, so the triangle OO1O2 is similar to the triangle ABC.

2 points.

Now as P is the circumcenter of the triangle OO1O2 from the previous similarity we get that

∠O1OP = ∠BAO

1 point.

Hence
∠DOP = ∠DOO1 + ∠O1OP = ∠DBA+ ∠BAO = ∠DBA+ ∠ABO = ∠DBO = ∠ODB

so lB ‖ OP ‖ lC .

2 points.

Notes on marking:

• If a student has a partial solution with analytic methods, only points for proving facts that can be expressed in
geometric ways and lead to a compete solution can be awarded.
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Problem 4. Let u be a positive rational number and m be a positive integer. Define a sequence q1, q2, q3, . . .
such that q1 = u and for n > 2:

if qn−1 =
a

b
for some relatively prime positive integers a and b, then qn =

a+mb

b+ 1
.

Determine all positive integers m such that the sequence q1, q2, q3, . . . is eventually periodic for any positive
rational number u.

Remark: A sequence x1, x2, x3, . . . is eventually periodic if there are positive integers c and t such that xn = xn+t

for all n > c.
(Petar Nizić-Nikolac)

Solution. We will prove that the sequence is eventually periodic if and only if m is odd.
Let a1, a2, a3, . . . and b1, b2, b3, . . . be sequences of numerators and denumerators of q1, q2, q3, . . . respectively when written
in the irreducible form, i.e. for n ∈ N:

qn =
an
bn

gcd(an, bn) = 1

Say that there was reduction in the nth step if gcd(an +mbn, bn + 1) > 1.

Case 1. m is even
Set u = 1

1
. Assume for the sake of contradiction that q1, q2, q3, . . . is eventually periodic. Then (bn)n∈N is bounded so

there is r > 1 (pick the smallest one) such that there was reduction in the rth step. Easy to see that

q1 =
1

1
, q2 =

m+ 1

2
, q3 =

3m+ 1

3
, q4 =

6m+ 1

4
, q5 =

10m+ 1

5
, . . . , qr =

(
r
2

)
m+ 1

r

2 points.

Now as m is even we have

gcd (ar +mbr, br + 1) = gcd

((
r

2

)
m+ 1 +mr, r + 1

)
= gcd

((
r + 1

2

)
m+ 1, r + 1

)
= gcd

(
(r + 1)r

m

2
+ 1, r + 1

)
= 1

so this is a contradiction, and hence it is not eventually periodic for any positive rational number u.

1 point.

Case 2. m is odd
Assume that there is r ∈ N such that there was no reduction in the steps r, r + 1, r + 2 and r + 3. Then for i ∈ {1, 2}:

(ar+i+2, br+i+2) ≡ (ar+i +mbr+i +mbr+i+1, br+i + 1 + 1) ≡ (ar+i + 2mbr+i +m, br+i + 2) ≡ (ar+i + 1, br+i) (mod 2)

so at least one of the following pairs: (ar+1, br+1), (ar+2, br+2), (ar+3, br+3), (ar+4, br+4) has both even entries which is
impossible (as they are coprime). Hence there was at least one reduction in the steps r, r + 1, r + 2 and r + 3.

2 points.

Therefore for all n > 1:

max{bn+1, bn+2, bn+3, bn+4} 6 min{bn+1, bn+2, bn+3, bn+4}+ 3 6
1

2
max{bn, bn+1, bn+2, bn+3}+ 3

so there exists C > 1 such that bn 6 6 for all n > C.

2 points.

Similarly for all n > C:

max{an+1, an+2, an+3, an+4} 6 min{an+1, an+2, an+3, an+4}+ 3 · 6m 6
1

2
max{an, an+1, an+2, an+3}+ 18m

so there exists D > C such that an 6 36m for all n > D.

2 points.

We conclude that for all n > D there are finitely many pairs (6 · 36m = 216m) that (an, bn) attains so it becomes
eventually periodic for any positive rational number u.

