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 Foreword 
 
 This year in the Macedonia competitions of all levels in primary/secondary and high-school 
were held: school, regional, state and Olympiads.  
 After rigorous selection processes the BMO and JBMO teams were formed. The latter 
Olympiads took place in a pleasant atmosphere in the Republic of Bulgaria and the Macedonia, 
respectively. 
 After the IMO team selection test, the team to the IMO 2014 was formed. This year the IMO 
is taking place in Cape Town, the SAU.  
 The content of this book consists of the mathematical competitions that already took place 
in Macedonia and the Balkan region, as well as the solutions. 
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3rd EUROPEAN MATHEMATICAL CUP, 
December 6 - 14 2014 

    Junior Category 
 

 
 
 

Problems and solutions 
 

Problem 1. Which of the following claims are true, and which of them are false? If 
a fact is true you should prove it, if it isn't, find a counterexample. 

a) Let , ,a b c  be real numbers such that 2013 2013 2013 0a b c   . Then 2014 2014 2014 0a b c   . 

b) Let , ,a b c  be real numbers such that 2014 2014 2014 0a b c   . Then 2015 2015 2015 0a b c   . 

c) Let , ,a b c  be real numbers such that 2013 2013 2013 0a b c    and 2015 2015 2015 0a b c   . 

Then 2014 2014 2014 0a b c   . 
  Solution: Fiorstly, we know that for every real number x , 2 0x    holds.  

 The key idea in this problem is to that the expression 2014 2014 2014a b c   is sum of squares (which are 

nonnegative numbers). Thus 2014 2014 2014 0a b c      0a b c   .  

 a) No: It is sufficient to find three real numbers whose sum equals 0 , and then take their 2013th  roots. 

For example 20131a  , 2013 2b , 2013 3c  .  

 b)YES: From the key idea we conclude 0a b c    and then we conclude 2015 2015 2015 0 0 0 0a b c       

 c) NO: Again we have to find a counterexample, for instance 1, 0, 1a b c   .  
 

Problem 2. In each vertex of a regular n -gon 1 2, ... nA A A  there is a unique pawn. In 

each step it is allowed: 
1. to move all pawns one step in the clockwise direction or 
2. to swap the pawns at vertices 1A  and 2A . 

Prove that by a finite series of such steps it is possible to swap the pawns at vertices: 
a) iA  and 1iA  for any 1 i n   while leaving all other pawns in their initial place 

b) iA  and jA for any 1 i j n    leaving all other pawns in their initial place. 

 Solution.  We denote a pawn that was initially at point iA  as i . We will prove that a) and then use it 

to show part b).  

 a) We apply first operation 1i  times which will bring i  and 1i  as they are at points 1A  and 2A  

and move every other pawn 1i  steps in clokwise direction.  

 We can now apply second operation to swap i  and 1i  as they are at points 1A  and 2A . This does 

not affect the position of any other pawn.  

 We now apply first operation 1n i   times returning pawn , 1k i i   to point kA  while moving 

pawn i  to 1iA  and pawn 1i  to iA  which is exactly what we wanted.  

 b) We present 2 possible solutions, one using induction and one not using induction.  
 Solution not using induction 
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 By using the previous problem we can swap pawns ( , 1)i i  as they are at points 1( , )i iA A  then 

( , 2)i i  as they are at points 1 2( , )i iA A   and carry on until we swap ( , )i j  as they were at points 

1( , )j jA A . This brings us to the state where i  is at jA  and each 1i k j    is at point 1kA  .  

 We can now apply part a  to swap j  with 1j  and siilarly carry on till we swap j  with 1i . This 

will place j  at iA  and move each 1 1i k j     to kA .  

 This brings us to the state we swapped pawns i  and j  leaving others where they were just as was 

desired.◊ 

 Solution  using induction 
 We use induction on n  for the following claim: 

 We can swap any two pawns 1 i j k   .  

 We note that the basis is exactly part a .  

 We assume we the calim holds for some k .  

 Hence we can swap any pawns 1 i j k    and only need to show that we can swap i  and 1k   for 

any 1 i k  . This follows as we can swap i  and k  then k  and 1k   by part a). Then again 1k   and i  

as they are now on points kA  and iA .  
 

Problem 3. Let ABC  be a triangle. The external and internal angle bisectors of 
CAB  intersect side BC  at D  and E , respectively. Let F  be a point on the segment BC

. The circumcircle of triangle ADF  intersects AB  and AC  at I  and J , respectively. 
Let N  be the mid-point of IJ  and H  the foot of E  on DN . Prove that E  is the incenter 
of triangle AHF . 
 Solution .  Denote by   the circumcircle of AHF .  
 The key idea in the problem is to introduce a new point X  which we define as the second intersection 

of DN  and  . We now note that the 90
2

JAD CAD      where CAB . As AD  is an external 

bisector of CAB .  

 The   signs depend on the picture and student shouldn’t be deducated any points for not noticing 
this. 

 Hence we have either JAD BAD   or 180JAD IAD     so in both cases DI DJ .  

 Now as N  is midpoint of IJ  this means that DN  is bisector of IJ  and hence passes through the 

centre of the. This shows that DX  is a diameter of   and ||EH IJ .  

 We also notice that 90EAD    as angle between bisectors and 90XAD    as DX  is a diameter. 

Hence , ,X A E  are collinear.  

 Now this gives us 90DHE XHE     and 90XFE DFE     as DX  is a diameter of   and 

finally again 90EAD   . All this  gives us that quadrilaterals XFEH  and ADEH  are cyclic.  

 Final step is to use some angle chasing to get AHE ADH AXF EXF EHF      where first, 
second and fourth equalities are due to cyclicity of ADEH , ADXF  and XFEH  respectively. Also 

DFH EFH EXH AFD AFE      where the second and fourth  equalities are due to cyclicity of 
XFEH  and ADXF . This shows E  is the incenter of AFH  as desired.  

 

Problem 4. Find all infinite sequences 1 2 3, , ,...a a a  of positive integers such that 
a) nm n ma a a ,  for all positive integers ,n m , and 

b) there are infinitely many positive integers n  such that    1 21,2,..., , ,..., nn a a a . 

 Solution.  Instead of sequence na , we’ll use notation with the function ( )f n  with same properties.  
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 There exists only one such function: ( )f n n . We’ll solve the problem with many separate facts.  

 Fact 1: (1) 1f   

 Proof. According to a) it holds 2(1) (1) (1) (1)f f f f  . Since (1)f  is positive integer, it can’t be 

(1) 0f  , so it must be (1) 1f  .  

 Fact 2: Function f  is bijective.  

 Proof. Firstly, we’ll show that f  is injective. Let a b be two arbitrary positive integers and let’s 

assume ( ) ( )f a f b . Since {1, 2,..., } { (1), (2),..., ( )}n f f f n  holds for infinitely any positive integers n , it 

holds for some integer grether than a  and b . Then, since ( ) ( )f a f b , set  { (1), (2),..., ( )}f f f n  contains 

1n  or less (different) elements, but according to b), it contains n  elements.  

 Secondly, we’ll show that f  is surjective. Let c  be arbitrary integer and let’s assume that ( )f n c  

for all positive integers n . Similarly as in first part of proof, let’s take positive integer n  such that 

{1, 2,..., } { (1), (2),..., ( )}n f f f n  holds. Since {1, 2,..., }c n , c  is also element of the set { (1), (2),..., ( )}f f f n  

holds. Since {1, 2,..., }c n , c  is also element of the set { (1), (2),..., ( )}f f f n , so there exists positive integer 

m n  such that ( )f m c .   

 Fact 3: Positive integer n  is prime if and only if ( )f n  is prime.  

 Proof. Let’s assume that n  is prime, but ( )f n  isn’t. Then it must be ( ) ' ' ( ) ( ) ( )f n a b f a f b f ab   , 

where ', 'a b  are positive integers greather 1, and ,a b  are unique positive integers such that ( ) 'f a a , 

( ) 'f b b (they exist since f  is bijective). Since f  is injective, (1) 1f   and ', 'a b  are not equal to 1 , 

integers ,a b  are also not equal to 1 . Since f  is injective and ( ) ( )f n f ab , we have n ab , so n  is 

complete.  
 Let’s assume that ( )f n  is prime, but n  isn’t. Then there exist positive integers ,a b  greather than one 

such that n ab . From there we have ( ) ( ) ( ) ( )f n f ab f a f b  . Again from injective of f  and (1) 1f  , 

we see that ( )f n  is product of two integers grether than 1 .  

 Fact 4: If 1 2
1 2 ... k

kn p p p    is unique factorization of positive integer n , then  

  1 2
1 2( ) ( ) ( ) ... ( ) k

kf n f p f p f p    

is unique factorization of positive integer ( )f n . 

 Proof. From multiple use of the condition a) we get identity 1 2
1 2( ) ( ) ( ) ... ( ) k

kf n f p f p f p   . From 

fact 3, numbers ( )if p  are prime. Since f  is injective, none of two numbers ( )if p  and ( )jf p  are equal.  

 Fact 5: (Technical result) For all positive integers y x  there exist positive integer n  such that for 

all positive integers n n   holds inequality  

  1n ny x  .  

 Proof. It is sufficient to prove the fact only for consecutive integers y  and 1y (because we’ll have 

1 ( 1)n ny y x    . By binomial theorem we have  

  1 1( 1) ( )n n n ny y ny y y n      .  

Thus if we define 2 1n y y   , then for all n n   we have  

  1 1 1 2 1( 1) ( ) ( ) ( 1)n n n n ny y y n y y n y y y           .  

 Another proof. Inequality is equivalent to  

  
n

y
y

x

    
.  
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 The fact follows from the fact that the expression on the left hand side is increasing and it is 
unbounded, while the right hand side is fixed.  
 Fact 6:  For all prime numbers p  we have ( )f p p .  

 Proof. Let 1 2, ,..., ,...np p p  be the increasing sequence 2,3,5,7,...  of all primes. Let’s take arbitrary 

prime number np . From the Fact 3 we have that ( )nf p  is also prime. Let’s take positive integer n  as the 

integer from the Fact 5, for positive integers 1n ny p p x   . Since b) holds for infinitely many positive 

integers, it holds for some positive integer N  such that {1, 2,..., } { (1), (2),..., ( )}N f f f N , and such that 
nN p 
 . Let   be the greatest positive integer such that np N  . From defintions of N  and   we have 

n  .  

 In set {1,2,..., }N  we’ll observe all positive integers which are th  power of a prime number. Since 

nN p ,  we have that np  is in that set. It is easy to see that all numbers 1 2 1, ,..., np p p  
  are also in that set. 

On the contrary, number 1np
  is not in that set, because from the definition of   and N  respectively we 

have 1
1n nN p p 

  (remember Fact 5 and n  ). Similarly, neither of the numbers mp (for m n ) is 

not in the set {1,2,..., }N .  

 Let us now observe all positive integers which are th  power of a prime and they are in the set 

{ (1), (2),..., ( )}f f f N . According to Fact 4, we have that ( )f n  is th  power of a prime. From that and from 

previous paragraph we conclude that only such numbers are 1 2( ), ( ),..., ( )nf p f p f p   .  

 Now we have 1 2 1 2{ , ,..., } { ( ), ( ),..., ( )}n np p p f p f p f p      . Thus 1 2( ) { , ,..., }n nf p p p p    , so ( )n if p p   

for some 1 i n  , which implies ( )n if p p   for some 1 i n     ( )n i nf p p p  , which completes the 

proof.  
 Fact 7: For every positive integer we have ( )f n n .  

