
Problem 1 Let ABC be a triangle with CA = CB and ∠ACB = 120◦, and let M be the
midpoint of AB. Let P be a variable point on the circumcircle of ABC, and let Q be the point
on the segment CP such that QP = 2QC. It is given that the line through P and perpendicular
to AB intersects the line MQ at a unique point N .

Prove that there exists a fixed circle such that N lies on this circle for all possible positions
of P .

(Velina Ivanova, Bulgaria)

Solution Let O be the circumcenter of ABC. From the assumption that ∠ACB = 120◦ it
follows that M is the midpoint of CO.

Let ω denote the circle with center in C and radius CO. This circle in the image of the
circumcircle of ABC through the translation that sends O to C. We claim that N lies on ω.
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Let us consider the triangles QNP and QMC. The angles in Q are equal. Since NP is parallel
to MC (both lines are perpendicular to AB), it turns out that ∠QNP = ∠QMC, and hence the
two triangles are similar. Since QP = 2QC, it follows that

NP = 2MC = CO,

which proves that N lies on ω.

Comment The possible positions of N are all the points of ω with the exception of the two
points lying on the line CO. Indeed, P does not lie on the line CO because otherwise the point
N is not well-defined, and therefore also N does not lie on the same line.

Conversely, let N be any point on ω and not lying on the line CO. Let P be the corresponding
point on the circumcircle of ABC, namely such that NP is parallel and equal to CO. Let Q be
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the intersection of CP and NM . As before, the triangles QNP and QMC are similar, and now
from the relation NP = 2MC we deduce that QP = 2QC. This proves that N can be obtained
from P through the construction described in the statement of the problem.

Alternative solution Let M ′ denote the symmetric of M with respect to O.
Let us consider the quadrilateral MM ′PN . The lines MM ′ and NP are parallel by construc-

tion. Also the lines PM ′ and NM are parallel (homothety from C with coefficient 3). It follows
that MM ′PN is a parallelogram, and hence PN = MM ′ = OC.

Computational solution There are many computation approaches to this problem. For ex-
ample, we can set Cartesian coordinates so that

A =

(

−
√
3

2
,
1

2

)

, B =

(√
3

2
,
1

2

)

, C = (0, 1) , M =

(

0,
1

2

)

.

Setting P = (a, b), we obtain that Q = (a/3, (2 + b)/3). The equation of the line through P
and perpendicular to AB is x = a. The equation of the line MQ (if a 6= 0) is

y − 1

2
=

x

a

(
1

2
+ b

)

.

The intersection of the two lines is therefore

N = (a, 1 + b) = P + (0, 1).

This shows that the map P → N in the translation by the vector (0, 1). This result is
independent of the position of P (provided that a 6= 0, because otherwise N is not well-defined).

When P lies on the circumcircle of ABC, with the exception of the two points with a = 0,
then necessarily N lies on the translated circle (which is the circle with center in C and radius 1).
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Problem 2 Consider the set

A =

{

1 +
1

k
: k = 1, 2, 3, . . .

}

.

(a) Prove that every integer x ≥ 2 can be written as the product of one or more elements of A,
which are not necessarily different.

(b) For every integer x ≥ 2, let f(x) denote the minimum integer such that x can be written as
the product of f(x) elements of A, which are not necessarily different.

Prove that there exist infinitely many pairs (x, y) of integers with x ≥ 2, y ≥ 2, and

f(xy) < f(x) + f(y).

(Pairs (x1, y1) and (x2, y2) are different if x1 6= x2 or y1 6= y2).

(Mihail Baluna, Romania)

Solution Every integer x ≥ 2 can be written as the telescopic product of x− 1 elements of A as

x =

(

1 +
1

x− 1

)

·
(

1 +
1

x− 2

)

· . . . ·
(

1 +
1

2

)

·
(

1 +
1

1

)

,

which is enough to establish part (a). We now consider part (b). Notice that for any positive
integer k we have

f(2k + 1) ≤ k + 1,

because 2k + 1 =
(
1 + 1

2k

)
· 2k is a representation of 2k + 1 as a product of k + 1 elements of A.

