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Problem 1., We are given an n x n board. Rows are labeled with numbers 1 to n downwards and columns
are labeled with numbers 1 to » from left to right. On each field we write the number »? + y* where (z, y) are
its coordinates, We are given a figure and can initially place it on any field. In every siep we can move the
figure from one field to another if the other field has not already been visited and if at least one of the following
conditions is satisfied:

e the nmmbers in those 2 fields give the same remainders when divided by n,
o those fields are point reflected with respect to the center of the hoard.
Can all the fields be visited in case:
a) n=4d,
b) n =357
(Josip Pupic)
Problem 2. Let mn, n,p be lixed positive real numbers which satisfy mnp = 8. Depending on these constants,

find the minimum of
a = :
r +y 224 mxy & nrz + pyz,

where x.y. = are arbitrary positive real numbers satisfying ryz = 8. When is the equality attained?
Solve the problem for:

a) m=n=p=2

b) arbitrary (but fixed) positive real numnbers m, n, p.

{Stin Cambie)

Problem 3. Let d(n) denote the number of positive divisors of n. For positive integer n we define f(n) as
fln) =d(ky) + dlka) 4 ...+ dlky, ).

where | = ky < by < -+ < ky,, = n are all divisors of the number n, We call an integer n > 1 almost perfect if
Sf({n) = n. Find all almost perfect numbers.

(Paulius ASvydis)

Problem 4. Let ABC be an acute angled triangle. Let B, A" be points on the perpendicular bisectors of
AC, BC respectively such that B°A L AB and A'B L AB. Let P be a point on the segamemt AB and O
the circumcenter of the triangle ABC'. Let [), E' be poiuts on BC. AC respectively such that DFP L BO and
EP 1L AO. Let O be the circumecenter of the triangle CDFE. Prove that B, A" and O are collinear.

(Steve Dinh)

Time allowed: 240 minutes.
Each problem is worth 10 points.

Caleulators are nol allowed.
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Problems and Solutions

Problem 1. We are given an n x n board. Rows are labeled with numbers 1 to n downwards and columns are
labeled with numbers 1 to » from left to right. On each field of the board we write the number 22 + 3? where
(@, y) are its coordinates. We are given a figure and can initially place it on any field. In every step we can
move the figure from one field to another if the other field has not already been visited and if at least one of
the following conditions is satisfied:

e the numbers in those 2 fields give the same remainders when divided by n,

e those fields are point reflected with respect to the center of the board.
Can all the fields be visited in case:

a) n=4,

b) n =57

(Josip Pupic)

Solution.  a) The answer is NO
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On the left we have the board from the |urn|»l'~m. an the right we have the same bhoard, but with remainders of the
viiues from the board mstead of the values themselves

We will denote field ¢ for o field with number ¢ written on it in the right, table. Let's assume that we can visit all
of the fields. That means that at same point we wiall visit a field 1. Obviowsly, when using the fisst tvpe of move,
we can visit any other field | which hasn't yet been visited, Alzo. it ¢asy to notice. that for field 1. the rellection
of that field is also o field 1. That mweans that hoth types of moves lead to another field 1. Also. in same lfashion
we conclude that for the each step, if the figure is on the field 1, then i the step after (M that wasn't the last one)
and in the step before (if that wasn't the first one) ghould be field |

Now we conclude that the first visited field 1| must be the field visited in the fist step. Same way we conclude
that the last visited field | must be the field visited in the last step, But, we know that all of fields | are visited
consecutively, in exactly 8 moves (becanse there are 8 fields 1), while there are exactly 186 moves that we have to
make. This leads to contradiction

b) The answer is YES
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Apain, on the left we have the board from the problem. on the right we have the same board, bat with remainders
of the values from the board mstead of the values themselves

We can move from any lield to another with the same number written on the field in the right table by using the
second move

One idea to visit all the fields is the following



e Find the 4 pairs of the fields of types field 1 and field j. such that all 8 felds are different, in eacli pair ¢ # §,
those two feld in one pair are symmetne, and the second member of the n-th pair has the same value on the
right board as the first member of the (n  1)-th pair. Also, we want that all the values of the right table are
mentioned through members of those pairs, For example:

((2,2),(4,4)), ((1.4).(5.2)), ((3,5).(3.1)), ({2.1),(4.5))

e Now, the algorithm is: after second member of n-th pair and before the first member of the (o 1)-th pair
visit all fields hy using the first step. OF course, hefore first pair and after fourth pair move in similar way,
Jump from the first member of the pair to the second member of the pair by using second step.