1 point.

Notes on marking:

• Case 1 and Case 2 are always worth 3 points and 7 points respectively.
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8th European Mathematical Cup
14th December 2019 - 22th December 2019

Senior Category

MLADI NADARENI MATEMATIČARI

Marin Getaldic

Problems and Solutions

Problem 1. For positive integers a and b, let M(a, b) denote their greatest common divisor. Determine all
pairs of positive integers (m,n) such that for any two positive integers x and y such that x | m and y | n,

M(x+ y,mn) > 1.

(Ivan Novak)

First Solution. We will prove that there are no solutions. Let m and n be any positive integers.

Let P denote the product of all primes which divide n and don’t divide m. Then m is a divisor of m and P is a
divisor of n, but we’ll prove that m+ P and mn are relatively prime.

4 points.

Let p be any prime divisor of mn.
If p divides m, then p doesn’t divide P and therefore p doesn’t divide m+ P .

3 points.

If p doesn’t divide m, then p divides n, and then p divides P by definition of P , which implies that p doesn’t divide
m+ P .

3 points.

Hence, m + P and mn have no common prime factors, which implies they are relatively prime. Hence, there are no
solutions.
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Second Solution. We will prove that there are no solutions. Assume for the sake of contradiction that (m,n) was a
solution. We will recursively construct an infinite unbounded sequence of pairs of positive integers (xk, yk)k∈N such that
xk | m, yk | n and M(xk, yk) = 1.

1 point.

Then either (xk)k∈N or (yk)k∈N will be unbounded, but xk 6 m and yk 6 n for all k ∈ N, which will yield a contradiction.

1 point.

Let (x1, y1) = (1, 1). Let k ∈ N. Suppose we have constructed (xk, yk) satisfying all of the above conditions. Then since
(m,n) is a solution, there exists a prime divisor p of both mn and xk + yk.

1 point.

If p divides m, then let (xk+1, yk+1) = (pxk, yk).

2 points.

If p divides n and doesn’t divide m, let (xk+1, yk+1) = (xk, pyk).

2 points.

In both cases xk+1 divides m and yk+1 divides n.

1 point.

Also, M(xk+1, yk+1) = 1 because p does not divide neither xk nor yk (as xk and yk are relatively prime and p divides
xk + yk). Hence, the construction is valid.

2 points.

Notes on marking:

• In the First solution, there are different choices for pairs of divisors whose sum is relatively prime with mn. For

example, one can take (rad(m),
rad(mn)

rad(m)
), where rad(x) denotes the product of all prime divisors of x. If a student

finds such a pair and claims that it is a solution without proving that their sum is relatively prime with mn, and
if the proof is as straightforward as in the official solution, he should still get 4 points from the first part of the
solution.
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Problem 2. Let n be a positive integer. An n×n board consisting of n2 cells, each being a unit square coloured
either black or white, is called convex if for every black coloured cell, both the cell directly to the left of it and
the cell directly above it are also coloured black. We define the beauty of a board as the number of pairs of its
cells (u, v) such that u is black, v is white and u and v are in the same row or column. Determine the maximum
possible beauty of a convex n× n board.

(Ivan Novak)

First Solution. We colour the board so that in the i-th row, the leftmost n+1− i cells are black. We’ll call this board
the Unicorn.

1 point.

The beauty of this board equals

2

n−1∑
k=1

k(n− k) = 2(

n−1∑
k=1

nk −
n−1∑
k=1

k2) = 2

(
n2(n− 1)

2
− n(n− 1)(2n− 1)

6

)
=

n3 − n

3
.

1 point.

We’ll call any pair (u, v) such that u is white, v is black and u and v are in the same row or column a pretty pair. Now
we will prove that the beauty of every convex board is less than or equal to the beauty of the Unicorn. We will do this
by performing an algorithm which turns an arbitrary board into the Unicorn in finitely many steps.