 Proof. From Fact 3 we have ( )f p  if and only if p  is prime. Let 1 2, ,..., ,...np p p  be the increasing 

sequence 2,3,5,7,...  of all prime numbers From fact 6 we have 1 1( )f p p    (2) 2f  . For 2n , 

inductively and from injectivity of f  we have 1( )n nf p p   and from Fact 6 we have ( )n nf p p , thus is 

must be ( )n nf p p , for all positive integer n .  

 Now for arbitrary positive integer n  from Fact 4 we have  

 1 2 1 2
1 2 1 2( ) ( ) ( ) ... ( ) ...k k

k kf n f p f p f p p p p n        

which completes our proof.  
 Remark: We can prove Fact 6 differently(without using Fact 5). We observe numbers 1 2 ... n    and 

(1) (2) ... ( )f f f n   , and their unique factorization. They concide for infinitely many positive integers n . 

For fixed primes ,p q , if we take sufficiently great n , we can use well-known formula for ( !)p n  to prove 

that ( !) ( !)p qn n   for all q p (here positive integer n  depends on ,p q ).  
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3rd EUROPEAN MATHEMATICAL CUP, 
December 6 - 14 2014 

    Senior Category 
 

 
Problems and solutions 

 Problem 1.Prove that there are infinitely many positive integers which can’t be 

expressed as ( ) ( )d а d bа b  where a  and b  are positive integers. 

For positive integer a  expression ( )d a  denotes the number of positive divisors of a .  

 Solution.We will show that ( )d aа  is a square of an integers for every positive integer a .  

 If a  is a square of en integer, any its power is also square of an integer.  

 If a  is not a perfect square, number of it’s positive divisors is even. We can prove this by pairing 

divisors of a  as d  and a
d

. A divisor d won’t be paired with itself because that would imply 2a d . 

This proves that ( )d a  is even and hence ( )d aa  is a perfect square for every positive integer a .  

 The extension in the problem is hence a sum of two squares. Every number of the form 4 3t  can’t 

be writen as a sum of two squares because 0  and 1  are the only quadratic residus modulo 4 , so it 

impossible for a sum of two squares to give remainder 3  modulo 4 .  
 

 Problem 2. Jeck and Lisa are playing a game on an  m n  board, with , 2m n . 

Lisa starts by putting a knight onto the board. Then in turn Jeck and Lisa puta new 
piece onto the board according to the following rules: 
 1.Jeck puts a queen on an empty square that is two squares horizontally and one 
square vertically, or alternatively one square horizontally and two squares vertically, 
away from Lisa’s last knight. 
 2. Lisa puts a knight on an empty square that is on the same, row, column or 
diagonal as Jeck’s last queen.  
The one who is unable to put a piece on the board loses the game. For which pairs 
( , )m n  does Lisa have a winning strategy? 

 Solution . We will show that Lisa has a winning strategy if and only if m  and n  are both odd.  

 Lisa’s winning strategy 
 Suppose the game is played on an m n  board with m  and n  both odd. Then Lisa puts her knight in 

a corner and partitions the remaining squares of the board into “dominoes”. In each turn Jeck has to put a 
queen in one of these dominoes and Lisa puts a knight on the other square of the domino. As the board is 
finite, Jeck can’t keep finding new dominoes and so Lisa will win.  
 Jeck’s winning strategy 
 Suppoose the game is played on an m n  board with m  or n  even. We shall that Jek is able to 

partition the board into pairs of squares that are two squares horizontally and one square vertically, or 
alternatively one square horizontally and two squares vertically, away from each other. In each tyrn Lisa 
has to put a knight in one of these and Jeck puts a queen on the other square of the pair. As the board is 
finite, Lisa can’t keep finding new pairs and so Jeck will win. Now we prove that Jeck can make the 
required partition.  
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 Case 1. Suppose 4 | m  or 4 | n . We know that any 4k l  board ( 2k  ) can be divided into 2 4  

and 3 4  boards(firstly divide 4k l  board in l  boards of dimensions 4k ; after that every 4k  

board divide in 
2
k  boards of dimensions 2 4 , or in 3

2
k  boards of dimensions 2 4  and one 3 4  

board, dependently on parity of k ). The following diagrams show that every 2 4  and every 3 4  board 

alows a required pratition. .  

 Case 2. Suppose , 1,2 (mod 4)m n . Any (5 4 ) (6 4 )l l    board can be divided into a 5 6  

board, a 4k l  board, a 5 4l  board and a 4 4k l  board. The following diagram shows that a 5 6  

board allows a required partition.  

 According to case 1 a 4 6k  board, a 5 4l  board and a 4 4k l  board also allow a partition.  

 Case 3. Suppose , 2,3 (mod4)m n . Any (3 4 ) (6 4 )k l    board can be divided into a 3 6  

board, a 4 6k  board, a 3 4l   board and a 4 4k l  board. The following diagram shows that a 3 6  

board alows a required partition.  
 
 

According to case 1 a 4 6k  board, a 3 4l  board and a 4 4k l  board also allow a partition.  

 Case 4. Suppose , 2 (mod 4)m n . Any (6 4 ) (6 4 )k l    board can be divided into a 6 6  board, a 

4 6k  board, a 6 4l  board and a 4 4k l  board. The 6 6  board can be partitioned in two 3 6  boards, 

which were already solved. According to case 1 a 4 6k  board, a 6 4l  board and a 4 4k l  board also 

allow a partition.  
 

 Problem 3. Let ABCD  be a cyclic quadrilateral with the intersection of internal 

angle bisectors of ABC  and ADC  lying on the diagonal AC . Let M  be the 

midpoint of AC . The line parallel to BC  that passes through D  intersects the line 

BM  in E  and the circumcircle of ABCD  at F  where F D . Prove that BCEF  is 
a parallelogram.  
 Solution. We prove the problem in reverse  as this is much nore natural in this problem.  
 

 We note that if BCEF  is a parallelogram then the diagonales are bisecting each other so the point 

G BE CF   should be the midpoint of CE .  

 If G  is the midpoint of CE  then GBC  and GEF  are congruent as CG GF  and ||FE BC  

gives GEF GBC   and GFE GCB  . Hence theis implies BG GE  and in particula BCEF  is a 

parallelogram as its diagonals bisect each other. Hence G  being midpoint of CF  is equivalent to our 

problem.  

 As M  is the midpoint of AC  by the midline theorem applied to triangle ACF  we have G  is the 

midpoint of CG  if and only if ||MG AF . Hence we only need to prove ||BM AF .  

 Now we futher notice that, using ||FD BC , this is equivalent to AFD MBC  .  

 We further see that AFD ABD   as they are angles over the same chord. So our claim is 

equivalent to ABD MBC  .  

 We add that here depending on the relative position of F  on the circles we might have 

AFD MBC   but then AFD ABD   so the final conclusion still holds.  

 We know that BDA BCM   as they are angles over the same chord. Now this us that our claim is 

equivalent to the claim ~BCM BDA  .  
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 The same angle equality shows that this is equivalent to BC AD
CM BD

 . Using the fact M  is the 

midpoint of AC  we have 
2

ACCM   so our claim is equivalent to 2AD BC BD AC   .  

 We further have by the angle bisector theorem applied to ABC  and CDA : 

  AB AI AD
BC CI CD

  .  

So using this our claim is equivalent to AB CD AD BC BD AC      which we can recognise to the 

Ptolomeys theorem for cyclic quadrilaterals.  
 

 Problem 4. Find all functions :f    such that for all ,x y    the following 

holds: 

 2 2( ) (2 ) ( ( ) ( ))( ( ) ( ))f x f y f x y f y f x y f y      .  

 Solution.  Let ( , )P x y  be the assertion 2 2( ) (2 ) ( ( ) ( ))( ( ) ( ))f x f y f x y f y f x y f y      . (0, )P x  

gives us  

  2(0) (2 ) 2 ( )( ( ) ( ))f f x f x f x f x                   (1) 

and (0, )P x  gives us  

  2(0) (2 ) 2 ( )( ( ) ( ))f f x f x f x f x     .               (2) 

By combining (1) and (2) we get  

  2 2( ) ( )f x f x  .                    (3) 

 (0,0)P  gives us 22 (0) 4 (0)f f , thus we have two cases: 

 Case 1. 1(0)
2

f  .  

 ( ,0)P x  gives us  

   22 1 1( ) ( )
2 2

f x f x   ,                  (4) 

while ( ,0)P x , gives us  

   22 1 1( ) ( )
2 2

f x f x                      (5) 

 Combinig  (4) and (5) and using (3) we get  
  ( ) ( )f x f x                       (6) 

 The assertion 2 2( , )P x x   can be written as  

   4 4 2 2 21( ) (2 ) (2 ) ( ) ( )
2

f x f x f x f x f x                 (7) 

 For an arbitrary x , let us denote ( )a f x . Using (4) we get:  

   22 1 1( )
2 2

f x a   ,  

     2 4
4 2 1 1 1 1( ) ( )

2 2 2 2
f x f x a      .  

Using (1) and (6) we get  

  2 2 21 1(2 ) 4 ( ) 4
2 2

f x f x a    ,  

   
2

2
4 2 2 1 1 1 1(2 ) 4 ( ) 4

2 2 2 2
f x f x a

         
.  

Plugging the last 4 equations in (7) we get: 
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         
2

2 2 2 2
21 1 1 1 14 1 4 1

2 2 2 2 2
a a a a a

                        
 

which is equivalent to  

   21 (4 2) 0
2

a a   .  

Therefore 1
2

a  and 1( )
2

f x  . Now if we use (6) in (1) we get 

  2 2(0) (2 ) 4( ( )) 1f f x f x    

so 2 1(2 )
2

f x   for every x , now using (6) we conclude 1( )
2

f x   for all x  which is easily checked to be 

a solution.  
 Case 2. (0) 0f  .  

 We immediately see using ( ,0)P x  that  

  2 2( ) ( )f x f x .                     (8) 

By comparing ( , )P x y  and ( , )P x y  and using (3) we get: 

  ( ( ) ( ))( ( ) ( )) 0f y f y f x y f x y       

If there exists c  such that ( ) ( )f c f c   we have for all x   

  ( ) ( )f x c f x c    

Plugging in x c  in x  here gives us:  

  ( 2 ) ( )f x c f x  .                    (9) 

Specially, (2 ) 0f c  . Now, (2 , )P c y y : 

  2 2((2 ) ) (2 ) ( (2 ) ( ))( (2 ) ( ))f c y f y f c f y f c y f y      ,  

  2 2 2( ( )) (2 ) ( ) (2 2 ) ( )f y f y f y f c y f y       

  2(2 ) ( ) (2 2 ) ( ) ( 2 )f y f y f c y f y f y                  (10) 

 Let ( )S x  denote the statement ( 0) ( ( ) ( ) 0)x f x f x     . If  there is no d   such that ( )S d  then 

( ) ( )f x f x   for all x . (0, )P x  gives us  

  2(2 )2 ( )( ( ) ( )) 0f x f x f x f x   ,  

which gives us another solution ( ) 0f x  . Now, let us assume that there exists d   such that ( )S d  

holds. Obviously, ( )S d  holds, as well. (0, )P d  gives us  

  2(2 ) 4 ( )f d f d  

and (10) gives us  

  2(2 ) ( ) ( 2 )f d f d f d   

  ( 2 ) 4 ( )f d f d   

  (2 ) 4 ( ) 4 ( ) ( 2 )f d f d f d f d     .  