This is ome of the ways to do it: We start with the field (3,3). Then we visit all of the fields 3, using the first move,
in any way ns long as the last visited fiold i (2, 2). Then. using the second move, we visit the field (4,4). Again,
using the first move we visit all fields 2 in any way as long as the last visited field is (1,4). Using the secomd move
we visit the field (5.2). Then, using the first move we visit all fields 4 i any way as long as the last visited field s
{3.5). In =ame fashion, using the second move we visit the field (3, 1). After visiting all ficlds 0 in any way as long
as the last visited field is (2,1), we visit the field (4,5) using the second move. We conelude by visiting all fields |
in oany way.



Problem 2. Let m. n,p be fixed positive real numbers which satisfy mnp = 8. Depending on these constants,
find the minimum of

22 g+ 2% may + naz 4 pyz,
where x, y, 2 are arbitrary positive real numbers satisfying ryz = 8. When is the equality attained?
Solve the problem for:
a) m=n=p=2,
b) arbitrary (but fixed) positive real m.n, p.

{Stiyn Cambie)
First Solution. a) Use AM-GM und ry: = 8 to get
a4 y'z b2 ‘g ey +uz+oys e o = 0700029 = 36,

We have equality for e —y = = = 2.

L) Using ry=z = 8, we can translorm the given expression:
sp A 2 . Sm
e’ + ug + 2! + mry  wes o puz = P —:— + y’ 1 —!;— Tl Bl

-

Sinee all numbers are positive reals, we can apply AM-GM inequality to get:
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When we apply the same procedure for oy, = and sum the inequalities, we get:

is " ’ : 5p ; 3 ; mimn A M ;
gl | y" f2? ey | ez | pyz = { -;I- t y" | 7 R — ‘i\:/?( Vin? § \”’H_‘l v’ ).

In order to get equality, we must have equality in all above inequalities and that happens for
*r = V4p,
¥ = Vin.

3
2= Vdm,

BV + Un® + V7).

Desired mimimum is therefore

Secomd Solution. We only present solution for &) part here, marking scheme for a) part is the same as in first solution.
We use weighted AM-GM:
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! o N3 om—
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2 2 2

= (V4 V4 ) {f (BE) = Vi o Y ) - VA = 6 (Ve 4 4 V)

We have shown that the minimum value the expression can take is 62 ( vm: 4 vn® 4 \’,/;5 ) . Equality can only he
achieved when ¢ = {Ap,y = Vin, z = Vim.



Problem 3. Let d(n) denote the number of positive divisors of n. For positive integer n we define f{n) as
J(n) = d(ky) +dkz) + ... + d(km),

where 1 = ky < ky < -+ < k,,, = n are all divisors of the number n, We call an integer n > 1 almost perfect if
Sf(n) = n. Find all almost perfect numbers,

(Paulius Advydis)

First Solution. Alternative way to define f{n) is

fin) = Z d(k).