Consider an arbitrary convex board. Let ai be the number of black coloured cells in the i-th row. We perform the
following algorithm:

If the board is equal to the Unicorn, we are done. Otherwise, find the first row in which ai 6= n + 1 − i. Then,
we consider two cases:

1. ai < n+ 1− i. We colour the ai + 1-th cell in the i-th row black.

1 point.

We claim that the beauty of the board didn’t decrease.
We now count the number of black/white cells which are in the same row or column as the cell we colored and
which are distinct from it.
The number of black cells in the same row is equal to ai, and the number of black cells in the same column is i− 1.
On the other hand, the number of white cells in the same row is n − 1 − ai and the number of white cells in the
same column is n− i.

1 point.

Therefore, the difference of beauties of the board before and after coloring the ai + 1-th cell of i-th row black is
ai + (i− 1)− (n− 1− ai)− (n− i) = 2(ai + i− n) 6 0, which implies that the new board’s beauty is not smaller.

1 point.

2. ai > n+1− i. Let j > i be the biggest index such that aj = ai. We colour the ai-th cell of the j-th column white.

1 point.

We claim that the beauty of the board didn’t decrease.
As in the first case, we count the number of black/white cells which are in the same row or column as the cell we
colored and which are distinct from it.
The number of white cells in the same row equals n− aj , and the number of white cells in the same column equals
n− j. On the other hand, the number of black cells in the same row equals aj − 1, and the number of black cells
in the same column equals j − 1.

1 point.

Therefore, the difference of beauties of the board before and after coloring the aj-th cell of j-th row white is
(n − aj) + (n − j) − (aj − 1) − (j − 1) = 2(n + 1 − j − aj) 6 2(n + 1 − i − ai) < 0, which implies that the new
board’s beauty is bigger.

1 point.

The algorithm terminates because after each step, the number of positions where the board differs from the Unicorn
decreases by 1. Therefore, the maximum beauty is achieved for the Unicorn.

1+1 points.
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Second Solution. Consider an arbitrary convex board. Let ai denote the number of black cells in the i-th row.
Furthermore, we define a0 = n and an+1 = 0. Then the number of pretty pairs (u, v) such that u and v are in the same
row equals

n∑
i=1

ai(n− ai).

1 point.

The number of columns with at least i black cells equals ai.

1 point.

This implies that the number of columns with exactly i black cells equals the difference between the number of columns
with at least i black cells and the number of columns with at least i+ 1 black cells. Therefore, the number of columns
with exactly i black cells equals ai − ai+1.

2 points.

This implies that the number of pretty pairs (u, v) such that u and v are in the same column equals

n∑
i=1

(ai − ai+1)i(n− i).

1 point.

Therefore, the beauty of the board equals

n∑
i=1

ai(n− ai) + (ai − ai+1)i(n− i) =

n∑
i=1

ai(n− ai + i(n− i)− (i− 1)(n+ 1− i)) =

n∑
i=1

ai(2n+ 1− 2i− ai).

1 point.

For a fixed i ∈ {1, . . . , n}, ai(2n+1− 2i− ai) is a quadratic function of ai, which is increasing for ai ∈ [0, n− i+ 1
2
] and

decreasing for ai ∈ [n− i+ 1
2
, n], and the maximum among all integer ai is then achieved if ai ∈ {n− i, n− i+ 1}.

1 point.

Therefore, the whole sum is maximised if ai ∈ {n− i, n− i+ 1} for all i ∈ {1, . . . , n}.

1 point.

Any board with ai ∈ {n− i, n− i+ 1} is convex since then ai > ai+1 for any of the possible choices.

1 point.

In this case, the sum equals

n∑
i=1

(n− i)(n− i+ 1) =

n∑
i=1

i(i− 1) =

n∑
i=1

i2 − i =
n(n+ 1)(2n+ 1)− 3n(n+ 1)

6
=

n3 − n

6
.