We claim that all the pairs (x, y) of the form

x = 5, y =
24k+2 + 1

5

satisfy the required inequality. Notice that y is an integer for any positive value of k, because
24k+2 + 1 ≡ 16k · 4 + 1 ≡ 5 ≡ 0 (mod 5). Furthermore, f(xy) = f(24k+2 + 1) ≤ 4k + 3 (and
f(x) = f(22 + 1) ≤ 3) by the above. We now need some lower bounds on the values of f . Notice
that no element of A exceeds 2, and therefore the product of at most k elements of A does not
exceed 2k: it follows that

f(n) ≥ ⌈log2(n)⌉, (Q2.1)

and in particular that
f(5) = f(22 + 1) ≥ ⌈log2(5)⌉ = 3.

We have thus proven f(x) = f(5) = 3. We want to show f(xy) < f(x) + f(y), and since we
know f(xy) ≤ 4k + 3 and f(x) = 3 we are reduced to showing f(y) > 4k. Since y > 24k−1, from
(Q2.1) we already know that f(y) ≥ 4k, and hence we just need to exclude that f(y) = 4k. Let
us assume that we can represent y in the form a1 · . . . · a4k with every ai in A. At least one of the
ai is not 2 (otherwise the product would be a power of 2, while y is odd), and hence it is less than
or equal to 3/2. It follows that

a1 · . . . · a4k ≤ 24k−1 · 3
2
= 15 · 2

4k−2

5
<

24k+2

5
< y,
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which contradicts the fact that a1 · . . . · a4k is a representation of y.

Note. Using a similar approach one can also prove that all pairs of the form

(

3,
22k+1 + 1

3

)

and

(

11,
210k+5 + 1

11

)

satisfy the required inequality.

Second solution As in the previous solution we obtain the lower bound (Q2.1).
Now we claim that all the pairs of the form

x = 2k + 1, y = 4k − 2k + 1

satisfy the required inequality when k is large enough. To begin with, it is easy to see that

2k + 1 =
2k + 1

2k
· 2 · . . . · 2
︸ ︷︷ ︸

k terms

and 23k + 1 =
23k + 1

23k
· 2 · . . . · 2
︸ ︷︷ ︸

3k terms

,

which shows that f(2k + 1) ≤ k + 1 and f(23k + 1) ≤ 3k + 1. On the other hand, from (Q2.1) we
deduce that the previous inequalities are actually equalities, and therefore

f(x) = k + 1 and f(xy) = 3k + 1.

Therefore, it remain to show that f(y) > 2k. Since y > 22k−1 (for k ≥ 1), from (Q2.1) we
already know that f(y) ≥ 2k, and hence we just need to exclude that f(y) = 2k. Let us assume
that we can represent y in the form a1 · . . . · a2k. At least one of the factors is not 2, and hence it
is less than or equal to 3/2. Thus when k is large enough it follows that

a1 · . . . · a2k ≤ 22k−1 · 3
2
=

3

4
· 22k < 22k − 2k < y,

which contradicts the fact that a1 · . . . · a2k is a representation of y.

Third solution Let’s start by showing that (x, y) = (7, 7) satisfies f(xy) < f(x) + f(y). We
have f(7) ≥ 4 since 7 cannot be written as the product of 3 or fewer elements of A: indeed 23 > 7,
and any other product of at most three elements of A does not exceed 22 · 3

2
= 6 < 7. On the

other hand, f(49) ≤ 7 since 49 = 2 · 2 · 2 · 2 · 2 · 3
2
· 49
48
.

Suppose by contradiction that there exist only finitely many pairs (x, y) that satisfy f(xy) <
f(x) + f(y). This implies that there exists M large enough so that whenever a > M or b > M
holds we have f(ab) = f(a)+f(b) (indeed, it is clear that the reverse inequality f(ab) ≤ f(a)+f(b)
is always satisfied).

Now take any pair (x, y) that satisfies f(xy) < f(x) + f(y) and let n > M be any integer. We
obtain

f(n) + f(xy) = f(nxy) = f(nx) + f(y) = f(n) + f(x) + f(y),

which contradicts f(xy) < f(x) + f(y).
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Problem 3 The n contestants of an EGMO are named C1, . . . , Cn. After the competition they
queue in front of the restaurant according to the following rules.

• The Jury chooses the initial order of the contestants in the queue.