Therefore, (2 )S d  also holds. Inductively, we deduce that (2 )nS d  holds for every n . Also, 

(2 ) ( 4) ( )n nf d f d  , which means that f  is unbounded.  

 ( , )P x c , using the fact 2 2( ) ( )f x f x : 

  2 2 2( ) (2 ) ( ) ( ) ( )( ( ) ( )) ( )f x f c f x c f x c f c f x c f x c f c         ,  

and since ( ) ( )f x c f x c    and 2(2 ) 0f c  (this follows from (0, )P c ) we have  

  2 2 2( ) ( ) ( )f x f x c f c    

which implies that f  is bounded and that is contradiction. Therefore, there is no c  such that 

( ) ( )f c f c  and therefore 
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  ( ) ( )f x f x  , for all x .                 (11) 

(0, )P x :  

  2 2 2(2 ) 4 ( ) 4 ( )f x f x f x  .  

Therefore, using (11)  
  (2 ) 4 ( )f x f x , for all x .                 (12) 

( , )P x y  can now be written as follows:  

  2 2( ) 3 ( ) ( )( ( ) ( )) ( ) ( )f x f y f y f x y f x y f x y f x y         

and similarly, ( , )P y x  can be written as  

  2 2( ) 3 ( ) ( )( ( ) ( )) ( ) ( )f y f x f x f x y f x y f x y f x y        .  

Subtracting the previopus two equalities  
  ( ( ) ( ))(2 ( ) 2 ( ) ( ) ( )) 0f x f y f x f y f x y f x y       .          (13) 

Assume that for some ,x y , ( ) ( )f x f y a  . Let ( )f x y b   and ( )f x y c  .  

 Now we have  

  24a bc ab ac                      (14) 

( , ) :P x y x y   

  2 2( ) 4 ( ) ( (2 ) ( ))( (2 ) ( ))f x y f x y f x f x y f y f x y         

i.e.  

  2 2 24 (4 )b c a c   .                  (15) 

If we plug in x x y  , y x y   in (13) we get  

  ( ( ) ( ))(2 ( ) 2 ( ) (2 ) (2 )) 0f x y f x y f x y f x y f x f y          

i.e. 
  ( )(2 2 8 ) 0b c b c a    .  

If b c  (15) gives us  

  2 25 (4 )b a b   

  2 24 2b a ab   

while (14) gives us  

  2 24 2a b ab  .  

Thus, 0ab  and 0a b c    which implies 2 2 0a a b c    . On the other hand, if b c  we also have 

2 2 0a a b c    .  
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Problems 
 

 Day 1 
 
 Problem 1. Let ABC  be an acute-angled triangle, and let D  be the foot of the 
altitude from C . The angle bisector of ABC  intersects CD  at E  and meets the 
circumcircle   of triangle ADE again at F . If 45ADF   , show that CF  is tangent 
to  .  
 
 Problem 2.A domino is a 2 1  or 1 2  tile. Determine in how many exactly 2n  
dominoes can be placed without overlaping on a 2 2n n  chessboard so that every 2 2  
sqare contains at least two uncovered unit sqaures which lie in the same row or 
column.  
 
 Problem 3. Let ,m n  be integers greather than 1 , and let 1 2, ,..., ma a a  be positive 

integers not greather than mn . Prove that there exist positive integers 1 2, ,..., mb b b  not 
greather than n such that  
  1 1 2 2 3 3gcd( , , ,..., )m ma b a b a b a b n     ,  
where 1 2gcd( , ,..., )mx x x  denotes the greatest common divisor of 1 2, ,..., mx x x .  

 
 Day 2 
 
 Problem 4.Determine whether there exists an infinite sequence 1 2 3, , ,...a a a  of 

positive integers which satisfies the equality 
  2 1 1n n n na a a a      

for every positive integer n .  
 
 Problem 5. Let ,m n  be positive integers with 1m . Anastasia partitions the 
integers 1,2,...,2m  into m  pairs. Boris then chooses one integer from each pair and finds 
the sum of these chosen integers. Prove that Anastasia can select the pairs so that Boris 
cannot make his sum equal to n .  
 
 Problem 6. Let H  be the orthocentre and G be the centroid of acute-angled triangle 

ABC  with AB AC . The line AG  intersects the circumcircle of ABC  at A  and P . 
Let 'P  be the reflection of P  in the line BC . Prove that 60CAB    if and only if 

'HG GP .  
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 Solutions 
 

 Problem 1. Let ABC  be an acute-angled triangle, and let D  be the foot of the 
altitude from C . The angle bisector of ABC  intersects CD  at E  and meets the 
circumcircle   of triangle ADE again at F . If 45ADF   , show that CF  is tangent 
to  .                       (Luxemburg) 
 Solution 1: Since 90 45 45CDF      , the line DF  bisects CDA , and so F  lies on the 
perpendicular bisector of segment AE , which meets AB  at G . Let 2ABC   . Since ADEF  is cyclic, 

90AFE   , and hence 45FAE   . Further, as BF  bisects ABC , we have 90FAB    , and thus  

  45EAB AEG      and 45AED    ,  
so 2GED   . This implies that right-angled triangles EDG  and BDC  are similar, and so we have 
| | | |
| | | |
GD DE
CD DB

 . Thus the right-angled triangle DEB  and DGC  are similar, whence GCD DBE    . 

But 45DFE DAE     , then 45GFD DFE     . Hence GDCF  is cyclic, so 90GFC   , 
whence CF  is perpendicular to the radius FG  of  . It follows that CF  is a tangent to  , as required.  
 

 Solution 2: As 45ADF    line DF is an exterior bisector of CDB . Since BF  bisects DBC  line 

CF  is an exterior bisector of BCD . Let 2ABC   , so ( ) / 2 45ECF DBC CDB       . Hence 

180 180 (45 90 2 ) 45CFE ECF BCE EBC                   . It follows that FDC CFE 
, then CF  is tangent to  .  
 

 Solution 3: Note that AE  is a diameter of circumcircle of ABC  since 90CDF   . From 

45AEF ADF     it follows that triangle AFE  is right-angled and isosceles. Without loss of 
generality, let points ,A E  and F  have coordinates ( 1,0), (1,0)  and (0,1)  respectively. Points , ,F E B  are 
collinear, hence B  have coordinates ( ,1 )b b  for some 1b . Let point 'C  be intersection of line 

tangent to circumcircle of AFE  at F  with line ED . Thus 'C  have coordinates ( ,1)c  and from 

'C E AB  we get 2
1

bc
b

  . Now vector 2' , (1 , 1)
1 1

b bBC b b b b
b b
        


, vector 

( , ) ( 1,1)BF b b b   


 and vector ( ( 1), (1 ))BA b b    


. Its clear that (1 , 1)b b   and ( ( 1), (1 ))b b     

are symmetric with respect to ( 1,1)FE  


, hence BF  bisects 'C BA  and 'C C  which completes the 
proof.  
 

 Solution 4: Again F  lies on the perpendicular bisector of segment AE , so AFE  is right-angled and 
isosceles. Let M  be an intersection of BC  and AF . Note that AMB  is isosceles since BF  is a bisector 

and altitude in this triangle. Thus BF  is a symmetry line of AMB . Then 45FDE FEA MEF     , 
AF FE FM   and DAE EMC  . Let us show that EC CM . Indeed,  

  180 ( ) 90CEM AED FEA MEF AED DAE EMC           .  

It follows that FMCE  is a kite, since EF FM  and MC CE . Hence 45EFC CFM EDF     , so 
FC  is tangent to  .  

 

 Solution 5: Let the tangent to   at F  intersect CD  at 'C . Let ABF FBC    . It follows that 

' 45C FE    since 'C F  is tangent. We have  

  
sin(90 ) sin 2sin cossin sin ' sin sin 90 1

sin sin ' sin sin 2 sin 2sin 45 sin 45
BDC DFC FBC
CDF C FB CBD

   
 

          


  .  

So by trig Cheva on triangle BDF , lines ',FC DC  and BC  are concurent (at C ), so 'C C . Hence CF  
is tangent to  .  
 

 Problem 2. A domino is a 2 1  or 1 2  tile. Determine in how many exactly 2n  
dominoes can be placed without overlaping on a 2 2n n  chessboard so that every 2 2  
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sqare contains at least two uncovered unit sqaures which lie in the same row or 
column.                     (Turkey) 

 Solution. The answer is 
2

2n

n

     
.  

 Divide the chessboard into 2 2  squares. There are exactly 2n  such squares on the chessboard. Each 
of these squares can have at most two unit squares covered by the dominos. As the dominos cover exactly 

22n  squares, each of them must have exactly two unit squares which are covered, and these squares must 
lie in the same row or column.  
 We claim that these two unit sq uares are covered by the same domino tile. Suppose that this is not the 
case for some 2 2  square and one of the tiles covering one of its unit squares sticks out to the left. Then 
considering one of the leftmost 2 2  squares in this division with this property gives a contradiction.  
 Now consider this n n  chessboard consisting of 2 2  squares of the original board. Define 

, , ,A B C D  as the following configurations on the original chessboard, where the gray squares indicate the 

domino tile, and consider the coverting this n n  chessboard with the letters , , ,A B C D  in such  a way 
that the resulting configuration on the original chessboard satisfies the condition of the question.  
 Note that then a square below or to the right of the containing an A  or B  must also contain an A  or 
B . Therefore the(possibly empty) region consisting of all squares containing a A  or B  abuts the lower 
right corner of the chessboard and is separated from the (possibbly empty) region consisting of all squares 
containing a C  or D  by path which goes from the lower left corner to the upper right corner of this 
chessboard and which moves up or right at each step.  
 A similar reasoning shows that the (posibly empty)region consisting of all squares containing an A  or 
D  abouts the lower left corner of the chessboard and is separated from the (possibly empty)region 
consisting of all squares containing a B  or C  by a path which goes from the upper left corner to the 
lower right corner of this chessboard and which moves down or right at each step.  
 Therefore the n n  chessboard is divided by these two paths into four (possibly empty) regions that 
consist respectively of all squares containing A  or B  or C  or D . Conversely, choosing two such paths 

and filling the four regions separated by them with A s, B s, C s and D s counterclokwise starting at the 
bottom results in a placement of the dominos on the original board satisfying the condition of the question.  

 As each of these can be chosen in 
2n

n

     
 ways, there are 

2
2n

n

     
 ways the dominos can be placed.  

 

 Problem 3. Let ,m n  be integers greather than 1 , and let 1 2, ,..., ma a a  be positive 

integers not greather than mn . Prove that there exist positive integers 1 2, ,..., mb b b  not 

greather than n such that  
  1 1 2 2 3 3gcd( , , ,..., )m ma b a b a b a b n     ,  
where 1 2gcd( , ,..., )mx x x  denotes the greatest common divisor of 1 2, ,..., mx x x .  

 Solution 1.Suppose without of generality that 1a  is the smallest of the ia . If 1 1ma n  , then the 

problem is simple: either all the ia  are equal, or 1 1ma n   and m
ja n  for some j . In the forst case 

we can take (say) 1 1b  , 2 2b  , and the rest of the ib  can be arbitrary, and we have  

  1 1 2 2 3 3 1 1 2 2gcd( , , ,..., ) gcd( , ) 1m ma b a b a b a b a b a b        .  