Hin k1

r
Let o = p' pg? - i be the prime factorisation of n. We have din) = H(“t +1).
i=1
We prove the function f is multiplicative, in particular. given coprime n.m we have f(nm) = fin) f{m).
Using e, moare coprime for the second inequality and the fact that function d is multiplicative we get;

flam) = 3 dk) = Y dkka) = 3 diki)d(ka) = (): d(k‘)) (Z d(m) = f(n)f(m)

Elnm by kg m Eylakyim Ayln Wyln

oy
If r = 1 we have n = pi'. We note that divisors of n are 1, py,pi, - .p}' 50 f(n) = z:(' +1)= (‘“—+l)-("'—+22
=0

2
Combining this with the multiplicativity result for f we deduce f(n) = H @'—“-M
11 -
We now prove that for primes p 2 5 and p— 3 provided @ > 4 we have f(p®) = MJ}"—T—J-' < ﬁp by induction on a. As

a basis 3 < 3 for p =5 and 6 < 547, For the step it is enough to notice that 25 < 2 < p in both cases,

Similarly we can prove for p= 2 that f(p®) < p* provided o > 4, By explicitly checking the remaining cases p — 2 and
a=1,23mmdp=3a=1,2we crmclmlc- Jip™) < %p" for all pa and f(p*) <p" forall p > 3 and p— 2.0 > 4.

Assuming f(n) = o we would have II ! (’l = 1 50 the above considerations imply that only possible prime divisors

2.8, 1k = 1 the only possible wululiuu sn=3 Hk=2wehavep; =2 py =3mand 1 <oy <2and | <ay <2
vnhuh give 4 cases to check giving the other 2 solutions n — 18, 36.

So, all almost perfect munbers are 3, 18,36,

Second Solution. We hereby present one similar bt different solution which dees not wse a lot of properties of the
function f.

Firstly, wo will prove the following lermma;

Lemma: For any positive integer » > | and prime p we have

J(pn) < 3f(n).

The equality holds if and only if GO D{(p.n) = L. Proof: For every integer m we have that the set of divisors of the
number pot is the union of the following two sets;
o set of divisors of m,

e set of divisors of m multiplied by p.

Algo, those two mentioned sets are disjoint if and only if GCD(pom) = 1 (i we have that p,m are disjoint, then it is
obvious that none of the divisors of ppe are in both sets; if they are not coprime, then the munber p belongs to both
sots),

This is why we have d{pm) < 2d{m) and

fpm) =" d(k) < Y d(k) + D dpk) < f(n) + Y _ 2d(k) = 3f(n).

ki kin bin kin

In both inequalities equality holds if and only if sets from before are disjoint, i.e. when GCD(pn) — 1.

Also, we simply see that f(2) =d(1) +d(2) + ...+ d(2*) =14 24 ... 4 (k1) = SELEEE



Notice that if for some positive integer n we have f(n) < n, then for every p = 3 we have f(pn) < 3f(n) < pf(n) < pn.
Consequently, if f{n) < n, then for every odd m we have f(mn) < mn, Because of this, we will introduce new terms.
Number n is nice multiple of m if i | n and 2 is odd number. Analogously, we define nice divasor, Our statement from
above is: if for some 1 we have f(n) < n, then neither of it2 nice multiples is almast perfect number, Our strategy will be
the following: check the cases of the "small™ numbers and see ratio of mumbers noand fin). When we have that » > f(n),
conclude that there are not almost perfect numbers among their nice multiples. With formula for f(2%) conclude that
for sufficiently big & (when f(2%) < 2%) this is enough to conclude that there are no more almost perfect numbers. By
induction, it is simple to prove that f{2*) < 2* for k > 4. Thus, there are no almost perfect numbers of the form 2* - m,
where & > 4 and m is odd, since they all have 2" as their nice divisar, We only have 1o check the niombers of the form
2% . m, where where k < 3 and m is odd.

First case: k =1

For any odd prime p we have f{p) = d{1) + d(p) = 3 < p. From that we see that o = 3 is solution. Moreover, we do not
have any more solutions: if some odd number has a prime divisor different from 3, since f(p) < p this mumber can not
be almost perfect number: it is o power of 3 bigger than 3, sinee f(9) < 3/(3) = 0, there are no more solutions as well
(9 is nice divisor of every power of 3 bigger that 3).

Second case: k=1

For any aodd prime we have f(2p) = 3/(2) = @ If p > 5 then we have 2p > f(2p). so for all almast perfect numbers of
the form 2" < number m has to have prime divisors 3 and )/ or 5.