• Every minute, the Jury chooses an integer i with 1 ≤ i ≤ n.

– If contestant Ci has at least i other contestants in front of her, she pays one euro to
the Jury and moves forward in the queue by exactly i positions.

– If contestant Ci has fewer than i other contestants in front of her, the restaurant opens
and the process ends.

(a) Prove that the process cannot continue indefinitely, regardless of the Jury’s choices.

(b) Determine for every n the maximum number of euros that the Jury can collect by cunningly
choosing the initial order and the sequence of moves.

(Hungary)

Solution The maximal number of euros is 2n − n− 1.
To begin with, we show that it is possible for the Jury to collect this number of euros. We

argue by induction. Let us assume that the Jury can collect Mn euros in a configuration with n
contestants. Then we show that the Jury can collect at least 2Mn + n moves in a configuration
with n+ 1 contestants. Indeed, let us begin with all the contestants lined up in reverse order. In
the first Mn moves the Jury keeps Cn+1 in first position and reverses the order of the remaining
contestants, then in the next n moves all contestants C1, . . . , Cn (in this order) jump over Cn+1

and end up in the first n positions of the line in reverse order, and finally in the last Mn moves
the Jury rearranges the first n positions.

Since M1 = 0 and Mn+1 ≥ 2Mn + n, an easy induction shows that Mn ≥ 2n − n− 1.

n+ 1
n

n− 1
...
2
1

Mn moves−−−−−−→

n+ 1
1
2
...

n− 1
n

n moves−−−−→

n
n− 1

...
2
1

n+ 1

Mn moves−−−−−−→

1
2
...

n− 1
n

n+ 1

Let us show now that at most 2n −n− 1 moves are possible. To this end, let us identify a line
of contestants with a permutation σ of {1, . . . , n}. To each permutation we associate the set of
reverse pairs

R(σ) := {(i, j) : 1 ≤ i < j ≤ n and σ(i) > σ(j)},
and the nonnegative integer

W (σ) :=
∑

(i,j)∈R(σ)

2i,

which we call the total weight of the permutation. We claim that the total weight decreases after
any move of the contestants. Indeed, let us assume that Ci moves forward in the queue, let σ
be the permutation before the move, and let σ′ denote the permutation after the move. Since Ci

jumps over exactly i contestants, necessarily she jumps over at least one contestant Cj with index
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j > i. This means that the pair (i, j) is reverse with respect to σ but not with respect to σ′, and
this yields a reduction of 2i in the total weight. On the other hand, the move by Ci can create
new reverse pairs of the form (k, i) with k < i, but their total contribution is at most

20 + 21 + . . .+ 2i−1 = 2i − 1.

In conclusion, when passing from σ to σ′, at least one term 2i disappears from the computation
of the total weight, and the sum of all the new terms that might have been created is at most
2i − 1. This shows that W (σ′) ≤ W (σ)− 1.

We conclude by observing that the maximum possible value of W (σ) is realized when all pairs
are reverse, in which case

W (σ) =

n∑

i=1

(i− 1)2i = 2n − n− 1.

This proves that the number of moves is less than or equal to 2n − n− 1, and in particular it
is finite.

Alternative solution As in the previous solution, the fundamental observation is again that,
when a contestant Ci moves forward, necessarily she has to jump over at least one contestant Cj

with j > i.
Let us show now that the process ends after a finite number of moves. Let us assume that

this is not the case. Then at least one contestant moves infinitely many times. Let i0 be the
largest index such that Ci0 moves infinitely many times. Then necessarily Ci0 jumps infinitely
many times over some fixed Cj0 with j0 > i0. On the other hand, we know that Cj0 makes only
a finite number of moves, and therefore she can precede Ci0 in the line only a finite number of
times, which is absurd.

In order to estimate from above the maximal number of moves, we show that the contestant
Ci can make at most 2n−i − 1 moves. Indeed, let us argue by “backward extended induction”. To
begin with, we observe that the estimate is trivially true for Cn because she has no legal move.