In the second case, we can take 1 1b  , 1jb  , and the rest of the ib  arbitrary, and again  

  1 1 2 2 3 3 1 1gcd( , , ,..., ) gcd( , ) 1m m j ja b a b a b a b a b a b        . 

 So from now on we can suppose that 1 2ma n  .  

 Now, let us suppose the desired 1,..., mb b  do not exist, and seek a contradiction. Then, for any  choice 

of 1 2, ,..., {1,2,..., }mb b b n , we have  
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  1 1 2 2 3 3gcd( , , ,..., )m ma b a b a b a b n     .  

Also, we have  

  1 1 2 2 3 3 1 1gcd( , , ,..., ) 2m
m ma b a b a b a b a b n n         .  

 Thus there are at most 1mn   possible values for the gratest common divisor. However, there are mn  
choices for the m -tuple 1( ,..., )mb b . Then, by the pigeonhole principle, there are two m -tuples that yield 

the same values for the greatest common divisor, say d . But since d n , for each i  there can be at most 

one choice of {1,2,..., }ib n  such that i ia b  is divisible by d  and therefore there can be at most one 

m -tuple 1( ,..., )mb b  yielding d  as the greatest common divisor. This is the desired contradiction.  

 Solution 2. Similarly to Solution 1 suppose that 1 2ma n  . The gcd  of 1 21, 1,..., 1ma a a    is 

coprime with the gcd of 1 21, 1,..., 1ma a a   , thus 2
1 1a n  . Now change another 1  into 2  and so 

on. After 1m  changes we get 1 1 ma n   which gives us a contradiction.  

 Solution 3. We will prove stronger version of this problem: 

 For , 1m n , let 1 2, ,..., ma a a  be positive integers with at least one 
12m

ia n


 . Then there are integers 

1 2, ,..., mb b b , each equal to 1  or 2 , such that 1 1 2 2gcd( , ,..., )m ma b a b a b n    .  

 Proof: Suppose otherwise. Then the 12m  integers 1 1 2 2gcd( , ,..., )m ma b a b a b    with 1 1b   and 

1ib   or 2  for 1i  are all pairwise coprime, since for any two of them, there is some 1i  with 1ia   

appearing in one and 2ia   in the other. Since each of these 12m  integers divides 1 1a  , and each is 

n  with at most one equal to n , it follows that 
12 1

1 1 ( 1)
m

a n n
     so 

12
1

m

a n


 . The same is true 

for each ia , 1,2,..,i n , a contradiction.  

 Remark: Clearly the 
12m

n


 bound can be strengthened as well. 
 

 Problem 4. Determine whether there exists an infinite sequence 1 2 3, , ,...a a a  of 
positive integers which satisfies the equality 
  2 1 1n n n na a a a      

for every positive integer n .  
 Solution 1.The answer is no.  
 Suppose that there exist a sequence ( )na  of positive integers satisfying the given condition. We will 

show that this will lead to  a contradiction.  
 For each 2n  define 1n n nb a a  . Then, by assumption, for 2n  we get 1n n nb a a    so that 

we have  

  2 2
1 1 1 1 1 1( ) ( ) ( ) ( )n n n n n n n n n n n nb b a a a a a a a a b b                .  

Since each na  is a positive integer we see that nb  is positive integer for 2n  and the sequence ( )nb  is 

strictly increasing for 3n . Thus 1 1 1 1( )( ) ( )n n n n n n n nb b b b b b b b         , whence 1 1n nb b  - a 

contradiction to increasing of the sequence ( )ib .  

 Thus we conclude that there exists no sequence ( )na  of positive integers satisfying the given condition 

of the problem.  
 Solution 2.Suppose that such a sequence exists. We will calculate its members one by one and get a 
contradiction.  
 From the equality 3 2 2 1a a a a    it follows that 3 2a a . Denote positive integers 3 2a a  by b  

and 3a  by a , then we have 2a b . Since 4a a b   and 5 2a a b a b     are positive integers, then 

2a b  is positive integer.  



Union of mathematicians of Macedonia-Armaganka 

 Consider 6 2 2 2 2a a b a b a b a b        . Number 2 2 2c a b a b     must be positive 

integer, obviously it is greater than 2a b . But  

   2 22 1 2 2 2 1 2 2 2 ( 2 ) 1a b a b a b a b a b a b b c                .  

So 2 2 1a b c a b      which is impossible.  

 Solution 3.We will show that there is no sequence ( )na  of positive integers which consists of 5N   

members and satisfies  
  2 1 1n n n na a a a                      (1) 

for all 1,2,..., 2n N  . Moreover, we will describe all such sequences with five members.  

 Since every ia  is a positive integer it follows from (1) that there exists such positive integer k  

(obviously k  depends on n ) that  

  2
1n na a k                       (2) 

From (1) we have 2
2 1 1( )n n n na a a a     , consider this equality as a quadratic equation with respect to 

1na  ,  

  2 2
1 2 1 2(2 1) 0n n n n na a a a a        .  

Obviously its solutions are 2
1 1/2

2 1
( )

2
n

n
a D

a 


 
 , where  

  24( ) 1n nD a a    .                   (3) 

Since 2 1n na a   we have  

  2
1

2 1
2

n
n

a D
a 


 
 .  

From the last equality, using that 1na   and 2na   are positive integers, we conclude that D  is a square of 

some odd number i.e. 2(2 1)D m   for some positive integer m , substitute this into (3):  

  2 ( 1)n na a m m   .                  (4) 

Now adding na  to both sides of (1) and using (2) and (4) we get 2( 1)m m k k    whence m k . So  

  
2

1

2
2

n n

n n

a a k

a a k k





     
                  (5) 

for some positive integer k  (recall that k  depends on n ).  
 Write equations (5) for 2n  and 3n , then for some positive integers k  and l  we get  

  

2
2 3

2
2 4

2
3 4

2
3 5

a a k

a a k k

a a l

a a l l

          

.                  (6) 

Solution of this linear system is  

  
2 2

2
2

2
k l ka   ,  

2

3 2
l ka  ,  

2

4 2
l ka  ,  

2

5
2
2

l l ka   .   (7) 

From 2 4a a  we obtain 2 2k l  hence k l .  

 Consider 6a : 

  2
6 5 5 4 5a a a a a l l k       .  

Since 0 k l   we have 2 2 2( 1)l l l k l     . So 6a  cannot be integer i.e. there is no such sequence 

with six or more mebers.  
 To find all required sequences with five members we must find positive integers 2 3 4, ,a a a  and 5a  

which satisfy (7) for some positive integers k l . Its clear that k  and l  must be of the same parity. Vise 
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versa, let positive integers ,k l  be of the same party and satisfy k l  then from (7) we get integers 

2 3 4, ,a a a  and 5a  then 2
1 3 2 2( )a a a a    and it remains to verfy  that 1a  and 2a  are positive i.e. 

2 22k k l   and 2 2 2 2 22( ) 2l k k k l k     .  

 Solution 4: It is easy to see that ( )na  is increasing for large enough n . Hence  

  1 2n n na a a                      (1) 

and  
  1 12n n na a a   .                  (2) 

Lets define 1n n nb a a   . Using AM-QM inequality we have  

  1 12 2 2 2
2 2

n n n na a a a   .               (3) 

Adding (1), (2) and (3): 
  1 12 2 2n n n n n nb b a a b b      .  

Let 2
nb m . Since )( nb  is increasing for large enough n  we have:  

  2 2 2
1 2 ( 1)nm b m m m     .  

So, 1nb   can’t  be a perfect square, so we get contradiction.  
 

 Problem 5. Let ,m n  be positive integers with 1m . Anastasia partitions the 
integers 1,2,...,2m  into m  pairs. Boris then chooses one integer from each pair and finds 
the sum of these chosen integers. Prove that Anastasia can select the pairs so that Boris 
cannot make his sum equal to n .             (Netherlands) 
 Solution 1: Define the following ordered partitions: 

  
1

2

3

({1,2},{3,4},...,{2 1, 2 })

({1, 1},{2, 2},....,{ , 2 })

({1,2 },{2, 1},{3, 2},...,{ , 2 1}) .

P m m

P m m m m

P m m m m m

 
  
   

 

For each jP  we will compute the possible values for the expression 1 ... ms a a   , where ,i j ia P , 

are the chosen integers. Here ,j iP  denotes the i -th coordinate of the ordered partition jP . We will denote 

by   the number 
2

1 2

m

i

m mi


 .  

  Consider the partition 1P  and a certain choice with corresponding s . We find that  

    2 2

1 1
(2 1) 2

m m

i i
m i s i m m

 
       .  

 Hence, if 2n m  or 2n m m  , this partition gives a positive answer.  
  Consider the partition 2P  and a certaion choice with corresponding s . We find that  

    
1

(mod )
m

i
s i m


  .  

 Hence, if 2 2 2m n m m    and (mod )n m , this partition solves the problem.  

    Consider the partition 3P  and a certain choice with corresponding s . We set  

    
0 ,

1 ,
i

i
i

if a i
d

if a i

  
.  

We also put 
1

m

i
i

d d


 , and note that 0 d m  . Note also that if ia i , then 1 (mod )ia i m  . Hence, 

for all 3,i ia P  it holds that  

    (mod )i ia i d m  .  

Hence,  
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1 1

( ) (mod )
m m

i i
i i

s a i d d m
 

      ,  

which can only be congruent to   modulo m  if all id  are equal, which forces 
2

2
m ms   or 

23
2

m ms  . Since 1m , it holds that  

   
2 2

2 2 3
2 2

m m m mm m m     .  

Hence if 2 2m n m m    and (mod )n m , then s  cannot be equal to n , so partition 3P  suffices 

for such n .  
 Note that all n  are treated in one of the cases above, so we are done.  
 Common notes for solutions 1B and 1C: Given the analysis of 1P  and 2P  as in the section 1A we 

may conclude(noting that ( 1)
(mod )

2
m m

m  ) that if m  is odd then 2m  and 2m m  are the only 

candidates for counterexamples n , while if m  is even then 2

2
mm   is the only candidate.  

 There are now various ways to proceed as alternatives to the partition 3P .  

 Solution 1B:Consider the partition ({1, 2},{2, 3},.....,{ 1,2 },{ , 1})m m m m m m    . We consider possible 
sums mod 1m . For the first 1m  pairs, the elements of each pair are congruent mod  1m , so the sum 

of one element of each pair is (mod 1)m  congruent to 1 ( 1)
2

m m m  , which is congruent to 1  if 1m  is 

odd and 11
2

m  if 1m  is even. Now the elements of the last pair are congruent to 1  and 0 , so any 

achievable value of n  is congruent to 0  or 1  if 1m  is odd, and to 0  or 1  plus 1
2

m  if 1m  is even. 

If m is even then 2 1
2 2
m mm    , which is not congruent to 0  or 1 . If m  is odd then 2 1m   and 

2 0m m  , neither of which can equal 0  or 1  plus 1
2

m .   

