
Problem of Geometry proposed for the MMC 2017
Let ABC be an equilateral triangle, and let P be some point in its

circumcircle. Determine, with reasons, all the numbers n ∈ N∗ such
that the sum

Sn (P ) = |PA|n + |PB|n + |PC|n

is independent of the choice of the point P.
Solution
We will take an orthonormal coordinate system, with origin in the point O

(center of the circumcircle of ABC), taking moreover the point A on the Ox
axis, and |OA| = 1. If the complex numbers zA, zB , zC and z are respectively
the affi xes of the points A, B, C, P, we have

|zA| = |zB | = |zC | = |z| = 1,

and therefore the first three are the roots of z3 = 1, that is

zA = 1; zB = −
1

2
+ i

√
3

2
; zC = −

1

2
− i
√
3

2
.

For another hand, z = a+ ib, with a2 + b2 = 1. Then we have

Sn (P ) = |PA|n + |PB|n + |PC|n = |z − zA|n + |z − zB |n + |z − zC |n (∗)

But as

|z − zA| =
√
2 ·
√
1− a; |z − zB | =

√
2 + a− b

√
3; |z − zC | =

√
2 + a+ b

√
3,

we get from (*)

Sn (P ) = 2
n/2 (1− a)n/2 +

(
2 + a− b

√
3
)n/2

+
(
2 + a+ b

√
3
)n/2

(∗∗)

If P = A, then Sn (A) = 3n/2 + 3n/2 = 2 · 3n/2. If P1
(
1
2 ,
√
3
2

)
, entonces

z = 1
2 + i

√
3
2 that is, a = 1

2 , b =
√
3
2 and from (**) we get

Sn (P1) = 2
n/2 · 2−n/2 +

(
2 +

1

2
− 3
2

)n/2
+

(
2 +

1

2
+
3

2

)n/2
= 2 + 2n.

Then, if Sn (P ) must to be independent of P , we get Sn (A) = Sn (P1)⇐⇒
2 · 3n/2 = 2 + 2n ⇐⇒ n = 2 or n = 4.
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Problem

Determine the smallest integer n, for which there exist integers x1, . . . , xn and pos-

itive integers a1, . . . , an so that

x1 + · · ·+ xn = 0, a1x1 + · · ·+ anxn > 0, a
2

1x1 + · · ·+ a
2

n
xn < 0.

Solution

The answer is n = 3. One possible example for n = 3 is x1 = 2 and x2 = x3 = −1,

with a1 = 4, a2 = 1, a3 = 6.

For n = 1, the first constraint enforces x1 = 0; this is in contradiction with the

other two constraints. For n = 2, the first constraint enforces x2 = −x1. Then the

second constraint is equivalent to a1x1 − a2x1 > 0. If we multiply this inequality by

the positive value a1+a2, we get a
2

1
x1−a2

2
x1 > 0; this is equivalent to a2

1
x1+a2

2
x2 > 0

and contradicts the third constraint.
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Problem

A set S of integers is Balearic, if there are two (not necessarily distinct) elements s, s′ ∈ S

whose sum s+ s′ is a power of two; otherwise it is called a non-Balearic set.

Find an integer n such that {1, 2, . . . , n} contains a 99-element non-Balearic set, whereas

all the 100-element subsets are Balearic.

Solution

Let f(n) denote the largest cardinality of a non-Balearic set in {1, 2, . . . , n}. One easily verifies

that f(0) = f(1) = 0. Now consider an integer n ≥ 2 and write it in the form n = 2a + b with

0 ≤ b ≤ 2a − 1. We want to show that

f(n) = f(2a + b) = f(2a − b− 1) + b.

Partition {1, 2, . . . , n} into X = {1, 2, . . . , 2a − b − 1} and Y = {2a − b, . . . , 2a + b}. A non-

Balearic-subset S of {1, 2, . . . , n} contains at most f(2a− b−1) elements from X (by definition

of f) and at most b elements from Y (as it cannot contain 2a altogether, and as it contains

at most one of the two numbers 2a − x and 2a + x). This establishes the first inequality

f(n) ≤ f(2a − b− 1) + b.

Next consider a non-Balearic set T ⊆ X of cardinality f(2a − b − 1). We claim that also

S = T ∪ {2a + 1, . . . , 2a + b} is a non-Balearic set. Suppose for the sake of contradiction that

the sum s+ s′ of some s, s′ ∈ S is a power of two. Then s, s′ ∈ T is impossible, as T itself is a

non-Balearic set. Also s, s′ ∈ {2a + 1, . . . , 2a + b} is impossible, as

2a+1
< (2a + 1) + (2a + 1) ≤ s+ s

′
≤ (2a + b) + (2a + b) < 2a+2

.

Hence one of s and s′ must be in T and the other one in {2a + 1, . . . , 2a + b}, which yields the

final contradiction

2a < s+ s
′
≤ (2a − b− 1) + (2a + b) < 2a+1

.

Since the constructed non-Balearic set S is of cardinality f(2a− b− 1)+ b, we have established

the second inequality f(n) ≥ f(2a− b− 1)+ b. The two established inequalities together imply

the desired recursive equation f(n) = f(2a − b− 1) + b displayed above.

The rest is computation.

It is easy to see (or to determine through the recursive equation) that f(4) = 1.

For 2a = 8 and b = 3, the recursion yields f(11) = f(4) + 3 = 4.

For 2a = 32 and b = 20, the recursion yields f(52) = f(11) + 20 = 24.

For 2a = 128 and b = 75, the recursion yields f(203) = f(52) + 75 = 99.

Hence an answer to the problem is n = 203 with f(203) = 99.

(Similar computations yield f(202) = 98 and f(204) = 100. Hence n = 203 constitutes the

unique possible answer for the problem.)
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MEDITERRANEAN MATHEMATICAL COMPETITION

Proposal

Let a, b, c be positive real numbers such that a+ b+ c = 1. Prove that

(x2 + y2 + z2)

(
a3

x2 + 2y2
+

b3

y2 + 2z2
+

c3

z2 + 2x2

)
≥ 1

9

holds for all positive reals x, y, z.

Solution. On account of the constrain a + b + c = 1 we will prove that it holds the
equivalent inequality

(x2 + y2 + z2)

(
a3

x2 + 2y2
+

b3

y2 + 2z2
+

c3

z2 + 2x2

)
≥ (a+ b+ c)3

9

Indeed, Hölder’s inequality claims that

3∏
i=1

(
a3i + b3i + c3i

)1/3 ≥ a1a2a3 + b1b2b3 + c1c2c3

for all positive reals ai, bi, ci, 1 ≤ i ≤ 3. Putting in the preceding

(a1, a2, a3) =

(
a

3
√

x2 + 2y2
, 1, 3
√

x2 + 2y2

)
,

(b1, b2, b3) =

(
b

3
√

y2 + 2z2
, 1, 3
√
y2 + 2z2

)
,

and

(c1, c2, c3) =

(
c

3
√
z2 + 2x2

, 1,
3
√
z2 + 2x2

)
yields

3
√
3

(
a3

x2 + 2y2
+

b3

y2 + 2z2
+

c3

z2 + 2x2

)1/3

(3x2 + 3y2 + 3z2)1/3 ≥ a+ b+ c

Cubing both sides and dividing both sides by 9 (x2 + y2 + z2) we obtain

a3

x2 + 2y2
+

b3

y2 + 2z2
+

c3

z2 + 2x2
≥ (a+ b+ c)3

9(x2 + y2 + z2)

from which claimed inequality follows. Equality holds when a = b = c = x = y = z =
1/3, and the proof is complete.
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