Let us assume now that the estimate has been proved for Ci, Ci+1, . . . , Cn, and let us prove
it for Ci−1. When Ci−1 moves, at least one contestant Cj with j > i− 1 must precede her in the
line. The initial configuration can provide at most n − i contestants with larger index in front
of Ci−1, which means at most n − i moves for Ci−1. All other moves are possible only if some
contestant in the range Ci, Ci+1, . . . , Cn jumps over Ci−1 during her moves. As a consequence,
the total number of moves of Ci−1 is at most

n− i+

n∑

k=i

(2n−k − 1) = 2n−i+1 − 1.

Summing over all indices we obtain that

n∑

i=1

(2n−i − 1) = 2n − n− 1,

which gives an estimate for the total number of moves.
The same example of the first solution shows that this upper bound can actually be achieved.

Comment In every move of the example, the moving contestant jumps over exactly one con-
testant with larger index (and as a consequence over all contestants with smaller index).
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Problem 4 A domino is a 1× 2 or 2× 1 tile.
Let n ≥ 3 be an integer. Dominoes are placed on an n × n board in such a way that each

domino covers exactly two cells of the board, and dominoes do not overlap.
The value of a row or column is the number of dominoes that cover at least one cell of this

row or column. The configuration is called balanced if there exists some k ≥ 1 such that each row
and each column has a value of k.

Prove that a balanced configuration exists for every n ≥ 3, and find the minimum number of
dominoes needed in such a configuration.

(Merlijn Staps, The Netherlands)

Solution The minimal number of dominoes required in a balanced configuration is 2n/3 if n is
a multiple of 3, and 2n otherwise.

In order to show that this number is necessary, we count in two different ways the number
of elements of the set S of all pairs (ℓ, d), where ℓ is a row or a column of the board, and d is
a domino that covers at least one cell of that row or column. On the one hand, since each row
or column intersects the same number k of dominoes, the set S has 2nk elements. On the other
hand, since each domino intersects 3 rows/columns, the set S has 3D elements, where D is the
total number of dominoes on the board. This leads to the equality

2nk = 3D.

If n is a multiple of 3, from the trivial inequality k ≥ 1 we obtain that D ≥ 2n/3. If n is not
a multiple of 3, then k is a multiple of 3, which means that k ≥ 3 and hence D ≥ 2n.

Now we need to exhibit a balanced configuration with this number of dominoes. The following
diagram shows a balanced configuration with n = 3 and k = 1.

If n is any multiple of 3, we can obtain a balanced configuration with k = 1 by using n/3 of
these 3× 3 blocks along the principal diagonal of the board.

The following diagrams show balanced configurations with k = 3 and n ∈ {4, 5, 6, 7}.

Any n ≥ 8 can be written in the form 4A+ r where A is a positive integer and r ∈ {4, 5, 6, 7}.
Therefore, we can obtain a balanced configuration with n ≥ 8 and k = 3 by using one block with
size r × r, and A blocks with size 4 × 4 along the principal diagonal of the board. In particular,
this construction covers all the cases where n is not a multiple of 3.
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Problem 5 Let Γ be the circumcircle of triangle ABC. A circle Ω is tangent to the line segment
AB and is tangent to Γ at a point lying on the same side of the line AB as C. The angle bisector
of ∠BCA intersects Ω at two different points P and Q.

Prove that ∠ABP = ∠QBC.
(Dominika Regiec, Poland)

Solution 1 Let M be the midpoint of the arc AB that does not contain C, let V be the
intersection of Ω and Γ, and let U be the intersection of Ω and AB.

b
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b
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b
CC

b
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b
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b

b

VV

b
QQ

bPP
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The proof can be divided in two steps:

1. Proving that MP ·MQ = MB2.

It is well-known that V , U and M are collinear (indeed the homothety with center in V that
sends Ω to Γ sends U to the point of Γ where the tangent to Γ is parallel to AB, and this
point is M), and

MV ·MU = MA2 = MB2.

This follows from the similitude between the triangles △MAV and △MUA. Alternatively,
it is a consequence of the following well-known lemma: Given a circle Γ with a chord AB,
let M be the middle point of one of the two arcs AB. Take a line through M which intersects
Γ again at X and AB at Y . Then MX ·MY is independent of the choice of the line.

Computing the power of M with respect to Ω we obtain that

MP ·MQ = MU ·MV = MB2.