 Solution 1C: Similarly, consider the partition ({1, },{2, 1},...,{ 1, 2 2},{2 1,2 })m m m m m m     this 

considering sums of elements of pairs mod 1m . If 1m  is odd, the sum is congruent to 1  or 2 ; if 1m  

is even, to 1  or 2  plus 1
2

m . If m  is even then 2 1
2 2
m mm    , and this can only be congruent to 1  or 

2  when 2m . If m  is odd, 2m  and 2m m  are congruent to 1  and 2 , and these can only be congruent 

to 1  or 2  plus 1
2

m  when 3m . Now the cases of 2m  and 3m  need considering separately(by 

finding explici partitions excluding each n ).  
 Solution 2: This solution does not use modulo arguments. Use only 1P  from the solution 1A to 

conclude that 2 2m n m m   . Now consider the partition ({1,2 },{2,3},...,{2 2, 2 1})m m m  . If 1  is chosen 

from the first pair, the sum is at most 2m ; if 2m  is chosen, the sum is at least 2m m . So either 2n m  

or 2n m m  . Now consider the partition ({1,2 1},{2,2 },{3,4},{5,6},...,{2 3, 2 2})m m m m   . Sums of one 

element from each of the last 2m  pairs are in the range from each 2( 2) 2m m m m    to 
2( 2)( 1) 2m m m m      inclusive. Sums of one element from each of the first two pairs are 3, 2 1m  

and 4 1m . In the first case we have 2 21n m m m     in the second 2 21 1m n m m      and in the 

third 2 22 1n m m m m     . So these three p[artitions together have eliminated all n .  
 
 

 Problem 6. Let H  be the orthocentre and G be the centroid of acute-angled triangle 
ABC  with AB AC . The line AG  intersects the circumcircle of ABC  at A  and P . 

Let 'P  be the reflection of P  in the line BC . Prove that 60CAB    if and only if 
'HG GP .  
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 Solution 1: Let   be the circumcircle of ABC . Reflecting   in line BC , we obtain circle '  
which, obviously, contains points H  and 'P . Let M  be the midpoint of BC . As triangle ABC  is acute-
angled, then H  and O  lie inside this triangle.  

 Let us assume that 60CAB   . Since  

  2 120 180 60 180COB CAB CAB CHB            ,  
hence O  lies on ' . Reflecting O  in line BC , we obtain point 'O  which lies on   and this point is the 
center of ' . Then ' 2 2 cosOO OM R CAB AH    , so ' 'AH OO HO AO R    , where R  is the radius 
of   and , naturally, of ' . Then quadrilateral 'AHO O is a rhombus, so A  and 'O  are symmetric to each 
other with respect to HO . As ,H G  and O  are collinear (Euler line), then 'GAH HO G  . Diagonals of 

quadrilateral 'GOPO  intersects at M . Since 60BOM   , so  

  ' ctg 60
3

MBOM MO MB    .  

As 23 ' 3MO MO MB MB MC MP MA MG MP         , then 'GOPO  is a cyclic. Since BC  is a 
perpendicular bisector of 'OO , so the circumcircle of quadrilateral 'GOPO  is symmetrical with respect to 
BC . Thus 'P  also belongs to the circumcircle of 'GOPO , hence ' ' 'GO P GPP  . Note that 

'GPP GAH   since || 'AH PP . And as it was proved 'GAH HO G  , then ' ' 'HO G GO P  . Thus 
triangles 'HO G  and ' 'GO P  are eqaul and hence 'HG GP .  

 Now we will prove that if 'HG GP  then 60CAB   . Reflecting A  with respect to M , we get 'A . 
Then, as it was said in the first part of solution, points , ,B C H and 'P  belong to ' . Also it is clear that 

'A  belongs to ' . Note that 'HC CA  since || 'AB CA  and hence 'HA  is a diameter of ' . Obviously, the 
center 'O  of circle '  is midpoint of 'HA . From 'HG GP  it follows that 'HGO  is equal to ' 'P GO . 
Therefore H  and 'P  are symmetric with respect to 'GO . Hence ' 'GO HP  and ' || ' 'GO A P . Let HG  
intersect ' 'A P  at K  and K O  since AB AC . We conclude that HG GK , because line 'GO is 

midline of the triangle 'HKA . Note that 2GO HG , since HO  is Euler line of triangle ABC . So O  is 
midpoint of segment GK . Because of 'CMP CMP  , then 'GMO OMP  . Line OM , that passes 
through 'O , is an external angle bisector of ' 'P MA . Also we know that , then 'O  is the midpoint of arc 

' 'P MA . It follows that quadrilateral ' ' 'P MO A  is cyclic, then ' ' ' ' ' ' ' 'O MA O P A O A P   . Let OM  and 

' 'P A  intersect at T . Triangles ' 'TO A  and ' 'A O M  are similar, hence ' ' '
' ' '

O A O T
O M O A

 . In the other 

words, 2' ' ' 'O M O T O A  . Using Menelaus’ theorem for triangle 'HKA  and line 'TO , we obtain that  

  ' ' 3 1
' ' '

A O HO KT KT
O H OK TA TA

     .  

It follows that 1
' 3

KT
TA

  and ' 2KA KT . Using Menelaus’ theorem for triangle ' 'TO A  and line HK  we 

get  

  ' ' 11 2
' ' 2 ' '

O H TO TO TOA K
HA KT OO OO OO

       .  

It means that 'TO OO , so 2 2' ' ' ' 'O A O M O T OO   . Hence ' ' 'O A OO  and consequently, 'O  . 

Finally we conclude that 2 180CAB BOC CAB    , so 60CAB   .  
 

 Solution 2: Let 'O  and 'G  denote the reflection of O  and G  respectively, with respect to the line 

BC . We then need to show 60CAB    iff ' ' 'G H G P . Note that 'H OP  is isosceles and hence 
' ' 'G H G P  is equivalent to 'G  lying on the busector 'H OP . Let 'H AP   . By the assumption 

AB AC , we have 0 . Then ' 2 ' 2H OP H AP     , hence ' ' 'G H G P  iff ' 'G OH   . But 
' ' 'GO H G OH  . Let D  be the midpoint of 'OO . It is known that GDO GAH    . Let F  be the 

midpoint of HG . Then HG FO (Euler line). Let 'GO H   . We then have to show    iff 

60CAB   . But by similarity ( ~ 'GDO FO O  ) we have 'FO O   . Consider the circumcircles of the 
triangles 'FO O  and 'GO H . By the sine law and since the segments HG  and FO  are of equallength we 
deduce that the circumcircles of the triangles 'FO O  and 'GO H  are symmetric with respect to the 
perpendicular bisector of the segment FG  iff   . Obviously, 'O  is the common point of these two 
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circles. Hence 'O  must be fixed after the symmetry about the perpendicular bisector of the segment FG  
   we have    iff 'HOO  is isosceles. But ' 'HO H O R  , and so  

       'OO R    
2
ROD    1cos

2
CAB    60CAB   .  

 

 Solution 3: Let 'H  and 'G  denote the reflection of points H  and G  with respect to the line BC . It 
is known that 'H  belongs to the circumcircle of ABC . The equality 'HG GP  is equivalent to 

' ' 'H G G P . As in the solution 2, it is equivalent to the statement that point 'G belongs to the 
perpendicular bisector of 'H P , which is equivalent to ' 'OG H P , where O  is the circumcenter of 

ABC .  

 Let points ( )A a , ( )B b , and ( )C c b  belong to the unit circle in the complex plane. Point G  have 

coordinate ( ) / 3g a b b   . Since BC  is parallel to the real axis point 'H  have coordinate 

1'h a
a

  .  

 Point ( )P p  belongs to the unit circle, so 1p
p

 . Since , ,a p g  are collinear we have 

p a p a
g a g a

       
. After computation we get 

1

g a
p

ga




. Since '( )G g  is the reflection of G  with 

respect to the chord BC , we have ' ( ) ( )g b b b b g b b g        . Let  b b d  . We have 

d d . So  

 
3

a dg  ,
3

a dg  , 2'
3

a dg d g    , 2'
3

a dg  ,  and 2
21

g a d ap
adg a

   
.   (1) 

 It is easy to see that ' ' 'OG H P  is equivalent to  

  
' ' ' ' '

' ' 1 1 '
'

g g g g h p
h p h p h p

h p

        
 

since 'h  and p  belong to the unit circle(note that 'H P  because AB AC ). This is equivalent to 

' ' 'g g h p  and from (1), after easy computations, this is equivalent to  
2 2 2 2 2 21 ( 1)( 1) 0a g a d a d       .  

 We cannot have 2 1 0a   , because then a i , but AB AC . Hence d b b i   , and the 

pair { , }b c b  is either 3 3,
2 2 2 2

i i         
 or 3 3,

2 2 2 2
i i         

. Both cases are eqivalent to 

60BAC    which completes the proof.  
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22-nd Macedonian Mathematical Olympiad  
Fon University - Skopje 

04.04.2015 
 
 
 1. Let , ,A B CAH BH CH  be the heights in ABC . We draw perpendiculars , ,A B Cp p p   through 

the vertices , ,A B C  to , ,B C C A A BH H H H H H , respectively. Prove that , ,A B Cp p p  pass through the 

same point. 
 

2. Let , ,a b c  be positive real numbers for which 1abc . Prove that 

2 2 2 ( )( )a b b c c a a b c ab bc ca       .  

 
3. The contestants of this year’s MMO are “well” distributed in n  columns (a distribution in 

columns is “well” if no two contestants in the same column are acquaintances), but the same cannot 

be obtained in less than n  columns.  Show that there exist contestants 
1 2, , , nM M M  for which 

the following hold: 

        (1)  
iM  is in the i -th column, for each 1,2, ,i n  ; 

        (2)  
iM  and 1iM   are acquaintances, for each 1,2, , 1i n  . 

 
 

 4.  The circles 
1 2,k k  intersect at points A and B . A line thorugh B  intersects the circles 

1k  

and 
2k  for the second time at points C  and D , respectively, in such a way that C  lies outside of 

2k , and D  lies outside of 1k . Let M  be the point of intersection of the tangents to 1k  and 2k  

drawn through C  and D , respectively, and  AM CD P  . The tangent drawn throughB  to 

1k  intersects AD   in point L , and the tangent drawn through B  to 
2k  intersects AC  in point K .  

Let  KP MD N   and  LP MC Q  . Show that the quadrilateral MNPQ  is a 

parallelogram. 

 
5. Determine all natural numbers m  which have exactly three different prime divisors p , q  and 

r , such that: 

a)  1p m , 1qr m ,  

b) 1 |q m  , 1 |r m  , 3 | q r  .  

 
 
 



Union of mathematicians of Macedonia-Armaganka 

Time: 4 hours 30 minutes 
Each correctly solved problem is worth 8 points 

 
SOLUTIONS 

 1. Let , ,A B CAH BH CH  be the heights in ABC . We draw perpendiculars , ,A B Cp p p   
through the vertices , ,A B C  to , ,B C C A A BH H H H H H , respectively. Prove that , ,A B Cp p p  
pass through the same point. 
 
First solution: Let O  be the center of the circumscribed circle around ABC . We will show that each of 

the lines , ,A B Cp p p  passes through O . (2 points) Because of symmetry, it is enough to show that 

A BOC H H . (1 point) Let D  be the point of intersection of these two lines. We restrict ourselves to the 

case where ABC  is acute (since in the case of ABC  being obtuse the argument is analogous  (1 point)). 