1 point.

Notes on marking:

• A student is awarded the maximum of the two scores he gets by following either of the two marking schemes. Points
from different solutions are not additive.

• If the student produces an optimal board, writes down its beauty, but does not simplify the expression to a closed
form, then:
a) if the student does not prove the optimality of the board (a “0+” solution), he is awarded 0 points for this part;
b) if the student proves the optimality of the board (a “10-” solution), he is awarded 1 point for this part.

• In the First Solution, the last 2 points are only awarded if he gives a correct algorithm.

• In the First Solution, if the student has a correct algorithm, but fails to prove that it terminates, he should be
deducted 1 point.

• In the Second Solution, the “other direction” is implicit in the last part of the solution. This is because the
Unicorn configuration is covered by the given equality cases. If the student gives an optimal board as in the other
solutions, and then shows that his optimal board is contained in the equality case, his solution is complete.
However, if the student does not in any way show that his lower and upper bounds match, he should be deducted
1 point.
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Problem 3. In an acute triangle ABC with |AB| 6= |AC|, let I be the incenter and O the circumcenter. The
incircle is tangent to BC, CA and AB in D, E and F respectively. Prove that if the line parallel to EF passing
through I, the line parallel to AO passing through D and the altitude from A are concurrent, then the point of
concurrence is the orthocenter of the triangle ABC.

(Petar Nizić-Nikolac)

Sketch.
A

B C

H

O
I

D

E

F

M

T

D1

S

Solution. Let H be that concurrence point. We shall prove that H is the orthocenter of the triangle ABC.
Firstly we observe that AFIE is a deltoid (because |AE| = |AF | and |IE| = |IF |), so AI ⊥ EF ‖ HI.

1 point.

Using the fact that AI is the bisector of ∠OAH and AH ‖ ID we conclude that

∠DIH = ∠AID − 90◦ = 180◦ − ∠IAH − 90◦ = 90◦ − ∠OAH

2
= 90◦ − ∠HDI

2

so triangle IHD is an isoscales one.

1 point.

Denote by T the second intersection of the line DI and the incircle and S as the point such that SHDI is a rhombus.
It follows that S lies on AH, but also that triangle ISH is an isoscales one, so

∠SIA = 90◦ − ∠SIH = 90◦ − ∠SHI = 90◦ − ∠HID = ∠AIT = ∠IAS.

Hence |AS| = |SI| = |ID| = |IT | (we used that I is the midpoint of TD), so ASIT is a rhombus.

3 points.

Lemma. A, T , O and D1 are collinear, where D1 is the point where A-excircle is tangent to BC.
Proof. Firstly, A, T and O are collinear as AT ‖ SI ‖ HD ‖ AO.

1 point.

Secondly, A, T and D1 are collinear as there is homothety from A sending incircle to A-excircle, so the "highest" points
(w.r.t. BC) of these circles (T and D1) and the center of homothety (A) are collinear. Therefore, A, T , O and D1 are
collinear.

1 point.

Denote by M the midpoint of BC. We know that |BD| = |AB|+|BC|−|AC|
2

= |CD1|, so M is the midpoint of DD1.

1 point.

As TDD1 is a right triangle and ∠OMD1 = 90◦ we conclude that OM is a D1-midline in the triangle TDD1, hence

2|OM | = |TD| = |TI|+ |ID| = |AS|+ |SH| = |AH|.

1 point.

Now we can conclude in various ways (for example, using the Euler line argument) that H is the orthocenter of the
triangle ABC.

1 point.
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Notes on marking:

• Essentially, 5 points are awarded for proving that AHDT is a parallelogram with longer side being twice the size
of the shorter side, next 4 points are awarded for proving that 2|OM | = |AH| is true, and 1 point is awarded for
deduction that H is indeed an orthocenter.