We directly see that neither 6 or 10 is almost perfect. So, in this case, almost perfect number hag to have a nice divisor
of the form 2.9, 2-15 or 2- 25, For n = 18 we have another solution, i other two cases we have inequality f(n) < n. If
we want to seek new solution in this case, since they cannot be nice multiples of 30 and 50, the only possibility s that
almost perfect number has nice divisor 227, But we have (equality cose in letnma) that f(2-27) < 3f(2.09) = 2.27.
S0, there are no more solutions m this case.

Third case; k=2

For any odd prime we have f(dp) = 37(1) = 18 I p > 5§ then we have d4p > [(4p), 50 for all almest perfect numbers of
the form 2' - m number m has to have prime divisors 3 and or 5,

We directly see that neither 12 or 20 s almost perfect, So, in this csse, almost perfect number has to hiave a nice divisor
of the form 4.9, 4- 15 ar 425, For = 36 we have another solution, in other two cases we have inequality f{n) < n. If
wir want Lo seek pow solution in this case, since they cannot be nice multiples of 60 and 100, the only possibility is that
almost perfect muonber has nice divisor 4227, But we have (equality case in lemma) that f(4.27) < 3f(4.0) = 4. 27,
5o, there are no more solutions in this case,

Fourth case; k=3

For any odd prime we have f(8p) = 3f(8) = 30, Similarly to other cases, we only observe candidates of the form 8- 3'.
Number 8- 3 is not almast perfect, all other candidates have nice divisor 8. 9. But, we have f(72) = 60 < 72, As we
always concluded, we do not have any new solutions.

So, all almost perfect numbers are 3, 18, 36.



Problem 4. Let ABC be an acute angled triangle. Let B'. A’ be points on the perpendicular bisectors of
AC, BC respectively such that B'A L AB and A'B L AB. Let P be a point on the segment AB and O
the cirenmeenter of the triangle ABC. Let D, [ be points on BC, AC' respectively such that DP L BO and
EP 1 AO. Let O be the cireumeenter of the triangle CDE. Prove that B', A" and O’ are collinear.

(Steve Dink)

Solution. Remark We first start by giving some intuition on how the problem can be approached. We won't go into
detail here but do give partial marks for correct ideas. We bolieve that any essentinlly correct solution should have them
in the background so wo dan’t require them to be written down explicitly.

We notice that if = A then O' = B while if P= B we have O' = A’ So the problem is equivalent to showing that as
P varies on the segment AB respective OF map to a segment and we are now interested in identifying this segment.

It is hence natural to draw a picture not containing anything dependent on P and try to identify the line A'B’. Which
turns ont to be perpendicnlar to C'AM where M s the midpoint of Af,

Furthermore we note that B'M? — B'C? = AM? = A'M? — A'C* and this defines the line uniquely (and shows
A'B LCM),

The following sketeh represents the problem setting when we do include the elements depending on /.

i ey e
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We now stort with the formal proof.

It is encngh to show that O'M? — O'¢? = AM? for all P, including 1* = A, B. Which allows us to draw the following
sketch omitting B', ¢,

We first prove that O'EPD is a cyclic quadrilateral, This follows as EQ'D = 2ACEB = APE | BPI) = 7 — EPD as
ACB = APE = BPD. This in turn implies /707 is an angle bisector of the angle £P0D and PO" L AB.

We naw have all the ingredients to shaw O'M? — O'C? = AM?, The following sketch illustrates the last part of the
proof.

L3
-3 -

We introduce the paint D' as the second intersection of the line PE and the crcumcircle of CDE so that O' P —0'¢? =
PE.-PD.

Now as PO is the angle bisector of EPD we have PD = PD' by the extended § — § — K congruency theorem and
the following observation. There is some care needed here, maaimly the options we get by S = 8 — K are D~ PD' or



P = PE bauif PD = PE wangles 12 EO" and P'DO’ are congruent by S — 8 — 8 congruency theorem so in particular
ECQ'P = DO'P = CAB while EPO' = DPO' = £ —~ CAB so P and PE are tangents so in fact ' = E so the above
claim is still troe.