It is enough to use the fact that  90AH CD BCO      (2 points) and A B ADH C H H C     

(the last equality follows from the fact that A BABH H  is inscribed). (2 points) 

Second solution: According to Carnot’s theorem, it is sufficient (and necessary) to show that 

                               
2 2 2 2 2 2

0B C C A A BAH AH BH BH CH CH      .              

holds. (4 points). 

For that purpose, it is sufficient to sum the obvious equalities: 
2 2 2 2

C CBH AH BC AC   , 

2 2 2 2

A ACH BH AC AB   , and 
2 2 2 2

B BAH CH AB BC   .                          (4 points) 
 

2. Let , ,a b c  be positive real numbers for which 1abc . Prove that 
2 2 2 ( )( )a b b c c a a b c ab bc ca       .  

Solution. From the inequality between the arithmetical and geometrical mean we have 

       
(1)

22 2 2 2 2 2 2 2 2 2 2 2 2 2 23 3 3 .a b b c c a a b b c b c c a c a a b abc b a c b a c b a c b a c              (2 points) 

     
 

   
2

2 32 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 23 3 .a b b c c a a b b c c a a b b c c a a b c a b b c c a a b b c c a              (2 points) 

     
 3

2 3 32 2 2 2 2 2 2 2 2 3 3 3 3 3 33 3 9 .a b b c c a a b b c c a a b b c c a a b c a b c abc          (2 points) 

     22 2 2 2 2 2 2 2 23 3 3 9a b b c c a b a c b a c a b b c c a abc           

 22 2 2 2 2 2 2 2 2 3a b b c c a a b b c c a b a c b a c abc          (1 point) 

    
22 2 2a b b c c a a b c ab bc ca         

  2 2 2a b b c c a a b c ab bc ca       .(1 point) 

 
 (1), (2) and (3)  The inequality between arithmetical and geometrical mean. 
 

3. The contestants of this year’s MMO are “well” distributed in n  columns (a 
distribution in columns is “well” if no two contestants in the same column are 
acquaintances), but the same cannot be obtained in less than n  columns.  Show that 
there exist contestants 

1 2, , , nM M M  for which the following hold: 

        (1)  
iM  is in the i -th column, for each 1,2, ,i n  ; 
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        (2)  iM  and 1iM   are acquaintances, for each 1,2, , 1i n  . 
 

Solution. We will perform a rearrangement with respect to columns. First we move to the first column each 
contestant from the second column who doesn’t have an acquaintance in the first column. (1 point) The new 
arrangement is “well”, and therefore at least one contestant remains in the second column. Now we move to the second 
column each contestant from the third column who doesn’t have an acquaintance among the remaining contestants in 
the second column. The new arrangement is “well”, and therefore there is at least one contestant remaining in the third 
column. We continue this procedure. (3 points) In the end we move to the  ( 1)n -th column each contestant from the 

n -th column who doesn’t have an acquaintance among the remaining ones in the  ( 1)n -th column. The new 

arrangement is again “well” and therefore at least one contestant remains in the n -th column. We denote such a 

contestant by nM . (1 point). He must have an acquaintance 1nM   in the ( 1)n -th column. Let us notice that 1nM   has 

not been moved (otherwise the initial arrangement is not “well”). Therefore 1nM   has an acquaintance 2nM   in the 

( 2)n -th column. We conclude analogously that 2nM   has not been moved. We proceed in this way and therefore we 

find contestants 1 2, , , nM M M  for which  (1) and (2) hold.(3 points) 

 

 4.  The circles 1 2,k k  intersect at points A and B . A line thorugh B  intersects the 

circles 
1k  and 

2k  for the second time at points C  and D , respectively, in such a way 

that C  lies outside of 
2k , and D  lies outside of 

1k . Let M  be the point of intersection 

of the tangents to 1k  and 2k  drawn through C  and D , respectively, and 

 AM CD P  . The tangent drawn throughB to 1k  intersects AD   in point L , and 

the tangent drawn through B to 
2k  intersects AC  in point K .  Let  KP MD N   

and  LP MC Q  . Show that the quadrilateral MNPQ  is a parallelogram. 

 
Solution: Due to symmetry reasons, it is enough to show that KP MC holds. First we show that the 

quadrilateral ACMD  is inscribed. (1 point) Namely, let us notice that B  lies on the line segment CD , and A  

and M  are on different sides of the line CD . From BDM DAB   and BCM BAC  , it follows that 

180DAC DAB BAC BDM BCM DMC           . (2 points) 

Second, we will show that B  and P  lie on the same arc which passes through points A  and K . (1 point) 
For that purpose, we consider two cases: 
 first case: the point P  lies on the segment BC ; let us notice that points A  and B  are on the same side of the line 

KP . Let E  denote the intersection of the lines KB  and DM . We have the sequence of equalities 
KBP DBE BDE CDM CAM KAP          . Then, from KBP KAP   it follows that the quadrilateral 

AKPB  is inscribed. (1 point) 
 second case: the point P  lies on the segment AC ; this time the points A  and B  are on different sides of the line 

KP . Again, let E  be the intersection of KB  and DM . We have the following sequence of equalities 

180 KBP DBE BDE CDM CAM KAP            , from where it follows that the quadrilateral AKBP  is 

inscribed. (1 point) 

 Therefore we get APK ABK ADB ADC AMC        , with which we confirm that KP MC . (2 points) 

Remark: The assertion also remains true without the restriction ''...in such a way that C  (resp. D ) lies outside of 

2k  (resp. 1k )...''. In the remaining two cases the argument is analogous. 

5. Determine all natural numbers m  which have exactly three different prime 
divisors p , q  and r , such that: 
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a)  1p m , 1qr m ,  

b) 1 |q m  , 1 |r m  , 3 | q r  .  
 

Solution. The number m  can be represented in the form a b cm p q r . The numbers q  and r  cannot be  2, because 

2 1 1   is a divisor of each natural number, from where it follows that they are odd, i.e. 1qr  is even, so therefore m  

must be even, i.e. 2p .(1 point) 

From    НЗД , 1 1 НЗД , 1q qr r qr     and 1qr m , it follows that 1 2aqr , from where 1 2kqr   for some natural 

number k a . This means that the number 2 1k   has exactly two divisors. (1 point)  The number k  can be represented 

in the form 2tk s , where t  is the greatest power of 2  in k , and s is the greatest odd divisor of k . If 1s , then: 

1 2
2 2 2 2 22 1 2 1 2 1 2 2 ... 2 1
t t t t ts s s

k
                                                              

.(2 points) 

This is possible only when 22 1
t

q  , 
1 2

2 2 22 2 ... 2 1
t t ts s

r
                             

 or vice versa, but then 21 2
t

q m   or 

22
t

p m , which is contradictory to the conditions of the exercise. (1 point) 

It follows that 1s  , i.e. 2tk   is a power of 2  and 22 1
t

qr   , i.e. 22 1
t
  is the product of two prime numbers. 

For 0t   ( 22 1 3
t
  ) this obviously is not the case, therefore 1t .(1 point) 

From    
1

1 1 122 2 2 2 2 22 1 2 1 2 1 4 1 1 1 1 1 2 mod3
t

t t t t
              , it follows that 3 | q  and 3 | r . If 

 mod 3q r , then  1 mod 3qr  , therefore one must be congruent to one, and the other with two, but then their sum is 

divisible by three, which is contradictory to the last condition of the exercise, i.e. a number that satisfies the given 
conditions does not exist. (2 points) 
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19-th Macedonian Junior Mathematical Olympiad 
Faculty of Mechanical Engineering-Skopje 

06.06.2015 
 
 

1. Solve the equation 2 4 1 6zx y    in the set of integers. 

 

2. A circle k  with center at O  and radius r  and a line p  which doesn’t have 

a common point with k  are given. Let E  be the foot of the perpendicular from 
O  to p . An arbitrary point M  different from E  is chosen on p  and the two 

tangents are drawn from M  to k  which touch the circle k  at points A  and B . 

If H  is the intersection of AB  and OE , prove that 
2rOH

OE
 . 

3. Prove that for positive real numbers , ,a b c the following inequality holds:  
2 2 2 12(16 8 17)(16 8 17)(16 8 17) 2 ( 1)( 1)( 1).a b b c c a a b c           

When does equality hold? 
 
4. Let ABC  be an acute triangle and let k  be the circle circumscribed around 

it. The point O  in the interior of the triangle is such that CE CF , where E  
and F  are points on k  and E  lies on AO , and F  lies on BO . Prove that O  
lies on the bisector of the angle at the vertex C  if and only if the triangle is 
isosceles with base AB . 

 5. Let A  and B  be two identical convex polygons, each having area 2015 . The 
polygon A  is divided into polygons 1 2 2015, ,...,A A A  with positive area,  and the 

polygon B  into polygons 1 2 2015, ,...,B B B  with positive area.  The polygons 

1 2 2015, ,...,A A A , 1 2 2015, ,...,B B B  are colored with 2015 colors, in such a way that iA  is 

colored differently from jA  and iB  is colored differently from jB , for i j . After 

overlapping the polygons A  and B , we calculate the sum of the areas of the parts that 
have the same color. 

Prove that there exists a coloring of the polygons for which this sum is at least 1 .  
 

Solutions 
1. Solve the equation 2 4 1 6zx y    in the set of integers. 

Solution. It is obvious that 0z . If 2z , then 2 4 1 0(mod 4)x y   , i.e. 2 4 3(mod4)x y  . 

This is not possible because the remainders of squares of integers after division by 4  are 0  or 1 . 
According to that, 0 2z  .  

M M

O
 

2015
J

19-t a JMMO
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If 0z  , then 0x y  .  

If 1z , then 2 4 5x y  , i.e.  ( , ) (2,1),( 2,1),(2, 1),( 2, 1)x y      .  

Therefore  ( , , ) (0,0,0),(2,1,1),( 2,1,1),(2, 1,1),( 2, 1,1)x y z       are the solutions of the given 

equation. 

2. A circle k  with center at O  and radius r  and a line p  which doesn’t have 

a common point with k  are given. Let E  be the foot of the perpendicular from 
O  to p . An arbitrary point M  different from E  is chosen on p  and the two 

tangents are drawn from M  to k  which touch the circle k  at points A  and B . 
If H  is the intersection of AB  

and OE , prove that 
2rOH

OE
 . 

Solution. Let G  be the intersection of OM  

and AB . Since ~OGH OEM   we get 

OG OE
OH OM

  hence OE OH OM OG   . On 

the other hand, since ~AOG MOA  , we 

have OA OM
OG OA

 . Therefore 
2

OM OG OA  . 

We get 
2

/OH OA OE . 

Remark. The equality OE OH OM OG    can also be obtained as a power of a point since GMEH  
is inscribed. 

 

3. Prove that for positive real numbers , ,a b c the following inequality holds:  
2 2 2 12(16 8 17)(16 8 17)(16 8 17) 2 ( 1)( 1)( 1).a b b c c a a b c           

When does equality hold? 
Solution. By twice using the inequality between the arithmetical mean and geometrical mean we get  

2 2(16 8 17) (16 1 8 16) 8 8 16 8( 2) 8( 1 1)a b a b a b a b a b                  

  48 2 ( 1)( 1) 2 ( 1)( 1)a b a b       . (1) 

Analogously we have 
2 4(16 8 17) 2 ( 1)( 1)b c b c      (2) 

2 4(16 8 17) 2 ( 1)( 1)c a c a      (3). 

If we multiply the three inequalities we get 
2 2 2 12(16 8 17)(16 8 17)(16 8 17) 2 ( 1)( 1)( 1)a b b c c a a b c          .  