• If a student states that A, T,D1 are collinear in a general triangle without using it to prove the problem (for
example, by introducing the point O and stating that it should be on the line), it should be awarded 0 points. On
the other hand, if a student uses this fact to prove the problem, it does not have to prove this fact and it is enough
to state it. In that case it is awarded 1 point.

• If a student states that 2|OM | = |AH| in a general triangle without using it to prove the problem (for example, by
noting that |OM | = |ID|), it should be awarded 0 points. On the other hand, if a student uses this fact to prove
the problem, it does not have to prove this fact and it is enough to state it. In that case it is awarded 1 point.

• If a student has a partial solution with analytic methods, only points for proving facts that can be expressed in
geometric ways and lead to a compete solution can be awarded.
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Problem 4. Find all functions f : R→ R such that

f(x) + f(yf(x) + f(y)) = f(x+ 2f(y)) + xy

for all x, y ∈ R.
(Adrian Beker)

Solution. It is easily checked that f(x) = x+1 is a valid solution. We will prove that it is the only solution. Let P (x, y)
denote the assertion

f(x) + f(yf(x) + f(y)) = f(x+ 2f(y)) + xy

and let a = f(0). We will first prove the following claim:

Claim. f is injective
Proof: Suppose that f(x) = f(y) = t for some x, y ∈ R. We have:

P (x, x) =⇒ t+ f(xt+ t) = f(x+ 2t) + x2

P (x, y) =⇒ t+ f(yt+ t) = f(x+ 2t) + xy

Subtracting the last two equations yields f(xt+t)−f(yt+t) = x(x−y). Similarily, we have f(yt+t)−f(xt+t) = y(y−x)
which implies (x− y)2 = 0 =⇒ x = y, hence f is injective.

4 points.

We have:
P (x, 0) =⇒ f(x) + f(a) = f(x+ 2a) (1)

Setting x = −a yields f(−a) = 0. Now we have:

P (x,−a) =⇒ f(−af(x)) = −ax (2)

Again, setting x = −a yields a = a2, hence a ∈ {0, 1}.
1 point.

Case 1. a = 0
P (0, y) =⇒ f(f(y)) = f(2f(y))

Since f is injective, we have f(y) = 2f(y) =⇒ f(y) = 0 for all y ∈ R, which is clearly impossible.

1 point.

Case 2. a = 1
Now (2) implies f(−f(x)) = −x for all x ∈ R This means that f is bijective. On the other hand, (1) implies that
f(x) + f(1) = f(x+ 2) for all x ∈ R.

P (x+ 2, y) =⇒ f(x+ 2) + f(yf(x+ 2) + f(y)) = f(x+ 2 + 2f(y)) + (x+ 2)y

f(x) + f(y) + f(yf(x) + f(y) + yf(1)) = f(x+ 2f(y)) + f(1) + xy + 2y

1 point.

By subtracting the initial equation from this one, we obtain:

f(yf(x) + f(y) + yf(1)) = f(yf(x) + f(y)) + 2y

If y 6= 0, we can choose x ∈ R such that f(x) = − f(y)
y

because f is surjective, hence the last equation yields:

f(yf(1)) = 2y + 1

2 points.

for all y 6= 0, but it is also true for y = 0. In particular, setting y = − 1
2
yields f(− f(1)

2
) = 0. Since f is injective and

f(−1) =0, it follows that f(1) = 2 =⇒ f(2y) = 2y+1 for all y ∈ R. Finally, we deduce that f(x) = x+1 for all x ∈ R,
as desired.

1 point.

Notes on marking:

• The case a = 1 can be finished without injectivity. If a student deduces that f is linear and checks that the only
option for f is f(x) = x+ 1, he should get 1 point.

• If a student manages to prove that f is injective in the case a = 0, he should get 4 points from the first part of
the solution since in the case a = 1 the proof can be finished without injectivity.

• If a student doesn’t check that f(x) = x+ 1 is indeed a solution or at least mention that it can be easily checked,
he should lose 1 point.
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