Now noticing triangles APE and BPD are similar we get £5 = £ mplying AP - BP = PE- PD = PE . PD/

As PO' L AB by using pythagoras theorem we got O'M? = O'C? = AM* = O'P? = O'C* 4 PM* = AM® = PD' . PE -
AP -BP = . Where wo used O'P* — 0'C** = PE- PD' by the power of the point P to the circumeirele of CDE and
AM? = PM? = (BM  PM)(AM = PM) = AP- PB.

This completes the proof. W
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Problem 1. A = {a,b,¢} is a set containing three positive integers. Prove that we can find a set B C A,
B = {x,y} such that for all odd positive integers m, n we have

WI P l}" — " um
{ Tomi Dimovski)

Problem 2. Let a. b, ¢ be positive real numbers such that abe = 1. Prove that

u{b{r‘}:l_) 1 ’ 1 | |
: | “a+b ' bte e+a

{Dimitar Trenevski)

Problem 3. Circles &y and ko intersect in points A and B, such that Ay passes through the center O of the
circle ks, The line p intersects &y in points K and O and &, in points L and M, such that the point L is between
K and O. The point P is orthogonal projection of the point L to the line AB. Prove that the line KP is
parallel to the M-median of the triangle ABM. {Matko Ljulj)

Problem 4. A group of mathematicians is attending a conference. We say that a mathematician is k-content
if he is in a room with at least & people he admires or if he is admired by at least & other people in the room.
It is known that when all participants are in a same room then they are all at least 3& + 1-content. Prove that
you can assign everyone into one of 2 rooms in a way that everyone is at least k-content in his room and neither
room is empty. Admiration is nol necessarily mulual and no one admires himself.

{Matija Bucié)

Time allowed: 240 minules.
Each problem is worth 10 poinls.

Caleulators are not allowed.
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Problems and Solutions

Problem 1. A = {a,b.c} is a set containing three positive integers. Prove that we can find a set B C A,
B = {x,y} such that for all odd positive integers m, n we have

n_.om

l”l-l'"l!/“ T

{ Tomt Dimnovski)

Solution. Lot flr. u r'y "y ifn 1, the problem statement will be fulfilied no matter how we choose I3 s
[rom now on. without loss of generality, we consider n > m. Since mr and 2 are hoth odd, we have that 1 m s even

el wir et

whiers ! 7] 7] byt I { - a
w ifone of r.y s even, e, u) is even, I both are odd, then [flr, y) 15 again even sinee ¢ 4 v and @ — y are even in

Lhiet, case, This shows that we only need Lo consider divisibility by 5. 1T A contains at least one element divisible by

wit can put it in 3 and that will give us the solution easily, Now we congider the case when none of the elements in A 1§
divisible by 5. Il same two numbers in A give Lhe same remainder modulo 5. we can chooso them and then e —» will
divisible by 5 which solves the problem. Now we congider the case when all remainders modulo 5 in A are different. Take
v ook at the pairs (1,4) and (2, 4), Since we have three different remainders modulo 5 in A, by pigeonhaole principle one
of these pairs has to be completely in A (when elements are congidered modulo 5). Then if we pick the numbers from A
that correspond to those two remainders we get that e 4 g is divisible by 5 so the problem statement is fulfilled again

his completes the prool



Problem 2. Let a, b, ¢ be positive real numbers such that abe = 1. Prove that

at+b+e+3 1 1 1

4 ?a+b+b+c+c+a'

( Dimitar Trenevski)