2. Conclude the proof given that MP ·MQ = MB2.

The relation MP · MQ = MB2 in turn implies that triangle △MBP is similar to trian-
gle △MQB, and in particular ∠MBP = ∠MQB. Keeping into account that ∠MCB =
∠MBA, we finally conclude that

∠QBC = ∠MQB − ∠MCB = ∠MBP − ∠MBA = ∠PBA,

as required.
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Solution 2 The second solution is in fact a different proof of the first part of Solution 1.
Let us consider the inversion with respect to circle with center M and radius MA = MB.

This inversion switches AB and Γ, and fixes the line passing through M,U, V . As a consequence,
it keeps Ω fixed, and therefore it switches P and Q. This is because they are the intersections
between the fixed line MC and Ω, and the only fixed point on the segment MC is its intersection
with the inversion circle (thus P and Q are switched). This implies that MP ·MQ = MB2.

Solution 3 This solution is instead a different proof of the second step of Solution 1.
Let I and J be the incenter and the C-excenter of △ABC respectively. It is well-known that

MA = MI = MJ , therefore the relation MP ·MQ = MA2 implies that (P,Q, I, J) = −1.
Now observe that ∠IBJ = 90◦, thus BI is the angle bisector of ∠PBQ as it is well-known

from the theory of harmonic pencils, and this leads easily to the conclusion.

Solution 4 Let D denote the intersection of AB and CM . Let us consider an inversion with
respect to B, and let us use primes to denote corresponding points in the transformed diagram,
with the gentlemen agreement that B′ = B.

b
A′A′

b B′B′

b
C ′C ′

M ′

b

b
Q′Q′

b
P ′P ′

b
D′D′

b

ω′

Ω′

Since inversion preserves angles, it turns out that

∠A′B′M ′ = ∠A′M ′B′ = ∠ACB,

and in particular triangle A′B′M ′ is isosceles with basis B′M ′.
The image of CM is the circumcircle of B′C ′M ′, which we denote by ω′. It follows that the

centers of both ω′ and the image Ω′ of Ω lie on the perpendicular bisector of B′M ′. Therefore,
the whole transformed diagram is symmetric with respect to the perpendicular bisector of B′M ′,
and in particular the arcs D′P ′ and Q′C ′ of ω′ are equal.

This is enough to conclude that ∠D′B′P ′ = ∠Q′B′C ′, which implies the conclusion.
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Problem 6

(a) Prove that for every real number t such that 0 < t < 1
2
there exists a positive integer n

with the following property: for every set S of n positive integers there exist two different
elements x and y of S, and a non-negative integer m (i.e. m ≥ 0), such that

|x−my| ≤ ty.

(b) Determine whether for every real number t such that 0 < t < 1
2
there exists an infinite set

S of positive integers such that
|x−my| > ty

for every pair of different elements x and y of S and every positive integer m (i.e. m > 0).

(Merlijn Staps, The Netherlands)

Solution

Part (a) Let n be any positive integer such that

(1 + t)n−1 ≥ 1

t
(Q6.1)

(this inequality is actually true for every large enough n due to Bernoulli’s inequality).
Let S be any set of n distinct positive integers, which we denote by

s1 < s2 < . . . < sn.

We distinguish two cases.

• If si+1 ≤ (1 + t)si for some i ∈ {1, . . . , n− 1}, then

|si+1 − si| = si+1 − si ≤ tsi,

and therefore the required inequality is satisfied with x = si+1, y = si, and m = 1.

• If si+1 > (1 + t)si for every i ∈ {1, . . . , n− 1}, then by induction we obtain that

sn > (1 + t)n−1s1.

As a consequence, from (Q6.1) it follows that

|s1| = s1 <
1

(1 + t)n−1
· sn ≤ tsn,

and therefore the required inequality is satisfied with x = s1, y = sn, and m = 0.
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Part (b) (Explicit formula) We claim that an infinite set with the required property exists.
To this end, we rewrite the required condition in the form

∣
∣
∣
∣

x

y
−m

∣
∣
∣
∣
> t.

This is equivalent to saying that the distance between the ratio x/y and the set of positive
integers is greater than t.

Now we construct an increasing sequence sn of odd coprime positive integers satisfying

1

2
− 1

2sn
> t ∀n ≥ 1, (Q6.2)

and such that for every j > i it turns out that

si
sj

<
1

2
and t <

{
sj
si

}

<
1

2
, (Q6.3)

where {α} denotes the fractional part of α. This is enough to show that the set S := {sn : n ≥ 1}
has the required property.