In (1) equality is obtained when 216 1a   and a b , i.e. 1
4

a b  . By an analogous 

argument for (2) and (3) we get 1
4

a b c   . 

4. Let ABC  be an acute triangle and let k  be the circle circumscribed around 
it. The point O  in the interior of the triangle is such that CE CF , where E  
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and F  are points on k  and E  lies on AO , and F  lies on BO . Prove that O  
lies on the bisector of the angle at the vertex C  if and only if the triangle is 
isosceles with base AB . 

Solution. From CE CF  it follows that  1CAE CBF  , as inscribed angles subtending equal 

chords. 
Let us assume first that the triangle is isosceles. Then, from the fact that O  lies in the interior of 

ABC  and  1 , it follows that BAO BAC CAO ABC CBO ABO          , from where it 

follows that the triangle ABO  is isosceles with base AB , i.e.  2AO BO .  From the fact that the 

triangle ABC  is isosceles, it follows that  3AC BC . From  1 ,  2  and  3  it follows that 

AOC BOC  , from where we have ACO BCO  , i.e. O  lies on the bisector of the angle at the 
vertex C . 

Remark: AOC BOC   does not follow directly from CAE CBF  , AC BC  and CO  

is a common side. 
Let’s assume now that point O  lies on the bisector of the angle at the 

vertex C  and let M  and N  be the feet of the perpendiculars from O  to 
the sides AC  and BC  respectively. The right-angled triangles CON  and 

COM  are congruent because ACO BCO   and CO  is a common 

side, so  4CN CM  and  5ON OM . The right-angled triangles 

BON  and AOM  are congruent from  1  and  5 , so  6BN AM . By 

adding  4  and  6  we get that AC BC  (the points M  and N  lie in 

the interior of the sides, since the triangle is acute). 

 5. Let A  and B  be two identical convex polygons, each having area 2015 . The 
polygon A  is divided into polygons 1 2 2015, ,...,A A A  with positive area,  and the 

polygon B  into polygons 1 2 2015, ,...,B B B  with positive area.  The polygons 

1 2 2015, ,...,A A A , 1 2 2015, ,...,B B B  are colored with 2015 colors, in such a way that iA  is 

colored differently from jA  and iB  is colored differently from jB , for i j . After 

overlapping the polygons A  and B , we calculate the sum of the areas of the parts that 
have the same color. 

Prove that there exists a coloring of the polygons for which this sum is at least 1 .  
Solution. After the overlapping of the polygons we get ij i jC A B  ,  , 1,2,...,2015i j  . The 

polygons 1 2 2015, ,...,B B B  can be colored in 2015!  ways.  

Let a coloring of 1 2 2015, ,...,A A A  be given. For an arbitrary coloring of 1 2 2015, ,...,B B B  which we denote 

by n , let nO  be the sum of the areas of the parts from the two polygons colored with the same color. 

Then  
2015

, 1
n ij ij

i j

O c P C


   , where 1ijc   if iA  and jB  are colored with the same color and 0ijc   in 

the other cases. We get that  
2015! 2015

1 , 1
n ij ij

n i j

O d P C
 

  , where ijd  is the number of colorings of 
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1 2 2015, ,...,B B B  in which iA  and jB  have the same color. It is obvious that 2014!ijd  . According to 

that,   
2015! 2015

1 , 1

2014! 2015 2015!n ij ij
n i j

O d P C
 

     .  

Finally, from 1 2 2015!... 2015!O O O      it follows that there exists  1,2,...,2015!k   for which 

1kO  , which was to be proven. 
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32 th Balkan Mathematical Olympiads 2015 
03.05-08.05.2015, Athens, Greece 

 
 
 

 Problem 1. Let ,a b  and c  be positive real numbers. Prove that  
3 6 3 6 3 6 3 3 3 3 3 3 3 3 3 2 2 2 3 3 33 ( ) ( )a b b c c a a b c abc a b b c c a a b c a b c          

 
 

 Problem 2. Let ABC  be a scalene triangle with incentre I  and circumcircle 
 . The lines , ,AI BI CI  intersect   for the second time at the points , ,D E F , 
respectively. The lines through I  parallel to the sides , ,BC AC AB  intersect the 
lines , ,EF DF DE  at the points , ,K L M , respectively. Prove that the points 

, ,K L M  are collinear.   

 

 Problem 3. A juri of 3366 film critics are judging the Oscars. Each critic 
makes a single vote for the favorite actor, and a single vote for his favourite 
actress. In turns out that for every integer {1, 2,3,...,100}n  there is an actor or 
actress who has been voted for exactly n  times. Show that there are two critics 
who voted for the same actor for the same actress.  
 

 Problem 4.  Prove that among any 20 consecutive positive integers there 
exists an integer d  such that for each positive integer n  we  have the inequality  

  5{ }
2

n d n d   

where { }x  denotes the fractinal part of the real number x . The fractional part 
of a real number x  is x  minus the greather less than or equal to x .  
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 Solutions  
 
 Problem 1. Let ,a b  and c  be positive real numbers. Prove that  

3 6 3 6 3 6 3 3 3 3 3 3 3 3 3 2 2 2 3 3 33 ( ) ( )a b b c c a a b c abc a b b c c a a b c a b c          
 Solution. After dividing both sides of the given inequality by 3 3 3a b c  it becomes 

           3 3 3

3b c a a b b c c a a a b c c c
c a b c c a a b b b c a a a b

                     (1) 

Set  

  1b
a x
 , 1c

b y
 , 1a

c z
 .                  (2) 

Then we have that 1xyz  , and by substituting (2) into (1), we find that  

  3 3 3 3
y yx xz zx y z
z x y z x y

                    
.            (3) 

Multiplying the inequality (3) by xyz , and using the fact that 1xyz  , the inequality is equivalent to  

  3 3 3 2 2 2 2 2 23 0x y z xyz xy yz zx yx zy xz          .         (4) 
Finally, notice that by the special case of Shur’s inequality  
  ( )( ) ( )( ) ( )( ) 0r r rx x y x z y y x y z z z y z x         , , , 0x y z  , 0r  ,  
with 1r   there holds  
  ( )( ) ( )( ) ( )( ) 0x x y x z y y x y z z z y z x                   (5) 
which after expansion actually coincides with the congruence (4).  
 Remark 1. The inequality (5) immediately follows by supposing (without loss of generality) that 
x y z  , and then writing the left side of the inequality (5) in the form 
  ( )( ( ) ( )) ( )( )x y x x z y y z z y z z x       ,  
which is obviously 0 .  

 Remark 1. One can obtain the relation (4) using also the substitution 2 2,x ab y bc   and 
2z ca .  

  

 Problem 2. Let ABC  be a scalene triangle with incentre I  and circumcircle  . 
The lines , ,AI BI CI  intersect   for the second time at the points , ,D E F , 
respectively. The lines through I  parallel to the sides , ,BC AC AB  intersect the lines 

, ,EF DF DE  at the points , ,K L M , respectively. Prove that the points , ,K L M  are 
collinear.   

Solution. First we will prove that KA  is tangent to  .  
Indeed, it is a wll-known fact that FA FB FI   and EA EC EI  , so FE  is the 

perpendicular bisector of AI . It follows that KA KI  and  
  KAF KIF FCB FEB FEA     ,  
so KA  is tangent to  . Similarly we can prove that ,LB MC  are tangent to   as well.  
 
 Let ', ', 'A B C  the intersections of , ,AI BI CI  with , ,BC CA AB resepectively. From Pascal’s 
Theorem on the cyclic hexagon AACDEB  we get , ', 'K C B  colinear. Similarly , ', 'L C A  collinear and 

, ', 'M B A  collinear.  
 Then from Desargues’ Theorem for DEF , ' ' 'A B C  which are perspective from the point I  
we get , ,K L M  of the intersection of their corresponding sides are collinear as wanted.  
 Remark(P.S.C.). After proving that , ,KA LB MC  are tangent to  , we can argue as follows:  
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 It readily follows that ~KAF KAE   and so KA KF AF
KE KA AE

  , thus  2
KF AF
KE AE

 . In a similar 

way we can find that  2
CEME

MD CD
  and  2

LD BD
LF BF

 . Multiplying we obtain 1KF ME LD
KE MD LF

   , so 

by the converse of Menelaus theorem applied in the triangle DEF  we get that the points , ,K L M are 
collinear.  
 

 Problem 3. A juri of 3366 film critics are judging the Oscars. Each critic makes a 
single vote for the favorite actor, and a single vote for his favourite actress. In turns out 
that for every integer {1,2,3,...,100}n  there is an actor or actress who has been voted 

for exactly n  times. Show that there are two critics who voted for the same actor for 
the same actress.  
 Solution. Let us assume that every votes for a different pair of actor and actress. We’ll arrive at a 
contradiction proving the required result. Indeed: 
 Call the vote of each critic, i.e. his choice for the pair of an actor and and an actress, as a double-
vote, and call as a single-vote each one of the two choices he makes, i.e. the one for an actor and the 
other one for an actress. In this terminology, a double-vote corresponds to two single-votes.  
 For each 34,35,...,100n  let us pick out one actor or one actress who has been voted by exactly 
n  critics (i.e. appears in exactly n -single votes) and call S  the set of these movie stars. Calling ,a b  
the number of men and women in S , we have 67a b  .  
 Now let 1S  be the set of double-votes, each having exactly one of its two corresponding single-

votes in S , and let 2S  be the set of double-votes with both its single-votes in S . If 1 2,s s  are the 

number of elements in 1 2,S S  respectively, we have that the number of all double-votes with at least 

one single-vote in S  is 1 2s s , whereas the number of all double-votes with both single votes in S  

is 2s ab .  

 Since all double-votes are distinct, there must exist at least 1 2s s  critics. But the number of all 

single-votes in S  is 1 22 34 35 ... 100 4489s s      , and moreover s ab . So there exist at 

least 1 2 1 2 22 4489s s s s s ab       critics.   

 Now notice that as 67a b  , the maximum value of ab  with ,a b  integers is obtained for 
{ , } {33,34}a b  , so 33 34 1122ab   . A quick proof of this is the following:  

  
2 2 2 2( ) ( ) 67 ( )

4 4
a b a b a b

ab
      ,  

which is maximed(for not equal integers ,a b  as 67a b  ) whenever | | 1a b  , thus for 
{ , } {33,34}a b  .  
 Thus there exist at least 4489 1122 3367   critics which is a contradiction and we are done.  
 
 Remark. We are going here to give some motivation about the choice of number 34, used in the 
above solution.  
 Let us assume that every critic votes for a different pair of actor and actress. One can again start  
by picking out one actor or one actress who has been voted by exactly n  critics for 

, 1,...,100n k k  . Then 100 1 101a b k k       and the number of all single-votes is 

1 2

( 1)
2 1 ... 100 5050

2
k k

s s k k
        , so there exist at least 1 2 1 2 2

( 1)
2 5050

2
k k

s s s s s ab
        

and  

  
2 2 2 2 2( ) ( ) (101 ) ( ) (101 ) 1

4 4 4
a b a b k a b k

ab
          .  

After all, the number of critics is at least  
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2( 1) (101 ) 1

5050
2 4

k k k    .  

In order to arrive at a contradiction we have to choose k  such that  

  
2( 1) (101 ) 1

5050 3367
2 4

k k k     ,  

and solving the inequality with respect to k , the only value that makes the last one true is 34k  .  
 

