Problem of Geometry proposed for the MMC 2017

Let ABC be an equilateral triangle, and let P be some point in its
circumcircle. Determine, with reasons, all the numbers n € N* such
that the sum

S, (P) =|PA|" + |PB|" + |PC|"

is independent of the choice of the point P.

Solution

We will take an orthonormal coordinate system, with origin in the point O
(center of the circumcircle of ABC), taking moreover the point A on the Oz
axis, and |OA| = 1. If the complex numbers z4, zp, zc and z are respectively
the affixes of the points A, B, C, P, we have

24l = 28| = [2c| = [2] = 1,

and therefore the first three are the roots of 23 = 1, that is
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For another hand, z = a + b, with a2 + b> = 1. Then we have

Sn (P) = |PAI" + [PB|" +|PC|" = |z = zal" + |z = 28" + |z — 2c|"  (¥)

But as

lz— 24| =V2-V1—a; |z— 25| =\2+a—bV3; |z— 20| =\/2+a+bV3,

we get from (*)
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If P = A, then S, (A) = 3"/2 43%/2 = 2.3"/2 If P, (%, @) , entonces

z=1 +i§ that is, a = 1,b = —\ég and from (**) we get
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Then, if S, (P) must to be independent of P, we get S, (A) = S, (P) <
2.3"2 =24 2" = n=2o0rn=4.



Problem

Determine the smallest integer n, for which there exist integers z1,...,z, and pos-
itive integers ag, ..., a, so that

T+ w2y =0, arr1 + -+ apzy >0, a%x1+'--+aixn<0.
Solution
The answer is n = 3. One possible example for n = 3 is 1 = 2 and zo = 23 = —1,

with a1 =4, a0 =1, a3 = 6.

For n = 1, the first constraint enforces x1 = 0; this is in contradiction with the
other two constraints. For n = 2, the first constraint enforces xo = —x1. Then the
second constraint is equivalent to ajx1 — asx1 > 0. If we multiply this inequality by
the positive value a;+aso, we get a%xl —a%xl > 0; this is equivalent to a%xl—i-a%xg >0
and contradicts the third constraint.



Problem

A set S of integers is Balearic, if there are two (not necessarily distinct) elements s,s’ € S
whose sum s + s’ is a power of two; otherwise it is called a non-Balearic set.

Find an integer n such that {1,2,...,n} contains a 99-element non-Balearic set, whereas
all the 100-element subsets are Balearic.

Solution

Let f(n) denote the largest cardinality of a non-Balearic set in {1,2,...,n}. One easily verifies
that f(0) = f(1) = 0. Now consider an integer n > 2 and write it in the form n = 2 + b with
0<b<2%—1. We want to show that

fn) = f(2°+b) = f(2"—b—1)+0.

Partition {1,2,...,n} into X = {1,2,...,2* —=b—1} and Y = {2 — b,...,2% + b}. A non-
Balearic-subset S of {1,2,...,n} contains at most f(2* —b—1) elements from X (by definition
of f) and at most b elements from Y (as it cannot contain 2% altogether, and as it contains
at most one of the two numbers 2 — z and 2% 4+ x). This establishes the first inequality
() < F@2*—b—1)+b,

Next consider a non-Balearic set 7' C X of cardinality f(2* —b—1). We claim that also
S=TuU{2°+1,...,2% 4+ b} is a non-Balearic set. Suppose for the sake of contradiction that
the sum s + s’ of some s,s’ € S is a power of two. Then s, s’ € T is impossible, as T itself is a
non-Balearic set. Also s,s" € {2% +1,...,2% + b} is impossible, as

20 < (274 1) (294 1) < s+ < (274b) + (29 +Db) < 2072

Hence one of s and s’ must be in 7" and the other one in {2% +1,...,2% + b}, which yields the
final contradiction

20 < s+ < (2°—b—1)+(2°+b) < 20

Since the constructed non-Balearic set S is of cardinality f(2% —b— 1)+ b, we have established
the second inequality f(n) > f(2% —b—1)+b. The two established inequalities together imply
the desired recursive equation f(n) = f(2* — b — 1) + b displayed above.

The rest is computation.

It is easy to see (or to determine through the recursive equation) that f(4) = 1.
For 2¢ = 8 and b = 3, the recursion yields f(11) = f(4) + 3 = 4.

For 2% = 32 and b = 20, the recursion yields f(52) = f(11) 4+ 20 = 24.

For 2¢ = 128 and b = 75, the recursion yields f(203) = f(52) + 75 = 99.

Hence an answer to the problem is n = 203 with f(203) = 99.

(Similar computations yield f(202) = 98 and f(204) = 100. Hence n = 203 constitutes the
unique possible answer for the problem.)



MEDITERRANEAN MATHEMATICAL COMPETITION

PROPOSAL

Let a, b, ¢ be positive real numbers such that a + b+ ¢ = 1. Prove that

3 b3 3 1
(2% +y° + 2°) S + > -
224+ 292 Y2 4+222 0 224222) 79

holds for all positive reals x,vy, z.

Solution. On account of the constrain a + b + ¢ = 1 we will prove that it holds the
equivalent inequality
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Indeed, Holder’s inequality claims that
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for all positive reals a;, b;, c;, 1 < i < 3. Putting in the preceding
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yields
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Cubing both sides and dividing both sides by 9 (22 + 32 + 22) we obtain

a’ N b N c (a+b+c)?
2?2+ 2y%  y?4+222 0 224222 7 9(x2 +y? +22)

from which claimed inequality follows. Equality holds when a =b=c=z=y =2 =
1/3, and the proof is complete.
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