First Solution. Rewrite the left hand side of inequality in following way:

a+b|v+3fn+bt0r3T u}l*_b|l+ el
4 AV abe dvabe  dvabe  dVabe

Rewrite denominators;
a+1 b1 c+ 1 a+1 b1 4 e+ 1
dabe Avabe  dvabe 2vVab-c+2vVac b 2Vhe-a+ 2Vab-c  2Vac-b+2vVbe-a

and then by artithmetie mean - geometric mean inequality. we have

B a+ 1 bl el - @il + bl + el
2Wab.c42Vac- b 2Vbc-a 4 2Vab-¢  2Vac b4 2vbc-a abtctactb betntabie actbibetra

This problem is now solved, becanse

a+1 bl ot 1 B a+ 1 b+ 1 n e+l N
ab+etactb  betatabte actbtbeta f(a+)b+e) B+ 1)e+e) ' (e+1){atb)
e &

T at+h bte cta

Second Solution. We introduce change of varinbless @ = =%, b = 3*, ¢ = 2% We now have the condition 2y = 1.
We apply Schur inequality (with exponent ¢ = 1) to the munerator of the left hand side:

o+ 1/’ 42 drysr = r2y+ 22 y’r + ygz +2°r 4 :;’y.

to obtam mequality
Py4alz vyt 42% 0 1 |
1 e i s R e
We apply arithmetic mean - geometric mean inequality for the denaminators of the right hand side:

84 8~ o 8/9,3/8 S ! _ Yo =
Ay 2 = P TS TE T R VI,

and similarly to the other terms. We now have to prove

3 4 2 2 3 3
FytErz+yrtyz+e+s o 3 g
v L 5 v y = ra\/y: + yg vz + :"‘/ry.

We apply arithmetic mean - geometric mean inequality in pairs on the left hand side:

e | P N
—"2—- > 72 /0%,
y’.r+ !: 2
T" >y V/E,
2 2

Se+3TY .y
-—2——- = 2% /ry.

Summing up inequalities from above finishes the prool.



Problem 3. Circles k) and ks intersect in points A and B, such that k; passes through the center O of the
cirele k2. The line p intersects &y in points K and O and &y in points L and M. such that the point L is between
K and O. The point P is orthogonal projection of the point L to the line AB. Prove that the line KP is
parallel to the M-median of the triangle ABM.

{Matko Ljulj)

Solution. Let the point ¢ be the midpont of the line segment AF. We have to prove MC' || KP.

Let us introdice angle o - = _ BA A, Notice that

BLA=180— BMA = 180 - %,,mu = 180 — %(l.%— CBEKA) =00+ %u.

Algo, notice that the point O is midpoint of the arc AB. Thus the line KO is bissctor of the angle ~BR A, From the
two claims abave, we deduce that L is incenter of the triangle ABK. Moreover, notice that ML is diameter of the cirele
Kz, thus =~ ABM = M. Sinee BL i angle bisector of the angle - ABK, we deduce that BAL is exterior angle bisector
of the same angle, Thus, since M lies on angle bl sector KM and exterior angle bisector BM, M s the center of the
excircle for the triangle ABK, Thus, we have to prove that the line passing through the mmcenter L of the triangle ABK
and point of the tangency of incirele of the same triangle is parallel to the line passing through the center of the excircle
M and the midpoint €' of the line segment AB. This is a well known lemima, which completes the proof



Problem 4. A group of mathematicians is attending a conference. We say that a mathematician is k-content
if he is in the room with at least & people he admires or if he is admired by at least & other people in the room.
It is known that when all participants are in the same room then they are all at least 3k | I-content. Prove
that you can assign everyone into one of the 2 rooms in a way that everyone is at least k-content in his room
and neither room is empty. Admiration is not necessarily mutual and no one admires himself,

(Matija Bucié)

Solution. We will for simplicity and clarity of presentation use some basic graph theoretic terms, this is i no way
e=sentinl

Wi represent the situation by a directed graph (abbr. digraph) GV, E) where each vertex v € V() represents a
mathematician and each edge ¢ € F(G) represents an admiration relation. Given v € V({) we define out-degree of ©
denoted o{v) as the number of edges starting in ¢ (5o the number of mathematicians v admires) and in-degree o{v) o
(e mumber of edges ending i v (50 the number of mathamaticians wha admire v), Given X V7 by G(X) we denote
the induced gubgraph (a graph with vertex sot X and edges inherited from ), We say that a digraph is o k-digraph if
lor every v € V() we have i(v) > k or o{v) > k.