 Problem 4.  Prove that among any 20 consecutive positive integers there exists an 
integer d  such that for each positive integer n  we  have the inequality  

  5{ }
2

n d n d   

where { }x  denotes the fractinal part of the real number x . The fractional part of a real 
number x  is x  minus the greather less than or equal to x .  
 Solution. Among the given numbers there is a number of the form 20 15 5(4 3)k k   . We 
shall prove that 5(4 3)d k   satisfies the statement’s condition. Since 1(mod 4)d  , it follows 

that d  is not a perfect square, and thus for any n  such that 1a n d a   , that is, 
2 2 2( 1)a n d a   . Actually, we are going to prove that 2 2 5n d a  . Indeed:  

 It is known that each positive integer of the form 4 3s  has a prime divisor of the same form. 
Let | 4 3p k   and 1 (mod 4)p  . Because of the form of p , the numbers 2 21a   and 2 22a   are 

not divisible by p , and since 2|p n d , it follows that 2 2 21, 4n d a a   . On the other hand, 25 | n d , 

and since 2 25 | 2, 3a a   , we conclude 2 2 22, 3n d a a   . Since 2 2n d a  we must have 
2 2 5n d a   as claimed. Therefore  

  
2 2

2 2 5 5{ } ( ) 5 5 5
2 2

a an d n d n d n d a a a a a            ,  

which was to be proved.  
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Junior Balkan Mathematical Olympiad 2015 

24.06-29.06.2014, Belgrade, Serbia 
 

 
  
 Problems 
 
 Problem 1. Find all prime numbers , ,a b c  and positive integers k  satisfying the 
equation  
  2 2 2 216 9 1a b c k     
 
 Problem 2. Let , ,a b c  be positive real numbers such that 3a b c   . Find the 
minimum value of the expression  

  
3 3 32 2 2a b cA

a b c
      

 

 Problem 3.Let ABC  be an acute triangle. The lines 1l  and 2l  are perpendicular 
to AB  at the points A  and B  respectively. The perpendicular lines from the 
midpoint M  of AB  to the lines AC  and BC  intersect 1l  and 2l  at the points E  and 
F , respectively. If D  is the intersection point of the lines EF  and MC , prove that  
  ADB EMF  .   
 

 Problem 4. An L -shape is one of the following four pieces, each consisting of 
three unit squares:  
 
 A 5 5 board, consisting of 25  unit squares, a positive integer 25k   and an 
unlimited supply of L -shapes are given. Two players, A  and B , play the following 
game:starting with A  they alternatively mark a previously unmarked unit square 
until they mark a total of k  unit squares.  
 We say that a placement of L -shapes on unmarked unit squares is called good if 
the L -shapes do not overlap and each of them covers exactly three unmarked unit 
squares of the board. B  wins if every good placement of L -shapes leaves 
uncovered at least three unmarked unit squares. Determine the minimum value of 
k  for which B  has a winning strategy.  
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 Solutions 
 

 Problem 1. Find all prime numbers , ,a b c  and positive integers k  satisfying the 
equation  
  2 2 2 216 9 1a b c k     
 Solution. The relation 29 1 1 (mod 3)k    implies  

  2 2 216 1(mod 3)a b c         2 2 2 1 (mod 3)a b c   .  

Since 2 0,1 (mod 3)a  , 2 0,1 (mod 3)b  , 2 0,1 (mod 3)c  , we have: 

   
2a  0 0 0 0 1 1 1 1 
2b  0 0 1 1 0 0 1 1 
2c  0 1 0 1 0 1 0 1 
2 2 2a b c   0 1 1 2 1 2 2 0 

 From the previous table it follows that two of three prime numbers , ,a b c  are equal to 3 .  

 Case 1. 3a b  . We have  

  2 2 2 216 9 1a b c k        2 29 16 17k c      (3 4 )(3 4 ) 17k c k c    

 If   
3 4 1

3 4 17

k c

k c

    
, then 

2

3

c

k

  
 and ( , , , ) (3,3,2,3)a b c k  .  

 If   
3 4 1

3 4 17

k c

k c

      
, then 

2

3

c

k

   
 and ( , , , ) (3,3,2, 3)a b c k   .  

 Case 2. 3c . If (3, , , )b c k  is a solution of the given equation, then ( ,3, , )b c k  is a solution, too.  

 Let 3a . We have  

  2 2 2 216 9 1a b c k         2 29 152k b          (3 )(3 ) 152k b k b   .  
Both factors shall have the same parity and we obtain only 4 cases: 

 If   
3 2

3 76

k b

k b

    
, then 

37

13

b

k

  
 and ( , , , ) (3,37,3,13)a b c k  .  

 If   
3 4

3 38

k b

k b

    
, then 

17

7

b

k

  
 and ( , , , ) (3,17,3,7)a b c k  . 

  If   
3 76

3 2

k b

k b

      
, then 

37

13

b

k

   
 and ( , , , ) (3,37,3, 13)a b c k   . 

 If   
3 38

3 4

k b

k b

      
, then 

17

7

b

k

   
 and ( , , , ) (3,17,3, 7)a b c k   . 

 In addition, ( , , , ) {(37,3,3,13), (17,3,3,7), (37,3,3, 13), (17,3,3, 7)}a b c k    .  

 So, the given equation has 10 solutions: 
 {(37,3,3,13),(17,3,3,7),(37,3,3, 13),(17,3,3, 7),(3,37,3,13),(3,17,3,7),(3,37,3, 13),(3,17,3, 7),(3,3,2,3),(3,3,2, 3)}S      .  

 
 Problem 2. Let , ,a b c  be positive real numbers such that 3a b c   . Find the 
minimum value of the expression  

  
3 3 32 2 2a b cA

a b c
      

Solution. We rewrite A  as follows: 
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 

 

3 3 3
2 2 2 2 2 2

2

2 2 2 1 1 12 2 ( )

2 (( ) 2( )) 2 (9 2( ))

12 2( ) 9 2( ) 1 9

ab bc caa b cA a b c a b c
a b c a b c abc

ab bc ca ab bc caa b c ab bc ca ab bc ca
abc abc

ab bc ca ab bc ca ab bc ca
abc abc

                

               

          

 

Recall now the well-known inequality 2( ) 3( )x y z xy yz zx      and set x ab , y bc , z ca , to 

obtain 2( ) 3 ( ) 9ab bc ca abc a b c abc       where we have used 3a b c   . By taking the square 
roots on both sides of the last one we obtain:  
  3ab bc ca abc   .                   (1) 
 Also by using AM-GM inequality we get that  

  1 11 2
abc abc

  .                    (2) 

 Multiplication of (1) and (2) gives  

   1 1( ) 1 3 2 6ab bc ca abc
abc abc

     .  

 So 2 6 9 3A     aand the equality holds if and only if 1a b c   , so the minimum value is 3 .  

 Remark. Note that if 
32( ) xf x

x
 , (0,3)x  then 3

4''( ) 2f x
x

  , so the function is convex on 

3(0, 2)x  and concave on 3( 2 ,3)x . This means that we  cannot apply Jensen’s inequality.  
 

 Problem 3.Let ABC  be an acute triangle. The lines 1l  and 2l  are perpendicular to AB  
at the points A  and B  respectively. The perpendicular lines from the midpoint M  of AB  
to the lines AC  and BC  intersect 1l  and 2l  at the points E  and F , respectively. If D  is 
the intersection point of the lines EF  and MC , prove that  
  ADB EMF  .   
 Solution1. Let the circles with diameter EM  and FM  intersect for second time at 'D  and let them 
intersect the sides CA , CB  at points ,G K  respectively. Since  

  ' ' 90ED M FD M    ,  
we have that , ',E D F  are collinear.  
 Since EM  is a diameter and AG  is a chord perpendicular to it, we have that MG MA  and 
similarly MK MB . Since MA MB , it follows that AGKB  is cyclic.  
 From the above we have that CG CA CK CB    and this means that C  has equal power to the two 
circles, so it is on the radical axis of them, so , ',C D M  are collinear. From the above it follows that 

'D D .  
 Finally, from the cyclic quadrilaterals EAMD  and DMBF  we have that  
  180 180ADB EDA BDF AME BMF EMF         .  
 Solution 2. Let ,H G  be the points of intersection of ,ME MF  with ,AC BC  respectively. From the 
similarity of triangles MHA  and MAE  we get  

  MH MA
MA ME

 ,  

thus,  
  2MA MH ME  .                     (1) 
 Similarly, from the similarity of triangles MBG  and MFB  we get  

  MGMB
MF MB

  

thus,  
  2MB MF MG  .                    (2) 
 Since MA MB , from (1) and (2) we have that the points , , ,E H G F  are concyclic.  
 Therefore, we get that FEH FEM HGM   . Also, the quadrilateral CHMG  is cyclic, so 

CMH HGC  . We have  
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  90FEH CMH HGM HGC      .  
Thus CM EF . Now, from the cyclic quadrilaterals FDMB  and EDMA , we get that DFM DBM   and 

DEM DAM  . Therefore, the riangles EMF  and ADB  are similar, so ADB EMF  . Even more 
  ADB ADM MDB AEM MFB CAB CBA       .  
 

 Problem 4. An L -shape is one of the following four pieces, each consisting of three 
unit squares:  
 
 A 5 5 board, consisting of 25  unit squares, a positive integer 25k   and an 
unlimited supply of L -shapes are given. Two players, A  and B , play the following 
game:starting with A  they alternatively mark a previously unmarked unit square until they 
mark a total of k  unit squares.  
 We say that a placement of L -shapes on unmarked unit squares is called good if the L -
shapes do not overlap and each of them covers exactly three unmarked unit squares of the 
board. B  wins if every good placement of L -shapes leaves uncovered at least three 
unmarked unit squares. Determine the minimum value of k  for which B  has a winning 
strategy.  
 Solution. We will show that player A  wins if 1,2k   or 3 , but player B  wins if 4k  . Thus the 
smallest k  for which B  has a winning strategy exists and is equal to 4 .  
 If 1k  , player A  marks the upper left corner of the square and then fills it as follows.  
 If 2k  , player A  marks the upper left corner of the square. Whatever square player B  marks, then 
player A  can fill in the square in exactly the same patern as above except that he doesn’t put the trimino 
which covers the marked square of B . Player A  wins because he has left only two unmarked squares 
uncovered.  
 For 3k  , player A  wins by following the same strategy. When he has to mark a square for the 
second time, he marks any yet unmarked square of the triomino that covers the marked square of B .  
 Let us now show that for 4k   player B  winning strategy. Since there will be 21 unmarked squares, 
player A  will need to cover all of them with seven L -shaped triominoes. We can assume that in his first 
move, player A does not mark any square in the bottom two rows of the chesboard(otherwise just rotate 
the chessboard). In his first move player B  marks the square labeled 1 in the following figure.  
 If player A  in his next move marks the squares 2 then player B  marks the square labeled 5. Player 
B  wins as the squre labeled 3 is left unmarked but cannot be covered with an L -shaped triomino.  
 Finally, if player A  in his next move marks one of the squares labeled 3 or 4, player B  marks the 
other of these two squares. Player B  wins as the square labeled 2 is left unmarked but cannot be covered 
with an L -shaped triomino.  
 Since we have covered all possible cases, player B  wins when 4k  .  
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