To this end, we consider the sequence defined recursively by

sn+1 =
(s1 · . . . · sn)2 + 1

2
,

with s1 large enough. An easy induction shows that this is an increasing sequence of odd positive
integers. For every i ∈ {1, . . . , n} it turns out that

si
sn+1

≤ 2

si
≤ 2

s1
<

1

2

because s1 is large enough, which proves the first relation in (Q6.3). Moreover, it turns out that

sn+1

si
=

(s1 · . . . · sn)2
2si

+
1

2si
.

The first term is a positive integer plus 1/2, from which it follows that the distance of sn+1/si
from the positive integers is greater than or equal to

1

2
− 1

2si
≥ 1

2
− 1

2s1
,

which is greater than t if s1 is large enough. This proves the second relation in (Q6.3).

Part (b) (Arithmetic approach) We produce an increasing sequence sn of odd and coprime
positive integers that satisfies (Q6.3) every j > i. As in the previous solution, this is enough to
conclude.

We argue by induction. To begin with, we choose s1 to be any odd integer satisfying the
inequality in (Q6.2). Let us assume now that s1, . . . , sn have already been chosen, and let us
choose sn+1 in such a way that

sn+1 ≡
si − 1

2
(mod si) ∀i ∈ {1, . . . , n}.
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We can solve this system because the previously chosen integers are odd and coprime. More-
over, any solution of this system is coprime with s1, . . . , sn. Indeed, for every 1 ≤ i ≤ n it turns
out that

sn+1 =
si − 1

2
+ kisi

for some positive integer ki. Therefore, any prime p that divides both sn+1 and si divides also
(2ki + 1)si − 2sn+1 = 1, which is absurd. Finally, we observe that we can assume that sn+1 is odd
and large enough. In this way we can guarantee that

si
sn+1

<
1

2
∀i ∈ {1, . . . , n},

which is the first requirement in (Q6.3), and

ki + t < ki +
1

2
− 1

2si
=

sn+1

si
< ki +

1

2
∀i ∈ {1, . . . , n},

which implies the second requirement in (Q6.3).

Part (b) (Algebraic approach) Again we produce an increasing sequence sn of positive integers
that satisfies (Q6.3) every j > i.

To this end, for every positive integer x, we define its security region

S(x) :=
⋃

n≥1

(
(n + t)x, (n+ 1

2
)x
)
.

The security region S(x) is a periodic countable union of intervals of length (1
2
− t)x, whose

left-hand or right-hand endpoints form an arithmetic sequence. It has the property that

t <
{y

x

}

<
1

2
∀y ∈ S(x).

Now we prove by induction that we can choose a sequence sn of positive integers satisfying
(Q6.3) and in addition the fact that every interval of the security region S(sn) contains at least
one interval of S(sn−1).

To begin with, we choose s1 large enough so that the length of the intervals of S(s1) is larger
than 1. This guarantees that any interval of S(s1) contains at least a positive integer. Now let
us choose a positive integer s2 ∈ S(s1) that is large enough. This guarantees that s1/s2 is small
enough, that the fractional part of s2/s1 is in (t, 1/2), and that every interval of the security region
S(s2) contains at least one interval of S(s1), and hence at least one positive integer.

Let us now assume that s1, . . . , sn have been already chosen with the required properties. We
know that every interval of S(sn) contains at least one interval of S(sn−1), which in turn contains
an interval in S(sn−2), and so on up to S(s1). As a consequence, we can choose a large enough
positive integer sn+1 that lies in S(sk) for every k ∈ {1, . . . , n}. Since sn+1 is large enough, we are
sure that

sk
sn+1

< t ∀k ∈ {1, . . . , n}.

Moreover, we are sure also that all the intervals of S(sn+1) are large enough, and therefore
they contain at least one interval of S(sn), which in turn contains at least one interval of S(sn−1),
and so on. Finally, the condition

t <

{
sn−1

sn

}

<
1

2

is guaranteed by the fact that sn+1 was chosen in an interval that is contained in S(sk) for every
k ∈ {1, . . . , n}. This completes the induction.
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