So the question can be reformulated as: Given G is w38 - Ldigraph we can split its vertices into 2 vertex disjoint classes
such that each induced subgraph on class is a & digraph.

We call a subset X of vertices of 7 k-tight if for any Y € X we have o vertex v € Y such that 150 (e) < & and
gy (v) < ko A partition of V', (A4, A2) Is feasible if Ay s k-tight and Ay = k-tight.

We first asswme there are no feasible partitions,

In this case consider a minimal size subset Ay C V() subject to G{A;) being a A-digraph, we define A, = V(@) - Ay
Given a subset X C Ay, GLY) 8 not a k-digraph so there is a vertex v € X such that og vy (2) < k and 15.x5(v) < &
which shows that any proper subset of Ay satisfies the condition of A-tightness. For the case of X = Ay by removing
any vertex v £ Ay the graph " = G(A — [v]), by minimality assumption on Ay, must contain a vertex w such that
o (w) < k and i (w) < k 5o as there s only one extra vertex in G(Ay), namely v ogoq{w) < k& igoa(w) <k In
particular this shows Ay is k-tight.

This implies Ay is not k-tight by our assumption so there exists an AL C Ay such that A% is o &+ | digraph. Now
applying the following proposition to extend the pair (4, A%) to a full partition which satisfies the conditions of the
problenm.

Given disjoint subsets A, B € V(@) we say (A1) is n solution pair if both G(A) and G{3) are k-digraphs.
Proposition: ITa 2k 41 digraph & admits & solution pair it adimits & partition with both mduced graphs of hoth classes
being k-digraphs.

Proof. Take o maximal solution pair (A, B), the condition in the lemma guarantesing it exists. Let O = V(@)= (AUR),
il C' 38 crmpty we are done so assume | > 0. By our assumption (A, B U ) is not a solution pair s0 there is some
w & ' such that o pooy(x) i pooylz) < ksoas G is 2k 1 1 digraph te(x) = 2k 4 1 or oc{x) 2 2k ¢ 1 so either
ogiaotan(e) > k4 L or agraoanle) > k4 1 so in particular (AU {r}, B) i a solution pair contradicting maximality
and completing our argument. ®

Henee wee are left with the case in which we have at least one feasible partition. We pick the feasible partition (A, B)
maximizing w(A, B) = |[F(G(A)| + [F(G(B))]. The fact that A is A-tight implies there is an = with oga,(2) < k,
taiaylr) € K 2o r needs to have at least k- 1 edges inor out of B 80 |[B] = & 4 1 and by symmetry [A] > & L

We now prove that there exist an X € A such that G(X) is & &-digraph, by contradiction. Assuming the opposite we
notice that for any v € B, B — {r} is still k-tight while 2 being A-tight implies there is an e € B such that g () < k,
icom () < kso for this v we have AU |x} is also k-tight, Hemes, for A" = AU [z} and B = B— [r}, (A", B’) is a feasible
partition. We considering the change in edges which moving o causes we have w{A', BY)—w(A, B) Z 3kt 1 =k=h=k = 1|
as we know 1a(x) > 3+ 1 or oc(r) 2 3k + 1 so moving ® from B to A increases number of odges in A by at least
Ak + 1 — & while the chioice of = in B means we lose at most & + & edges in B, This is a contradiction to maximality of
(A, 8B).

Analogously we can find ¥ C B with G(Y) a k-digraph. Now applying the above propasition yet again we are done. W
Remark: The same argument with slightly modified weight function can be used to show the result for non symmetric
rooms, in particnlar if the geaph is o & 1+ max{(k ) + | digeaph it can be partitioned into &= digraph and ! digraph
parts.



